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Metastatic cancer cells detect the direction of lymphatic flow by self-communication: they secrete and
detect a chemical which, due to the flow, returns to the cell surface anisotropically. The secretion rate is low,
meaning detection noise may play an important role, but the sensory precision of this mechanism has not
been explored. Here we derive the precision of flow sensing for two ubiquitous detection methods:
absorption vs reversible binding to surface receptors. We find that binding is more precise due to the fact
that absorption distorts the signal that the cell aims to detect. Comparing to experiments, our results suggest
that the cancer cells operate remarkably close to the physical detection limit. Our prediction that cells
should bind the chemical reversibly, not absorb it, is supported by endocytosis data for this ligand-receptor

pair.
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Metastasis is the process of cancer cells spreading from
the primary tumor to other parts of the body. A major route
for spreading is the lymphatic system, a network of vessels
that carry fluid to the heart. Particular cancer cells detect the
drainage of lymphatic fluid toward the vessels and move in
that direction [1]. Experiments have shown that the
detection occurs by self-communication: the cells secrete
diffusible molecules (CCL19 and CCL21) that they detect
with receptors (CCR7) on their surface [2]. The flow affects
the distribution of detected molecules, which thereby
provides information about the flow direction. This flow
detection mechanism, termed ‘“autologous chemotaxis,”
has been observed for breast cancer [2], melanoma [2],
and glioma cell lines [3], as well as endothelial cells [4],
and has been studied using fluid dynamics models [2,5,6].

The flow is slow. Lymphatic drainage speeds near tumors
are typically vy =0.1-1 um/s [7,8], and the speed
decreases further with proximity to the cell surface due
to the laminar nature of low-Reynolds-number flow. In
contrast, a secreted molecule diffuses with coefficient
D = 130-160 um?/s [5], covering a distance equivalent
to the cell radius (a ~ 10 ym [2]) in a typical time of a®/D
and giving a “velocity” of D/a = 13-16 um/s. The ratio
of these velocities € = vga/D = 0.006-0.08, called the
Péclet number, is small, indicating that diffusion dominates
over flow in this process.

Also, the secretion rate is low. Cells secrete 0.7-2.3 x
10~ g of CCL19 and CCL21 in a 24-hour period (Fig. 3F
in Ref. [2]), which given the molecular weights of these
ligands (11 and 14.6 kDa, respectively [9]), corresponds to
a secretion rate of v = 1200-5200 molecules per hour. Yet,
cells begin migrating in a matter of hours [2].

The slow flow and low secretion rate raise the question of
whether autologous chemotaxis is a physically plausible
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mechanism for these cells. Is a couple thousand molecules,
biased by such a weak flow field, enough to determine the
flow direction? If so, with what precision? Although this
mechanism has been modeled at the continuum level, the
question of sensory precision has remained unexplored.

At the same time, the question of sensory precision has
been heavily explored for other cellular processes, begin-
ning with the early work of Berg and Purcell [10], and
extending to more modern works on concentration sensing
[11-18], gradient sensing [19-23], and related sensory
tasks [24-27]. Yet, the mechanism of autologous chemo-
taxis has thus far evaded this list, despite its importance to
cancer biology and its potential for interesting physics.

Here we combine stochastic techniques from sensory
biophysics with perturbation techniques from fluid
dynamics to derive the fundamental limit to the precision
of flow sensing by self-communication. We consider two
ubiquitous methods of molecule detection: absorption vs
reversible binding to receptors (Fig. 1). For both, we find a
Berg-Purcell-like expression that is ultimately limited by
the Péclet number, the secretion rate, and the integration
time. Comparing to the experiments, this expression places
a stringent limit on the level of precision that is possible for
these cells, suggesting that they detect the flow direction
near optimally given the physical constraints. Finally, we
predict that reversible binding is more precise than absorp-
tion due to the fact that absorption necessarily reduces the
anisotropy in the detected signal, a prediction that we test
with endocytosis data.

Consider a spherical cell with radius a that secretes
molecules isotropically with rate f = v/4za? per unit area,
in the presence of a fluid flowing with velocity v, (Fig. 1).
At low Reynolds number and high environmental per-
meability, laminar flow lines obeying Stokes’ equation [10]
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FIG. 1. Flow sensing by self-communication. (a) A cell iso-
tropically secretes molecules (red) that diffuse and drift along

laminar flow lines (blue). The cell detects the molecules by
(b) absorption or (c) reversible binding to receptors.

form around the cell [Fig. 1(a), blue]. However, in the
tumor environment and in experiments, the permeability K
is low (k = v/IC/a ~ 1073 [2]), and the flow lines obey the
more general Brinkman’s equation [28]. For a sphere at
steady state they are given by [29]
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Here, p = r/a and ¢ = 1 + 3k + 3«2, the flow is in the 2
direction (6 = 0), 7 and 0 are the radial and polar unit
vectors, and v is independent of ¢ by symmetry. In the limit
Kk — 00, Eq. (1) reduces to Stokes flow; we are interested in
the opposite limit. Note that ¥ = 0 at the cell surface r = a.

The molecules diffuse with coefficient D and drift along
the flow lines [Fig. 1(a), red]. This process creates a
stochastically evolving concentration field c(r, 0, ¢, t) with
a mean ¢(r, 6, ¢, t), where the bar represents the ensemble
average over many independent realizations of the system.
The mean follows the diffusion-drift equation, which at
steady state reads

oc R
O:a—j:DVZE—v.Va. (2)
We consider two cases for molecule detection at the cell
surface: absorption [Fig. 1(b)] or reversible receptor bind-
ing [Fig. 1(c)]. In the former, there exists a flux boundary
condition at the cell surface,

-D
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where a is the absorption rate per unit area, and ¢(r, 0) is
independent of ¢ and ¢ by symmetry and the system being

in steady state, respectively. We also require that the
concentration vanish at infinity.

We define the dimensionless concentration y = ¢a’ and
velocity i = 7/vy. In terms of the dimensionless radial
distance p and the Péclet number €, Eq. (2) at steady state

becomes 0 = V,%)( — €l - ﬁp;(. Because ¢ is small, we use a
perturbative solution y = y, + €y;. However, in problems
with diffusion and background flow, a single perturbative
expansion cannot simultaneously satisfy the boundary
conditions at r = a [Eq. (3)] and r — oo (¢ — 0) due to
the particular spatial nonuniformity of u [30]. The reso-
lution is to split the solution into an inner part y(p, 8) that
satisfies the boundary condition at the cell surface and
holds when p is order one, and an outer part X(s, 6) that
satisfies the boundary condition at infinity and holds when
s = ep is order one. We match y and X by requiring them to
be equal at each order in € as p —> o and s — 0,
respectively.

