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Port-Controlled Phasor Hamiltonian Modeling and
IDA-PBC Control of Solid-State Transformer

Ragini V. Meshram , Monika Bhagwat, Shubhangi Khade, Sushama R. Wagh,
Aleksandar M. Stanković, and Navdeep M. Singh

Abstract— This paper presents an application of interconnec-
tion and damping assignment passivity-based control (IDA-PBC)
principle to the port-controlled phasor Hamiltonian (PCPH)
model of solid-state transformer (SST) (comprising of three
stages, namely, ac/dc rectifier, dual active bridge converter, and
dc/ac inverter). A PCPH model of SST is established for each
individual stages using dynamic phasor concept. In comparison
with other PBC approaches, IDA-PBC offers an additional
degree of freedom to solve the partial differential equations.
According to the target of the controller design at each stage,
the desired equilibrium point of the system is obtained. The
closed-loop system performance achieves regulation of constant
output dc-bus voltage and unity input power factor. Large-signal
simulation results for the full system validate the simplifications
introduced to obtain the controller and verify the proposed
controller. Robustness of the controller is demonstrated with 20%
load disturbance and 10% input disturbance. For validation of
the proposed approach and its effectiveness, hardware-in-loop
simulation is carried out using Opal-RT and dSPACE simulators.

Index Terms— dSPACE, dynamic phasors (DPs), hardware
in loop (HIL), Opal-RT, passivity-based control (PBC), port-
controlled Hamiltonian (PCH), solid-state transformer (SST).

I. INTRODUCTION

SOLID-state transformers (SST) were first proposed in
FREEDM system vision [1] as a versatile, highly flexible

alternative to conventional transformers. SST is one of the
emerging power electronic converters, which offers reactive
power support for the grid, better power quality, current
limiting, management of distributed storage devices, and a
regulated dc bus. In addition, it can provide active filtering to
the load side, such that the load is isolated from momentary
sags, swells, and harmonics on the ac grid. There are several
topologies suggested for SSTs in [2]–[4] but most being evalu-
ated today are based around the idea of bidirectional dc/dc dual
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Fig. 1. SST.

active bridge (DAB) converter. SST consists of three stages:
an ac/dc rectifier, a dc/dc DAB converter, and a dc/ac inverter,
as shown in Fig. 1. The bidirectional power flow capability of
the SST provides possibilities to feed locally generated power
back to the grid. Furthermore, the low-voltage dc (LVdc) link
can provide a dc bus to which photovoltaic panels, energy-
storage devices, or electric-vehicle chargers can be connected.
These additional features and flexibility provide a platform
with which to build the future smart-grid infrastructure. For
a complex power electronic system simulation, the switching
model requires very short time steps and results in long
simulation times. Average models allow much faster simu-
lation and reduce memory requirement when compared with
the detailed switching models. However, the switching ripple
present in the state of power converters is not captured by
standard average models. This problem is addressed using the
dynamic phasor (DP) model based on generalized averaging
method, which is Fourier series averaging method initially
proposed in [5], in which time-varying signal is approximated
by zeroth and higher order harmonic coefficients called DPs.
This is essentially a frequency domain analysis method as
explained in [6] and [7] in which Fourier coefficients are time
varying as the integration interval (window) slides over the
actual waveform. Compared with other time-domain modeling
techniques, the DP models offer a number of advantages
over conventional methods. This is due to the fact that the
oscillating waveforms of ac circuits become constant or slowly
varying in the DP domain and different frequency components
can be handled separately with convenience. This property
of DPs allows large step sizes in numerical simulations, and
makes simulation potentially faster than conventional time-
domain models under both balanced and unbalanced condi-
tions [8]. The DP technique has been widely implemented in
modeling electronic converters, and some of the key references
in the application of DP include [9]–[11].

The control objectives of power electronics converters
include output regulation/tracking, internal variable dynamics
compensation, and so on. The dynamic modeling and control
of DAB is discussed in [10], [12], and [13] with a linear
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control. In traditional control strategies of SST, a time-domain
simulation analysis is done in [2] with a two-loop cascaded
control structure. A control strategy for averaged model and
stability analysis of SST is discussed in [4] and [14].

In the nonlinear control theory, port-controlled Hamil-
tonian (PCH) control based on energy shaping has attracted
considerable attention [15]–[19]. The main characteristic of
the method is that the system has a PCH structure and the
Hamilton function, which is the same as Lyapunov function
for stability analysis. PCH systems are a natural way of
representing a networked physical system in terms of its
energy exchange with the environment through ports [20].
In this paper, with the concept of DP, a port-controlled phasor
Hamiltonian (PCPH) structure is formed to design nonlinear
controller. This PCPH structure is obtained by applying PCH
structure on DP-based model. A passivity-based control (PBC)
tends to offer advantages in robustness compared with linear
control [21]–[25].

Interconnection and damping assignment-passivity-based
control (IDA-PBC) is a general method for designing high-
performance nonlinear controllers for systems described by
port-Hamiltonian models. IDA-PBC has been proposed in [26]
as a control technique based on energy balancing. This method
designs a controller that achieves stabilization by rendering the
system passive with respect to a desired storage function and
injecting damping. The development of IDA-PBC control law
via modification in interconnection and damping matrices for
rectifier is discussed in [21]–[23] and [27] and control law for
inverter is derived in [28]–[30]. The main contribution of this
paper is to derive IDA-PBC control law for each stage of SST
using the PCPH model.

The contributions of this paper can be listed as follows.
1) First time PCPH model is developed for SST.
2) First time PCPH model is used for control design and

a nonlinear IDA-PBC is applied on the PCPH model of
SST to address the voltage regulation issues because of
intermittent nature of renewable sources.

3) For validation of the effectiveness of the proposed
approach, hardware-in-loop (HIL) simulation is car-
ried out using Opal-RT and dSPACE simulators, where
Opal-RT module mimics the plant and dSPACE is the
controller.

