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Abstract
A study is reported that examines computations of turbulent particle agglomeration with one-way
and two-way phase coupling for cases with small overall particle concentration. The fluid flow
was computed using a direct numerical computation using the point-force approximation for
particle-induced body force, and a soft-sphere, adhesive discrete-element method was used to
simulate the particulate transport and agglomerate formation. Computations were performed with
different values of the Stokes number and the adhesion parameter. A variety of measures were
used to examine both the effect of particle agglomeration on the fluid turbulence and the
structure and flow field within the particle agglomerates. It was found that agglomeration has
little influence on the attenuation of turbulence by the particles, at least in the range of Stokes
numbers examined in the paper. Computations with two-way coupling generated agglomerates
that were larger and contained more particles than those for one-way coupling. The agglomerate
structure for both one-way and two-way coupling cases had a fractal structure with a similar
value of the fractal dimension. As the agglomerate size increased, the fluid motion inside the
agglomerates was found to become increasingly correlated to the agglomerate velocity, acting to

decrease the relative velocity and shear stress of the inner particles within the agglomerate.

Keywords: particle agglomeration; collisions; turbulence modulation; fractal structure; turbulent
agglomeration



1. Introduction

Particle agglomeration by fluid turbulence occurs in a large range of natural flow
problems and industrial processes. Examples of natural processes include dispersion of
atmospheric particulates, sediment transport and deposition in estuaries, removal of pollutants by
sediment deposition in aquatic systems, particle transport from volcanic plumes, and
agglomeration of ice crystals in the atmosphere during formation of snowflakes. The number of
industrial processes involving turbulent agglomeration is immense, a few examples being fine
particle separation in gas cyclones, wastewater treatment, additive manufacturing processes,
flame synthesis of nanoparticles, and ash capture from combustion furnaces. Many industrial
products are produced from powders or by precipitation from reactive solutions, examples
including 3D printing, ceramic materials, catalysts, and many pharmaceutical products.

Numerous experimental studies have shown that the number of particles in an
agglomerate tends to vary as a power-law function of the agglomerate size (e.g., as represented
by the gyration radius), where the exponent of this power law (known as the fractal dimensional
of the agglomerate group) is typically less than the dimension of the three-dimensional space in
which the agglomerate is contained [1-3]. As a consequence, the average void fraction of the
agglomerate increases as the number of particles within the agglomerate increases [4]. The value
of the fractal dimension depends on the process by which the agglomerate was formed as well as
the stage of the formation process. Typical values range from about 1.5 - 3.0 [5]. The effective
mechanical properties of the agglomerate, such as the shear and elastic moduli, depend on the
fractal dimension [6-8]. The fractal structure of the agglomerate also influences the density of
force chains, which affects the shear stress necessary to induce agglomerate breakup and erosion

[9-13].



Much of the theoretical and computational literature on turbulent agglomeration deals
with the beginning stage of agglomeration, in which agglomerates are growing in size by
collision of particles and of smaller agglomerates [14-19]. This literature uses several important
approximations, including the approximation that two colliding particles will stick together, the
approximation that an agglomerate can be represented by an equivalent spherical particle, and
the approximation that the fluid turbulence is unaffected by the particle agglomeration process
(one-way coupling). The particle collisions are typically assumed to be controlled by shear stress
at the Kolmogorov scale, and various stochastic theories are used to model the particle collision
rate, some of which (but not all) additionally assume small Stokes numbers. An experimental test
of some of these stochastic collision rate theories was presented by Duru et al. [20] for aerosol
droplets in oscillating grid turbulence. The experimental values were observed to be between 50-
100% larger than the theoretical predictions of Chun and Koch [17], and in typical experiments
the mean droplet size increased by about 3% during the experiment. A direct numerical
simulation of the early stages of particle agglomeration was given by Reade and Collins [21],
which again uses the equivalent sphere approximation and examines how the size distribution of
the equivalent spheres varies with Stokes number.

There is an extensive literature examining the effect of particles on fluid turbulence.
Reviews were given by Crowe [22], Eaton [23], Saber et al. [24], Poelma and Ooms [25], Rao et
al. [26] and Balachandar and Eaton [27]. While most work has focused on turbulence modulation
by relatively dilute particulate suspensions, Nasr and Ahmadi [28] demonstrated the importance
of including particle collisions in modeling particle effects on fluid turbulence. However, there is
almost no research to date on the effect of particle agglomeration on turbulent flows. While one

might proceed by employing the equivalent sphere approximation for the particle agglomerates



and using existing literature for turbulence modulation from suspensions of individual particles,
such an approach would neglect a number of fundamental physical aspects of particle
agglomeration. Due to the fractal structure of turbulent agglomeration, the particle volume
fraction within agglomerates varies strongly as a function of agglomerate size, which in turn has
a strong influence on the effective particle mass and the properties controlling agglomerate
deformation and breakup [6, 7, 8, 10, 11, 29] which would not be accurately represented by a set
of equivalent spheres with uniform properties. Particle agglomerates are porous to various
degrees, and depending on the agglomerate size and structure the flow through an agglomerate
can have a significant effect on agglomerate response to turbulent fluctuations and to collisions
with other agglomerates [30, 31]. Particle agglomerates are typically not spherical, but can be
elongated or even have a convoluted structure with various branches. Finally, the bonds holding
particles into an agglomerate can break, either due to fluid forces and due to collisions with other
agglomerates, which might cause a gradual erosion of particles from the agglomerate or a sudden
rupture of the agglomerate into some number of offspring agglomerates [12, 13, 32].

