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Abstract 

A study is reported that examines computations of turbulent particle agglomeration with one-way 

and two-way phase coupling for cases with small overall particle concentration. The fluid flow 

was computed using a direct numerical computation using the point-force approximation for 

particle-induced body force, and a soft-sphere, adhesive discrete-element method was used to 

simulate the particulate transport and agglomerate formation. Computations were performed with 

different values of the Stokes number and the adhesion parameter. A variety of measures were 

used to examine both the effect of particle agglomeration on the fluid turbulence and the 

structure and flow field within the particle agglomerates. It was found that agglomeration has 

little influence on the attenuation of turbulence by the particles, at least in the range of Stokes 

numbers examined in the paper. Computations with two-way coupling generated agglomerates 

that were larger and contained more particles than those for one-way coupling. The agglomerate 

structure for both one-way and two-way coupling cases had a fractal structure with a similar 

value of the fractal dimension. As the agglomerate size increased, the fluid motion inside the 

agglomerates was found to become increasingly correlated to the agglomerate velocity, acting to 

decrease the relative velocity and shear stress of the inner particles within the agglomerate.  

 

Keywords: particle agglomeration; collisions; turbulence modulation; fractal structure; turbulent 
agglomeration    
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1. Introduction 

 Particle agglomeration by fluid turbulence occurs in a large range of natural flow 

problems and industrial processes. Examples of natural processes include dispersion of 

atmospheric particulates, sediment transport and deposition in estuaries, removal of pollutants by 

sediment deposition in aquatic systems, particle transport from volcanic plumes, and 

agglomeration of ice crystals in the atmosphere during formation of snowflakes. The number of 

industrial processes involving turbulent agglomeration is immense, a few examples being fine 

particle separation in gas cyclones, wastewater treatment, additive manufacturing processes, 

flame synthesis of nanoparticles, and ash capture from combustion furnaces. Many industrial 

products are produced from powders or by precipitation from reactive solutions, examples 

including 3D printing, ceramic materials, catalysts, and many pharmaceutical products.  

 Numerous experimental studies have shown that the number of particles in an 

agglomerate tends to vary as a power-law function of the agglomerate size (e.g., as represented 

by the gyration radius), where the exponent of this power law (known as the fractal dimensional 

of the agglomerate group) is typically less than the dimension of the three-dimensional space in 

which the agglomerate is contained [1-3]. As a consequence, the average void fraction of the 

agglomerate increases as the number of particles within the agglomerate increases [4]. The value 

of the fractal dimension depends on the process by which the agglomerate was formed as well as 

the stage of the formation process. Typical values range from about 1.5 - 3.0 [5]. The effective 

mechanical properties of the agglomerate, such as the shear and elastic moduli, depend on the 

fractal dimension [6-8]. The fractal structure of the agglomerate also influences the density of 

force chains, which affects the shear stress necessary to induce agglomerate breakup and erosion 

[9-13]. 
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 Much of the theoretical and computational literature on turbulent agglomeration deals 

with the beginning stage of agglomeration, in which agglomerates are growing in size by 

collision of particles and of smaller agglomerates [14-19]. This literature uses several important 

approximations, including the approximation that two colliding particles will stick together, the 

approximation that an agglomerate can be represented by an equivalent spherical particle, and 

the approximation that the fluid turbulence is unaffected by the particle agglomeration process 

(one-way coupling). The particle collisions are typically assumed to be controlled by shear stress 

at the Kolmogorov scale, and various stochastic theories are used to model the particle collision 

rate, some of which (but not all) additionally assume small Stokes numbers. An experimental test 

of some of these stochastic collision rate theories was presented by Duru et al. [20] for aerosol 

droplets in oscillating grid turbulence. The experimental values were observed to be between 50-

100% larger than the theoretical predictions of Chun and Koch [17], and in typical experiments 

the mean droplet size increased by about 3% during the experiment. A direct numerical 

simulation of the early stages of particle agglomeration was given by Reade and Collins [21], 

which again uses the equivalent sphere approximation and examines how the size distribution of 

the equivalent spheres varies with Stokes number.     

 There is an extensive literature examining the effect of particles on fluid turbulence. 

Reviews were given by Crowe [22], Eaton [23], Saber et al. [24], Poelma and Ooms [25], Rao et 

al. [26] and Balachandar and Eaton [27]. While most work has focused on turbulence modulation 

by relatively dilute particulate suspensions, Nasr and Ahmadi [28] demonstrated the importance 

of including particle collisions in modeling particle effects on fluid turbulence. However, there is 

almost no research to date on the effect of particle agglomeration on turbulent flows. While one 

might proceed by employing the equivalent sphere approximation for the particle agglomerates 
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and using existing literature for turbulence modulation from suspensions of individual particles, 

such an approach would neglect a number of fundamental physical aspects of particle 

agglomeration. Due to the fractal structure of turbulent agglomeration, the particle volume 

fraction within agglomerates varies strongly as a function of agglomerate size, which in turn has 

a strong influence on the effective particle mass and the properties controlling agglomerate 

deformation and breakup [6, 7, 8, 10, 11, 29] which would not be accurately represented by a set 

of equivalent spheres with uniform properties. Particle agglomerates are porous to various 

degrees, and depending on the agglomerate size and structure the flow through an agglomerate 

can have a significant effect on agglomerate response to turbulent fluctuations and to collisions 

with other agglomerates [30, 31]. Particle agglomerates are typically not spherical, but can be 

elongated or even have a convoluted structure with various branches. Finally, the bonds holding 

particles into an agglomerate can break, either due to fluid forces and due to collisions with other 

agglomerates, which might cause a gradual erosion of particles from the agglomerate or a sudden 

rupture of the agglomerate into some number of offspring agglomerates [12, 13, 32].       