To zeroth order, the inner solution satisfies Laplace’s
equation, 0 = Vﬁ){o, the general solution to which consists
of spherical harmonics and powers of p [31]. For the outer
solution, we write Eq. (2) in terms of s and X, which reads

0 = V2X —ii - V,X. One can define a perturbative expan-
sion for X, but we show [31] that only the leading terms of
X and u matter. The latter is # = 2, corresponding to the
uniform flow far from the cell where X applies. The
solution to this equation satisfying X - 0 as s — o
consists of modified Bessel functions and spherical har-
monics [31].

We find that the matching condition requires all but one
term in y, and X to vanish [31], yielding

Yo = Z’ X = ge—s(l—cosé‘)/Z’ (4)
p s

where y = /(1 + &), and = pa*/D and @ = aa/D are

dimensionless secretion and absorption rates, respectively.

We see that to leading order, the concentration falls off with

distance, and far from the cell it is largest in the flow

direction (8 = 0).

To obtain the anisotropy near the cell, which is essential
for the flow sensing problem, we must go to the next order.
1 satisfies 0 = V%}(l — - ﬁp)(o, which is the Poisson
equation with i [Eq. (1)] and y, [Eq. (4)] providing the
source term. This equation can be solved using a Green’s
function, with coefficients determined by Eq. (3) and
matching to X in Eq. (4) [31]. The result is

_Z{ a . cosOf(l-a)w
A=\ +a)p 4 |(2+a)?
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where w = 1 + k! —x2¢!/E, (x~!) is a monotonic func-
tion that limits to 2 (k < 1) and 1 (k > 1), f(p, k) is an a-
independent function [31], and E,(x) = [ dte™™ /1. We
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see that y; acquires a cos @ anisotropy largest in the flow
direction (0 = 0). We have checked by numerical solution
of Eq. (2) that for ¢ < 0.1, Eq. (5) is accurate to within 0.4%
at the cell surface [31,32].

Information about the anisotropy, and thus the flow
direction, comes from the front-back asymmetry in the
absorptive flux of molecules ac at the cell surface over a
time 7, which is captured by weighing each absorption
event by its location represented as cos 6. Normalizing this
by the mean number of absorbed molecules, we define the
anisotropy measure [19,23]

_ JIdt [ a*dQac(a,0, ¢, 1) cos O

A 9
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(6)

where dQ = d¢d0 sin 0, and the cosine extracts the asym-
metry between the front (§ = 0) and back (@ = r). Using
the solution for y in Egs. (4) and (5) and the fact that
f(1,k) = w, the mean evaluates to [31]

we

A=sa+®

()
to leading order in ¢.

Equation (7) gives the mean anisotropy but ignores the
counting noise due to diffusive molecule arrival. The
equivalent expression to Eq. (6) that accounts for discrete
molecule arrival is [19] A= N"'>"Y cos6,, where 6,
is the arrival angle of the ith molecule, and N =
JIdt [ a*dQac(a, 0, ¢, 1) is the total number of molecules
absorbed in time 7. The mean of this expression is given by
Eq. (7) [31]. The variance is calculated by recognizing that
molecule arrivals are statistically independent and that N is
Poissonian [19] (which we have checked even with flow
using particle-based simulations [31,32]). The result is [31]

1 1 /1+a
o1 _ 1 8
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to leading order in e. This expression includes [as does
Eq. (14) below] a factor of 3 that arises from each
directionally independent component of the variance. We
see that the variance in the anisotropy scales inversely with
the mean number of absorbed molecules.

Combining Egs. (7) and (8), we obtain a relative error of

o3 64(1+a)(2+a)? - 282 ()

A2 w?elvTa YT
In the second step, we have set w to its maximal value of 2
for k < 1 (as in the experiments [2]) and recognized that
the expression has a minimum at & = (v/17 — 1)/4~
0.78. The minimum arises from the following tradeoff:
strong absorption maximizes the number of detected
molecules and therefore reduces noise (Eq. (8); but it also

causes molecules to be absorbed immediately after release,
preventing them from interacting with the nonzero flow
away from the cell surface and therefore reducing the mean
[Eq. (7)]. Equation (9) sets the fundamental limit to the
precision of flow sensing by molecule absorption, depen-
dent only on the Péclet number ¢ and the total number of
secreted molecules v7T.

We now consider the case of reversible receptor binding
[Fig. 1(c)]. Calling b(0, ¢, 1) the surface concentration of
bound receptors, we have

dc R ob
E:szc—v-chLnDjL (—at+ﬂ+nﬂ>5(r—a),
ob

E:lc(a,@,gb, t) — ub + ny, (10)

where the term proportional to the delta function contains
the boundary condition at the surface. Here 1=
k,(R/4na® — b) ~ k,R/4na* and u are the binding and
unbinding rates, respectively, where k, is the intrinsic
ligand-receptor association rate, and R is the number of
receptors per cell. Because binding is reversible, there are
correlations between the bound receptor concentrations at
different regions of the cell surface. Therefore, we cannot
use the Poisson counting technique [Eq. (8)] to calculate
the noise. Instead, we include Langevin noise terms in
Eq. (10) to account for these correlations. These terms have
zero mean, are uncorrelated with each other, and satisfy
[18,23,33,34]

—

(np (P 0)p(P. 1)) = 2D8(t — 1)V, - V,u[e(F)6(F - 7)),
(np(Q p(Q. 1)) = B5(Q - Q)8(1 = 1),
(15 (R, )y (1)) = 2ub5(Q — Q)8(1 — 1), (11)

where ¢(r,0) and b(0) = A¢(a,d)/u are the mean con-
centrations in steady state. Binding and unbinding equili-
brate in steady state, such that ¢(r,0) is given by the
previous solution [Egs. (4) and (5)] but with a = 0. The
approximation in the definition of 1 above neglects rece-
ptor saturation, which is valid because ¢(a)/K,; =
v/4raDK, ~107*, where we have used the isotropic
approximation for ¢(a) [Eq. (4), @ = 0] and a dissociation
constant of K; = u/k, ~1 nM for CCL19 and CCL21
binding to the CCR7 receptor [35,36].