This paper is organized as follows. The modeling of rec-
tifier, DAB, and inverter in PCPH form will be presented
in Section II. Section III explains the execution of IDA-PBC
technique to generate control law for individual stages of SST.
Section IV presents the results and validation of the model
with simulation waveforms. In Section V, HIL implementation
is described with architecture and experimental results. Finally,
Section VI states the conclusion and future scope for further
improvements.

II. PORT-CONTROLLED PHASOR HAMILTONIAN

FORMATION OF SST

In this section, PCPH formation of SST is developed by
applying PCH modeling technique to a DP model of SST.
The detailed time-domain model and its DP-based model are

Fig. 2. Schematic of rectifier model.

adopted from [11] and are provided in Appendix A. Various
variables used in PCPH formation are listed in Appendix B.

A. PCPH Formation of Rectifier Stage

The topology of rectifier consists of a single H-Bridge
with an input LC L filter represented in Fig. 2. Rectifier
circuit includes grid inductor Lg , grid resistance Rg , filter
resistance Rfr , filter inductance Lfr , filter capacitor Cfr , HVdc
link capacitor CdcH, iL = (VdcH/RL) is load current, and Sr is
a rectifier switching function. Vg(t) = E sin(ωot) is ac grid
voltage source at the rectifier with amplitude E and angular
frequency ωo = 2π f .

The control objectives for this rectifier are as follows.
1) The dc value of output voltage should equal the desired

constant value V d
dcH.

2) The power factor for converter should equal one. This
means that, in steady state, the inductor current (λg/Lg)
follows a sinusoidal signal with the same frequency and
phase as the ac grid voltage source, that is:

λ∗
g(t) = Lg Id sin(ωot) (1)

where Id is approximate constant value fulfilling the above
objective and depends on variable iL(t). From the condition
stated in [31] as input active power must be equal to the output
active power, Id can be written as

Id = E

2(Rg + Rfr)
−

√
E2

4(Rg + Rfr)2 − 2V d
dcHiL

(Rg + Rfr)
. (2)

The useful variable transformation as μr (t) = −Sr (t)qdcH(t)
and zdcH = (1/2)q2

dcH, which linearizes and decouples above
dynamical equations.

The DP concept can be used for harmonic analysis, as [32]
points out that the DP model is a powerful tool to explore the
cyclic properties of switching systems with analysis of higher
order harmonic coefficients. The nonuniform convergence of
the Fourier series expansion of the system over a given time
window is described in [33], along with derivation of the
conditions for the existence of the solution in phasor systems.

With reference to DP coefficient in [10], the new energy-
based state variables with DPs are considered in PCPH forma-
tion, which are defined as xr = [xr1 xr2 xr3 xr4 xr5 xr6 xr7]

xr1 = 〈λg〉R
1 = Lg〈ig〉R

1 , xr2 = 〈λg〉I
1 = Lg〈ig〉I

1

xr3 = 〈λfr〉R
1 = Lfr〈ifr〉R

1 , xr4 = 〈λfr〉I
1 = Lfr〈ifr〉I

1

xr5 = 〈qcfr〉R
1 = Cfr〈Vcfr〉R

1 , xr6 = 〈qcfr〉I
1 = Cfr〈Vcfr〉I

1

xr7 = 〈zdcH〉0 = C2
dcH〈VdcH〉2

0/2.

Let control vector be defined as

μr = [μr1 μr2] = [〈μr 〉R
1 〈μr 〉I

1

]
= [ − qdcH〈Sr 〉R

1 − qdcH〈Sr 〉I
1

]
. (3)
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Dynamical equations are written as

ẋr1 = ωoxr2 − Rg

Lg
xr1 − xr5

Cfr
(4a)

ẋr2 = −ωoxr1 − Rg

Lg
xr2 − xr6

Cfr
− E

2
(4b)

ẋr3 = ωoxr4 − Rfr

Lfr
xr3 + μr1

CdcH
xr7 + xr5

Cfr
(4c)

ẋr4 = −ωoxr3 − Rfr

Lfr
xr4 + μr2

CdcH
xr7 + xr6

Cfr
(4d)

ẋr5 = ωoxr6 + 1

Lg
xr1 − 1

Lfr
xr3 (4e)

ẋr6 = −ωoxr5 + 1

Lg
xr2 − 1

Lfr
xr4 (4f)

ẋr7 = −2μr1

Lfr
xr3 − 2μr2

Lfr
xr4 − iL

√
2xr7. (4g)

This system can be given a PCPH form as

ẋr = (Jr (μr ) − Rr (xr ))
∂ Hr

∂xr
(xr ) + gr1iL + gr2. (5)

Expanded form of (5) is shown in (6), as shown at the
bottom of this page, and Hamiltonian function is stated in (7),
as shown at the bottom of this page.

With the stated control objective, xr7 variable translates to

x∗
r7 = 1

2
C2

dcH

(〈
V d

dcH

〉
0

)2
(8)

and the power factor on the input ac grid side equal to one, for
which DP variables can be expressed as x∗

r1 = x∗
r3 = x∗

r5 = 0.
Equilibrium points x∗

r2, x∗
r4, and x∗

r6 can be obtained from
dynamical equations stated in (4a)–(4g) as

x∗
r2 = Lg

Lfr
x∗

r4, x∗
r4 = Lfr Id (9)

x∗
r6 =

(
− Rg

Lg
x∗

r2 − E

2

)
Cfr . (10)

Fig. 3. Schematic of DAB model.

B. PCPH Formation of DAB

The DAB consists of a high-voltage H-Bridge, a high-
frequency transformer and an LV H-bridge, as shown in Fig. 3.
The rectifier controls the high-voltage side dc link volt-
age (VdcH) and the input ac current to be sinusoidal. The LV
dc link voltage (VdcL) is regulated by the DAB converter. The
current source (iN ) on the output may be of either polarity
for bidirectional power flow [10]. The voltage at the input
side is referred to the output side, which is represented as
VdcH = (VdcL/N), where N is the turns ratio of the high-
frequency transformer with switching frequency fs . Trans-
former leakage inductance at both windings is lumped as an
equivalent inductance Lt and transformer winding resistance
is lumped as an equivalent resistance Rt . The DAB topology
offers zero voltage switching for all the switches, low passive
component ratings, and complete symmetry of configuration
that allows seamless control for bidirectional power flow. Real
power flows from the bridge with leading phase angle to
the bridge with lagging phase angle, the amount of power
transferred being controlled by the phase angle difference,
and the magnitudes of the dc voltages at the two ends as
given in [10].