 The current paper presents a computational study of turbulent agglomeration that resolves 

the individual agglomerate particles and their interactions with surrounding particles. Since we 

do not invoke the approximation of treating the agglomerates as equivalent spheres, as used in 

previous research, important phenomena such as agglomerate permeability [30] and breakup [13] 

were included in the simulations without the need to introduce additional phenomenological 

models. A particular objective of the current paper is to examine the significance of two-way 

coupling on the turbulent agglomeration process, which was done by comparing results of 

computations performed with two-way coupling to those of computations conducted with one-

way coupling, and by examining the flow field around the agglomerate structures that give rise to 
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differences between the one-way and two-way coupling results. The computations were 

performed using a soft-sphere discrete element method (DEM) for adhesive particles subject to 

van der Waals adhesion [33], and the fluid flow computations were performed using a pseudo-

spectral method to simulate forced turbulence in a triply-periodic domain. The two-way coupling 

effect of particle forces on the fluid flow was accounted for using an effective body force in the 

fluid flow simulations, similar to the approach used for simulation of sedimenting particle 

agglomerates by Bosse et al. [34]. The various computational methods used to simulate particle 

and fluid transport are summarized in Section 2, followed by results and discussion in Section 3. 

Section 3.1 examines the effect of turbulent agglomeration on modulation of the turbulence by 

the particulate phase. Section 3.2 examines various measures of agglomerate structure for cases 

with and without two-way coupling. Conclusions are given in Section 4.  

 

2. Computational Methods 

 The computations of particle agglomeration were performed using an adhesive discrete 

element method (DEM) to model particle transport and collisions. Homogeneous turbulence was 

simulated using a forced pseudo-spectral direct numerical simulation (DNS) method on a triply-

periodic domain. Each of these methods has been described in detail elsewhere, but the key 

points and appropriate references are summarized below. 

 

2.1. Discrete Element Method (DEM) for Particle Transport 

The discrete-element method (DEM) of Marshall [33] was used to transport adhesive 

particles in the turbulent flow. The computational method uses a multiple time step algorithm, in 

which the fluid time step )/( 0uOt  , the particle time step )/( 0udOt p  , and the collision 
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time step ))/(( 5/1
0

22 uEdOt ppc   satisfy cp ttt  . Here d is the particle diameter, p is 

the particle density, and pE  is the particle elastic modulus. The method follows the motion of 

individual particles in the three-dimensional fluid flow by solution of the particle momentum and 

angular momentum equations  

  

 AFdt

d
m FF

v
 , AFdt

d
I MM

Ω
 , (5) 

 

subject to forces and torques induced by the fluid flow ( FF  and FM ) and by the particle 

collision and adhesion ( AF  and AM ). Here, m is the particle mass, I is the moment of inertia, and 

v and  are the particle velocity and rotation rate, respectively. The dominant fluid force is the 

drag force, which is given by the Stokes drag law modified to account for the effect of local 

particle crowding as 

 

 fdFd )(3 vu   , (6)    

 

where u is the fluid velocity evaluated at the particle centroid. The friction factor f was given 

empirically by Di Felice [35] for particle Reynolds numbers /Re dp vu   in the range 0.01 

to 104 as a function of the local particle volume fraction   as  

 

   1)1(f , 





  2)]ln(Re5.1[

2

1
exp65.07.3 p . (7) 
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This expression approaches the Wen and Yu [36] expression for low particle Reynolds number. 

The associated viscous fluid torque arises from a difference in rotation rate of the particle and the 

local fluid element, and was given by [37] as 

 

 )
2

1
(3 ωΩM  dF  , (8) 

 

where ω  is the fluid vorticity vector at the particle centroid. Other fluid forces of lesser 

importance accounted for in the computation include the Saffman and Magnus lift terms [38-39], 

which together with drag make up the fluid force FF . 

The total collision and adhesion force and torque fields on particle i with radius ir  are 

given by 

 

 SsnA FF tnF  , nnttnM tRrSsA MMrF  )()( , (9) 

 

where ijij xxxxn  /)(  is the unit normal vector oriented along the line connecting the 

centers of the two colliding particles, i and j. The normal component of the collision and 

adhesion force nF  is further divided into an elastic-adhesion part neF  and a dissipative part ndF . 

The sliding resistance is composed of a force with magnitude sF  acting in a direction St , 

corresponding to the direction of relative motion of the particle surfaces at the contact point 

projected onto the contact plane (the plane orthogonal to n), as well as a related torque in the 

Stn  direction. The rolling resistance, which arises due to the effects of particle adhesion, 

exerts a torque of magnitude rM  on the particle in the nt R  direction, where Rt  is the 



 9

direction of the “rolling” velocity. The twisting resistance torque tM  is oriented along the unit 

normal direction n. While all of these various collision-adhesion forces and torques were 

included in the current computations, the dynamics of small adhesive particles are dominated by 

the normal elastic-adhesive force and the rolling resistance torque.  

 The adhesive force between the two particles depends on the surface energy potential γ, 

where the work required to separate two spheres colliding over a contact region of radius )(ta  is 

given by 22 a  in the absence of further elastic deformation. Particle normal elastic rebound 

force and adhesion force were simulated by employing the soft-sphere collision model of 

Johnson et al. [40], hereinafter referred to as the JKR model, which can be written in terms of the 

contact region radius )(ta  and the normal particle overlap jijiN rr xx   as [41] 
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The critical overlap δc, the critical normal force Fc, and the equilibrium contact region radius oa  

are given by [40] 
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As two particles move away from each other following collision, they remain in contact until the 

point where cn FF   and cN    due to the necking of the material in the contact region. 

Beyond this state any further separation leads the two particles to break apart.  

The effect of the fluid squeeze-film within the contact region is to limit the minimum 

approach distance between the particles (i.e., the contact region gap size) and to reduce the 

particle restitution coefficient. Experimental studies of particle collisions at different Stokes 

numbers [42] indicate that the coefficient of restitution is essentially zero when the Stokes 

number is less than about 10 due to dissipation in the squeeze-film. Since our Stokes numbers 

are well below this value, we set the dissipative part of the normal collision force ndF  such that 

the restitution coefficient vanishes using the model of Tsuji et al. [43].  