The current paper presents a computational study of turbulent agglomeration that resolves
the individual agglomerate particles and their interactions with surrounding particles. Since we
do not invoke the approximation of treating the agglomerates as equivalent spheres, as used in
previous research, important phenomena such as agglomerate permeability [30] and breakup [13]
were included in the simulations without the need to introduce additional phenomenological
models. A particular objective of the current paper is to examine the significance of two-way
coupling on the turbulent agglomeration process, which was done by comparing results of
computations performed with two-way coupling to those of computations conducted with one-

way coupling, and by examining the flow field around the agglomerate structures that give rise to



differences between the one-way and two-way coupling results. The computations were
performed using a soft-sphere discrete element method (DEM) for adhesive particles subject to
van der Waals adhesion [33], and the fluid flow computations were performed using a pseudo-
spectral method to simulate forced turbulence in a triply-periodic domain. The two-way coupling
effect of particle forces on the fluid flow was accounted for using an effective body force in the
fluid flow simulations, similar to the approach used for simulation of sedimenting particle
agglomerates by Bosse et al. [34]. The various computational methods used to simulate particle
and fluid transport are summarized in Section 2, followed by results and discussion in Section 3.
Section 3.1 examines the effect of turbulent agglomeration on modulation of the turbulence by
the particulate phase. Section 3.2 examines various measures of agglomerate structure for cases

with and without two-way coupling. Conclusions are given in Section 4.

2. Computational Methods

The computations of particle agglomeration were performed using an adhesive discrete
element method (DEM) to model particle transport and collisions. Homogeneous turbulence was
simulated using a forced pseudo-spectral direct numerical simulation (DNS) method on a triply-
periodic domain. Each of these methods has been described in detail elsewhere, but the key

points and appropriate references are summarized below.

2.1. Discrete Element Method (DEM) for Particle Transport

The discrete-element method (DEM) of Marshall [33] was used to transport adhesive
particles in the turbulent flow. The computational method uses a multiple time step algorithm, in

which the fluid time step Az = O(¢/u,), the particle time step Az, = O(d /u, ), and the collision



time step Af, = O(d(pf, /E;uo)”s) satisfy Ar> Az, > At,. Here d is the particle diameter, p,is
the particle density, and £, is the particle elastic modulus. The method follows the motion of

individual particles in the three-dimensional fluid flow by solution of the particle momentum and

angular momentum equations

m® _F +F, zi—?zMﬁMA, 5)

subject to forces and torques induced by the fluid flow (F, and M, ) and by the particle
collision and adhesion (F, and M ,). Here, m is the particle mass, / is the moment of inertia, and

v and Q are the particle velocity and rotation rate, respectively. The dominant fluid force is the
drag force, which is given by the Stokes drag law modified to account for the effect of local

particle crowding as
F,=3mud(u-v)f, (6)

where u is the fluid velocity evaluated at the particle centroid. The friction factor / was given

empirically by Di Felice [35] for particle Reynolds numbers Re, = |u — V|d /v in the range 0.01

to 10* as a function of the local particle volume fraction ¢ as

f=(01-¢), ¢£=37-0.65 exp(—%[l.S —~ ln(Rep)]z) . (7)



This expression approaches the Wen and Yu [36] expression for low particle Reynolds number.
The associated viscous fluid torque arises from a difference in rotation rate of the particle and the

local fluid element, and was given by [37] as
M, :—nyd3(ﬂ—%co), (8)

where @ is the fluid vorticity vector at the particle centroid. Other fluid forces of lesser
importance accounted for in the computation include the Saffman and Magnus lift terms [38-39],

which together with drag make up the fluid force F,. .
The total collision and adhesion force and torque fields on particle i with radius 7, are

given by

F,=-Fn+Ftg, M, =rF.(nxt,)+M (t,xn)+Mn, )

where n =(x, —xl.)/‘x ]. —xi‘ is the unit normal vector oriented along the line connecting the

centers of the two colliding particles, i and j. The normal component of the collision and
adhesion force F, is further divided into an elastic-adhesion part F, and a dissipative part F .
The sliding resistance is composed of a force with magnitude F, acting in a direction tg,

corresponding to the direction of relative motion of the particle surfaces at the contact point
projected onto the contact plane (the plane orthogonal to m), as well as a related torque in the

nxtg direction. The rolling resistance, which arises due to the effects of particle adhesion,

exerts a torque of magnitude M, on the particle in the t, xn direction, where t, is the



direction of the “rolling” velocity. The twisting resistance torque M, is oriented along the unit

normal direction n. While all of these various collision-adhesion forces and torques were
included in the current computations, the dynamics of small adhesive particles are dominated by
the normal elastic-adhesive force and the rolling resistance torque.

The adhesive force between the two particles depends on the surface energy potential y,
where the work required to separate two spheres colliding over a contact region of radius a(¢) is

given by 27y a’ in the absence of further elastic deformation. Particle normal elastic rebound

force and adhesion force were simulated by employing the soft-sphere collision model of

Johnson et al. [40], hereinafter referred to as the JKR model, which can be written in terms of the

contact region radius a(#) and the normal particle overlap o =1, +7, —‘xi - X j‘ as [41]

5 2 4 1/2 F 3 3/2
O —g o L 2L, e g L g L (10)
0, a, 3\ a, F, a, a,

The critical overlap J., the critical normal force F., and the equilibrium contact region radius a,

are given by [40]

a’ 97y R "
F =3mR, o, =—2— a, = ) 11
c 7R c 2(6)1/3R ( E ( )



As two particles move away from each other following collision, they remain in contact until the

point where F, =—F, and o, =-0, due to the necking of the material in the contact region.

Beyond this state any further separation leads the two particles to break apart.