In the reversible binding case, the anisotropy is defined
as the average of the cosine over the angular distribution of
bound receptors and the integration time 7,

_ JIdt [a?dQb(0, ¢, 1) cosG‘

A i
T [a?db(0)

(12)

Because b(6) = A¢(a, 0)/u, the means of Eqgs. (6) and (12)
take equivalent forms. Therefore, to leading order in ¢, the
mean of Eq. (12) is simply Eq. (7) with a =0,
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To solve Egs. (10)-(12) for the variance, we Fourier
transform them in space and time, calculate the power
spectrum of A, and recognize that aiT is given by its low-
frequency limit [11,18,22,23]. The result is [31]

1 /7 2
L (A 14
& VT(9+A) (14)

to leading order in €, where 1 = Aa/D. The two terms are
from noise due to (i) secretion and diffusion, and (ii) bind-
ing and unbinding, respectively. The derivation of Eq. (14)
assumes that 7 > {7, 7,}, where 7, =a?/D ~ 1 s is the
characteristic time for a ligand molecule to diffuse
across the cell, and 7, = (1 4+ 1)/u ~ 1/u = R/4maDK, ~
1-10 s is the receptor equilibration timescale [18]. For 7,
we take R ~ 10*~10° CCR7 receptors per cell [35,37] and
2> 1, which corresponds to diffusion-limited binding as
further discussed below. Because cells migrate over hours,
we see that 7 > {7y,7,} should indeed be valid.

Combining Egs. (13) and (14), we obtain the relative
error

2
o4 1792 18 50
- =———|14+—=]= . 15
A 2T + 1)~ T (15)

In the second step, we again take w=2 and 1> 1.
Comparing Egs. (9) and (15), we see that reversible binding
achieves /282/50 ~ 2.4 times lower error than absorption.
The reason is that absorption [Eq. (7)], but not binding
[Eq. (13)], reduces the anisotropy. Absorption is an active
modifier of the signal created by secretion and flow,
whereas reversible binding is a passive monitor.

How do our results compare to the experiments on
metastatic cancer cells? The inequality in Eq. (15) provides
the fundamental detection limit. We plot this expression as
a function of T in Fig. 2 using the maximal experimental
values of ¢ =0.08 and v = 5200/hr [2] to obtain the
minimum possible error. We see that low errors are not
possible in a few hours; even 10% error would take over
150 h to achieve. Yet, the cells are observed to migrate over
a 15 h period [2]. In this time frame, it is not possible to
achieve less than 30% error (Fig. 2). The situation is likely
worse, given that the cells presumably begin migrating well
before the 15-hour mark, and given that we have neglected
any internal signaling noise. Thus, we see that the sensory
performance is severely limited by the experimental
parameters and the physics of the detection process. We
conclude that these cells operate remarkably close to the
fundamental detection limit.

We find that absorption is less precise than reversible
binding [Egs. (9) and (15)]. A ubiquitous mechanism of
ligand absorption is endocytosis, wherein bound receptors

Eq. 15 with maximal :
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FIG. 2. Fundamental limit to the precision of flow sensing.
Maximum experimental values ¢ = 0.08 and v = 5200/hr [2] are
used for minimum error (solid line). Cells migrate within 15 h [2]
(dashed line). Lowest possible error is 30%.

are internalized into the cell. Therefore, we predict that the
degree of CCR7 endocytosis in response to CCL19 and
CCL21 binding is low. This prediction can be tested with
endocytosis data on this ligand-receptor pair. Specifically,
to achieve optimal absorption in Eq. (9) (&" = 0.78), abso-
rption would need to occur at a rate of 4za’a*c(a) =
va* /(1 + &) ~25 min~!, where we have used the iso-
tropic approximation for ¢(a) [Eq. (4)]. However, the rate
of CCR7 endocytosis in response to CCL19 and CCL21
binding is many times slower at about 1 min~' [38]. Thus,
the degree of endocytosis is much lower than required for
the absorption mechanism, as predicted.

We also find that reversible binding is most precise when
the parameter 1 = Rk,/4naD is large [Eq. (15)]. Writing
this parameter as 4 = (k,/4x¢D)(R¢/a), where ¢ is the
receptor length scale, we see that the first factor is the
ratio that determines whether ligand-receptor binding is
diffusion limited (k, > 47z£D) or reaction limited
(k, < 4n¢D). With the known values of R and a and a
typical receptor length scale of £ ~ 10 nm, the second
factor evaluates to 10-100. Therefore, the requirement that
2> 1 is equivalent to the statement that binding is either
diffusion limited or weakly reaction limited. Given the high
sensory performance implied by Fig. 2 and the low degree
of endocytosis found above, we thus predict that CCL19
and CCL21 binding to CCR7 is either diffusion limited or
weakly reaction limited. We are not aware of kinetics data
that would test this prediction.

Our finding that reversible binding is more precise than
absorption is the opposite of what was found for the
detection of an externally established concentration gra-
dient [19]. The reason is that in our problem absorption
removes molecules at the source, whereas in that problem
molecules are replenished by a source at infinity. Depletion
at the source prevents interactions with the flow and
therefore weakens the anisotropy. Additionally, our models
do not include any additional noise sources from processes
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internal to the cell such as protein signaling or gene
expression. Because any such process would simply add
a fixed amount of noise, our finding is unaffected by the
inclusion of internal dynamics, and Eq. (15) remains a
theoretical minimum to the error in flow sensing.

The severity of the limit in Fig. 2 raises the question of
whether metastatic cancer cells benefit from additional
sensory mechanisms not accounted for in our modeling.
The precision of flow sensing may be affected by geometric
properties of the cell such as a nonuniform distribution of
receptors or aspherical morphology. We find that receptor
clustering has a negligible effect on the anisotropy but that
an ellipsoidal cell [39,40] can decrease its sensory error by
elongating in the direction of the flow [31,32]. Further
investigation of the effects of cell geometry would be an
interesting topic for future work. Some chemoattractants
including CCL21 are known to bind to extracellular matrix
fibers and be subsequently released by proteases [41—44].
This effect has been shown in continuum models of
autologous chemotaxis to substantially increase the
anisotropy [4,5], although the impact on the noise is
unknown. It is also important to recognize that these cells
do not perform flow sensing in isolation. Indeed, studies
have shown that their migration is (i) increased in the
presence of another cell type (fibroblasts) [45],
(i1) decreased at high cell densities [46], and (iii) reversed
at even higher cell densities (although reversal is attributed
to a separate pressure-sensing mechanism) [46]. The
extension of our work to multiple cells remains to be
explored. Finally, recent work has highlighted the benefit of
on-the-fly sensing [25,47], where an agent makes (and
continually updates) its decision during the integration
time, instead of afterward as assumed here. On-the-fly
sensing may play an important role for these cells.