The control objectives for DAB is as follows. The dc
value of output voltage should equal the desired constant
value V d

dcL.
The change of variable is done as zdcL = (1/2)(qdcL)2

instead of qdcL, and control variable is also changed as μd =
−SD2qdcL and SD1 is considered constant as 〈SD1〉R

1 = 0,
〈SD1〉I

1 = −(2/π).

ẋr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rg

2

ωo Lg

2
0 0

−1

2
0 0

−ωo Lg

2

−Rg

2
0 0 0

−1

2
0

0 0
−Rfr

2

ωo Lfr

2

1

2
0 μr1

0 0
−ωs Lfr

2

−R f r

2
0

1

2
μr2

1

2
0

−1

2
0 0

ωoCfr

2
0

0
1

2
0

−1

2

−ωoCfr

2
0 0

0 0 −μr1 −μr2 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
(Jr (μr )−Rr (xr ))

∂ Hr

∂xr
(xr ) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

−√
2xr7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
gr1

iL +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

− E

2
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
gr2

(6)

Hr = 1

Lg
x2

r1 + 1

Lg
x2

r2 + 1

Lfr
x2

r3 + 1

Lfr
x2

r4 + 1

Cfr
x2

r5 + 1

Cfr
x2

r6 + 1

CdcH
xr7 (7)
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Fig. 4. Schematic of inverter model.

Let the state variables and control inputs are defined as

xDAB = [
xd1 xd2 xd3

] = [〈λtp〉R
1 〈λtp〉I

1 〈zdcL〉0
]

μd = [
μd1 μd2

] = [−qdcL〈SD2〉R
1 −qdcL〈SD2〉I

1

]
.

The dynamical equations are written as

ẋd1 = ωs xd2 − Rt

Lt
xd1 + μd1

CdcL
xd3 + 〈SD1〉R

1 〈VdcH〉0 (11a)

ẋd2 = −ωs xd1 − Rt

Lt
xd2 + μd2

CdcL
xd3 + 〈SD1〉I

1〈VdcH〉0 (11b)

ẋd3 = −2μd1

Lt
xd1 + −2μd2

Lt
xd2 − iN

√
2xd3. (11c)

This system can be given in a PCPH form as

ẋDAB = (JDAB(μd )− RDAB)∂ HDAB+g1(xd3)iL +g2〈VdcH〉0.

(12)

The structure and damping matrices calculation is the same
as the procedure in rectifier. Hamiltonian function is defined
as

HDAB = 1

2Lt
x2

d1 + 1

2Lt
x2

d2 + 1

4CdcL
x2

d3. (13)

The control objective is to maintain dc value of the out-
put voltage 〈VdcL〉0 to a desired constant value 〈V d

dcL〉0.
From (11a)–(11c), equilibrium points are obtained as x∗

DAB =
[0 x∗

d2 x∗
d3], where x∗

d3 = (1/2)C2
dcLV 2

dcL

x∗
d2 =

√√√√( 〈VdcH〉0 Lt

2π Rt

)2

+
((〈

V d
dcL

〉
0

)3
L2

t iN C2
dcL

4Rt

)

−
( 〈VdcH〉0 Lt

π Rt

)
. (14)

C. PCPH Formation of Inverter Stage

The typical structure of a single-phase inverter is pre-
sented in Fig. 4. It is composed of H-bridge with switching
function Si , which is fed by LVdc link voltage (VdcL) and
LC circuit is connected between inverter output and load resis-
tance (RL) for filtering purposes. LC filter consists of filter
inductor Lfi, filter resistance Rfi, and filter capacitor Cfi. The
aim of controller is to regulate inverter output voltage (Vcfi).
The desired voltage is a pure sinusoidal signal with fixed
angular frequency ω and amplitude Vp .

In DP model of inverter, state variables are fundamen-
tal harmonic components of inverter filter inductor current,
i.e., 〈ifi〉R

1 , 〈ifi〉I
1 and fundamental harmonic components of

filter capacitor voltage 〈Vcfi〉R
1 , 〈Vcfi〉I

1. The input to inverter

is the zeroth harmonic component of dc bus voltage 〈VdcL〉0
and control input is first harmonic components of inverter
switching function 〈Si 〉R

1 , 〈Si 〉I
1. The state variables and control

variables are defined in (15) and dynamical equations are
stated in the following:

xi = [
xi1 xi2 xi3 xi4

]
= [

Lfi〈ifi〉R
1 Lfi〈ifi〉I

1 Cfi〈Vcfi〉R
1 Cfi〈Vcfi〉I

1

]
μi = [

μi1 μi2
] = [〈Si 〉R

1 〈Si 〉I
1

]
(15)

ẋi1 = ωxi2 − Rfi

Lfi
xi1 − 1

Cfi
xi3 + μi1〈VdcL〉0 (16a)

ẋi2 = −ωxi1 − Rfi

Lfi
xi2 − 1

Cfi
xi4 + μi2〈VdcL〉0 (16b)

ẋi3 = ωxi4 + 1

Lfi
xi1 − 1

RLCfi
xi3 (16c)

ẋi4 = −ωxi3 + 1

Lfi
xi2 − 1

RLCfi
xi4. (16d)

This system can be given in a PCPH form in (17) where
structure and damping matrices calculation is the same as for
the rectifier, and Hamiltonian function is given in (18)

ẋi = (Ji (xi ) − Ri (xi ))∂ Hi + g(μi )〈VdcL〉0 (17)

Hi = 1

2Lfi
x2

i1 + 1

2Lfi
x2

i2 + 1

2Cfi
x2

i3 + 1

2Cfi
x2

i4. (18)

The goal of control is to regulate voltage Vcfi across the load
around to the desired value V d

cfi. From (16a)–(16d), equilibrium
points are obtained as

x∗
i = [

x∗
i1 x∗

i2 x∗
i3 x∗

i4

]
(19)

x∗
i1 = 0, x∗

i2 = Lfi〈icfi〉I d

1 (20)

x∗
i3 = 0, x∗

i4 = Cfi〈Vcfi〉I d

1 . (21)

III. CONTROLLER DESIGN USING IDA-PBC TECHNIQUE

The IDA-PBC was introduced in [26] to combine passivity
properties of PCHS with control by interconnection and energy
based control. The idea of IDA-PBC is to assign desired
energy function to the closed-loop system via modification
of the interconnection and dissipation matrices.