The effect of the fluid squeeze-film within the contact region is to limit the minimum
approach distance between the particles (i.e., the contact region gap size) and to reduce the
particle restitution coefficient. Experimental studies of particle collisions at different Stokes
numbers [42] indicate that the coefficient of restitution is essentially zero when the Stokes
number is less than about 10 due to dissipation in the squeeze-film. Since our Stokes numbers

are well below this value, we set the dissipative part of the normal collision force ¥, such that

the restitution coefficient vanishes using the model of Tsuji et al. [43].
The second major effect of particle adhesion is to introduce a torque that resists particle

rolling. For uniform-size spherical particles, the “rolling velocity” v, of particle i is given by

[44]

vV, =—R(Q,-Q )xn . (12)
A linear expression for the rolling resistance torque M, was postulated as

M, =~k &, (13)

where & =( .[ v,(r)dr)-t, is the rolling displacement in the direction t, =v, /|V L|. Rolling

ly

involves an upward motion of the particle surfaces within one part of the contact region and a
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downward motion in the other part of the contact region. The presence of an adhesion force
between the two contacting surfaces introduces a torque resisting rolling of the particles. An
expression for the rolling resistance due to van der Waals adhesion was derived by Dominik and

Tielens [45], which yields the coefficient &, as

k,=4F.(ala,)’”. (14)

Dominik and Tielens [45] further argue that the critical resistance occurs when the rolling

displacement & achieves a critical value, corresponding to a critical rolling angle 8, =& .. /R.

For &> ¢& ., the rolling displacement & in (13) is replaced by &, . The expressions used for

twisting and sliding resistances are given by Marshall [33].

2.2. Direct Numerical Simulation (DNS) of Homogeneous Turbulence

The DNS computations of isotropic, homogeneous turbulence used for validation were
performed using a triply-periodic pseudo-spectral method with second-order Adams-Bashforth
time stepping and exact integration of the viscous term [46]. In this approach, the spectral

Navier-Stokes equations are evolved in time after having been projected onto a divergence-free

space using the operator P, =kk; [k* — 6, according to the expression

T =0 exp(—vk>At)+ At P- BF exp(—v k>Ar) —%FH exp(—ZVkZAt)} (15)
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where an overbar denotes Fourier transform in three space dimensions, a superscript indicates the
time step, v is the kinematic viscosity, and k is the wavenumber vector with magnitude k. The

force vector F on the right-hand side has Fourier transform given by

F=uxo+f, +f,, (16)

where f, is the small wavenumber forcing term required to maintain the turbulence with

approximately constant kinetic energy and f, is the particle-induced body force due to relative
motion between the particles and the fluid. The velocity field was made divergence-free at each
time step by taking its Fourier transform and using the spectral form of the continuity equation,

given by

k-u=0. (17)

The forcing vector was assumed to be proportional to the fluid velocity [47-48], such that

Cu fork<k,,
) (18)
0 fork>k

crit

fF:{

where the coefficient C was set equal to C =0.0045/F, and E

l ¢ - - . o
low = Z u-u is the kinetic
2 ke<kepi

energy in all modes with wavenumber amplitude & <k The current computations were

crit *

performed with k_, =5, so that the forcing acts only on the large-scale eddies.

crit

12



The particle body force f, was computed by associating a regularized delta function
0,(x—X,) with each Lagrangian particle, where X denotes the particle centroid location of

particle n. The value of the body force f, was evaluated at each grid node i of the Cartesian grid

using
N
fp(xi) = _z FF,n 0,(x; —X,), (19)
n=l1

where F,., denotes the fluid force on the n™ particle. The regularized delta function used for the

current problem distributes the particle force uniformly over a stencil consisting of the grid cell
containing the particle and one grid cell on each side. This choice of delta function is

conservative in both the force and torque for any value of X, .

The turbulence kinetic energy ¢ and dissipation rate ¢ were obtained from the power

spectrum, e(k), as
Komax Ko
g= jo e(k)dk &= 2vj0 ke(k)dk . (20)

Various dimensionless measures describing the turbulence in the validation computations are

listed in Table 1, including the root-mean-square velocity magnitude u,, the average turbulence
kinetic energy ¢, the integral length scale ¢, =0.5 u03 /e, the Taylor microscale
A=(15v/e)"?u,, and the Kolmogorov length scale 7=(v’/g)"*. The corresponding

microscale Reynolds number is Re, =uyA/v =99.

13



2.3. Dimensionless Parameters

One of the most important dimensionless parameters is the Stokes number, which is

defined as the ratio of the particle time scale 7, =m/37zud to a characteristic fluid time scale,

where m is the particle mass. For turbulent flow, different Stokes numbers can be defined using

different fluid time scales. Two common choices are the Kolmogorov-scale Stokes number St,

and the integral-scale Stokes number St,, defined by

Sty =7,/7,, Sty =7,/7,. (21)

The Kolmogorov time scale 7z, is defined in terms of the kinematic viscosity and turbulence

1/2

dissipation rate as 7, =(v/¢&) '~ and the integral time scale is given by 7, =/, /u,. The Stokes

number determines the particle response to changes in the fluid flow, such that in cases with
small Stokes numbers particles nearly follow fluid streamlines and in cases with large Stokes
numbers the fluid has only a small influence on the particle motion.

The tendency for colliding particles to adhere to each other can be characterized by the

adhesion parameter Ad, defined in terms of the adhesive surface energy density y as [49]

Ad=—2 22)
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In this equation, U is a characteristic velocity scale of the fluid, which might be set equal to the
root-mean-square turbulent fluctuation velocity u, to obtain the integral-scale adhesion

1/4

parameter Ad, or to the Kolmogorov velocity u, =(ve)"" to obtain the Kolmogorov-scale

adhesion parameter Ad,. The adhesive energy density y can be related to the Hamaker

coefficient 4 for the particle material operating in the given fluid medium by

A

=, 23
24765* 23)

/4

where o0 is the gap thickness within the contact area.

The elastic rebound force on the particle is characterized using an elasticity parameter El,

defined by

El= % (24)
Py

where E is the effective elastic modulus, which together with the effective particle radius R is

defined by

+—, (25)

where E,, o,, and r, are the elastic modulus, Poisson ratio, and radius of particle i, respectively.

Both the elasticity parameter El and the adhesion parameter Ad are important in determining the

15



radius of the contact region upon particle collision. In (23), the fluid velocity scale U may again

be modeled using either the integral scale (root-mean-square) velocity u, or the Kolmogorov-

scale velocity u,, .