We have derived the fundamental limit to flow sensing
by self-communication and shown that it strongly con-
strains the performance of metastatic cancer cells. Our
work elucidates the physics behind a fascinating detection
process and provides quantitative insights into a critical
step in cancer progression.
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I. DERIVATION OF EQ. 4

In this section, we derive the lowest order terms in the expansion for the inner and outer solution (Eq. 4 of the
main text). We recall the non-dimensionalized variables and parameters

B r - fBa*

X:CG'37 pP=— ﬁzia
a D (S1)

oo _wa VK

D’ - D’ T oa

It will be convenient to describe the flow profile with the functions

1+3k+3k%2 3k K -

=1 S T (e ) e
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With these, the dimensionless flow profile (Eq. 1 of the main text) is
(p,0)

Vo

i(p,0) = = u,.(p) cos 0p — ug(p) sin 60. (S3)
We solve the drift-diffusion equation (Eq. 2 of the main text) with these flow lines through the method of matched
asymptotic expansions. To do this, we introduce two expansions: an inner and an outer one. The inner one satisfies
the boundary condition at the cell surface, while the outer one satisfies the condition at infinity. We obtain the full
solution and remaining coefficients by matching the functional forms on a common overlap region: s = ep — 0 for the
outer expansion and p — oo for the inner expansion.
We assume that the inner expansion has the standard form

o0

X(p,0,6) = " xn(p,0). (S4)

n=0

This is a solution to the problem

. Ix(p,0 5 -
0= Vox(p,0) —eii(p,0) - V,x(p,0), — ép ) ‘;,:1 =B —ax(1,0), (S5)
where x’s € dependence has been suppressed. Collecting powers of €, the equations for x,, become
ox ~
_ 2 — n _ ~
0=Voxn—1-VpXn-1, O et B0 — axn(l). (S6)

This assumes that the flow is small, which is valid close to the surface of the cell.
For the outer expansion, we introduce the re-scaled distance

s = ep. (S7)

We make the standard choice
X(s,0,¢€) ZF X, (s,0), (S8)

where

hm Fn+ (6)

e—0 F EG) =0 (Sg)

In the derivation of Eq. 5 of the main text (next section), we will show that using only the lowest order term
Fy(€)Xo(s,0) gives a consistent solution sufficient for our purposes. The full expansion solves the problem

0=V2X(s,0) — @ (5, 9) V.X(s,0), lim X,(s,0) =0. (S10)
€

§— 00

For the outer expansion, we neglect the exponential terms in 4, as these have —s/e in the exponent, which is smaller
than any power of € and cannot be captured by a Taylor series. This means that we work with

3
()~ 1= w(2) e X (s11)

where ¢ = 1 + 3k + 3x2. For the lowest order terms (order 0—2), only the constant terms in the @ affect the PDE,
and the flow is just the flow at infinity, 2

A. Inner Expansion

For the zero-order term, we have

Vixo=0, - 52| =pB-axo(l). (S12)



Using azimuthal symmetry, the general solution to the PDE is

oo

X0 = Z <A0 oo’ + [i“) Y (), (513)

£=0

where Ao and By are undetermined coefficients, and Y™ are spherical harmonics. We plug this into the boundary
condition in Eq. S12. Since the spherical harmonics are linearly independent, we have the system

— (Ao, — (£ +1)Bo ) = V4m B0 — &(Aoe + Boye), (S14)

where the factor of v/4m arises from Yy = (47)~/2 and factoring off a spherical harmonic from both sides of the
equation. We will use this result shortly, as it will simplify substantially after using the matching condition.

B. Outer Expansion

The equation for X follows from Eq. S10,
6X0 + sin 6 6X0
Os s 00’

where as discussed we use 4 = 2 and we have written the gradient in spherical coordinates. We can eliminate the
f-dependence and replace it with a cos 6-dependence using

0=V2?Xy —cosf (S15)

0 0]
6— = —(1—cos’h 1
sin 50 (1 — cos )8(005 7 (S16)
with which Eq. S15 becomes
a2
0= V2X, — cosgOX0 _ (L= cos0) 9o (S17)

ds s O(cosh)’
If we make the subsitution Xy(s,0) = G(s,0) exp(scos(#)/2), the equation simplifies because the operator becomes

0Xy (1—cos?0) 0X, Scosh |2 L
0s s 9(cos 0) - Ve 4 @0 o)

V2Xy — cos @
Since the exponential factor never vanishes, the PDE becomes
1
V2G(s,0) — ZG<S’9) =0. (S19)

To move forward, we write G as a linear combination of spherical harmonics and use azimuthal symmetry
Hy(s 2
Z « / (0), (S20)

where the Hy are to be determined. Substitution and isolating the independent spherical harmonics give the ODEs

- (2> dzHe(zé) 5 dHy( >_<(;)2+(E+;>2> a, (2) . (s21)

%
d(3) d(3)
The term in square brackets must vanish, and this is just the modified Bessel differential equation in s/2 of order
¢+ 1/2. This means that the general solution for Hy is

H(s/2) = Co,eKey1/2(5/2) + Doeles1/2(5/2), (522)

where the Is and Ks are modified Bessel functions of the first and second kind, respectively, and Cp, and Dy, are
undetermined coefficients. Substituting this back into X gives

s oo
62cost9

Ve

Xo(s.0) = (Co.ekes1/2(5/2) + Doelesaa(s/2)| Y2(0). (323)



Since Xy must vanish at infinity, we must have Dy, = 0 for all £ so

6% cosf X

Xo(s,0) = 7 > CouKipiy2(s/2)Y0(0). (S24)
£=0

For positive half-integer orders, the Bessel Ks are exponentially decaying functions with decaying power laws. The
exponentially decaying factor is exp(—s/2), so the combination of the two exponentials is decreasing for all 8 values
except § = 0, where the factor is constant.

