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Abstract 

A probabilistic version of a well-known phenomenological model for contact electrification is 

used to examine the effect of fluid turbulence on charge development for suspended particles as 

a function of the particle Stokes number. The distribution of particle collisions and particle 

charge appear to approach asymptotic states for high values of the Kolmogorov-scale Stokes 

numbers, exhibiting approximately normal distributions. The influence on particle contact 

electrification of differences in initial charge carrier density and in particle size are examined.     
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1. Introduction   

 Contact electrification is the transfer of charge that occurs when two particles collide 

with each other or when a particle collides with or rolls along a surface (Marshall and Li, 2014). 

This phenomenon of charge transfer is usually called contact electrification when it occurs as a 

result of particle collisions and it is called triboelectric charging (or tribocharging) when it 

occurs due to frictional contact between materials that slide or roll relative to each other. Contact 

electrification of particulates in a turbulent flow occurs widely in both industrial and natural 

processes. Contact electrification in various process industries, such as coal mining, sawmills, 

grain mills and storage facilities, is known to lead to dangerous explosions of dust clouds 

(Eckhoff, 1997). Contact electrification is responsible for development of electric field gradients 

leading to formation of lightning in sandstorms (Latham, 1964; Williams et al., 2009; Zheng, 

2013) and volcanic eruptions (Brook et al., 1974; Tomas, 2007). Contact electrification due to 

dust storms plays a particularly important role on dusty planets, such as Mars, where it is 

responsible for the strong ambient charging of dust particles (Eden, 1973; Forward et al., 2009; 

Harrison et al., 2016). A leading theory for development of electric charge within thunderstorms 

is that it is caused by contact electrification due to collision of ice particles within the storm cell 

(Saunders, 1994; Helsdon et al., 2001). Similarly, contact electrification of ice particles in 

planetary ring systems, such as that of Saturn, lead to particle charging that influences the 

structure of the rings and their interaction with the planetary atmosphere (Hartquist et al., 2003; 

Kempf et al., 2006). A theoretical study by Desch and Cuzzi (2000) propose contact 

electrification of micrometer-scale particles in a turbulent environment as being responsible for 

formation of lightning in the solar nebula, which is important for formation of the small mm-

scale chondrules that serve as the building blocks of the planetary system.  
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 There has been a great deal of recent research on fundamental issues associated with 

particle contact electrification. Despite its importance to a large range of problems, many 

fundamental aspects of contact electrification remain unresolved. Even the most basic question 

of what exactly is transferred between the two colliding materials that gives rise to the charge 

differential is at present not entirely clear, and may in fact differ for different types of contact 

electrification processes. The problem is not a lack of explanations for the electrification process, 

but instead too many plausible explanations. Material particles, ions and electrons have all been 

proposed as possible charge carriers (Williams, 2012; Baytekin et al., 2012; McCarty and 

Whitesides, 2008; Lacks and Sankaran, 2011; Waitukaitis et al., 2014). A traditional view of 

contact electrification is represented by the triboelectric series, which empirically orders 

materials to indicate the direction of charge transfer during contact electrification. However, the 

triboelectric series is not always reproducible (Lowell and Rose-Innes, 1980; Harper, 1998), and 

order within the series can sometimes be reversed, such as following ultraviolet irradiation 

(Kittaka, 1979). Contact electrification has also frequently been observed between chemically 

identical insulator particles (Lowell et al., 1986; Kok and Lacks, 2009; Siu et al., 2014). Material 

inhomogeneity, asymmetric contact, electron band gap defects, and local polarization have all 

been used to explain the charging mechanism (Baytekin et al., 2011; Lacks and Levandovsky, 

2007;  Lacks and Sankaran, 2011; Pähtz et al., 2007; Lowell and Truscott, 1986). 

 Despite on-going research on the fundamental physics of contact electrification, 

reasonable phenomenological models of particle charge exchange exist with which one might 

proceed to investigate other issues associated with the phenomenon (Duff and Lacks, 2008; Kok 

and Lacks, 2009; Xie et al., 2013; Apodaca et al., 2010). Following this line of thought, the 

current paper examines the influence of the surrounding turbulent flow field on the particle 
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electrification process. We note that contact electrification examples, such as those discussed in 

the first paragraph of this section, take place in a wide variety of fluid flow environments, 

ranging from normal earth atmosphere to the low-pressure Martian atmosphere to the near-

vacuum conditions of Saturn's rings, and for particle sizes ranging from about 1 m to 1 cm. The 

degree of interaction between the colliding particles and the fluid in which they are suspended 

can be characterized by a dimensionless parameter called the Stokes number, St, which is 

defined as the ratio of the characteristic time scale p  for particle drift relative to the fluid and 

the fluid time scale f . For sufficiently small particles the Stokes drag law can be used to write 

the particle time scale as dmp  3/ , where m and d are the particle mass and diameter, 

respectively, and  is the fluid viscosity. The fluid time scale is typically taken to be the fluid 

convective time, given by the ratio ULf /  of the characteristic fluid length scale L to the 

fluid velocity scale U. For small values of St, the particles are in an orthokinetic regime in which 

they move with the local fluid velocity and the collisions between particles are primarily due to 

the local fluid shear flow (Saffman and Turner, 1965). For values of St close to unity, the 

particles are in an accelerative-correlated regime and particles will drift considerably relative to 

the fluid. For heavy particles at sufficiently high concentration in a turbulent fluid, the drift 

induced by centrifugal force causes particles to cluster in high-concentration sheets lying in-

between the turbulent eddy structures (Squires and Eaton, 1991; Bec et al., 2007; Grits et al., 

2006; Falkovich and Pumir, 2004). For St much larger than unity, the particles are in an 

accelerative-independent regime in which particle inertia is sufficiently large that particle motion 

is only slightly influenced by the fluid forces (Abrahamson, 1975).    