3. Results and Discussion

The computations were initialized by positioning 46,656 particles on a uniform array
across the computational domain. A preliminary computation was conducted with no particles to
allow the turbulence to develop a range of length scales characteristic of statistically stationary
homogeneous isotropic turbulence. The computation was then restarted with particles using the
three-level multiple time-step DEM algorithm of Marshall [33], with a fluid time step of

dt, =0.005, 10 particle time steps per fluid time step, and 40 collision time steps per particle

time step. A listing of the parameter values for the different runs with particles is given in Table

2, where the different runs are referred to in the following as case 1-12.

3.1. Effect of Particle Agglomeration on Turbulence

The turbulent kinetic energy ¢ and turbulent dissipation rate & are plotted as functions of
time for cases with both one-way and two-way coupling in Figure 1 for case 2. For the one-way
coupling computations, both ¢ and ¢ fluctuate in time with root-mean-square values of 4.6% and
7.5% of their mean values, respectively. The computations with two-way coupling result in
values of turbulent kinetic energy that exhibit fluctuations with a similar root-mean-square value
up to about ¢ ~87, after which the kinetic energy decreases sharply. The turbulent dissipation for
the two-way coupling computation is observed to decrease to about 20% below the average value

for the one-way coupling simulation up to a time of about ¢ = 60, after which the dissipation rate
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in the two-way coupling computation decreases steadily. We note that the dissipation rate
measure & reported here is due to fluid gradients, and it does not include the dissipation caused
by the particle drag force on the fluid.

A plot of the power spectrum at three different times is presented in Figure 2a, showing a

gradual decrease in the spectrum with time for the case with two-way coupling. The power

spectrum is nearly constant in time for the one-way coupling case. The k~'° scaling of the
power spectrum in the inertial range is indicated by a dashed line. A comparison of the power
spectra for cases with different Stokes numbers is given in Figure 2b. The change in Stokes
number in this figure was produced by changing the particle radius, with all other parameters
held fixed. Two computations were conducted with each value of particle radius, one with
adhesive particles (Ady = 12.3, cases 1-4) and one with no adhesion (Ady = 0, cases 5-8). The
power spectra were plotted in Figure 2b at time ¢ = 87.5, near the end of the runs and just before
the turbulent kinetic energy decreases sharply. The power spectra curves for the case with lowest
Stokes number (Stx = 0.86) are almost identical to the initial power spectrum, showing almost no
change with the addition of the particles.

The cases with higher Stokes number exhibit progressively lower power spectra curves as
the particle size is increased. It is noted that several different regimes characterizing turbulence
modulation by particles have been noted in the literature. For very small particles with
Kolmogorov-scale Stokes number Stx <<I, the particles are found to enhance the fluid inertia
and hence increase the turbulent kinetic energy [50, 51]. For particles with larger Stokes number

Stk >>1) but with diameter d less than about 10% of the integral length scale ¢, the particles
g g 0 p

reduce the turbulent kinetic energy. This reduction is generally associated with the preferential

concentration of particles in regions of low fluid vorticity [52-55]. Druzhinin [51] reported the
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transition between these two regimes to occur at Stx = 0.8. Finally, sufficiently large particles
are again observed to enhance turbulent kinetic energy due to shedding of vortex structures in the
particle wakes. Gore and Crowe [56] and Crowe [22] propose that this third regime corresponds

to particles with diameter d satisfying d /¢, > 0.1, but various other criteria have been suggested

by other researchers. As seen from Tables 1 and 2, the current computations are clearly in this
middle regime of turbulence modulation, and the observed enhanced attenuation of turbulent
kinetic energy with increase in particle size and mass loading is consistent with the previous
literature cited above for this regime.

The cases with the three smallest values of Stokes number in Figure 2b exhibit almost no
difference in the power spectra between computations with and without adhesion. The case with
largest Stokes number exhibits a reduction in the power spectrum for the case with adhesion
compared to that with no adhesion. The fact that the power spectra shown in Figure 2b are so
similar for the cases with and without adhesion, even though the curves exhibit significant
decrease due to the presence of particles compared to the power spectrum for the one-way
coupling computation, provides strong evidence that particle agglomeration has little influence
on turbulence attenuation, at least for sufficiently small particles. This observation is consistent
with the conclusion of Druzhinin [51] that the attenuation of turbulence by particles in this
regime is primarily a consequence of the particle inertia, which depends only on net particle
mass and is independent of agglomeration of the particles.

The size of the agglomerates that develop during the turbulent flow simulation depends
upon the value of the adhesion parameter. As indicated in Table 2, the value of the adhesion
parameter was varied in our computations over a factor of about 16. For significantly smaller

values of adhesion parameter than those examined, there is only a small amount of particle

18



adhesion during the computational run time and the agglomerates are relatively small, with only
2-5 or so particles. For much larger values of adhesion parameter than those examined, the
agglomerates grow to very large sizes during the computations, in some cases with all particles
forming a single agglomerate. Our desire in this paper was to examine agglomerates that were
sufficiently large (i.e., several hundred particles) so that measures such as fractal dimension are
sensible, but also agglomerates whose maximum size was of the order of magnitude of the
integral length scale of the turbulence. Figure 3a shows the average number of particles per

agglomerate, N at time ¢ = 87.5 as a function of adhesion parameter. The agglomerate size

pagg ?

can be estimated by the radius of gyration, R, , defined for an agglomerate i by

. i 12
Ry, :{F ‘Xj _Xi‘ } > (26)

where X; denotes the centroid position of agglomerate / and x; is the centroid position of the o

particle within the agglomerate. The average value of the radius of gyration tends to be

dominated by the smallest, but more numerous, agglomerates. Instead, we define a particle-

weighted radius of gyration, R, , by
_ 1 Nﬂgg
Ry =—— Z NiRy, (27)

agg 1=l
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where N, is the number of particles in agglomerate i and N, is the total number of

agglomerates. A plot of R o /T, Where 7, is the radius of a single particle, at time 7 = 87.5 is

presented in Figure 3b as a function of adhesion parameter for both computations with one-way

and two-way coupling.