There exist two approaches to PBC: energy shaping plus
damping injection and IDA-PBC. In the former, the energy
function is shaped, and then, damping is injected through R
matrix without modifying J matrix. On the other hand, in the
latter, the interconnection matrix J and the damping matrix R
are assigned, and then, the energy function is modified to
the desired value. This gives additional degree of freedom to
solve the partial differential equations (PDEs) [17], [34] via
matching condition.

The key idea is that using Hamiltonian framework, solving
the PDE associated with the energy balance equation is accom-
plished with an appropriate selection of the interconnection J
and dissipation R matrices and the energy function H of
the desired closed-loop system. The desired target closed-loop
system dynamics is of form

ẋd = (Jd(x) − Rd (x))(∂ Hd(x))T (22)
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where Hd is the desired Hamiltonian energy function
(minimum at x∗) and Jd = −J T

d and Rd = RT
d ≥ 0 are

desired interconnection and dissipation matrices, respectively.
To achieve stabilization of the desired equilibrium point,

we impose x∗ = arg min Hd(x). The matching objective is to
achieve if and only if the following PDE:
(J (x) − R(x))(∂ H (x))T + g = (Jd (x) − Rd(x))(∂ Hd(x))T

(23)

is satisfied. There is a considerable freedom in selecting Jd ,
Rd , and Hd to satisfy previous assumptions. For convenience,
we define Hd(x) = H (x) + Ha(x), Jd(x) = J (x) + Ja(x),
Rd (x) = R(x) + Ra(x), and g = g1(x7) + g2 Vg

Fixing the interconnection and damping matrices as Jd = J
and Rd = R, (23) simplifies to

−(J (x) − R(x))(∂ Ha(x))T + g = 0. (24)

To confirm whether x∗ is locally stable equilibrium point, it is
necessary to check the following four conditions.

1) Structure Preservation: Given Jd and Rd matrices, Ja

and Ra matrices can be defined by

Jd (x) = J (x, u) + Ja(x) = −[J (x, u) + Ja(x)]T (25)

Rd (x) = R(x, u) + Ra(x) = [R(x, u) + Ra(x)]T ≥ 0. (26)

Then, the desired dynamics is achieved if it is possible to find
functions u (x) and k(x) = (∂ Ha/∂x)(x) satisfying

[(J (x, u)) + Ja(x)) − (R(x, u) + Ra(x))]k(x)

= −[Ja − Ra]∂ H

∂x
(x) + g(x, μ). (27)

2) Integrability: (∂ki/∂x j )(x) = (∂k j/∂xi )(x).
3) Equilibrium Condition: (∂ Hd/∂x)(x∗) = 0.
4) Lyapunov Stability: (∂2 Hd/∂x2) | x∗ > 0.
If the above four conditions hold, then x∗ is a (locally)

stable equilibrium point of the closed-loop system. The flow-
chart of the IDA-PBC algorithm is shown in Fig. 5, which
is divided in three major parts: formation of PCPH sys-
tem which is discussed in detail for individual components
in Section III, desired dynamic system by (22)–(24), and
IDA-PBC is designed by conditions 1–4

A. Controller Design for Rectifier

The procedural steps for the IDA-PBC controller design
are shown in Fig. 5 for the rectifier stage. Defining k(x) =
(k1, k2, k3, k4, k5, k6, k7)

T = (∂ Hra)
T

0 = Rg

2
k1 − ωs Lg

2
k2 + 1

2
k5 (28a)

0 = −ωs Lg

2
k1 + Rg

2
k2 + 1

2
k6 − E

2
(28b)

0 = Rfr

2
k3 − ωs Lfr

2
k4 − 1

2
k5 − μr1k7 (28c)

0 = ωs Lfr

2
k3 + Rfr

2
k4 − 1

2
k6 − μr2k7 (28d)

0 = −1

2
k1 + 1

2
k3 − ωsCfr

2
k6 (28e)

0 = −1

2
k2 + 1

2
k4 + ωsCfr

2
k6 (28f)

0 = μr1k3 + μr2k4 − iL

√
2xr7. (28g)

Fig. 5. Flowchart of IDA-PBC algorithm.

From (28a)–(28d), control equations are obtained as

μr1 = Rfrk3 − ωs Lfrk4 + Rgk1 − ωs Lgk2

2k7
(29)

μr2 = ωs Lfrk3 + Rfrk4 − ωs Lgk1 + Rgk2 − E

2k7
(30)

and replacing (29) and (30) in (28g), PDE is obtained as

Rfr(k
2
3 + k2

4) + Rg(k1k3 + k2k4) − ωs Lg(k2k3 + k1k4)

− Ek4 − 2iL

√
2xr7k7 = 0. (31)

As control inputs μr1 and μr2 depends only on xr7, con-
sidering k1 = k1(xr7), k2 = k2(xr7), k3 = k3(xr7), k4 =
k4(xr7), k5 = k5(xr7), k6 = k6(xr7) and k7 = k7(xr7) and
consequently, using the integrability condition

∂ki

∂xr j
(xr ) = ∂k j

∂xri
(xr ). (32)