 The current paper utilizes a probabilistic contact electrification model, together with a 

hard-sphere discrete element method for particle collisions and a pseudo-spectral method for 
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direct numerical simulation of homogeneous turbulence, to examine the effect of the background 

turbulence on contact electrification of the particles for different Stokes numbers. Both the effect 

of turbulent flow on the overall rate of contact electrification and on the collision and charge 

distribution are examined. The computational models used in the research are summarized in 

Section 2. Results of the paper are presented and discussed in Section 3, including the effect of 

Stokes number on contact electrification and an examination of contact electrification with 

bidisperse mixtures of particle size and initial charge carrier density. Conclusions are given in 

Section 4.      

 

2. Computational Methods  

2.1. Particle transport 

 The particle collisions were simulated using the hard-sphere model, as described by 

Crowe et al. (1998). The hard-sphere model solves the particle impulse equations during 

collisions to obtain the post-collision particle velocities )1( inv  from the given pre-collision 

velocities )(inv  and restitution coefficient e . For two particles labeled 1 and 2, the restitution 

coefficient is defined by 
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where n is the unit normal vector from the centroid of particle 1 to that of particle 2. The hard-

sphere model also solves the angular impulse equations to obtain the particle angular rotation 

rate after the collision. The model uses Coulomb's law of friction for the sliding force and 
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assumes that once a particle stops sliding, there is no later sliding of the particle. During the time 

period in-between collisions, the simulation method solves the particle momentum and angular 

momentum equations for the particle velocity and rotation rate, subject to forces and torques 

induced by the fluid, including viscous drag and torque, Saffman lift (Saffman, 1965, 1968), and 

Magnus lift (Rubinow and Keller, 1961). Added mass force, pressure gradient force and Bassett 

force are negligible based on the parameter values used in the computations. Electrostatic forces 

(Coulomb and dielectrophoretic forces) were also neglected on the assumption that particle 

charges were too weak for these forces to be significant in comparison to the fluid drag. The 

fluid velocity was interpolated from a 1283 Cartesian grid onto the particle locations with cubic 

accuracy using the M 4  variation of the B-spline interpolation method developed by Monaghan 

(1985).  

 As two particles collide, the contact force between the particles is transmitted via a 

flattened contact region, across which the particle surfaces are separated by a small gap of width 

 . The gap thickness is on the order of a nanometer, which for micrometer-scale or larger 

particles is much less than the particle diameter. For spherical particles, the contact region has a 

circular shape with radius )(ta . For non-adhesive particles, the contact region radius starts at a 

value of zero at the onset of contact, increases during the compression stage of the collision to a 

maximum value of maxa , and then decreases again during the recovery stage of the collision until 

it vanishes again at the particle detachment point. An expression for the maximum contact region 

radius can be obtained using the Hertz contact theory as (Hertz, 1882; see also Marshall and Li, 

2014)  
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where nvv  )]()([ 12 iiwr  is the relative radial velocity between two particles labeled '1' and 

'2' prior to the ith collision, and M, R and E are the effective mass, radius and elastic coefficient of 

the colliding particle pair, defined by 
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Here nm , nr , nE , and n  denote the mass, radius, elastic modulus and Poisson's ratio for particle 

n, respectively. 

 

2.2. Contact electrification 

 The phenomenological contact electrification model used in the current study is a 

stochastic version of the model proposed by Duff and Lacks (2008) and Lacks and Levandovsky 

(2007). The original model assumed that the charge carrier for contact electrification is a set of 

electrons trapped in high-energy band gaps, which transfer into a low-energy state when 

transported to a second particle during particle collision. However, it was noted by Castle (2008) 

that the model is equally valid with ions as the charge carrier (see also Waitukaitis et al., 2014). 

The number of charge carriers at time t is denoted by )(, tN nH  on a particle n with diameter nd . 

If the initial surface number density of charge carriers is n , then nnnH dN  2
, )0(  . When a 

particle collides with another particle, each particle transfers to the other particle all of the charge 
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carriers within a distance cutr  of the contact point, where the contact point is the centroid of the 

contact region. For instance, in a collision between particles 1 and 2 at a time ct  in which charge 

carriers are exchanged between both particles, the change in number of charge carriers, )(, tN nH , 

for each particle is given by 

 

 1
2

1,  cutH rN  , 2
2

2,  cutH rN  . (4) 

 

The change in particle charge due to the collision is given simply by the product of the number 

of charge carriers exchanged and the electric charge Ce  per charge carrier. Duff and Lacks 

(2008) examined several different values for the distance cutr  and found that the value selected 

did not significantly modify the qualitative nature of the contact electrification predictions. Since 

typical charge carriers, such as high-energy electrons or ions, can only travel short distances 

either between particles or on a particle surface, the physically correct value of cutr  is the 

maximum contact region radius maxa , given by (2). However, this choice can lead to a 

requirement for a large number of computations per particle in order to observe significant 

contact electrification, and so might not be computationally feasible. A reasonable approach to 

accelerate the numerical computation is to prescribe cutr  to a be a multiple of maxa , such that  