 The second major effect of particle adhesion is to introduce a torque that resists particle 

rolling. For uniform-size spherical particles, the “rolling velocity” Lv  of particle i is given by 

[44] 

 

 nΩΩv  )( jiL R  . (12) 

 

A linear expression for the rolling resistance torque rM  was postulated as 

 

 Rr kM  , (13) 

 

where RL

t

t

d tv   ))((
0

  is the rolling displacement in the direction LLR vvt / . Rolling 

involves an upward motion of the particle surfaces within one part of the contact region and a 
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downward motion in the other part of the contact region. The presence of an adhesion force 

between the two contacting surfaces introduces a torque resisting rolling of the particles. An 

expression for the rolling resistance due to van der Waals adhesion was derived by Dominik and 

Tielens [45], which yields the coefficient Rk  as 

 

 2/3
0 )/(4 aaFk CR  .   (14) 

 

Dominik and Tielens [45] further argue that the critical resistance occurs when the rolling 

displacement   achieves a critical value, corresponding to a critical rolling angle Rcritcrit /  . 

For crit  , the rolling displacement    in (13) is replaced by crit . The expressions used for 

twisting and sliding resistances are given by Marshall [33].   

 

2.2. Direct Numerical Simulation (DNS) of Homogeneous Turbulence 

The DNS computations of isotropic, homogeneous turbulence used for validation were 

performed using a triply-periodic pseudo-spectral method with second-order Adams-Bashforth 

time stepping and exact integration of the viscous term [46]. In this approach, the spectral 

Navier-Stokes equations are evolved in time after having been projected onto a divergence-free 

space using the operator ijjiij kkkP  2/  according to the expression 

 

 



   )2exp(

2

1
)exp(

2

3
)exp( 21221 tktkttk nnnn  FFPuu , (15)  
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where an overbar denotes Fourier transform in three space dimensions, a superscript indicates the 

time step,   is the kinematic viscosity, and k is the wavenumber vector with magnitude k. The 

force vector F on the right-hand side has Fourier transform given by 

 

 PF ffωuF  , (16) 

 

where Ff  is the small wavenumber forcing term required to maintain the turbulence with 

approximately constant kinetic energy and Pf  is the particle-induced body force due to relative 

motion between the particles and the fluid. The velocity field was made divergence-free at each 

time step by taking its Fourier transform and using the spectral form of the continuity equation, 

given by 

 

 0 uk . (17) 

 

 The forcing vector was assumed to be proportional to the fluid velocity [47-48], such that 

 

 
crit

crit
F kk

kkC





for       0

for  u
f , (18) 

 

where the coefficient C was set equal to lowEC /0045.0  and uu  
 critkk

lowE
2

1
 is the kinetic 

energy in all modes with wavenumber amplitude critkk  . The current computations were 

performed with 5critk , so that the forcing acts only on the large-scale eddies. 
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The particle body force Pf  was computed by associating a regularized delta function 

)( nh Xx   with each Lagrangian particle, where nX  denotes the particle centroid location of 

particle n. The value of the body force Pf  was evaluated at each grid node i of the Cartesian grid 

using 

 

)()( ,
1

nihnF

N

n
ip XxFxf  



 , (19) 

 

where nF ,F  denotes the fluid force on the nth particle. The regularized delta function used for the 

current problem distributes the particle force uniformly over a stencil consisting of the grid cell 

containing the particle and one grid cell on each side. This choice of delta function is 

conservative in both the force and torque for any value of nX .  

 The turbulence kinetic energy q and dissipation rate   were obtained from the power 

spectrum, )(ke , as 

  

 
max

0
)(

k
dkkeq ,    max

0

2 )(2
k

dkkekv .  (20) 

 

Various dimensionless measures describing the turbulence in the validation computations are 

listed in Table 1, including the root-mean-square velocity magnitude 0u , the average turbulence 

kinetic energy q, the integral length scale /5.0 3
00 u , the Taylor microscale 

0
2/1)/15( u  , and the Kolmogorov length scale 4/13 )/(   . The corresponding 

microscale Reynolds number is 99/Re 0   u .  
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2.3. Dimensionless Parameters 

 One of the most important dimensionless parameters is the Stokes number, which is 

defined as the ratio of the particle time scale dmp  3/  to a characteristic fluid time scale, 

where m is the particle mass. For turbulent flow, different Stokes numbers can be defined using 

different fluid time scales. Two common choices are the Kolmogorov-scale Stokes number KSt  

and the integral-scale Stokes number 0St , defined by 

 

  /St pK  ,  /St 0 p . (21) 

 

The Kolmogorov time scale   is defined in terms of the kinematic viscosity and turbulence 

dissipation rate as 2/1)/(    and the integral time scale is given by 00 / u  . The Stokes 

number determines the particle response to changes in the fluid flow, such that in cases with 

small Stokes numbers particles nearly follow fluid streamlines and in cases with large Stokes 

numbers the fluid has only a small influence on the particle motion. 

 The tendency for colliding particles to adhere to each other can be characterized by the 

adhesion parameter Ad, defined in terms of the adhesive surface energy density   as [49] 

 

 
dUp

2

2
Ad




 . (22) 
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In this equation, U is a characteristic velocity scale of the fluid, which might be set equal to the 

root-mean-square turbulent fluctuation velocity 0u  to obtain the integral-scale adhesion 

parameter 0Ad  or to the Kolmogorov velocity 4/1)( u  to obtain the Kolmogorov-scale 

adhesion parameter KAd . The adhesive energy density   can be related to the Hamaker 

coefficient A for the particle material operating in the given fluid medium by 

 

  
224

 A
 , (23) 

 

where   is the gap thickness within the contact area.   

 The elastic rebound force on the particle is characterized using an elasticity parameter El, 

defined by 

 

 
2

El
U

E

p
 , (24) 

 

where E is the effective elastic modulus, which together with the effective particle radius R is 

defined by  

 

 
j

j
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i

EEE

22 111  



 , 

ji rrR

111
 , (25)  

 

where iE , i , and ir  are the elastic modulus, Poisson ratio, and radius of particle i, respectively. 

Both the elasticity parameter El and the adhesion parameter Ad are important in determining the 
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radius of the contact region upon particle collision. In (23), the fluid velocity scale U may again 

be modeled using either the integral scale (root-mean-square) velocity 0u  or the Kolmogorov-

scale velocity u . 