Let k1 = a1, k2 = a2, k3 = a3, k4 = a4, k5 = a5, and k6 = a6
are constants. Then, from (31), k7 is written as

k7 = 1

2iL
√

2xr7

(
Rfr

(
a2

3 + a2
4

) + Rg(a1a3 + a2a4)

− ωs Lg(a2a3 + a1a4) − Ea4
)
. (33)
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Hra = −2
√

x∗
r7

CdcH

√
xr7 − 2

Lg
x∗

r2xr2 − 2

Lfr
x∗

r4xr4 − 2

Cfr
x∗

r6xr6 (37)

Hrd = 1

Lg

(
x2

r1 + x2
r2

) + 1

Lfr

(
x2

r3 + x2
r4

) + 1

Cfr

(
x2

r5 + x2
r6

) + 1

CdcH
xr7 − 2

√
x∗

r7

CdcH

√
xr7

− 2

Lg
x∗

r2xr2 − 2

Lfr
x∗

r4xr4 − 2

Cfr
x∗

r6xr6 (38)

∂2 Hrd

∂x2
r

∣∣∣
xr =x∗

r

= diag

(
2

Lg
,

2

Lg
,

2

Lfr
,

2

Lfr
,

2

Cfr
,

2

Cfr
,

1

2CdcH
√

x∗
r7

)
(39)

μr1 =
−ωs(Lg + Lfr)

( − E +
√

E2 − 8iL
〈
V d

dcH

〉
0(Rg + Rfr)

)
CdcH

√
〈VdcH〉0

〈
V d

dcH

〉
0

4(Rg + Rfr)
〈
V d

dcH

〉
0

(40)

μr2 =
(
E +

√
E2 − 8iL

〈
V d

dcH

〉
0(Rg + Rfr)

)
CdcH

√
〈VdcH〉0

〈
V d

dcH

〉
0

4
〈
V d

dcH

〉
0

(41)

The equilibrium condition defined as

∂ Hrd|xr =x∗
r

= (∂ Hr + ∂ Hra)|xr =x∗
r

= 0 (34)

2

Lg
x∗

r1 + a1 = 0,
2

Lg
x∗

r2 + a2 = 0

2

Lfr
x∗

r3 + a3 = 0,
2

Lfr
x∗

r4 + a4 = 0

2

Cfr
x∗

r5 + a5 = 0,
2

Cfr
x∗

r6 + a6 = 0

1

CdcH
+ k7(x∗

r7) = 0. (35)

Since x∗
r1 = 0, x∗

r3 = 0, and x∗
r5 = 0, hence a1 = 0, a3 =

0, and a5 = 0, respectively, and a2 = −(2/Lg)x∗
r2, a4 =

−(2/Lfr)x∗
r4, and a6 = −(2/Cfr)x∗

r6. Substituting these values
in (33) yields

k7 = − 1

CdcH

√
x∗

r7

xr7
(36)

which satisfies the equilibrium condition (35). The PDE (31)
is solved and Hra is obtained as (37) shown at the top of this
page.

Hrd is calculated in (38), as shown at the top of this page.
To guarantee that Hrd has a minimum at xr = x∗

r , ∂ Hrd = 0
and Hession of Hrd is always positive definite as shown in (39),
as shown at the top of this page, so the minimum condition
is satisfied for stability analysis. Substituting values of k(x)
in (29) and (30), the control law is expressed in terms of the
output voltage 〈VdcH〉0 is shown in (40) and (41), as shown
at the top of this page. Control variable μr is obtained from
(40) and (41) as

μr = 2(μr1 cos(ωs t) − μr2 sin(ωs t)). (42)

The control action Sr is calculated as Sr = −(1/
√

2xr7)μr .

B. Controller Design of DAB

Defining k(x) = (k1, k2, k3)
T = (∂ HDABa)

T

0 = − Rt

2
k1 + ωs Lt

2
k2 + μd1k3 (43)

0 = −ωs Lt

2
k1 − Rt

2
k2 + μd2k3 + 〈SD1〉I

1〈VdcH〉0 (44)

0 = −μd1k1 − μd2k2 − iN

√
2xd3. (45)

From (43) and (44), control equations are obtained as

μd1 = Rt k1 − ωs Lt k2

2k3
(46)

μd2 = ωs Lt k1 + Rt k2 − 2〈SD1〉I
1〈VdcH〉0

2k3
. (47)

PDE is obtained after replacing (46) and (47) in (45) as

Rt
(
k2

1 + k2
2

) − 2k2〈SD1〉I
1〈VdcH〉0 + 2iN

√
2xd3k3 = 0. (48)

The control inputs μd1 and μd2 which only depends on xd3,
so that take k1 = k1(xd3), k2 = k2(xd3), and k3 = k3(xd3) and
consequently, using the integrability condition, k1 = a1 and
k2 = a2 are constants. Then, from (48)

k3 = 2k2〈SD1〉I
1〈VdcH〉0 − Rt

(
k2

1 + k2
2

)
2iN

√
2xd3

. (49)

The equilibrium condition is defined by

∂ HDABd

∣∣∣
xDAB=x∗

DAB

= (∂ HDAB + ∂ HDABa)
∣∣∣
xDAB=x∗

DAB

= 0

(50)
2

Lt
x∗

d1 + a1 = 0,
2

Lt
x∗

d2 + a2 = 0

1

CdcL
x∗

d3 + k3(x∗
d3) = 0. (51)

Since x∗
d1 = 0, a1 = 0 and a2 = −(2/Lt )x∗

d2. Substituting
these values in (49) yields

k3 = − 1

CdcL

√
x∗

d3

xd3
(52)
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which satisfies the equilibrium condition (51). The PDE (48)
is solved and HDABa and HDABd are obtained as

HDABa = − 2

Lt
x∗

d2xd2 − 2
√

x∗
d3

CdcL

√
xd3 (53)

HDABd = 1

2Lt
x2

d1 + 1

2Lt
x2

d2 + 1

4CdcL
x2

d3 − 2

Lt
x∗

d2xd2

− 2
√

x∗
d3

CdcL

√
xd3. (54)