C. Asymptotic Matching

Now we match the functional forms of the two solutions. We look at the inner expansion first (Eq. S13). Each term
in the outer expansion decreases as s increases, so we cannot have the positive powers of p in the inner expansion.
This implies that Ag, = 0 for £ > 1. Since & > 0, applying the surface boundary condition in Eq. S14 also gives
B¢ =0 for £ > 1. This means that, to lowest order in €

B
Xo =YY <A070 + g’()) . (S25)

Now we turn to the outer expansion. Note that the modified Bessel functions of the second kind K have the
following asymptotics

Kip1p2(s/2) = O(sH/2), 550, (526)

Including the overall factor of s~/2, we see that the ¢ term diverges like s~¢~!. This means that all terms with
£ > 0 diverge faster than the inner solution, so the coefficients for these terms must be zero, because they cannot be
matched. This means
e3 cost 6%(cosefl)
Xo(s,0) = TCO,OK1 12(s/2)Yy = ﬁco,ofyoo. (S27)

and therefore to lowest order in € we have

e%(cos 0—1) 0
X = Fo(e)\/;TCOnyYO . (828)

So far, we have used matching to argue which terms should vanish. Now we will find the values for the non-zero
coeflicients. To do this, we recognize that because s = ep in Eq. S28, in order to match this with Eq. S25 in powers
of €, we must take

Fo(é) = €, AO,O =0. (829)

Using the boundary condition at the surface from Eq. S14 gives

Boo = Var b__ Viny, (S30)

' 1+a

where we define v = 3/(1 + @&). Matching Eq. $28 to the p~! term in Eq. $25 then gives

Using the values determined in this section, Egs. S25 and S28 become
Yo = j, X — ﬂe—s(l—COSQ)/27 (S32)
P s

as in Eq. 4 of the main text.

II. DERIVATION OF EQ. 5

In this section, we will calculate the first-order term in the inner expansion and show that we just need the lowest
order term in the outer expansion.



A. Inner Expansion

The first-order term in the inner expansion solves the PDE

. 9 -
0=V2x1—@-Vyxo, — % = —ax1(1). (S33)
P lp=1
Using the zero-order solution xo gives
L dT
V,%Xl =1 - V,x0 = ur(p) cos(d) (—ZQ) = —\/Z;ur(p)Ylo(e). (S34)

The general solution to this is the solution to the homogeneous equation (Laplace’s equation) plus an inhomogeneous
term arising from the presence of a source (the particular solution). We proceed by using the Green’s function for
Laplace’s equation

- R . 1
V.G p") =0 p-p") = G(p,p') = “mp—7] (S35)

The particular solution is the convolution of this with the source term,

1 (P) = / P0G (0.7) (\/fzu (o) Y7 (9’)> : (S36)

We expand the Green’s function in terms of Legendre polynomials Py

(N i (fk)épz(ﬁ.ﬁ/), (S37)

N /
=l ps g\ o>

where p. = min(p, p’) and p> = max(p, p’). The Legendre polynomials are related to the spherical harmonics via

Po(p- ') %HZYZ (P (838)

By orthogonality, only the term with £ = 1 and m = 0 will make a non-vanishing contribution to the convolution. To
evaluate the convolution, we use the orthogonality of spherical harmonics to simplify the angular integrals and break
the integral over p’ into regions where p’ < p and p’ > p. Specifically, combining Eqs. S35-S38 allows the angular
portion of the integral to be easily performed,

1<ﬁ>:/p,>1 Z T D 2“ YR (7) (ﬁp - ()Y (9)>

— gﬁYf 9) /1 dp'p—ur (p") +/p dp/%ur (p’)] : (S39)

Inserting the expression for u, (Eq. S2) with ¢ = 1 + 3k + 3x? into Eq. S39 then yields
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where
oo efta:
E, (z)= / dt—. (S41)
1 th
Eq. S40 can be simplified slightly using the recursion relation
1
Ep(2) = — (7" —2EBp1 (1)), (S42)

which is valid for > 0. For integer values of n > 1, this relation can be repeated to produce

1 n— — i
En(m):m (—2)" ' E ; ((n—2—0)) (—z)"| . (543)

Applying these relations to the F, functions seen in Eq. S40 allows for the simplifications

(5o () = () (2 ()

= Ke &, (844)

A=

and

3 2 3
k(P p7 2 IV P
_ _ —6le g (L), S45
8p (/@3 Wz ) ¢ k3 (H) (545)

Inserting Eqs. S44 and S45 into Eq. S40 and adding in the general solution to Laplace’s equation then yields

4 K> 3 22 4 2641 1+ 3K+ 3K>
Xlz% Tyo | Loe/n (p_p+p 6)6_”/“—Z4E1(£> +1- +

3 1 4p3 K3 P2 2p3
(S46)
¢ Bie 0
+VZ Avep” + 27 | Ve
£>0 P
It will be convenient to introduce a constant
w=1+r"14+r2/"E (1), (S47)
The boundary condition from Eq. S33 translates to
4w 4w
3 5e 1+0A10—(0+1)B1s=a §§5e,1 + A1+ By (548)

B. Asymptotic Matching

We attempt to match the first-order solution for y to the lowest order solution for X. We will see that this leads
to a consistent matching condition, confirming that we may only work with the lowest order term in X.



As before, none of the terms in X diverges at large s, so we need A; , = 0 for £ > 1. The boundary condition for
the surface for x; in Eq. S48 implies that B; o = 0 for £ > 2. Because A;; =0, we set £ =1 in Eq. S48 to find

w [dnl —a&
Bii=—y/— . S49
T eV 3 ora (549)

We expand X (Eq. S32 with s = ¢p) to first order in ¢, giving

4
X = ,/47%3/00 + % <~ / ?WYP - \/47TY00> : (S50)

where again we have used Y? = /47 /3 cosf. Our form for By is fine, since there is no term in X proportional to
p~2 to this order and we are matching the large p behavior of y to X. Since the O(¢?) term in X was matched by
Xo, we must match ey; to the O(e) term in X. The Y term in X must be matched by the inhomogeneous term in
X1, as the terms in the homogeneous solution do not have a constant times Y;". Specifically, we need the bracketed
term in Eq. S46 to tend to 1 as p — co. We have no parameters to tune, so if this fails, we will have to go to higher
order. However, the limit is one, so this is consistent. We find A4, o from matching to the last term in X,

Ao =—VT. (S51)

Solving for Bj ¢ using the boundary condition at the surface gives

QT
By = VT

1+a
These matching conditions are consistently satisfied, confirming that we may only work with the lowest order term

in X. Using the values of the coefficients and the spherical harmonics to simplify Eq. S46 gives

Xl:g{(lffx)p—ije[m+ﬂp’n)”’ (559

(S52)

as in Eq. 5 of the main text, where the auxiliary function is

42k + 1) n 2(1 + 3k + 3K?) n K2el/r <p3 p: 2p ) o—rl% _ p*E1(p/k)

flp,r) =4— (S54)

——-—=4+—-6
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Note that f(1,x) = w.