 

3. Results and Discussion 

 The computations were initialized by positioning 46,656 particles on a uniform array 

across the computational domain. A preliminary computation was conducted with no particles to 

allow the turbulence to develop a range of length scales characteristic of statistically stationary 

homogeneous isotropic turbulence. The computation was then restarted with particles using the 

three-level multiple time-step DEM algorithm of Marshall [33], with a fluid time step of 

005.0fdt , 10 particle time steps per fluid time step, and 40 collision time steps per particle 

time step. A listing of the parameter values for the different runs with particles is given in Table 

2, where the different runs are referred to in the following as case 1-12. 

 

3.1. Effect of Particle Agglomeration on Turbulence 

 The turbulent kinetic energy q and turbulent dissipation rate   are plotted as functions of 

time for cases with both one-way and two-way coupling in Figure 1 for case 2. For the one-way 

coupling computations, both q and   fluctuate in time with root-mean-square values of 4.6% and 

7.5% of their mean values, respectively. The computations with two-way coupling result in 

values of turbulent kinetic energy that exhibit fluctuations with a similar root-mean-square value 

up to about t 87, after which the kinetic energy decreases sharply. The turbulent dissipation for 

the two-way coupling computation is observed to decrease to about 20% below the average value 

for the one-way coupling simulation up to a time of about 60t , after which the dissipation rate 
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in the two-way coupling computation decreases steadily. We note that the dissipation rate 

measure   reported here is due to fluid gradients, and it does not include the dissipation caused 

by the particle drag force on the fluid.  

 A plot of the power spectrum at three different times is presented in Figure 2a, showing a 

gradual decrease in the spectrum with time for the case with two-way coupling. The power 

spectrum is nearly constant in time for the one-way coupling case. The 3/5k  scaling of the 

power spectrum in the inertial range is indicated by a dashed line. A comparison of the power 

spectra for cases with different Stokes numbers is given in Figure 2b. The change in Stokes 

number in this figure was produced by changing the particle radius, with all other parameters 

held fixed. Two computations were conducted with each value of particle radius, one with 

adhesive particles (Ad0 = 12.3, cases 1-4) and one with no adhesion (Ad0 = 0, cases 5-8). The 

power spectra were plotted in Figure 2b at time 5.87t , near the end of the runs and just before 

the turbulent kinetic energy decreases sharply. The power spectra curves for the case with lowest 

Stokes number (StK = 0.86) are almost identical to the initial power spectrum, showing almost no 

change with the addition of the particles.  

 The cases with higher Stokes number exhibit progressively lower power spectra curves as 

the particle size is increased. It is noted that several different regimes characterizing turbulence 

modulation by particles have been noted in the literature. For very small particles with 

Kolmogorov-scale Stokes number StK <<1, the particles are found to enhance the fluid inertia 

and hence increase the turbulent kinetic energy [50, 51].  For particles with larger Stokes number 

(StK >>1) but with diameter d  less than about 10% of the integral length scale 0 , the particles 

reduce the turbulent kinetic energy. This reduction is generally associated with the preferential 

concentration of particles in regions of low fluid vorticity [52-55]. Druzhinin [51] reported the 
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transition between these two regimes to occur at StK 8.0 . Finally, sufficiently large particles 

are again observed to enhance turbulent kinetic energy due to shedding of vortex structures in the 

particle wakes. Gore and Crowe [56] and Crowe [22] propose that this third regime corresponds 

to particles with diameter d satisfying 1.0/ 0 d , but various other criteria have been suggested 

by other researchers. As seen from Tables 1 and 2, the current computations are clearly in this 

middle regime of turbulence modulation, and the observed enhanced attenuation of turbulent 

kinetic energy with increase in particle size and mass loading is consistent with the previous 

literature cited above for this regime.  

 The cases with the three smallest values of Stokes number in Figure 2b exhibit almost no 

difference in the power spectra between computations with and without adhesion. The case with 

largest Stokes number exhibits a reduction in the power spectrum for the case with adhesion 

compared to that with no adhesion. The fact that the power spectra shown in Figure 2b are so 

similar for the cases with and without adhesion, even though the curves exhibit significant 

decrease due to the presence of particles compared to the power spectrum for the one-way 

coupling computation, provides strong evidence that particle agglomeration has little influence 

on turbulence attenuation, at least for sufficiently small particles. This observation is consistent 

with the conclusion of Druzhinin [51] that the attenuation of turbulence by particles in this 

regime is primarily a consequence of the particle inertia, which depends only on net particle 

mass and is independent of agglomeration of the particles.  

 The size of the agglomerates that develop during the turbulent flow simulation depends 

upon the value of the adhesion parameter. As indicated in Table 2, the value of the adhesion 

parameter was varied in our computations over a factor of about 16. For significantly smaller 

values of adhesion parameter than those examined, there is only a small amount of particle 
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adhesion during the computational run time and the agglomerates are relatively small, with only 

2-5 or so particles. For much larger values of adhesion parameter than those examined, the 

agglomerates grow to very large sizes during the computations, in some cases with all particles 

forming a single agglomerate. Our desire in this paper was to examine agglomerates that were 

sufficiently large (i.e., several hundred particles) so that measures such as fractal dimension are 

sensible, but also agglomerates whose maximum size was of the order of magnitude of the 

integral length scale of the turbulence. Figure 3a shows the average number of particles per 

agglomerate, paggN , at time t = 87.5  as a function of adhesion parameter. The agglomerate size 

can be estimated by the radius of gyration, gyrR , defined for an agglomerate i by 
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
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where ix  denotes the centroid position of agglomerate i and jx  is the centroid position of the jth 

particle within the agglomerate. The average value of the radius of gyration tends to be 

dominated by the smallest, but more numerous, agglomerates. Instead, we define a particle-

weighted radius of gyration, gryR , by  
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where iN  is the number of particles in agglomerate i and aggN  is the total number of 

agglomerates. A plot of pgry rR / , where pr  is the radius of a single particle, at time t = 87.5  is 

presented in Figure 3b as a function of adhesion parameter for both computations with one-way 

and two-way coupling.  