To guarantee that HDABd has a minimum at xd = x∗
d ,

∂ HDABd = 0 and Hession of HDABd have to obey

∂2 HDABd

∂x2
DAB

∣∣∣
xDAB=x∗

DAB

> 0

∂2 HDABd

∂x2
DAB

∣∣∣
xDAB=x∗

DAB

= diag

(
1

Lt
,

1

Lt
,

1

2CdcL
√

x∗
d3

)
(55)

which is a positive definite, hence minimum condition is
satisfied. Substituting values of k1, k2, and k3 in (46) and (47),
the control laws is obtained in terms of VdcL as

μd1 = −2ωx∗
d2CdcL〈VdcL〉0〈

V d
dcL

〉
0

(56)

μd2 =
(
− Rt

Lt
x∗

d2 + 〈SD1〉I
1〈VdcH〉0

)
〈VdcL〉0CdcL〈

V d
dcL

〉
0

. (57)

The control variable μd is obtained by

μd = 2(μd1 cos(ωs t) − μd2 sin(ωs t)). (58)

The control action SD2 is calculated as SD2 = −(1/
√

2xd3)μd .

C. Controller Design of Inverter

Defining k(x) = (k1, k2, k3, k4)
T = (∂ Hia)

T

0 = Rfik1 − ωLfik2 + k3 + μi1〈VdcL〉0 (59a)

0 = ωLfik1 − Rfik2 + k4 + μi2〈VdcL〉0 (59b)

0 = −k1 + 1

RL
k3 − ωCfik4 (59c)

0 = −k2 + ωCfik3 + 1

RL
k4. (59d)

From (59a) and (59b), control equations are obtained as

μi1 = −Rfik1 + ωLfik2 − k3

〈VdcL〉0
(60)

μi2 = −ωLfik1 + Rfik2 − k4

〈VdcL〉0
. (61)

The equilibrium condition is defined as

∂ Hid|xi=x∗
i

= (∂ Hi + ∂ Hia)|xi=x∗
i

= 0 (62)

Fig. 6. Performance of rectifier with and without control. (a) Load change.
(b) Input change.

k1, k2, k3, and k4 are expressed as

x∗
i1

Lfi
+ k1 = 0

x∗
i2

Lfi
+ k2 = 0

x∗
i3

Cfi
+ k3 = 0

x∗
i4

Cfi
+ k4 = 0 (63)

k3 = −x∗
i3

Cfi
= 0, k4 = −x∗

i4

Cfi
= −〈Vcfi〉I d

1

k1 = k3

RL
− ωCfik4 = ωCfi〈Vcfi〉I d

1

k2 = ωCfik3 + k4

RL
= −〈Vcfi〉I d

1

RL
. (64)

Quantities in (64) satisfy condition 3) based on power conser-
vation 〈Vcfi〉I d

1 = RL〈icfi〉I d

1 at x∗
i , Hia is

Hia = ωCfi〈Vcfi〉I d

1 xi1 − 〈Vcfi〉I d

1

RL
xi2 − 〈Vcfi〉I d

1 xi4. (65)

It is seen from (67), as shown at the bottom of this page,
at xi = x∗

i , ∂ Hid = 0, and Hession of Hid is shown in (66) to
be positive definite

∂2 Hid

∂x2
i

∣∣∣
xi=x∗

i

= diag

(
1

Lfi
,

1

Lfi
,

1

Cfi
,

1

Cfi

)
(66)

The control law is obtained as

μi1 = −RfiCfiω〈Vcfi〉I d

1 − ωLfi
〈Vcfi〉I d

1
RL

〈VdcL〉0
(68)

μi2 = −ω2 LfiCfi〈Vcfi〉I d

1 − Rfi
〈Vcfi〉I d

1
RL

+ 〈Vcfi〉I d

1

〈VdcL〉0
. (69)

The control variable μi is obtained by

μi = Si = 2(μi1 cos(ωt) − μi2 sin(ωt)). (70)

The solution of partial differential equations involved in
control design procedure is summarized as follows for the
rectifier.

1) Decide desired dynamics, preserving the system struc-
ture, in the form ẋ = (Jd − RD)∂ Hd (22), where Hd is
a desired Hamiltonian function (with minimum at x∗).

Hid = 1

2L f 1
x2

i1 + 1

2L f 1
x2

i2 + 1

2C f 1
x2

i3 + 1

2C f 1
x2

i4 + ωCfi〈Vcfi〉I d

1 xi1 − 〈Vcfi〉I d

1

RL
xi2 − 〈Vcfi〉I d

1 xi4 (67)
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TABLE I

SIMULATION PARAMETERS [11]

Fig. 7. Performance of DAB with and without control. (a) Load change.
(b) Input change.

2) Hd = H + Ha, where H is given and Ha is to be
designed.

3) Applying matching conditions gives PDE of the form
−(J − R)∂ Ha + g = 0, where PDE is solved in terms
of Ha (24).

4) Define vector k = [k1, k2, k3, k4, k5, k6, k7]T =
(∂ Hra)

T to get algebraic equations in terms of k
[see (28a)–(28g)].

5) Using (28a)–(28g), control equations are obtained
in (29) and (30).

6) Replace (29) and (30) in output voltage equation (28g),
which gives PDE as (31).

7) Since the control input is dependent only on xr7,
all variables in vector k represented in terms of xr7.

8) Assume Hra = a1xr1 + a2xr2 + a3xr3 + a4xr4 + a5xr5 +
a6xr6 + a7 f (xr7).

9) Use the integrability condition (32) and equilibrium con-
dition (34) to solve for ai and f (xr7) as in (35) and (36)
to get the required Hra.

It should be noted that, if any of the key state variables
are not measurable, then in case an estimator or observer
design may be required. However, in this paper, the focus is
to develop an energy shaping methodology for SST, where the
control law is dependent only on states (e.g., xr7 in case of a
rectifier). This is the output voltage which is typically available
directly through measurements, so an estimator or observer
design was not required for rectifier as well as DAB or inverter
stages.