3.2. Structure of Particle Agglomerates

This section examines the detailed structure of the particle agglomerates, as predicted
using both one-way and two-way coupling simulations. This study was performed starting from a
state in which no particles were touching, and hence there were no agglomerates, and ending at a
time of ¢ = 87.5. By this end time the agglomerates had developed into large structures, but they
had not yet achieved an equilibrium condition where agglomerate breakup balances agglomerate
formation by collision. This end time was selected because shortly after this time in the two-way
coupling simulations, the turbulent kinetic energy decreases sharply, leading eventually to a state
where the small-scale turbulence completely vanishes. On the other hand, at ¢=87.5 the
turbulent kinetic energy is still reasonably close to its initial value, as shown in Figure 1a.

Agglomerates are defined as groups of particles that are in contact with each other, either
directly or via contacts with other particles. The agglomerates were identified at each time step
of the computation and a variety of measures were employed to examine their characteristics.
The total number of agglomerates N, is plotted as a function of time for case 2 in Figure 4a for
computations with both one-way and two-way coupling of the particle and fluid phases. Shortly
after the start of the computation, individual particles collide and attach to each other to form
small agglomerates. A maximum in the number of agglomerates is reached at r =15, equal to

approximately 7400 agglomerates. The number of agglomerates then decreases as these small
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agglomerates collide and adhere to each other to form larger agglomerates. The number of

particles N, in each agglomerate was counted and averaged over all agglomerates to obtain the

average number of particles per agglomerate, which is plotted as a function of time in Figure 4b.

The dimensionless particle-weighted radius of gyration, R, or 1 T,» 18 plotted as a function time in

Figure 4c.

In all three of the plots in Figure 4, the one-way and two-way coupling results are quite
close to each other for times near the beginning of the calculation. At # = 20 we notice that the
radius of gyration in Figure 4c for the two-way coupling run increases above that for the one-
way coupling run. The number of particles per agglomerate in Figure 4b similarly is greater for
the two-way coupling run than it is for the case with one-way coupling; however, the differences
between the one-way and two-way coupling runs appear later than for the radius of gyration.
Since the agglomerates for two-way coupling are both larger and have more particles than for
one-way coupling, it follows that the number of agglomerates shown in Figure 4a for the two-
way coupling computation is less than that for one-way coupling, although again we see that this
difference appears significantly later than in the plot of the radius of gyration.

As noted by a number of previous authors [1-3], the number of particles N, in

agglomerate i can be expressed as a power-law function of the agglomerate size, such that

N, =K(R,,,/r)", (28)

&yrit

where K is a coefficient (called the fractal pre-factor) and the exponent d , is called the fractal

dimension of the set of agglomerates. The value of &, varies over the interval 1<d, <3
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depending on the agglomeration formation mechanism [5]. For instance, Eggersdorfer et al. [57]

cited typical values of d, =2.5 for diffusion-limited agglomeration, d, =3.0 for ballistic
particle-cluster agglomeration, and d, =1.8 for diffusion-limited cluster-cluster agglomeration.

For turbulent agglomeration of latex particles in stirred tanks, Selomulya et al. [58] reported

values of d, between 1.7 and 2.1 and Waldner et al. [59] reported values of d , between 1.8 and
2.6. A log-log plot of N versus R, /r, is shown in Figure 5a at time ¢=87.5 for both one-way

and two-way coupling computations. It was found that for both methods fractal dimension values

are close, with d, =2.064 for one-way coupling and d, =2.118 for two-way coupling. This

value of fractal dimension for the particle agglomerates is in good agreement with values noted
above obtained in previous experimental literature for turbulent agglomeration.

The fractal dimension was calculated at different time intervals during the computations.
The calculated fractal dimension is plotted as a function of time and is shown in Figure 5b. The
fractal dimension for one-way and two-way coupling computations is quite close; however, the
result for two-way coupling is a little higher near the end of the computation (for #>70). A
larger value of fractal dimension for two-way coupling implies that the agglomerates were more
densely packed in comparison to the one-way coupling results.

Figure 6a shows the distribution of agglomerate sizes at ¢ =87.5. The number of particles
in the agglomerate is divided into a set of logarithmic bins of base 2, such that the width of each
bin is twice the width of the previous bin. The x-axis plots the median number of particles in the
bin and the y-axis plots the number of agglomerates falling into that bin, where both axes are
logarithmic. A similar plot is shown in Figure 6b, with the difference that the agglomerate size is

characterized by bins of the ratio R, /r, of agglomerate gyration radius to individual particle
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radius. Because the values of this ratio have a narrower size variation than the number of
particles in the agglomerate, the bins used in Figure 6b are linear, with a constant width. The
plots in Figure 6 demonstrate that the two-way coupling computation generates larger
agglomerates with more particles than does the one-way coupling computation.

The particle volume fraction ¢ is computed for each agglomerate by dividing the
volume of all particles associated with the agglomerate, V, =(47/ 3)Nir5, by the effective
volume ¥, occupied by the agglomerate. The agglomerate effective volume is estimated by

Vs =(47/3)R}, , where the effective radius of the agglomerate R, is related to the radius of

gyration as R, =+2/5R, . This latter expression is based on the expression for radius of

gyration of a solid sphere of uniform density. The particle volume fraction of the agglomerate

can be related to the fractal dimension by [2, 30]

¢ =h(R,,./r)" ", (29)

where ¢, is a constant. If d, <3, an increase in agglomerate size results in a decrease in average

particle volume fraction [4]. A log-log plot of the averaged agglomerate volume fraction versus

the dimensionless radius of gyration (R,, /r,) is given in Figure 7a at time 7=87.5. The

observed decrease in volume fraction as the agglomerate size increases is substantial. The two-
way and one-way coupling results for volume fraction are fairly close for the smaller
agglomerates, but for the larger agglomerates the two-way coupling simulations yield somewhat
larger particle volume fraction than do the simulations with one-way coupling. This result is

consistent with our previous observation that the fractal dimension for two-way coupling
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simulations is slightly larger than for one-way coupling. Figure 7b shows a log-log plot of

volume fraction ¢ versus R, /r, at time ¢=87.5 for both one-way and two-way coupling

computations. The slopes of the best-fit lines to the data were obtained as —0.9351 and —0.8818
for one-way and two-way coupling, respectively. These values almost exactly agree with the

exponent d , —3 given in (29) using the previously cited values of fractal dimension d .