 

3.2. Structure of Particle Agglomerates 

 This section examines the detailed structure of the particle agglomerates, as predicted 

using both one-way and two-way coupling simulations. This study was performed starting from a 

state in which no particles were touching, and hence there were no agglomerates, and ending at a 

time of 5.87t . By this end time the agglomerates had developed into large structures, but they 

had not yet achieved an equilibrium condition where agglomerate breakup balances agglomerate 

formation by collision. This end time was selected because shortly after this time in the two-way 

coupling simulations, the turbulent kinetic energy decreases sharply, leading eventually to a state 

where the small-scale turbulence completely vanishes. On the other hand, at 5.87t  the 

turbulent kinetic energy is still reasonably close to its initial value, as shown in Figure 1a.  

 Agglomerates are defined as groups of particles that are in contact with each other, either 

directly or via contacts with other particles. The agglomerates were identified at each time step 

of the computation and a variety of measures were employed to examine their characteristics.  

The total number of agglomerates aggN  is plotted as a function of time for case 2 in Figure 4a for 

computations with both one-way and two-way coupling of the particle and fluid phases. Shortly 

after the start of the computation, individual particles collide and attach to each other to form 

small agglomerates. A maximum in the number of agglomerates is reached at 15t , equal to 

approximately 7400 agglomerates. The number of agglomerates then decreases as these small 
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agglomerates collide and adhere to each other to form larger agglomerates. The number of 

particles iN  in each agglomerate was counted and averaged over all agglomerates to obtain the 

average number of particles per agglomerate, which is plotted as a function of time in Figure 4b. 

The dimensionless particle-weighted radius of gyration, pgyr rR / , is plotted as a function time in 

Figure 4c. 

 In all three of the plots in Figure 4, the one-way and two-way coupling results are quite 

close to each other for times near the beginning of the calculation. At 20t  we notice that the 

radius of gyration in Figure 4c for the two-way coupling run increases above that for the one-

way coupling run. The number of particles per agglomerate in Figure 4b similarly is greater for 

the two-way coupling run than it is for the case with one-way coupling; however, the differences 

between the one-way and two-way coupling runs appear later than for the radius of gyration. 

Since the agglomerates for two-way coupling are both larger and have more particles than for 

one-way coupling, it follows that the number of agglomerates shown in Figure 4a for the two-

way coupling computation is less than that for one-way coupling, although again we see that this 

difference appears significantly later than in the plot of the radius of gyration. 

 As noted by a number of previous authors [1-3], the number of particles iN  in 

agglomerate i can be expressed as a power-law function of the agglomerate size, such that  

 

 fd
pigyri rRKN )/( , , (28) 

 

where K is a coefficient (called the fractal pre-factor) and the exponent fd  is called the fractal 

dimension of the set of agglomerates. The value of fd  varies over the interval 31  fd  
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depending on the agglomeration formation mechanism [5]. For instance, Eggersdorfer et al. [57] 

cited typical values of 5.2fd  for diffusion-limited agglomeration, 0.3fd  for ballistic 

particle-cluster agglomeration, and 8.1fd  for diffusion-limited cluster-cluster agglomeration. 

For turbulent agglomeration of latex particles in stirred tanks, Selomulya et al. [58] reported 

values of fd  between 1.7 and 2.1 and Waldner et al. [59] reported values of fd  between 1.8 and 

2.6. A log-log plot of N versus pgyr rR /  is shown in Figure 5a at time 5.87t  for both one-way 

and two-way coupling computations. It was found that for both methods fractal dimension values 

are close, with 064.2fd  for one-way coupling and 118.2fd  for two-way coupling. This 

value of fractal dimension for the particle agglomerates is in good agreement with values noted 

above obtained in previous experimental literature for turbulent agglomeration.  

 The fractal dimension was calculated at different time intervals during the computations. 

The calculated fractal dimension is plotted as a function of time and is shown in Figure 5b. The 

fractal dimension for one-way and two-way coupling computations is quite close; however, the 

result for two-way coupling is a little higher near the end of the computation (for 70t ). A 

larger value of fractal dimension for two-way coupling implies that the agglomerates were more 

densely packed in comparison to the one-way coupling results.      

 Figure 6a shows the distribution of agglomerate sizes at 5.87t . The number of particles 

in the agglomerate is divided into a set of logarithmic bins of base 2, such that the width of each 

bin is twice the width of the previous bin. The x-axis plots the median number of particles in the 

bin and the y-axis plots the number of agglomerates falling into that bin, where both axes are 

logarithmic. A similar plot is shown in Figure 6b, with the difference that the agglomerate size is 

characterized by bins of the ratio pgyr rR /  of agglomerate gyration radius to individual particle 
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radius. Because the values of this ratio have a narrower size variation than the number of 

particles in the agglomerate, the bins used in Figure 6b are linear, with a constant width. The 

plots in Figure 6 demonstrate that the two-way coupling computation generates larger 

agglomerates with more particles than does the one-way coupling computation.  

 The particle volume fraction i  is computed for each agglomerate by dividing the 

volume of all particles associated with the agglomerate, 3)3/4( pip rNV  , by the effective 

volume effV  occupied by the agglomerate. The agglomerate effective volume is estimated by 

3
,)3/4( ieffeff RV  , where the effective radius of the agglomerate effR  is related to the radius of 

gyration as effgyr RR 5/2 . This latter expression is based on the expression for radius of 

gyration of a solid sphere of uniform density. The particle volume fraction of the agglomerate 

can be related to the fractal dimension by [2, 30]  

 

 3
,0 )/(  fd

pigyri rR , (29)    

 

where 0  is a constant. If 3fd , an increase in agglomerate size results in a decrease in average 

particle volume fraction [4]. A log-log plot of the averaged agglomerate volume fraction versus 

the dimensionless radius of gyration ( pgyr rR / ) is given in Figure 7a at time 5.87t . The 

observed decrease in volume fraction as the agglomerate size increases is substantial. The two-

way and one-way coupling results for volume fraction are fairly close for the smaller 

agglomerates, but for the larger agglomerates the two-way coupling simulations yield somewhat 

larger particle volume fraction than do the simulations with one-way coupling. This result is 

consistent with our previous observation that the fractal dimension for two-way coupling 
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simulations is slightly larger than for one-way coupling. Figure 7b shows a log-log plot of 

volume fraction   versus pgyr rR /  at time 5.87t  for both one-way and two-way coupling 

computations. The slopes of the best-fit lines to the data were obtained as 9351.0  and 8818.0  

for one-way and two-way coupling, respectively. These values almost exactly agree with the 

exponent 3fd  given in (29) using the previously cited values of fractal dimension fd .  