 

 maxDarcut  ,  (5) 

 

where 1D  is an acceleration factor.  
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 At any time t, the surface of a particle consists of some regions with available charge 

carriers and some regions in which the charge carriers have already been cleared away by 

transfer to another particle. If particle 1 collides with a second particle 2 in a contact region with 

available charge carriers on particle 1 but without available charge carriers on particle 2, then the 

electric charge is transferred only from particle 1 to particle 2, but not from particle 2 to particle 

1. Duff and Lacks (2008) presented a computational approach in which they used a set of sub-

particles attached to the particle surfaces to represent high-energy electrons on the surface, which 

were then removed within a region of radius cutr  following each collision. Of course, this 

approach is quite time-consuming for large numbers of particles. In the current paper, we 

alternatively propose a stochastic approach for dealing with depletion of charge carriers from the 

particle surface. Specifically, we denote by )(, tA nH  the total area on a particle n with available 

charge carriers at time t, such that at the initial time 2
, )0( nnnH dAA  , where nA  is the surface 

area of particle n. A collision of particle 1 with another particle 2 is considered to consist of two 

stages   ̶   a forward transfer of charge carriers from particle 1 to particle 2 and a reverse transfer 

from particle 2 to particle 1. In the forward transfer stage, we select a random variable 1p  with 

uniform probability distribution between 0 and 1. If 11,1 /)( AtAp H , then the collision is taken 

to have occurred at a location with available charge carriers on particle 1. In this case, the change 

in number of charge carriers and the change in area occupied by available charge carriers on 

particle 1 are given by   

 

 1
2

1,  cutH rN  , 2
1, cutH rA  .  (6) 
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If 11,1 /)( AtAp H , then the collision is taken to have occurred at a location with no available 

charge carriers on particle 1, and there is no change in the number of charge carriers or in 1,HA . 

In the reverse transfer stage, we again select a random number 2p  with the same probability 

distribution. If 22,2 /)( AtAp H , then the collision is taken to have occurred at a location with 

available charge carriers on particle 2, such that  

 

 2
2

2,  cutH rN  , 2
2, cutH rA  .  (7) 

 

Again, no changes are made if 22,2 /)( AtAp H . After both the forward and reverse transfer 

stages of contact electrification are completed, the net change in charge of the two particles over 

the time step is given by 

 

 )( 2,1,21 HHC NNeQQ  . (8) 

 

2.3. Fluid flow 

The direct numerical simulations (DNS) of isotropic, homogeneous turbulence used to 

represent a turbulent fluid flow were performed using a triply-periodic pseudo-spectral method 

with second-order Adams-Bashforth time stepping and exact integration of the viscous term 

(Vincent and Meneguzzi, 1991). The spectral Navier-Stokes equations were evolved in time after 

having been projected onto a divergence-free space using the operator ijjiij kkkP  2/  

according to the expression 
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where an overbar denotes Fourier transform in three space dimensions, a superscript indicates the 

time step, and k is the wavenumber vector with magnitude k. The force vector F on the right-

hand side has Fourier transform given by 

 

 FfωuF  , (10) 

 

where Ff  is the small wavenumber forcing term required to maintain the turbulence with 

approximately constant kinetic energy. The velocity field was made divergence-free at each time 

step by taking its Fourier transform and using the spectral form of the continuity equation, given 

by 

 

 0 uk . (11) 

 

The forcing vector was assumed to be proportional to the fluid velocity (Lundgren, 2003; 

Rosales and Meneveau, 2005), such that 
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where the coefficient C was adjusted at each time step so as to maintain approximately constant 

turbulent kinetic energy. The current computations were performed with 5critk , so that the 

forcing acts only on the large-scale eddies. 

 The fluid flow computations were performed on a 1283 cubic grid with domain side 

length 2 . A preliminary computation was conducted with no particles to allow the turbulence 

to develop a range of length scales characteristic of statistically stationary homogeneous 

isotropic turbulence for 5000 time steps with a time step size of 005.0t . The computation 

was then restarted with 64,000 particles randomly distributed in the computational domain and 

with the initial particle velocity set equal to the local fluid velocity. The turbulence kinetic 

energy q and dissipation rate   were obtained from integration of the power spectrum, )(ke , as 

  

 
max

0
)(

k
dkkeq ,    max

0

2 )(2
k

dkkekv .  (13) 

 

Various dimensionless measures describing the turbulence in the validation computations are 

listed in Table 1, including the root-mean-square velocity magnitude 0u , the average turbulence 

kinetic energy q, the integral length scale /5.0 3
00 u , the Taylor microscale 

0
2/1)/15( u  , and the Kolmogorov length scale 4/13 )/(   . The corresponding 

microscale Reynolds number is 99/Re 0   u .  