In order to better clarify the physical differences between the one-way and two-way

coupling computational results, we define V. and V_, as the average magnitudes of the particle
pling p > pa rel g g p

”

velocity v and the particle slip velocity v, = v —u, respectively. The magnitudes of the particle

slip
velocity and the particle slip velocity were computed for all particles, and then averaged over all

particles contained within agglomerates (omitting values for single particles that are not in an

agglomerate). Time variation of both ¥, and V,,, is plotted in Figure 8a for case 2. The average
particle velocity magnitude V,,. fluctuates for both the one-way and two-way coupling

computations within the interval 0.35-0.45, which is slightly greater than the root-mean-square

turbulence fluctuation velocity u, = 0.285 listed in Table 1. The average particle slip velocity
V , similarly remains approximately constant in time for the one-way coupling run. For the two-
way coupling case, by contrast, the value of V, is observed to gradually decrease in time, with a

value at the end of the run that is nearly half of the initial value. The decrease in particle slip
velocity with time for the two-way coupling computation is an indication that the fluid velocity
within the agglomerate is becoming correlated with the particle velocity, resulting in a reduction
of the relative velocity between the two phases within the larger agglomerates. Another measure
of this phenomenon is represented by the agglomerate penetration parameter P, which is defined

as
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p=rd, (30)

The time variation of P is plotted in Figure 8b, showing approximately constant value for one-
way coupling and a steady reduction in time for the two-way coupling computation. Both the
higher volume fraction of agglomerates with two-way coupling and the correlation between the
fluid and particle velocity fields makes it increasingly difficult for the fluid to penetrate into the
agglomerates of the two-way coupling run as the agglomerate size increases.

To further examine the spatial variation of various fields within the agglomerate, we

introduce a second-moment measure y, (F')of a given field F(x) for each agglomerate i as

i 2
Nl.[ xj—xl.‘ F]]
Jj=1

- " , (31)
5 ko[£

Jj=1

,ui(F):{

where X, is the centroid of agglomerate i and F; is the value of the function F'(x) evaluated at

the centroid x; of the /™ particle within the agglomerate. The second-moment measure is shown

in Figures 9a and 9b for two different fields — the relative velocity magnitude and a strain

Vslip
rate measure S =+/2D : D, where D is the fluid rate of deformation tensor. For each of these two
fields, the average value of the moment y,(F') is plotted as a function of number of particles in

the agglomerate using the same logarithmic bins as used in Figure 6a, where the averaging is

performed for all agglomerates in each bin. A value of the second moment u(F) equal to unity
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indicates that the function F(x) is uniform (or statistically randomly varying) across the
agglomerate, whereas a value of , (F') that is less (greater) than unity implies that particles with
higher (lower) values of F(x) are found near the center of the agglomerate compared to particles

on the outer parts of the agglomerate. Obviously, for the smallest bin representing agglomerates
with only two particles, all second moments are equal to unity by definition.

The second moment of the relative velocity magnitude is shown in Figure 9a. The second
moment is observed to be larger than unity for both one-way and two-way coupling
computations, particularly within the middle range of agglomerate size spanning from 6 to 1500
particles. The second moment for the one-way coupling computation tends to be higher in the
lower end of this range, for agglomerates with between about 6 to 40 particles, and the values for
the two-way coupling computation tend to be higher for the upper part of this range, for
agglomerates with between 700 to 1500 particles. Several mechanisms play a role in increasing
the second moment of the relative velocity above unity. A mechanism that is present for both
one-way and two-way coupling computations is the rotational inertia of the particles, which leads
to a particle velocity magnitude that increases linearly with distance from the agglomerate

centroid. Consequently, the value of V, is higher for the outermost particles, which are a farther

distance away from the agglomerate center than the innermost particles, hence causing the
second moment to increase above unity. A similar linear velocity variation with distance from
the centroid exists for shearing or elongational deformation of the agglomerates. For the
computation with two-way coupling, the fluid within the inner region of the agglomerate is
influenced by the particle-induced body force and becomes correlated to the particle velocity,

such that the fluid within the agglomerate moves with the inner particles. This effect will tend to
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decrease V,, for the inner particles (and increase the second moment) in the two-way coupling
computation, but it occurs primarily for larger agglomerates.

The second moment of the straining rate measure S = J2D:D is shown in Figure 9b.
The value of this measure is nearly equal to unity for the one-way coupling computation since
the straining measure depends only on the fluid flow, and hence can be treated as a random
variable. The second moment of the straining measure is also close to unity for small
agglomerates with two-way coupling. As the number of particles per agglomerate increases (to a
value greater than about 100), the straining rate measure gradually increases above unity,
indicating that the straining rate experienced by the particles is higher for particles near the outer
edges of the agglomerate than for particles near the center. The outermost particles can act
almost like a screen for the larger agglomerates with two-way coupling, preventing the inner
particles from being exposed to high strain rate. This observation is consistent with the results of
studies, such as Binder et al. [60] or Fellay et al. [61], that use direct simulation techniques such
as lattice-Boltzmann or Stokesian dynamics to compute simple flow fields or rotational motion
for single agglomerate structures. For larger-size agglomerates that are nearly spherical in shape,
our findings are also approximately consistent with the shell-core model for agglomerate
structure proposed by Kusters et al. [30], in which each agglomerate is idealized as a two-layer
sphere, where the outer ‘shell’ layer is porous and the inner ‘core’ layer is impermeable.