 In order to better clarify the physical differences between the one-way and two-way 

coupling computational results, we define parV  and relV  as the average magnitudes of the particle 

velocity v and the particle slip velocity uvv slip , respectively. The magnitudes of the particle 

velocity and the particle slip velocity were computed for all particles, and then averaged over all 

particles contained within agglomerates (omitting values for single particles that are not in an 

agglomerate). Time variation of both parV  and relV  is plotted in Figure 8a for case 2. The average 

particle velocity magnitude parV  fluctuates for both the one-way and two-way coupling 

computations within the interval 0.35-0.45, which is slightly greater than the root-mean-square 

turbulence fluctuation velocity 0.2850 u  listed in Table 1. The average particle slip velocity 

relV  similarly remains approximately constant in time for the one-way coupling run. For the two-

way coupling case, by contrast, the value of relV  is observed to gradually decrease in time, with a 

value at the end of the run that is nearly half of the initial value. The decrease in particle slip 

velocity with time for the two-way coupling computation is an indication that the fluid velocity 

within the agglomerate is becoming correlated with the particle velocity, resulting in a reduction 

of the relative velocity between the two phases within the larger agglomerates. Another measure 

of this phenomenon is represented by the agglomerate penetration parameter P, which is defined 

as  
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p

rel

V

V
P  . (30) 

 

The time variation of P is plotted in Figure 8b, showing approximately constant value for one-

way coupling and a steady reduction in time for the two-way coupling computation. Both the 

higher volume fraction of agglomerates with two-way coupling and the correlation between the 

fluid and particle velocity fields makes it increasingly difficult for the fluid to penetrate into the 

agglomerates of the two-way coupling run as the agglomerate size increases.  

 To further examine the spatial variation of various fields within the agglomerate, we 

introduce a second-moment measure )(Fi of a given field )(xF  for each agglomerate i as    
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where ix  is the centroid of agglomerate i  and jF  is the value of the function )(xF  evaluated at 

the centroid jx  of the jth particle within the agglomerate. The second-moment measure is shown 

in Figures 9a and 9b for two different fields  ̶̶  the relative velocity magnitude slipv  and a strain 

rate measure DD :2S , where D is the fluid rate of deformation tensor. For each of these two 

fields, the average value of the moment )(Fi  is plotted as a function of number of particles in 

the agglomerate using the same logarithmic bins as used in Figure 6a, where the averaging is 

performed for all agglomerates in each bin. A value of the second moment )(F  equal to unity 
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indicates that the function )(xF  is uniform (or statistically randomly varying) across the 

agglomerate, whereas a value of )(Fi  that is less (greater) than unity implies that particles with 

higher (lower) values of )(xF  are found near the center of the agglomerate compared to particles 

on the outer parts of the agglomerate. Obviously, for the smallest bin representing agglomerates 

with only two particles, all second moments are equal to unity by definition.   

 The second moment of the relative velocity magnitude is shown in Figure 9a. The second 

moment is observed to be larger than unity for both one-way and two-way coupling 

computations, particularly within the middle range of agglomerate size spanning from 6 to 1500 

particles. The second moment for the one-way coupling computation tends to be higher in the 

lower end of this range, for agglomerates with between about 6 to 40 particles, and the values for 

the two-way coupling computation tend to be higher for the upper part of this range, for 

agglomerates with between 700 to 1500 particles. Several mechanisms play a role in increasing 

the second moment of the relative velocity above unity. A mechanism that is present for both 

one-way and two-way coupling computations is the rotational inertia of the particles, which leads 

to a particle velocity magnitude that increases linearly with distance from the agglomerate 

centroid. Consequently, the value of relV  is higher for the outermost particles, which are a farther 

distance away from the agglomerate center than the innermost particles, hence causing the 

second moment to increase above unity. A similar linear velocity variation with distance from 

the centroid exists for shearing or elongational deformation of the agglomerates. For the 

computation with two-way coupling, the fluid within the inner region of the agglomerate is 

influenced by the particle-induced body force and becomes correlated to the particle velocity, 

such that the fluid within the agglomerate moves with the inner particles. This effect will tend to 
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decrease relV  for the inner particles (and increase the second moment) in the two-way coupling 

computation, but it occurs primarily for larger agglomerates.   

 The second moment of the straining rate measure DD :2S  is shown in Figure 9b. 

The value of this measure is nearly equal to unity for the one-way coupling computation since 

the straining measure depends only on the fluid flow, and hence can be treated as a random 

variable. The second moment of the straining measure is also close to unity for small 

agglomerates with two-way coupling. As the number of particles per agglomerate increases (to a 

value greater than about 100), the straining rate measure gradually increases above unity, 

indicating that the straining rate experienced by the particles is higher for particles near the outer 

edges of the agglomerate than for particles near the center. The outermost particles can act 

almost like a screen for the larger agglomerates with two-way coupling, preventing the inner 

particles from being exposed to high strain rate. This observation is consistent with the results of 

studies, such as Binder et al. [60] or Fellay et al. [61], that use direct simulation techniques such 

as lattice-Boltzmann or Stokesian dynamics to compute simple flow fields or rotational motion 

for single agglomerate structures. For larger-size agglomerates that are nearly spherical in shape, 

our findings are also approximately consistent with the shell-core model for agglomerate 

structure proposed by Kusters et al. [30], in which each agglomerate is idealized as a two-layer 

sphere, where the outer ‘shell’ layer is porous and the inner ‘core’ layer is impermeable.    