 

3. Results for Particle Contact Electrification  

3.1. Characteristics of the turbulent flow 
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 The direct numerical simulations (DNS) of the turbulent flow field were conducted 

assuming one-way coupling with the particles. The computed power spectrum )(ke  is plotted in 

Figure 1a as a function of the product of the wavenumber magnitude k and the Kolmogorov 

length scale 4/13 )/(   , showing the expected 3/5k  dependence in the inertial range and a 

faster drop-off for higher wavenumber in the dissipation range. The computed velocity 

probability density function (p.d.f.) in one coordinate direction (x-direction), normalized by the 

root-mean-square velocity, is shown in Figure 1b. The DNS predictions are observed to be close 

to a best-fit Gaussian curve )5.0exp(8.0)( 2vvp  , where rmsxx vvv ,/ , in agreement with 

standard observations for the turbulence flows (Voth et al., 1998). The p.d.f. of the x-component 

of the fluctuating fluid acceleration field is plotted in Figure 1c. Fluid acceleration is computed 

from the DNS velocity field for post-processing purposes using a centered difference 

approximation in space and a forward difference in time. Also shown in this figure is the 

empirical expression for the p.d.f.,  

 

  })/1/{(exp8.1)( 2
221

2 3 ccacaap
c  , (14)  

 

obtained experimentally by La Porta et al. (2001). In this expression, rmsxx aaa ,/ , and the 

coefficients are given by a best fit to La Porta et al.'s experimental data as 539.01 c , 

50802 .c  , and 58813 .c  . The acceleration p.d.f. exhibits a non-Gaussian “superstatistical” 

distribution characterized by a fat tail, which is typical of a highly intermittent signal (Beck, 

2008; Biferale et al., 2004; Reynolds, 2003). Mordant et al. (2004) suggested that the observed 
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acceleration intermittency in turbulent flows can be associated with the presence of coherent 

vortex structures. 

 

3.2. Effect of Stokes number on contact electrification 

 The effect of fluid flow on the particle collision and electrification was examined by 

conducting a series of simulations with different values of the Kolmogorov-scale Stokes number, 

St, defined by  

 

 
K
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
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Here, the particle time scale  dmP 3/  is a function of the particle mass m and diameter d 

and the fluid viscosity  , and the Kolmogorov time scale is defined by 2/1)/(  K . 

Computations were performed for a set of six Stokes numbers ranging from 1.1 to 33.6. In all 

computations, the total number collisions in the system )(tB  exhibits approximately linear 

increase with time after a short transient period. The slope of )(tB  following the initial transient, 

divided by the computational volume 3)2(  , yields the collision rate per unit volume, cn . We 

plot the variation of cn  with the Stokes number in Figure 2. The collision rate exhibits a peak 

near 5St  . A comparison of our predicted collision rates with those obtained from previous 

studies of particle collision in homogeneous isotropic turbulence is shown in Figure 3, in which 

we plot the dimensionless ratio )/( 0
22 undn pc   predicted in the current study (at 99Re  ) with 

values reported by Sundaram and Collins (1997) for 2.54Re  , Wang et al. (2000) for 
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75Re  , and Fayed and Ragab (2013) for 96Re  . Here, pn  is the particle number density. 

The predicted value of this dimensionless collision rate obtained in the current computations is 

observed to have a similar range of values as those obtained from these other three studies. 

 For small values of Stokes number ( 4.0St  ), the local fluid flow can push two particles 

together to generate a chattering type of collision, resulting in rapid repeated collisions as the 

particles cyclically push apart under their elastic rebound force and are then driven together 

again by the fluid forces. As discussed by Sundaram and Collins (1996), these repeated collisions 

would in reality be modulated by vortices shed from the particles, which are not included in the 

current particle force modeling based on the one-way coupling assumption. We have therefore 

considered only Stokes number values that are sufficiently large that this chattering type of 

collision does not occur.    

 The approach of the particle system to an equilibrium charge state can be observed by 

plotting the time variation of the total transferred charge, transQ , defined as half of the sum of the 

absolute value of the charge of each particle. The total transferred charge is plotted in Figure 4 as 

a function of time for different Stokes numbers. The value of transQ  approaches an equilibrium 

value at long time, after all the charge carriers initially attached to the particles in the system 

have been expended via collisions with other particles in the system. The larger the collision rate 

cn , the more opportunities for a particle to transfer charge, and hence the more quickly this 

equilibrium condition is attained. However, the results in Figure 4 also depend on the relative 

velocity at collision between the particles, which effects the contact area as indicated in (2) and 

hence the number of charge carriers that are transferred at each collision. For Stokes numbers 

above about 6, the differences in value of cn  in Figure 2 and in the plot of transQ  versus time in 

Figure 4 are observed to be small.  
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 For a closer examination of particle collision, we count the number of collisions for each 

particle, denoted by pb , and compute the probability density function (p.d.f.) of collision number 

by dividing the range of variation of pb  into equal-size bins. The resulting p.d.f. for collision 

number is plotted in Figure 5 for St = 33.6 at five different values of the total number of 

collisions in the system, B. The p.d.f. of collision number at this Stokes number is observed to 

closely approximate a normal distribution, as indicated by the curves plotted in Figure 5. As run 

time increases and the total number of collisions in the system accumulates, the distribution of 

number of collisions grows wider. To facilitate a comparison of different Stokes number cases, 

the collision number p.d.f. is plotted in Figure 6 by dividing the value of pb  by the total number 

of collisions B , and also by multiplying the value of the y-axis variable by B to ensure that the 

integral of the p.d.f. is equal to unity. The plot in Figure 6 is made for different Stokes number 

values at a time when the total number of collisions is 000,500B . The resulting p.d.f. plot 

approaches a common normal distribution as the value of Stokes number increases, with mean 

value 5101.3/ Bbp .  