III. NUMERICAL VALIDATION OF EQ. 5

Here we verify that our perturbative solution is valid in the regime of interest for the Péclet number, ¢ < 0.1. Using
Mathematica’s NDSolve routine, we numerically solve the non-dimensionalized PDE

0 = VXnum(p, 0) — €@(p,0) - VXuum(p,0) (S55)

with non-dimensionalized Brinkman flow lines @(p, §) from Eq. S3, subject to the boundary conditions at the cell
surface p = 1 and outer radius p = pmax

_ aXnum (/)7 9)

ap bt = ﬁ - OéXnum(l, 9)7 and Xnum(pmam 9) =0. (856)

The solution to this problem converges to the solution of our problem in the limit pyax — o0.

We take 8 = Ba*/D = 0.05 and x = 10~2, corresponding to the typical experimental values listed in the main text,
as well as @ = 0 and ppax = 10%. The left panel of Fig. S1 shows that for ¢ = 0.1, the numerical solution Ypum(1, )
and the perturbative solution xo(1) + €x1(1,6) have close agreement at the surface of the cell.

We quantify the approximation error by

1 Xnum (1, 0) — (xo(1) + exa(1,6))
Error = yym /‘ Xnumo(lae) dQ. (S57)

We calculate the error for 100 different e values uniformly log-spaced between 1072 and 1. The results are shown in
the right panel Fig. S1. We see that the error is less than 0.4% when € < 0.1, a bound that encompasses our range of
interest in e. We have checked that the results in Fig. S1 remain unchanged for ppax = 750, and therefore that our
choice of pmax = 103 is sufficiently large to avoid finite size effects.
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FIG. S1: Left: Numerical (solid) and perturbative (dashed) solutions evaluated at the surface of the cell p = 1 for e = 1. Right:
Approximation error between numerical and perturbative solutions (Eq. S57). In both panels, 8 = 0.05, k = 1073, @ =0, and
Pmax = 103

IV. DERIVATION OF EQ. 7

The anisotropy in the absorption case (Eq. 6 of the main text) is

S dt [ a?dQ ac(a, 6, ¢,t) cos b
T [ a?dY ac(a,d')

A= (S58)

The mean of this expression is

Ao [ d &(a,0) cos b
=TT a0

(S59)

where we have canceled the T, a, and a?. We evaluate these integrals using ¢(a, ) = [xo(1,0) + ex1(1,0)]/a®, where
xo and x; are given by Eqgs. S32 and S53, respectively. In the numerator of Eq. S59, the yg term vanishes because
cos 0 integrates to zero. For the same reason, the only non-vanishing part of the y; term is the cos @ term in Eq. S53,
as the integral of cos? @ is nonzero. Here we also recall that f(1,x) = w. In the denominator of Eq. S59, the o term
is nonzero, and therefore we do not need the x; term to leading order. Altogether, Eq. S59 evaluates to

we

A= era (S60)

as in Eq. 7 of the main text.
The equivalent expression to Eq. S58 that accounts for discrete molecule arrival, as stated in the main text, is

1
A= ¥ ;:1 cos 0;, (S61)
where 6; is the arrival angle of the ith molecule, and

T
N:/ dt/anQ ac(a, 0, d,t) (S62)
0

is the total number of molecules absorbed in time 7. Here we will show that the mean of Eq. S61 also evaluates to
Eq. S60. The mean of Eq. S61 is

1 N
A= % <;cosﬂi>, (S63)



where the overbar and angle brackets are used interchangeably. Because the N absorption events are statistically
independent, the angle-bracketed term in Eq. S63 simply amounts to N copies of (cos#). Thus,

A = (cos ). (S64)
The averaging is performed over the distribution defined by the mean surface concentration ¢(a, ). Explicitly,

~ [dé(a,0)cosd
A=A ) (865)

This expression is equivalent to Eq. S59 and therefore evaluates to Eq. S60.

Note that the definition of A implicitly assumes that the cell “knows” the true direction of the flow to be # = 0. In
reality this is untrue. Instead, the migration direction of the cell is a three-dimensional vector that can be decomposed
into three components along the &, g, and 2 (6 = 0) directions. However, the means of the components in the & and
y directions involve averages of sin f cos ¢ and sin 6 sin ¢, which are zero due to the azimuthal symmetry. Therefore,
the result in Eq. 7 holds even when accounting for all three components.

V. DERIVATION OF EQ. 8

To compute the variance of Eq. S61, we use the fact that the number of molecules absorbed in a patch on the cell
surface is a Poisson variable (confirmed with simulations in the next section). Letting 6; denote the value of 6 at
which particle ¢ is absorbed, the second moment of the sum of cosines is

N 2 N
< Zcos 0; > = <Z cos? 9i> + <Z cos 8; cos 0j> = (N) (cos® ) + (N(N — 1)) (cos 0)” , (S66)

i#]

where again the second step follows from the fact that the absorption events are statistically independent. For a
Poisson random variable

(N) = 0% = (N?) = (N)? = (N(N = 1)) = (N)*. (S67)

Inserting this result into Eq. S66, we see that the last term becomes the square of the mean and will thus cancel
when using Eq. S66 to calculate the variance. Additionally, we will need to multiply the variance by a factor of three.
The reason is that cos? 6 is an even function, and therefore the angular average, to lowest order in ¢, will be over
only the uniform part of the solution (xg). It will therefore have the same contributions from the & and ¢ directions.
Altogether, this allows us to write the variance as

| o

N

3 3 -

o4 = ﬁVar E cosb; | = ﬁN (cos? §) = —= (cos? 0) . (S68)
i=1

=

The leading order terms in the averages of both N (Eq. S62) and cos? f come only from the uniform xo (Eq. S32).
Specifically,

T ~

_ Aoy T T

N:/ dt/anQ aé(a,0) = azaT/dQl3 = oy e (S69)
0 a a 1+a

and the average of cos? 6 over the uniform sphere is
(cos? ) = = /dQ cos® ) = ! (S70)
47 3

Together these results produce Eq. 8 in the main text.