There is, of course, some inaccuracy in the second moment measure discussed above, 

since the agglomerates are not particularly spherical in shape, but instead appear to have a wide 

variety of jagged and/or elongated shapes. To make the relative velocity and strain rate measures 

more understandable, we have visualized the relative velocity and strain rate measures for some 

sample agglomerates from the two-way coupling computation in Figures 10a and 10b. These 
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figures visually confirm that outer regions of the agglomerates experience higher values of the 

relative velocity and shear measures compared to points in the inner region of the agglomerates, 

even for non-spherical agglomerates.  

 

4. Conclusions 

 A series of computations were performed to examine the differences between 

computations of turbulent particle agglomeration with one-way and with two-way phase 

coupling. The computations examined cases with Kolmogorov-scale Stokes numbers varying 

from about 0.8 to about 14. In agreement with previous literature examining turbulence 

modulation by particles in this range of Stokes numbers, we observe that the particles cause 

enhanced attenuation of the turbulent kinetic energy compared to computations with no particles. 

The rate of attenuation increased with increase in the particle size and mass loading. In a series 

of computations repeated both with adhesion and without adhesion, we observe little difference 

in the rate of particle attenuation, except for the largest size particles. Examination of the 

agglomeration process indicates that significant agglomeration occurred during the 

computations, but without any significant influence on the turbulence modulation. This 

observation reinforces the notion expressed in previous literature [51] that the turbulence 

attenuation in this Stokes number regime is dominated by particle inertia.  

 Examination of agglomerate structure during the turbulent agglomeration process 

indicated that agglomerates formed with two-way coupling were larger and contained more 

particles than those generated under one-way coupling computations, even though at the time of 

comparison the turbulent kinetic energy for the two cases was about the same. Agglomerates 

formed with both one-way and two-way coupling computations had about the same fractal 
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dimension fd , which compared well with values cited in previous experimental literature for 

turbulent agglomeration. The volume concentration of particles in each agglomerate was 

computed and found to vary as a power function with exponent equal to fd3 , in agreement 

with previous literature on agglomerate fractal structure [2].  While the magnitude of the particle 

velocity is similar for agglomerates computed with one-way and two-way coupling, the relative 

velocity between the particle and the fluid is much lower for the two-way coupling 

computations, particularly once larger-size agglomerates start to form. Several different 

measures indicated that the fluid flow generated in agglomerates acts to shield the inner-most 

particles, so that the highest shear stresses and relative velocity occurs for the outer particles in 

agglomerate. The motion of fluid inside the large agglomerates was found to be highly correlated 

to the agglomerate motion.  
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Figure Captions 
 
Figure 1. Time variation of (a) turbulent kinetic energy q and (b) turbulence dissipation rate  , 
with results from computations with one-way coupling (dashed line, deltas) and two-way 
coupling (solid line, circles). 

 
Figure 2. (a) Power spectrum for computation with two-way coupling for case 2 at three different 
times: t = 0 (black line), 50 (blue line) and 87.5 (red line). (b) Power spectrum for computations 
with Kolmogorov-scale Stokes numbers 86.0St K  (black), 3.44 (blue), 7.74 (red), and 13.8 
(green) at 5.87t  both with adhesion (Ad0 = 12.3, cases 1-4)(solid lines) and without adhesion 
(Ad0 = 0, cases 5-8)(dashed lines).  
 
Figure 3. Plots showing (a) the number of particles per agglomerate paggN  and (b) the 

dimensionless particle-weighted average radius of gyration, pgyr rR / , as a function of integral-

scale adhesion parameter, Ad0, for computations with two-way coupling (solid lines, circles) and 
one-way coupling (dashed lines, deltas) at time 5.87t . Computations are for cases 2 and 9-12. 
 
Figure 4. Time variation of (a) the total number of agglomerates ( aggN ) and (b) the average 

number of particles per agglomerate ( paggN ) and (c) the dimensionless particle-weighted radius 

of gyration of agglomerates ( pgyr rR / ) with results from computations with one-way coupling 

(dashed lines) and two-way coupling (solid lines) for case 2. 
 
Figure 5. (a) Plot showing power-law fit given in Eq. (28) between the number of particles in an 
agglomerate N , versus the ratio of the gyration radius to the primitive particle radius, pgyr rR / . 

Slope of lines on the log-log plot are equal to the fractal dimension fd  at 5.87t , and results 

are given for both one-way coupling (blue crosses) and two-way coupling (red circles). (b) Plot 
showing time variation of the fractal dimension, comparing results with one-way coupling 
(dashed line, deltas) and two-way coupling (solid line, circles) for case 2.  
 
Figure 6. Distribution plots showing number of agglomerates aggN  as a function of (a) number 

of particles in the agglomerate averaged over a set of logarithmic bins, BN , and (b) 

dimensionless radius of gyration, pgyr rR / , averaged over a set of linear bins. Results are from 

computations with one-way coupling (A, blue bars) and two-way coupling (B, red bars) at t = 
87.5  for case 2.  
 
Figure 7. (a) Distribution plot showing the particle volume fraction as a function of the 
dimensionless radius of gyration, pgyr rR / , on a log-linear plot for both one-way coupling (blue 

bars) and two-way coupling (red bars). (b) Plot showing the power-law fit given in Eq. (29), 
where the slope of lines on the log-log plot are equal to the fractal dimension 3fd . The data is 

for case 2 at 5.87t , for one-way coupling (blue crosses) and two-way coupling (red circles). 
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Figure 8. Time variation of (a) the average particle velocity magnitude parV  (upper curves) and 

the average particle slip velocity magnitude relV  (lower curves) and (b) the agglomerate flow 

penetration parameter P for computations with one-way (dashed lines, deltas) and two-way 
(solid lines, circles) coupling for case 2. 
 
Figure 9. Second-order moment plots for (a) relative velocity magnitude relV , and (b) shear 

measure DD :2S , shown for results of computations with one-way coupling (blue bars) and 
two-way coupling (red bars) for case 2 at 5.87t . The number of particles in the agglomerate 
are grouped logarithmically into bins, with average number of particles for the given bin 
indicated by BN  . 
 