There is, of course, some inaccuracy in the second moment measure discussed above,
since the agglomerates are not particularly spherical in shape, but instead appear to have a wide
variety of jagged and/or elongated shapes. To make the relative velocity and strain rate measures
more understandable, we have visualized the relative velocity and strain rate measures for some

sample agglomerates from the two-way coupling computation in Figures 10a and 10b. These
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figures visually confirm that outer regions of the agglomerates experience higher values of the
relative velocity and shear measures compared to points in the inner region of the agglomerates,

even for non-spherical agglomerates.

4. Conclusions

A series of computations were performed to examine the differences between
computations of turbulent particle agglomeration with one-way and with two-way phase
coupling. The computations examined cases with Kolmogorov-scale Stokes numbers varying
from about 0.8 to about 14. In agreement with previous literature examining turbulence
modulation by particles in this range of Stokes numbers, we observe that the particles cause
enhanced attenuation of the turbulent kinetic energy compared to computations with no particles.
The rate of attenuation increased with increase in the particle size and mass loading. In a series
of computations repeated both with adhesion and without adhesion, we observe little difference
in the rate of particle attenuation, except for the largest size particles. Examination of the
agglomeration process indicates that significant agglomeration occurred during the
computations, but without any significant influence on the turbulence modulation. This
observation reinforces the notion expressed in previous literature [51] that the turbulence
attenuation in this Stokes number regime is dominated by particle inertia.

Examination of agglomerate structure during the turbulent agglomeration process
indicated that agglomerates formed with two-way coupling were larger and contained more
particles than those generated under one-way coupling computations, even though at the time of
comparison the turbulent kinetic energy for the two cases was about the same. Agglomerates

formed with both one-way and two-way coupling computations had about the same fractal
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dimension d ,, which compared well with values cited in previous experimental literature for

turbulent agglomeration. The volume concentration of particles in each agglomerate was

computed and found to vary as a power function with exponent equal to 3—d ,, in agreement

with previous literature on agglomerate fractal structure [2]. While the magnitude of the particle
velocity is similar for agglomerates computed with one-way and two-way coupling, the relative
velocity between the particle and the fluid is much lower for the two-way coupling
computations, particularly once larger-size agglomerates start to form. Several different
measures indicated that the fluid flow generated in agglomerates acts to shield the inner-most
particles, so that the highest shear stresses and relative velocity occurs for the outer particles in
agglomerate. The motion of fluid inside the large agglomerates was found to be highly correlated

to the agglomerate motion.
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Figure Captions

Figure 1. Time variation of (a) turbulent kinetic energy ¢ and (b) turbulence dissipation rate &,
with results from computations with one-way coupling (dashed line, deltas) and two-way
coupling (solid line, circles).

Figure 2. (a) Power spectrum for computation with two-way coupling for case 2 at three different
times: ¢ = 0 (black line), 50 (blue line) and 87.5 (red line). (b) Power spectrum for computations
with Kolmogorov-scale Stokes numbers St, =0.86 (black), 3.44 (blue), 7.74 (red), and 13.8

(green) at ¢ = 87.5 both with adhesion (Ady = 12.3, cases 1-4)(solid lines) and without adhesion
(Ady= 0, cases 5-8)(dashed lines).

Figure 3. Plots showing (a) the number of particles per agglomerate N, and (b) the
dimensionless particle-weighted average radius of gyration, R, o /T,> as a function of integral-

scale adhesion parameter, Ady, for computations with two-way coupling (solid lines, circles) and
one-way coupling (dashed lines, deltas) at time ¢ =87.5. Computations are for cases 2 and 9-12.

Figure 4. Time variation of (a) the total number of agglomerates (N, ) and (b) the average

number of particles per agglomerate (N ) and (c) the dimensionless particle-weighted radius

pagg
of gyration of agglomerates (R,, /r,) with results from computations with one-way coupling

(dashed lines) and two-way coupling (solid lines) for case 2.

Figure 5. (a) Plot showing power-law fit given in Eq. (28) between the number of particles in an
agglomerate N, versus the ratio of the gyration radius to the primitive particle radius, R, /7, .

Slope of lines on the log-log plot are equal to the fractal dimension d, at 1=87.5, and results

are given for both one-way coupling (blue crosses) and two-way coupling (red circles). (b) Plot
showing time variation of the fractal dimension, comparing results with one-way coupling
(dashed line, deltas) and two-way coupling (solid line, circles) for case 2.

Figure 6. Distribution plots showing number of agglomerates N, as a function of (a) number
of particles in the agglomerate averaged over a set of logarithmic bins, N,, and (b)
dimensionless radius of gyration, R, /r,, averaged over a set of linear bins. Results are from

computations with one-way coupling (A, blue bars) and two-way coupling (B, red bars) at ¢ =
87.5 for case 2.

Figure 7. (a) Distribution plot showing the particle volume fraction as a function of the
dimensionless radius of gyration, R,, /r,, on a log-linear plot for both one-way coupling (blue

bars) and two-way coupling (red bars). (b) Plot showing the power-law fit given in Eq. (29),
where the slope of lines on the log-log plot are equal to the fractal dimension d, —3. The data is

for case 2 at t =87.5, for one-way coupling (blue crosses) and two-way coupling (red circles).
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Figure 8. Time variation of (a) the average particle velocity magnitude V°

Lo (Upper curves) and

the average particle slip velocity magnitude V/

re

, (lower curves) and (b) the agglomerate flow

penetration parameter P for computations with one-way (dashed lines, deltas) and two-way
(solid lines, circles) coupling for case 2.

Figure 9. Second-order moment plots for (a) relative velocity magnitude V,

el >

and (b) shear
measure S =+/2D: D, shown for results of computations with one-way coupling (blue bars) and
two-way coupling (red bars) for case 2 at ¢ =87.5. The number of particles in the agglomerate

are grouped logarithmically into bins, with average number of particles for the given bin
indicated by N, .

Figure 10. Scatter plots of the five largest agglomerates with colors indicating (a) the relative
velocity magnitude and (b) the shear stress measure S for the two-way coupling run for case 2 at
t=100.
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Table 1. Dimensionless simulation parameters and physical parameters of the fluid turbulence.