Fig. 8. Performance of inverter with and without control. (a) Load change.
(b) Input change.

Fig. 9. Inverter switching function with and without IDA-PBC controller.
(a) Uncontrolled Si . (b) Si with IDA-PBC control.

Fig. 10. HIL architecture.

Fig. 11. HIL test bed.

IV. SIMULATION RESULTS AND VALIDATION

To verify developed IDA-PBC controller for PCPH model
of SST, simulations are carried out in MATLAB/Simulink. The
validation of control law is performed under the condition of
load change and input change. The SST parameters used for
simulation are given in Table I.
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Fig. 12. HIL performance of the rectifier stage for load variations. (a) Output voltage. (b) Input grid current. (c) Input filter current. (d) Input filter voltage.

Fig. 13. HIL performance of the rectifier stage for input variations. (a) Output voltage. (b) Input grid current. (c) Input filter current. (d) Input filter voltage.

A. Load Change

In this case, 20% step change in load is considered at
each stage of SST. For rectifier operation, the input grid
voltage is 7200 Vrms and the desired value of voltage to be
regulated is 3800 V. The load change condition is considered
as 100 � for 0 sec < t < 1 s and then changed to 80 � for
1 s < t < 2 s. The output HVdc bus voltage waveform with
and without IDA-PBC controller is depicted in Fig. 6(a) where
we can see that system is tracking set value by varying duty
ratio.

The load variation for DAB is considered as 38 � for
0 s < t < 1 s and then changed to 30 � for 1 s < t < 2 s.

The voltage to be regulated for DAB is 400 V and input
voltage given is 3800 Vdc. Fig. 7(a) shows the LVdc bus
voltage output with and without IDA-PBC controller under
load change.

The desired set value for inverter is 230 Vrms and load alters
from 35 to 30 � at 1 s. The output waveforms are shown
in Fig. 8(a). With designed control law, system is tracking set
value with change in duty ratio.

B. Input Change

In this case, 10% of input variation occurs at each stage
of SST. For rectifier stage, the load resistance is 100 � and

Authorized licensed use limited to: TUFTS UNIV. Downloaded on June 19,2020 at 02:31:46 UTC from IEEE Xplore.  Restrictions apply. 



170 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 27, NO. 1, JANUARY 2019

Fig. 14. HIL performance of DAB output voltage. (a) Load variations. (b) Input variations.

Fig. 15. HIL performance of Inverter stage 1 for input variations (a) output voltage and (b) output current and stage 2 for load variations (c) output voltage
and (d) output current.

input grid voltage is varies from 7200 to 6400 Vrms at 1 s.
The HVdc link output voltage under input variation is shown
in Fig. 6(b), and we can see that output voltage is regulated
at desired set value by controller action. For DAB, load
resistance is considered as 38 � and input variation is given
as 3800 V for 0 s < t < 1 s and then changed to 4200 V
for 1 s < t < 2 s. The LVdc output voltage performance with
and without controller is shown in Fig. 7(b).

In inverter, the load resistance is 35 � and input voltage is
varies from 400 V for 0 s < t < 1 s to 360 V for 1 s < t < 2 s.
Under this input variation, output voltage waveform is shown
in Fig. 8(b) with and without controller action. Fig. 9 shows the
constant duty ratio (Si ) applied for without controller action
and duty ratio obtained by the IDA-PBC law. It shows that
duty ratio is indeed varied with change in input to regulate
output voltage at 230 Vrms.

Using the IDA-PBC control law, the operation of SST is not
affected by source and load side disturbances, demonstrating
system robustness. It also ascertains that the PBC is a design
methodology, which can be used to stabilize the system and
the response can be quite satisfactory.

V. HARDWARE-IN-LOOP IMPLEMENTATION

The model developed for SST was simulated in MATLAB/
Simulink environment and the results were verified by porting
plant model on Opal-RT while dSPACE used as controller.

A. Hardware-in-Loop Architecture

The proposed system is realized based on RT-LAB environ-
ment of Opal-RT, using RT toolbox and dSPACE Control desk
environment in MATLAB/Simulink. The detailed structure of
the HIL system used to validate the IDA-PBC control is
illustrated in Fig. 10.

In HIL platforms, the Opal-RT module OP4500 mimics the
plant (i.e., rectifier, DAB, and inverter stages of SST) and the
dSPACE DS1104 acts as a controller. The RT-LAB simulator
consists of two 3.33-GHz cores dedicated for parallel com-
putation. OP4500 has 32-analog and 64-digital I/O channels
to exchange data in real time [35]. The targets are equipped
with Red Hat LINUX operating system and controlled via
a Windows-based host computer using a TCP/IP connection.
The interfacing between OP4500 and DS1104 is handled
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Fig. 16. Oscilloscope reading of all SST stages for load variations. (a) Rectifier output voltage. (b) Rectifier input voltage and current. (c) Rectifier input
filter voltage and current. (d) DAB output voltage and transformer primary current. (e) Inverter output voltage and current. The yellow waveforms represent
voltage, while the blue waveform is for current variable.

through fast Analog and Digital I/Os of OP4500 and DAC
and ADC of DS1104.

The experimental setup required for HIL interface is demon-
strated in Fig. 11. The detailed structure of this specific simu-
lation will allow for real-time interaction through the GPIO of
the field-programmable gate array (FPGA) DE2 board, which
will accept inputs of output voltage reference (〈VdcH〉d

0 ), load
resistance (RL ), and input voltage Vg . The DE2 board will
compute output dc link voltage (〈VdcH〉) and switching func-
tion μr1 and μr2. The variables computed within the FPGA
are using fixed-point notation, but are converted into 32-bit
floating point for use in the DSP. The FPGA will communicate
to a TI TMS320F240 DSP through the SPI [36]. The SPI
core implemented within the FPGA configures the FPGA
as the master device, while the DSP operates as the slave.
By enabling the SPI data communication every T = 20 μs,
the 32-bit floating-point variables (〈VdcH〉d

0 , RL , E , μr1, μr2,
and 〈VdcH〉0) have enough time to be transmitted at a SPI clock
speed of 20 MHz. The time period of 20 μs gives enough
computation time for the DSP to process the algorithm and
to execute the control law. The DSP will also communicate
to the PC running the dSPACE real-time environment through
the dSPACE CLP1104 combined connector.