Figure 10. Scatter plots of the five largest agglomerates with colors indicating (a) the relative 
velocity magnitude and (b) the shear stress measure S for the two-way coupling run for case 2 at 

100t . 
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Table 1. Dimensionless simulation parameters and physical parameters of the fluid turbulence. 

 
  Simulation Parameters   Turbulence Parameters  
 Time step   0.002  Turbulent kinetic energy, q   0.122 
 Cycles   15000   Mean dissipation rate,     0.015  
 Grid   3128    Kinematic viscosity,     0.001  
   Integral length, 0   0.771 
   Taylor microscale,   0.285 
   Kolmogorov length,    0.016 
   Integral velocity, 0u   0.285 
   Integral time, T  2.71 
  

 
Table 2. List of computational cases examined. For each case computations were performed with 
and without two-way coupling. Variables listed include ratio of particle radius to integral length 
scale, average particle volume concentration  , mass loading Z, Kolmogorov and integral scale 
Stokes number, and Kolmogorov and integral scale adhesion parameter.   
 
 

Case 
0/ pr    Z StK St0 AdK Ad0 

1 0.0129 0.000788 0.00789 0.860 0.082 260 12.3 

2 0.0259 0.0063 0.0634 3.44 0.328 260 12.3 

3 0.0389 0.0213 0.218 7.74 0.738 260 12.3 

4 0.0516 0.0504 0.531 13.8 1.31 260 12.3 

5 0.0129 0.000788 0.00789 0.860 0.082 0 0 

6 0.0259 0.0063 0.0634 3.44 0.328 0 0 

7 0.0389 0.0213 0.218 7.74 0.738 0 0 

8 0.0516 0.0504 0.531 13.8 1.31 0 0 

9 0.0259 0.0063 0.0634 3.44 0.328 130 6.16 

10 0.0259 0.0063 0.0634 3.44 0.328 520 24.6 

11 0.0259 0.0063 0.0634 3.44 0.328 1041 49.3 

12 0.0259 0.0063 0.0634 3.44 0.328 2081 98.5 
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(a) (b)      

Figure 1. Time variation of (a) turbulent kinetic energy q and (b) turbulence dissipation rate  , 
with results from computations with one-way coupling (dashed line, deltas) and two-way 
coupling (solid line, circles). 
 
 

 
 (a) (b) 
Figure 2. (a) Power spectrum for computation with two-way coupling for case 2 at three different 
times: t = 0 (black line), 50 (blue line) and 87.5 (red line). (b) Power spectrum for computations 
with Kolmogorov-scale Stokes numbers 86.0St K  (black), 3.44 (blue), 7.74 (red), and 13.8 
(green) at 5.87t  both with adhesion (Ad0 = 12.3, cases 1-4)(solid lines) and without adhesion 
(Ad0 = 0, cases 5-8)(dashed lines).  
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 (a) (b) 

 
Figure 3. Plots showing (a) the number of particles per agglomerate paggN  and (b) the 

dimensionless particle-weighted average radius of gyration, pgyr rR / , as a function of integral-

scale adhesion parameter, Ad0, for computations with two-way coupling (solid lines, circles) and 
one-way coupling (dashed lines, deltas) at time 5.87t . Computations are for cases 2 and 9-12. 
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(a)                                                                         (b) 

             
                                          (c) 
 
 
Figure 4. Time variation of (a) the total number of agglomerates ( aggN ) and (b) the average 

number of particles per agglomerate ( paggN ) and (c) the dimensionless particle-weighted radius 

of gyration of agglomerates ( pgyr rR / ) with results from computations with one-way coupling 

(dashed lines) and two-way coupling (solid lines) for case 2. 
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(a)                                                                          (b) 

Figure 5. (a) Plot showing power-law fit given in Eq. (28) between the number of particles in an 
agglomerate N , versus the ratio of the gyration radius to the primitive particle radius, pgyr rR / . 

Slope of lines on the log-log plot are equal to the fractal dimension fd  at 5.87t , and results 

are given for both one-way coupling (blue crosses) and two-way coupling (red circles). (b) Plot 
showing time variation of the fractal dimension, comparing results with one-way coupling 
(dashed line, deltas) and two-way coupling (solid line, circles) for case 2.  
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 (a) (b) 
 
Figure 6. Distribution plots showing number of agglomerates aggN  as a function of (a) number 

of particles in the agglomerate averaged over a set of logarithmic bins, BN , and (b) 

dimensionless radius of gyration, pgyr rR / , averaged over a set of linear bins. Results are from 

computations with one-way coupling (A, blue bars) and two-way coupling (B, red bars) at t = 
87.5  for case 2.  
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 (a) (b) 
 
Figure 7. (a) Distribution plot showing the particle volume fraction as a function of the 
dimensionless radius of gyration, pgyr rR / , on a log-linear plot for both one-way coupling (blue 

bars) and two-way coupling (red bars). (b) Plot showing the power-law fit given in Eq. (29), 
where the slope of lines on the log-log plot are equal to the fractal dimension 3fd . The data is 

for case 2 at 5.87t , for one-way coupling (blue crosses) and two-way coupling (red circles). 
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 (a) (b) 
 
Figure 8. Time variation of (a) the average particle velocity magnitude parV  (upper curves) and 

the average particle slip velocity magnitude relV  (lower curves) and (b) the agglomerate flow 

penetration parameter P for computations with one-way (dashed lines, deltas) and two-way 
(solid lines, circles) coupling for case 2. 
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 (a) (b) 
 
Figure 9. Second-order moment plots for (a) relative velocity magnitude relV , and (b) shear 

measure DD :2S , shown for results of computations with one-way coupling (blue bars) and 
two-way coupling (red bars) for case 2 at 5.87t . The number of particles in the agglomerate 
are grouped logarithmically into bins, with average number of particles for the given bin 
indicated by BN  . 
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(a) 

 

 
(b) 

 
Figure 10. Scatter plots of the five largest agglomerates with colors indicating (a) the relative 
velocity magnitude and (b) the shear stress measure S for the two-way coupling run for case 2 at 

100t . 
 
  