 The observation that the collision distribution approaches a normally-distributed p.d.f. 

can be explained with use of the central limit theorem. For each collision, the probability that a 

given particle i is involved in this collision is 
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where pN  is the total number of particles in the computational system. Assuming linear 

variation in time t, the total number of collisions B can be written as VtnB c , where V is the 

volume of the computational domain. After B collisions in the system, the probability of particle 

i having undergone s collisions can be expressed as  
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which is a binomial distribution with mean Bp  and variance )1(2 pBp  , where p is a 

constant given by (16). When B becomes large, Stirling’s approximation BeBB BB 2~!   can 

be used to yield an asymptotic approximation for (17) as  
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The asymptotic approximation (19) for ),( BsP  is a normal distribution with mean   and 

variance 2 . Since the particles are identical and independent, ),( BsP  also represents the 

probability distribution of collision number for the particles. We note that the assumption that the 

particle collisions are independent holds only for large Stoke numbers. For small St, two 

particles that have recently collided would be more likely to collide with each other again, so that 

the collisions would no longer be independent.  

 The probability distribution function of the radial relative velocity (RRV) at contact is 

shown for different Stokes numbers in Figure 7. For large Stokes numbers (St > 10), the RRV 

distribution is found to be closely fit by the skew-normal distribution, 

)]
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
 x

ey
x


, where erf(x) is the error function. For smaller values 

of the Stokes numbers (e.g., St = 1.1), the RRV distribution is close to the exponential 

distribution, x..ey 251041252  . As St decreases, the mean value of the RRV distribution also 

decreases, implying small contact area and small amounts of charge transfer during collisions.  

 In these computations, it was assumed that each particle is initially completely covered 

by available charge carriers, which the particles gradually lose by collisions with other particles 

until no available charge carriers remain. We define a particle as being 'involved in the 

electrification processes' if it has undergone at least one collision but still has some available 

charge carriers remaining. The ratio of available charge carriers at the current time to that at the 

start of the computation is called the charge carrier depletion ratio, )(, tR nH , which is defined for 

particle n by  
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where )0(,nHN and )(, tN nH  are the number of available charge carriers of particle n at the initial 

time and at time t, respectively. The charge carrier depletion ratio )(, tR nH  is equal to unity at the 

start of the computation for all particles, and it approaches zero at long time as all available 

charge carriers are expended by transferring onto colliding particles. Figure 8 shows the time 

development of the distribution of )(, tR nH  for all particles involved in the electrification process 

for different values of the total number of collisions B, for a case with St = 33.6. As the total 

collision number B increases, the peak of distribution moves from nearly unity to nearly zero.  

 A plot showing the p.d.f. of the charge carrier depletion ratio for different Stokes 

numbers when 000,500B  is given in Figure 9. At this intermediate stage, most of the particles 

are involved in the electrification process and the p.d.f. is observed to be close to a normal 

distribution. The mean value of the )(, tR nH  distribution represents the average ratio of charge 

carriers that have been expended at a given time. The distributions of )(, tR nH  are almost the 

same for cases with different Stokes numbers for large values of St, while the mean value of 

)(, tR nH  is larger for small St values. The p.d.f. distribution for )(, tR nH  at the midpoint of the 

electrification process, when the mean value 5.0, nHR , is plotted in Figure 10 for different 

Stokes numbers. We similarly see that the normal distribution is a good fit for all cases, but that 

the variance of the distribution is somewhat smaller at small St than at large St values, which is 

related to the observed lower values of the relative radial velocity for small Stokes numbers.  
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 The net charge on each particle is zero at the beginning of the computation. Charge is 

exchanged between the particles during the contact electrification process until the equilibrium 

state is reached, at which time all of the available charge carriers have been expended and after 

which the charge on each particle remains constant. A plot of the distribution of particle charge, 

pq , in the equilibrium state is given in Figure 11. The equilibrium charge distribution is 

observed to form a nearly normal distribution which has somewhat smaller variance for small 

Stokes numbers, but to asymptote to a common curve for large Stokes numbers.  

 

3.3. Contact electrification with bidisperse particle size and initial charge carrier density 

 The effect of different initial charge carrier densities was examined by setting half of the 

particles (Set A) to have double the initial charge carrier density as the other half of the particles 

(Set B), in a computation with St = 11.2. Since the particles in Set A with higher initial charge 

carrier density have more charge carriers available to lose in collisions than do the particles in 

Set B, we expect the particles in Set A to develop a net positive charge during the computation 

and the particles in Set B to correspondingly develop a net negative charge, where we assume 

that the charge carrier charge is negative. The net charge of all particles in a given set is denoted 

by Q, such that )(AQ  is the net charge of particles in Set A and )(BQ  is the net charge of 

particles in Set B. The value of Q for each set is plotted in Figure 12 as a function of time, 

showing the expected positive net charge development for particles in Set A and negative net 

charge development for particles in Set B. When all the available charge carriers have been 

expended, the system approaches an equilibrium state. The charge distribution in the equilibrium 

state is shown in Figure 13 for both sets of particles individually. While the charge distribution is 

again observed to be nearly Gaussian, the distribution has quite a bit more scatter than was 
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observed in the runs with identical charge carrier densities in Figure 11. The mean particle 

charge is equal with opposite sign for the two distributions, and the mean of the distributions is 

the same.  