VI. VERIFICATION OF POISSON STATISTICS WITH PARTICLE-BASED SIMULATIONS

To verify the assumption that molecule absorption events at the surface of the cell follow a Poisson distribution,
we use particle-based simulation. After non-dimensionalizing the problem and Brinkman flow equations, particles



10

are pseudorandomly initialized between two spherical boundaries at p = 1 and p = ppax = 10. Throughout the
simulation, particles are generated at a random position on the cell surface with rate § = 10 (this value is larger than
that estimated from experiments in order to generate good statistics in a reasonable computational time). Diffusion
is discrete in time and continuous in space: in a dimensionless time step A7, for each particle, we draw three samples
from a normal distribution with mean zero and variance 2Ar (corresponding to a variance of 2DA¢ in real units) for
each spatial component. The absorption propensity & = 0.75 is used to determine absorption or reflection events for
particles found within p < 1+ ¢/a, with £/a = 0.01 interpreted as a maximal receptor height. For recording, the
cell surface is split into 100 ring-shaped patches over § € [0, 7], uniform in cos . Particles are deleted whenever they
diffuse past the outer boundary.

The four timescales in the system are the birth, diffusive, drift, and absorption timescales, which are 1/4mwa?8,
(aAp)?/D, a/vy, and £/« respectively, where Ap = (pmax — 1)/100. In dimensionless units these timescales read
1/473, (Ap)?, 1/e, and £/aa, respectively. The time step is set to be smaller than all four timescales, at A = 0.001.
The simulation is run for 2 x 10° time steps.

The number of molecules n absorbed at a particular patch (6 = 7/3) with e = 1 across an ensemble of 1000 trials
is shown in Fig. S2 (left). We see that the distribution of n is in excellent agreement with a Poisson distribution of
the same mean. We repeat this measurement for all patches and with different values of the Péclet number € in Fig.
S2 (right). We see that, consistent with Poisson statistics, the data fall along the line for which the variance equals
the mean, even up to a Péclet number of ¢ = 100.
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FIG. S2: Left: An example of the distribution of n over 1000 trials at a particular patch (6 = 7/3) for Péclet number € = 1,
plotted against a Poisson distribution with equal sample mean. Right: The sample variances o2 from all patches of the cell
(data points) lie close to the sample mean 7 for multiple values of the Péclet number e.

VII. DERIVATION OF EQ. 14

As in the absorption case, we non-dimensionalize the system in Eq. 11 of the main text for the binding case. We
use the same parameters from Eq. S1 where relevant and introduce the new parameters

<A 2 tD
v=a®, =T, h=f r=—
s . , (S71)
a a a
&0 = 7D &8 = 1,78 &= 3
The non-dimensionalized versions of Egs. 11 and 12 of the main text are then
ax L o= o~
5 :ViX—E’U,'VpX—FfD—F (—E+B+§g> o(p—1)
(S72)
o

5, = W(1L,9Q) =i + &,
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and

X
<£5 (Q'7T'> £(S, T)> =6 (1 —7') & (Q - Q/) : (S73)
<§b (Q’,T') &9, T)> =2[s (1 —1') 6° Q- Q’) ,

where we use () to denote the solid angle (0, ¢). In general below, we will use a hat to denote the angular components
of a vector.

We will find the variance in the signal by using the Wiener-Khinchin theorem and noting that the zero frequency
limit of the power spectrum gives the long time behavior of the variance. We start by linearizing Eq. S72 using

OX=X-X. =1 -1 (S74)
We then Fourier transform dx and v as

% (l;, w) = /d3pd7 ei’;'ﬁeiwéx (p,7),
Sy (W) = / dQdr Y (Q) T 1) (QT) .

Linearizing and transforming x and ¢ in these ways have two important effects on Eq. S72. First, the linearization
eliminates the § term, and second, the Fourier transformation allows for derivatives with respect to p and 7 to be
written in Fourier space as —ik and —iw respectively. In addition, we make the approximation € = 0 as that is the
lowest order term in the variance of each dynamic variable. These effects transform Eq. S72 into

(S75)

—iwdx = —k20x +Ep + / 75 (o= 1) S Y (p) (iwswy + € )
Lm
=~k +Ep +4m > i (k) Yy (k) (iwswy' + €5 ) (S76)
L,m

and

—iuxfwzn = S\/dQ Y, (Q) / (;il;:g e_m";(fx (E, w) - ﬁ&/}? +&m

~ d3k N m (i & (7 em oz
= amh [ 5 0 e v (R) 5 (o) — s+ (s77)
where Eqgs. S76 and S77 have been simplified using the plane wave expansion
TV =y i e (ay) Y (2) Y (7). (878)
Lm

and j, denotes a spherical Bessel function of the first kind.
_ From here we set w = 0 to obtain the long time dynamics. Making this substitution along with solving Eq. S76 for
dx and substituting that solution into Eq. S77 produces the relation

<[ Pk A
VA .
0=dr ()5 [ s 0 (R) o+ 57y 60wl + (579)
where the orthonormality of spherical harmonic§ and the known properties of spherical Bessel functions have been
used to simplify the result. Solving Eq. S79 for 61/);” and using the fact that each £ term is independent of the others
then yields

<53b27/*51b7> - ~2(2£Jri)2(2zf+ ) (&irn) + 2 (8 a)

[i2
VO e e ) (6 () (). o
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Taking the Fourier transform for the diffusive noise covariance in Eq. S73 and integrating the gradient terms by parts
gives

<§:E (E’,w') p (E, w)> =2 (27r5 (w— w')) k- E//d?’p X (9) eiﬁ(g_’;l). (S81)

The covariances for the binding-unbinding and production reactions are

<£ﬁ€’ (w) 5’5"@ (w)> = B0/ S (2775 (w— w’)) ,

<&1 (W) & (w)> = 26300 Grmm (2ms (w— w')) : .

where the € = 0 approximation with o = 0 has been applied to Eq. S32 to write ¢ = 5\920(1, Q)/ﬁ = :\y/ﬂ = S\B/ﬂ
If x is some real, stationary, ergodic process, we define its power spectrum through

(Z(w)T* (W) =275 (W)d(w — W), (S83)
where Z(w) is the Fourier transform of x(t) using the same sign and normalization convention as in Eq. S75. The long

time behavior of the variance in the time average of x(t) is

S0

o%(T) = Q. (S84)
T

Egs. S81 and S82 all have factors of 2md(w — w'), so we can obtain the power spectrum for the components of 1

by neglecting these factors. Doing so while inserting Eqgs. S81 and S82 into Eq. S80 then yields the cross-spectrum

between the (¢,m) and (¢/,m’) components of ¢ at w =0

() — BNy 1 2
S[é/mm/ (0> - [142 (71 Loprmm: + ((2€+ 1) (25/ i 1) + 5\ 5% 6mm ’ (885)
where
Lo = — [ @rawap? 3 )y () vt () - B ) 7 (FF) S
b = 5 o (k) v (W) ERX (p)e : (586)