Simulation Parameters Turbulence Parameters

Time step 0.002 Turbulent kinetic energy, g 0.122

Cycles 15000 Mean dissipation rate, & 0.015

Grid 128° Kinematic viscosity, v 0.001
Integral length, /¢, 0.771
Taylor microscale, A 0.285
Kolmogorov length, 7 0.016
Integral velocity, u, 0.285
Integral time, 7, 2.71

Table 2. List of computational cases examined. For each case computations were performed with
and without two-way coupling. Variables listed include ratio of particle radius to integral length

scale, average particle volume concentration ¢ , mass loading Z, Kolmogorov and integral scale
Stokes number, and Kolmogorov and integral scale adhesion parameter.

Case r, 10, a Z Stk Sto Adx Ad,
1 0.0129 | 0.000788 | 0.00789 0.860 0.082 260 12.3
2 0.0259 0.0063 0.0634 3.44 0.328 260 12.3
3 0.0389 0.0213 0.218 7.74 0.738 260 12.3
4 0.0516 0.0504 0.531 13.8 1.31 260 12.3
5 0.0129 | 0.000788 | 0.00789 0.860 0.082 0 0
6 0.0259 0.0063 0.0634 3.44 0.328 0 0
7 0.0389 0.0213 0.218 7.74 0.738 0 0
8 0.0516 0.0504 0.531 13.8 1.31 0 0
9 0.0259 0.0063 0.0634 3.44 0.328 130 6.16
10 0.0259 0.0063 0.0634 3.44 0.328 520 24.6
11 0.0259 0.0063 0.0634 3.44 0.328 1041 49.3
12 0.0259 0.0063 0.0634 3.44 0.328 2081 98.5
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Figure 1. Time variation of (a) turbulent kinetic energy ¢ and (b) turbulence dissipation rate &,
with results from computations with one-way coupling (dashed line, deltas) and two-way
coupling (solid line, circles).
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Figure 2. (a) Power spectrum for computation with two-way coupling for case 2 at three different
times: ¢ = 0 (black line), 50 (blue line) and 87.5 (red line). (b) Power spectrum for computations
with Kolmogorov-scale Stokes numbers St, =0.86 (black), 3.44 (blue), 7.74 (red), and 13.8
(green) at ¢ =87.5 both with adhesion (Ady = 12.3, cases 1-4)(solid lines) and without adhesion
(Ady= 0, cases 5-8)(dashed lines).
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Figure 3. Plots showing (a) the number of particles per agglomerate N and (b) the

dimensionless particle-weighted average radius of gyration, R,, /r,, as a function of integral-

pagg

scale adhesion parameter, Ady, for computations with two-way coupling (solid lines, circles) and
one-way coupling (dashed lines, deltas) at time 7 =87.5. Computations are for cases 2 and 9-12.
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Figure 4. Time variation of (a) the total number of agglomerates (N, ) and (b) the average

number of particles per agglomerate (N ) and (c) the dimensionless particle-weighted radius

pagg
of gyration of agglomerates (R, or /T7,) With results from computations with one-way coupling

(dashed lines) and two-way coupling (solid lines) for case 2.

40



L LB RN RARRY AU 2.2 L | | L |

2.1
10°

EENEEET |

N ¢

Lol
<

10

LR
Lol

~

N

e
\\\\I\\\\II\I\I\I\\Il\l\l\l\\ll\\\I\\I\

o b b b b b b

100 L L L | IR IS NNENY IREE1 I
5 10 15 20 2530

L I L L I L L I L L I L L
R /r “0 20 40 60 80

t
(a) (b)

-
£

-
o
o

Figure 5. (a) Plot showing power-law fit given in Eq. (28) between the number of particles in an
agglomerate N, versus the ratio of the gyration radius to the primitive particle radius, R, /7, .

Slope of lines on the log-log plot are equal to the fractal dimension d, at 1=87.5, and results

are given for both one-way coupling (blue crosses) and two-way coupling (red circles). (b) Plot
showing time variation of the fractal dimension, comparing results with one-way coupling
(dashed line, deltas) and two-way coupling (solid line, circles) for case 2.
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Figure 6. Distribution plots showing number of agglomerates N, as a function of (a) number

IJ.| N

.
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B

(a) (b)

of particles in the agglomerate averaged over a set of logarithmic bins, N,, and (b)
dimensionless radius of gyration, R, /r,, averaged over a set of linear bins. Results are from

computations with one-way coupling (A, blue bars) and two-way coupling (B, red bars) at ¢ =
87.5 for case 2.
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Figure 7. (a) Distribution plot showing the particle volume fraction as a function of the
dimensionless radius of gyration, R, /r,, on a log-linear plot for both one-way coupling (blue

bars) and two-way coupling (red bars). (b) Plot showing the power-law fit given in Eq. (29),
where the slope of lines on the log-log plot are equal to the fractal dimension d, —3. The data is

for case 2 at t =87.5, for one-way coupling (blue crosses) and two-way coupling (red circles).
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Figure 8. Time variation of (a) the average particle velocity magnitude V,

ar

(upper curves) and

the average particle slip velocity magnitude V', (lower curves) and (b) the agglomerate flow

penetration parameter P for computations with one-way (dashed lines, deltas) and two-way

(solid lines, circles) coupling for case 2.
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Figure 9. Second-order moment plots for (a) relative velocity magnitude V

rel °

and (b) shear

measure S =+/2D: D, shown for results of computations with one-way coupling (blue bars) and
two-way coupling (red bars) for case 2 at ¢ =87.5. The number of particles in the agglomerate
are grouped logarithmically into bins, with average number of particles for the given bin
indicated by N, .
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Figure 10. Scatter plots of the five largest agglomerates with colors indicating (a) the relative
velocity magnitude and (b) the shear stress measure S for the two-way coupling run for case 2 at
t=100.
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