B. Hardware-in-Loop Experimental Results

The HIL is operating in real time and the results of the SST
under the load and input variations via Opal-RT and dSPACE
are verified. The simulation is performed for reference volt-
ages (〈VdcH〉d

0 = 3800 Vdc for rectifier, 〈VdcL〉d
0 = 400 Vdc

for DAB, and Vcfi = 230 Vrms for inverter). The HIL system
is scaled down from the real-time simulated system using
a voltage base of 1000 V, a current base of 100 A, and a
load resistance base of 100 �, while the frequency remains
constant.

The waveforms shown in Figs. 12–15 are the output wave-
forms from the RT Lab, which include rectifier, DAB, and
inverter output. The results obtained from Opal-RT are com-
pared with Simulink results and both are in close agreement.
Fig. 16 shows the output voltage and current response for load
variations as observed in oscilloscope for all three stages.

VI. CONCLUSION

This paper introduces the DP concept for the development of
the PCPH model of SST. To explore the capabilities of nonlin-
ear control techniques, IDA-PBC is applied at individual stages
of SST. The passivity-based approach to nonlinear systems
is more advisable than canceling nonlinearities and assign-
ing high gain feedback, as it can be interpreted physically
as an energy shaping technique and ensures the robustness
properties of passive systems. An IDA-PBC control law has
been designed for the load change and input voltage. The
control law is defined in terms of phasor components of load
current, load voltage, and input voltage. Experimental results
demonstrate the feasibility of the designed controller. It is
validated in the HIL framework using Opal-RT and dSPACE.
It is found that the closed-loop system is robust to the load
and input variations achieving unity power factor at input side
and achieves desired output load voltage regulation.
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APPENDIX A

1) Time-domain model of SST

Lg
dig

dt
= Vg − Vfr − Rgig (71)

Lfr
di f

dt
= Vfr − Sr VdcH − Rfrifr (72)

Cfr
dVfr

dt
= ig − ifr (73)

CdcH
dVdcH

dt
= Sr ifr − itp (74)

Lt
ditp

dt
= SD1VdcH − Rt itp − SD2VdcL (75)

CdcL
dVdcL

dt
= SD2itp − (Si1ifi1) − iN (76)

Lfi1
difi1

dt
= Si1VdcL − Rfi1ifi1 − Vcfi1 (77)

Cfi1
dVcfi1

dt
= ifi1 − Vci1

RL1
. (78)

2) DP-based model of SST

d〈ig〉R
1

dt
= ω〈ig〉I

1 + 1

Lg

[〈vg〉R
1 − 〈vfr〉R

1 − Rg〈ig〉R
1

]
(79)

d〈ig〉I
1

dt
= −ω〈ig〉R

1 + 1

Lg

[〈vg〉I
1 − 〈vfr〉I

1 − Rg〈ig〉I
1

]
(80)

d〈ifr〉R
1

dt
= ω〈ifr〉I

1 + 1

Lfr

[〈vfr〉R
1 −〈Sr 〉R

1 〈vdcH〉0 − Rfr〈ifr〉R
1

]
(81)

d〈ifr〉I
1

dt
= −ω〈ifr〉R

1 + 1

Lfr

[〈vfr〉I
1 −〈Sr 〉I

1〈vdcH〉0− Rfr〈ifr〉I
1

]
(82)

d〈vfr〉R
1

dt
= ω〈vfr〉I

1 + 1

Cfr

[〈ifr〉R
1 − 〈ig〉R

1

]
(83)

d〈vfr〉I
1

dt
= −ω〈vfr〉R

1 + 1

Cfr

[〈ifr〉I
1 − 〈ig〉I

1

]
(84)

d〈vdcH〉0

dt
= 1

CdcH
2
[〈Sr 〉R

1 〈ifr〉R
1 + 〈Sr 〉I

1〈ifr〉I
1 −〈SD1〉I

1〈itp〉I
1

]
(85)

d〈itp〉R
1

dt
= ω〈itp〉I

1 + 1

Lt

[〈SD2〉R
1 〈vdcH〉0 − Rt 〈itp〉R

1

]
(86)

d〈itp〉I
1

dt
= −ω〈itp〉R

1 + 1

Lt

[〈SD1〉I
1〈vdcH〉0 + 〈SD2〉〈vdcL〉0

− Rt 〈itp〉I
1

]
(87)

d〈vdcL〉0

dt
= 2

CdcL

[〈SD2〉R
1 〈itp〉R

1 + 〈SD2〉I
1〈itp〉I

1

− 〈Si1〉R
1 〈ifi1〉R

1 − 〈Si1〉I
1〈ifi1〉I

1

]
(88)

d〈ifi1〉R
1

dt
= ω〈ifi1〉I

1 + 1

Lfi1

[〈Si1〉R
1 〈vdcL〉0 − 〈vcfi1〉R

1

− Rfi1〈ifi1〉R
1

]
(89)

d〈ifi1〉I
1

dt
= −ω〈ifi1〉R

1 + 1

Lfi1

[〈Si1〉I
1〈vdcL〉0 − 〈vcfi1〉I

1

− Rfi1〈ifi1〉I
1

]
(90)

TABLE II

LIST OF VARIABLES CONSIDERED IN SST PCPH FORMATION

d〈vcfi1〉R
1

dt
= ω〈vcfi1〉I

1 + 1

Cfi1

[
〈ifi1〉R

1 −
〈
vcfi1

RL1

〉R

1

]
(91)

d〈vcfi1〉I
1

dt
= −ω〈vcfi1〉R

1 + 1

Cfi1

[
〈ifi1〉I

1 −
〈
vcfi1

RL1

〉I

1

]
. (92)
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APPENDIX B

See Table II.
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