 The effect of different particle sizes was examined using a bidisperse distribution in 

which half of the particles (Set C) are assigned a diameter of d25.1  and the other half of the 

particles (Set D) are assigned a diameter of d8.0 , where d is the particle diameter used in the 

computations in Section 3.2. The overall particle collision rate increases by 10% for the 

bidisperse distribution compared to computations with identical particle size. The p.d.f. 

distributions for different types of particles collisions are given in Figure 14. There are three 

types of collisions: collisions between two small particles, collisions between two large particles, 

and collisions between a large particle and a small particle. These three types of collisions are all 

observed to exhibit normal distributions. The distribution for collisions between two large 

particles has a larger mean value and a higher variance than does the distribution for collisions 

between two small particles, which is expected from the fact that the larger particles occupy a 

larger volume of the flow field than do the smaller particles. The distribution for collisions 

between large and small particles has a mean value and variance that are intermediate between 

the values for small-small collisions and that for large-large collisions. Also plotted in Figure 14 

are the distribution for all collisions of the small particles and the distribution for all collisions of 

the large particles. If X is a random variable for a collision of a particle with another particle of 

the same size and Y is a random variable for a collision between particles of different sizes, then 

the total collision distribution for a given particle set has a mean YX   and variance YX   that 

satisfy 
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 YXYX   ,  YXYXYX  2222  ,  (21) 

 

where the correlation parameter   vanishes when variables X and Y are independent. Based on 

the best-fit distributions for the total collisions of the large and small particles obtained in Figure 

14, we find that 20.  for both the small and large particle sets. This result implies a non-zero 

correlation for collisions between particles of different sizes.   

 Since large particles have a larger number of available charge carriers than do small 

particles, the large particles on average give away more charge carriers than do the small 

particles over the course of the computation. This leads to a tendency for the larger particles to 

become positively charged and the smaller particles to be come negatively charged. A plot of the 

time variation of the total charge for all particles from the larger-size Set C and the smaller-size 

Set D is given in Figure 15a. Unlike the previous cases examined, the value of Q achieves a 

maximum (or minimum) value at a finite time for this case, after which the absolute value of Q 

decreases. This extremum value occurs because the collision rate for the large particles is more 

rapid than that for the small particles, since at high Stokes number the collision kernel varies in 

proportion to particle diameter squared (Abrahamson, 1975). As a consequence, the charge 

exchange from different types of collisions occurs over different time scales. The charge 

distribution for the large and small particles is shown in Figure 15b at time 130t  , at which 

000,000,2B . Both distributions have approximately normal form, with the mean value for the 

large particles slightly positive and that for the small particles slightly negative. The standard 

deviation for these distributions is significantly smaller for the small particles than it is for the 

large particles, and for both sets of particles the standard deviation is much larger than the mean 

value. 
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 When both the particle size and the initial charge carrier density are different for the two 

particle sets, the results are a combination of those observed when each effect is examined 

independently. For instance, a computation was conducted in which half the particles (Set E) 

have diameter d25.1  with twice the initial charge carrier density as the other half (Set F) of the 

particles, which had smaller diameter d8.0 . A plot showing the time variation of the total charge 

Q for both sets of particles is given in Figure 16a, and the charge distribution is shown in Figure 

16b. As in Figure 13, the mean values of the two sets of particles are significantly different, with 

the particles in Set E having a larger mean value than the particles in Set F. As in Figure 15b, the 

variance for the two sets of particles are also different, with the variance for the particles in Set E 

(the larger particles) being larger, and the peak value smaller, than for the particles in Set E (the 

smaller particles).  

 We note that while both differences in initial charge carrier density and in particle size 

can lead to a mean charge difference between the two sets of particles, the former effect is a lot 

stronger than the latter. For instance, in Figure 17 we plot results of a computation where half the 

particles (Set H) have diameter 1.25d and the other half (Set G) have diameter 0.8d. However, in 

this computation the smaller particles (Set G) were assigned a 10% larger initial charge carrier 

density than the large particles (Set H). The plot of the time variation of mean charge of each of 

these sets (Figure 17a) clearly indicates that the small particles become positively charged while 

the large particles become negatively charged, in contrast to the results observed in Figure 16a. 

However, the variance of the charge distribution for the small particles continues to be smaller 

than that of the large particles (Figure 17b), which has been consistently observed for all cases 

examined. Since the initial charge carrier density is largely determined by the material properties 

of the material, the observed strong sensitivity of the computed charge to this parameter is 
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consistent with historical identification of the direction of charge transfer in contact 

electrification in terms of material properties (via a triboelectric series).  

 

4. Conclusions 

 We have coupled a probabilistic version of a phenomenological contact electrification 

model to a pseudo-spectral direct numerical simulation method for homogeneous turbulence and 

a hard-sphere discrete-element method for particle transport and collisions in order to advance 

understanding of the effect of fluid turbulence on particle contact electrification. The observed 

distributions of particle charge development are found to be insensitive to Stokes number for St 

greater than about 6, but to be highly sensitive to Stokes number for values of St near unity.  

 The probability density functions for number of collisions and for number of charge 

carriers are observed to be approximately normally distributed for high St cases, as would be 

expected from the central limit theorem for independent random processes. However, for small 

St cases (near unity and below), the particle relative radial velocity at collision is observed to 

approach an exponential distribution, indicating an increased tendency for collision between 

neighboring particles, which leads to a break-down of the assumption of independent collisions. 

The particle charge approaches a constant value at large time, when all of the available charge 

carriers have been removed from the particle surfaces via collisions. The resulting charge 

distribution is found to be well approximated by a normal distribution for all Stokes number 

values examined. Cases with high Stokes number (above about 6) approach an asymptotic charge 

distribution which is nearly independent of Stokes number. Cases with lower Stokes number 

values, near unity, also seem to approach a nearly normal charge distribution, but with 

significantly smaller variance than for the high Stokes number cases.   
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 Simulations in which half of the particles had a higher initial value of the charge carrier 

density than the other half of the particles caused a strong shift in the charge distributions 

without change in shape, in the direction of positive charge for the particles with higher initial 

charge carrier density and in the direction of negative charge for the other half of the particles. 

Simulations in which half of the particles were larger than the other half of the particles caused 

the charge distribution for the larger particles to have larger variance and smaller peak than that 

for the smaller particles, due to the higher collision rate of the larger particles. These two trends 

were found to be preserved in an additive fashion for simulations with differences in both 

particle size and initial charge carrier density.  
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Figure Captions 
 
Figure 1. Plots characterizing direct numerical simulations of turbulent flow: (a) power spectrum 
showing 3/5k  scaling in inertial range, (b) velocity probability density function with DNS data 
(symbols) and best-fit Gaussian curve (solid line), and (c) probability density function for 
acceleration with DNS data (symbols) and best-fit function to the experimental data of La Porta 
et al. (2001) (solid line).  
 
Figure 2. The collision rate per unit volume, cn , for different values of the Kolmogorov-scale 

Stokes number St. 
 
Figure 3. Comparison of dimensionless collision rate, )/( 0

22 undn pc  , to values obtained by 

other investigators as a function of Stokes number. The plots show DNS data of Sundaram and 
Collins (1997) for 54Re  (squares, blue line), DNS data of Wang et al. (2000) for 75Re  

(circles, red line), DNS data of Fayed and Ragab (2013) for 96Re  (deltas, green line), and 

our DNS result for 99Re  ('s, black line).  

 
Figure 4. The time development of total transferred charge transQ  for different Stokes numbers. 

 
Figure 5. The probability density function (p.d.f.) of the number of collisions for a particle, pb , 

for a case with St = 33.6, plotted at different values of the total number of collisions in the 
system, B. The black solid lines represent best-fit normal distributions. 
 
Figure 6. The probability density function (p.d.f.) of nondimensionless collision number of 
particle, Bbp / , for different Stokes numbers when the total number of collisions 000,500B . 

The black solid line represents the best-fit normal distribution in the high-St limit. 
 
Figure 7. The probability density function (p.d.f.) of radial relative velocity at contact, rw , for 
different Stokes numbers when 000,500B . The solid line is a skew-normal distribution, and 
the dashed line is an exponential distribution.  
 
Figure 8. Time variation of the p.d.f. of the charge carrier depletion ratio )(, tR nH  for particles 

involved in the electrification process for a case with St = 33.6, plotted at different values of the 
total number of collisions B.  
 
Figure 9. The probability density function (p.d.f.) of the charge carrier depletion ratio HR  for 
different Stokes numbers when the total number of collisions 000,500B . The solid line 
denotes the best-fit normal distribution to the high St cases.  
 
Figure 10. The distribution of HR  for different Stokes numbers when the mean value 

5.0, nHR . The solid line is the best-fit Gaussian to the high St cases. 
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Figure 11. The distribution of charge of particle pq  for different Stokes numbers when 

000,000,2B . The solid line is the best-fit Gaussian curve to the high St cases. 
 
Figure 12. The time development of total charge Q for same-size particles with half the particles 
(red line A) assigned twice the initial charge carrier density as the other half of the particles (blue 
line B).  
 
Figure 13. Charge distribution pq  for particles shown in Figure 12 at the equilibrium time, where 

results for particles with high initial charge carrier density (red line A, circles) and particles with 
low initial charge carrier density (blue line B, gradients) are plotted separately. The solid lines 
represent best-fit normal distributions and the dashed lines point out the mean particle charge in 
each set.  
 
Figure 14. The probability density function (p.d.f.) of the number of collisions for a particle, pb , 

for different types of collisions when 000,000,2B . The collision types include small-small 
particle collision (SS), large-large particle collision (LL), and small-large particle collision (SL). 
The SS+SL data represents all the collisions for small particles, and the LL+SL data represents 
all collisions for the large particles. The solid and dashed lines represent best-fit normal 
distributions. 
 
Figure 15. Results for a run with different size particles and the same initial charge carrier 
density: (a) time development of total charge Q and (b) charge distribution for large particles 
(red line C, circles) and small particles (blue line D, gradients) at time 130t , corresponding to 

000,000,2B . Mean values are indicated by dashed lines in (b). 
 
Figure 16. Results for a run with different size particles, in which the large particles have higher 
initial charge carrier density than do the small particles: (a) time development of total charge Q 
and (b) charge distribution at the end of the computation for large particles (red line E, circles) 
and small particles (blue line F, gradients). Mean values are indicated by dashed lines in (b). 
 
Figure 17. Results for a run with different size particles, in which the small particles have 10% 
higher initial charge carrier density than do the large particles: (a) time development of total 
charge Q and (b) charge distribution at the end of the computation for large particles (red line H, 
circles) and small particles (blue line G, gradients). Mean values are indicated by dashed lines in 
(b). 
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Table 1. Dimensionless simulation parameters and physical parameters of the fluid turbulence. 
 

  Simulation Parameters   Turbulence Parameters  
 Time step   0.005  Turbulent kinetic energy, q   0.115  
 Cycles   50,000   Dissipation rate,     0.009  
 Grid   3128    Kinematic viscosity,     0.001  
   Integral length, 0   1.18 
   Taylor microscale,   0.357 
   Kolmogorov length,    0.0183 
   Integral velocity, 0u   0.277 
   Integral time, T   4.26 
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 (a) (b) (c) 
 
Figure 1. Plots characterizing direct numerical simulations of turbulent flow: (a) power spectrum 
showing 3/5k  scaling in inertial range, (b) velocity probability density function with DNS data 
(symbols) and best-fit Gaussian curve (solid line), and (c) probability density function for 
acceleration with DNS data (symbols) and best-fit function to the experimental data of La Porta 
et al. (2001) (solid line).  
 
 

 
Figure 2. The collision rate per unit volume, cn , for different values of the Kolmogorov-scale 

Stokes number St. 
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Figure 3. Comparison of dimensionless collision rate, )/( 0

22 undn pc  , to values obtained by 

other investigators as a function of Stokes number. The plots show DNS data of Sundaram and 
Collins (1997) for 54Re  (squares, blue line), DNS data of Wang et al. (2000) for 75Re  

(circles, red line), DNS data of Fayed and Ragab (2013) for 96Re  (deltas, green line), and 

our DNS result for 99Re  ('s, black line).  

  
 

 
Figure 4. The time development of total transferred charge transQ  for different Stokes numbers. 
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Figure 5. The probability density function (p.d.f.) of the number of collisions for a particle, pb , 

for a case with St = 33.6, plotted at different values of the total number of collisions in the 
system, B. The black solid lines represent best-fit normal distributions. 
 

 

Figure 6. The probability density function (p.d.f.) of nondimensionless collision number of 
particle, Bbp / , for different Stokes numbers when the total number of collisions 000,500B . 

The black solid line represents the best-fit normal distribution in the high-St limit. 
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Figure 7. The probability density function (p.d.f.) of radial relative velocity at contact, rw , for 
different Stokes numbers when 000,500B . The solid line is a skew-normal distribution, and 
the dashed line is an exponential distribution.  
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Figure 8. Time variation of the p.d.f. of the charge carrier depletion ratio )(, tR nH  for particles 

involved in the electrification process for a case with St = 33.6, plotted at different values of the 
total number of collisions B.  

 

 

Figure 9. The probability density function (p.d.f.) of the charge carrier depletion ratio HR  for 
different Stokes numbers when the total number of collisions 000,500B . The solid line 
denotes the best-fit normal distribution to the high St cases.  
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Figure 10. The distribution of HR  for different Stokes numbers when the mean value 

5.0, nHR . The solid line is the best-fit Gaussian to the high St cases. 

 

 

Figure 11. The distribution of charge of particle pq  for different Stokes numbers when 

000,000,2B . The solid line is the best-fit Gaussian curve to the high St cases.  
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Figure 12. The time development of total charge Q for same-size particles with half the particles 
(red line A) assigned twice the initial charge carrier density as the other half of the particles (blue 
line B).  
 

 

 
 
Figure 13. Charge distribution pq  for particles shown in Figure 12 at the equilibrium time, where 

results for particles with high initial charge carrier density (red line A, circles) and particles with 
low initial charge carrier density (blue line B, gradients) are plotted separately. The solid lines 
represent best-fit normal distributions and the dashed lines point out the mean particle charge in 
each set.  
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Figure 14. The probability density function (p.d.f.) of the number of collisions for a particle, pb , 

for different types of collisions when 000,000,2B . The collision types include small-small 
particle collision (SS), large-large particle collision (LL), and small-large particle collision (SL). 
The SS+SL data represents all the collisions for small particles, and the LL+SL data represents 
all collisions for the large particles. The solid and dashed lines represent best-fit normal 
distributions. 
 
 
 

   
   (a)       (b) 
 
Figure 15. Results for a run with different size particles and the same initial charge carrier 
density: (a) time development of total charge Q and (b) charge distribution for large particles 
(red line C, circles) and small particles (blue line D, gradients) at time 130t , corresponding to 

000,000,2B . Mean values are indicated by dashed lines in (b). 
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        (a)       (b) 
 
Figure 16. Results for a run with different size particles, in which the large particles have higher 
initial charge carrier density than do the small particles: (a) time development of total charge Q 
and (b) charge distribution at the end of the computation for large particles (red line E, circles) 
and small particles (blue line F, gradients). Mean values are indicated by dashed lines in (b). 
 
 
 

     
 
   (a)       (b) 
 
Figure 17. Results for a run with different size particles, in which the small particles have 10% 
higher initial charge carrier density than do the large particles: (a) time development of total 
charge Q and (b) charge distribution at the end of the computation for large particles (red line H, 
circles) and small particles (blue line G, gradients). Mean values are indicated by dashed lines in 
(b). 
 