From here, Iy, needs to be simplified. To do so, we will first apply the € = 0 approximation and a = 0 to Eq.
S32 to write ¥ = 3/p. This will also restrict the p integral to be only over the space where p > 1 as molecules are
considered to not exist inside the cell. Additionally, the exponential piece can be expanded via Eq. S78. Eq. S38 can
be used to simplify k- k' = Py(k - k). Performing these expansions and using orthogonality of spherical harmonics
allows Iyprmm to be simplified into

o

0 =0m! =—¢" m' =

X ( E// —+ 1) pkk ]g (k) ]g/ (k )‘]g// (pk) ]g// (pk ) (887)
« 1 e 1 o1 A T
000 m m” m”)]\0 0 0 m' m'" m”
where the final line contains Wigner 3-j symbols.
Before continuing to simplify Iy mms, we first consider A (Eq. 12 in the main text),

fo dt [a?dQ b(6, ¢,t) cosd

A= = S88
T [ a2dSY b(9") (588)
We write this equation as A =T"! fOT dt B(t), where
2dQ b(0, ¢, t 0
p = J @0, 6,1) cos (S89)

[ a2dsy b(0)
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Here, A is the time average of B. Therefore, from Eq. S84, the variance of A in the long-time limit will be given by the
power spectrum of B at zero frequency divided by the integration time T. We apply a similar series of linearization
and Fourier transformation along with the approximation € = 0 to B to yield

~ a2 Z.chlQ cos () ¢ (Qﬂ‘) fia? o
0B (w) = 7] /dT e a5 (@) = \/mS\BDéwl (w). (S90)

Given that 6B depends only on 6;/)(1), this is the only moment we need to solve for. Due to the selection rules of Wigner
3-j symbols, in the case where £ = ¢/ =1 and m = m/ = 0 the summations in Eq. S87 only have four surviving terms:
the ¢/ = m” = m/"” = 0 term and the three ¢ = 2, m"” = —m/" terms. These terms can be solved individually using
the relations

/0 "k ki (k) jo (ok) = 0,

o0 o0 2 o0 71_2 7_(_2
d dk kiy (B) js (k) ) = [ dp— =T
[ oo ([T avrimien) = [Tant =T o)
zl: 112\ 11 2\ 2
2« \ooo) om” —mm) T35

Inserting these values and £ = ¢/ =1 and m = m/ = 0 into Eq. S87 yields

48 T2 2 2
To= — -5 — .- =2 2
100 = 55 5 15 T 3 (892)

Inserting this into Eq. S85 then yields

W) oy PN (T 2
51100(0)_ /12 (9—'_5\ ) (893)

which when combined with Eq. S90 produces

2

~2 2 7 2
sBg) = T g gy 9 (+) S04
(0) 2D 1100(0) 1250 \0 3 (594)

Finally, we use Eq. S84 to write

,  38(5)(0) a? (7 2) 1 (7 2)
— — _ -+ = = — — + = s 895
A T 4xBDT\9 " X) v \9 " X (5%)

as in Eq. 14 of the main text, where the factor of 3 accounts for the equivalent variance in the sin 6 cos ¢ and sin @ sin ¢
components, and the last step recalls 3 = fa*/D and v = 47a?p.

VIII. EFFECT OF RECEPTOR CLUSTERING

To test the robustness of the sensing mechanism to a nonuniform distribution of receptors on the surface of the cell,
we performed a numerical analysis for the absorbing model. We consider the convection-diffusion equation, Eq. 2 in
the main text, subject to a different boundary condition at the surface of the cell,

3 D@E(r, 0, ¢)

Or = B - azn(e? ¢)E((I, 9, (b)a (896)

r=a

where the absorption rate aj*(6, ¢) is no longer a constant, but a function proportional to the real part of the spherical
harmonic Y, (0, ¢) defined on the surface of the cell. Along with the condition that the concentration &(r, 8, ¢) vanishes
for large r, these equations constitute a well-posed problem that describes the case in which receptors “cluster” on
the surface of the cell. This clustering phenomenon is parametrized by the spherical harmonic numbers ¢ and m.
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Specifically, after non-dimensionalizing the problem as in the main text, we define the dimensionless absorption
rate

(S97)

ay'(0,¢) = 24 ( R [Y7"(0,9)] — ming,s % [¥7"(0, )] ) for >0

maxg g R [Y[”(O, ¢)] — ming 4 R [Y[’L(G, ¢)]

where & is the constant dimensionless absorption rate used in the main text, equivalent to the ¢ = m = 0 case here.
This choice of &j* guarantees non-negativity as well as a spatial average equal to & for any choice of £ and m. Fig.
S3A shows plots of &}*/& over the cell surface for various choices of £ and m. We see that receptors are arranged in
striped patterns for m = 0 and |m| = £ (the “backbone” and “sides” of the triangle) but that receptors are arranged in
patches for other values of m and ¢ (the “bulk” of the triangle). The latter case is more relevant to receptor clustering.

We solve the convection-diffusion equation for the ligand concentration ¢ using Mathematica’s NDSolve routine as
in Section III. We evaluate the mean anisotropy measure flzn (Eq. 6 of the main text) from the absorptive flux &j"c.
We compute a signed, normalized difference measure from the uniform case (¢ = m = 0),

Am _ A0
Fractional difference in mean anisotropy = ZTOO
0
Fig. S3B shows this difference measure as a function of £ and m. We see that in the bulk of the triangle, the measure
shows a clear convergence toward zero as £ and m become large. In fact, we see that for £ 2 5, the difference is less
than a percent. Receptor clusters usually occur on lengthscales much smaller than the cell size, corresponding to ¢

and |m| values much larger than those shown. We conclude that receptor clustering has a negligible effect on our
results.

20 10 . . , , , , . : >0015
9 | g
8 g
7 0.01 <)
6 g
15 5 =
? 4 0.005 =
a 3 =
= 2 5
=+ 1 B
0 L IS 01 0 3
% 2 g
5 3 . g
Z. " 0.005 %
05 < 5
6 =
7 -0.01 =
8 S
9 =]
0 P 2 -10 "g
‘ ‘ . . ‘ ‘ <0015 3
0 1 2 3 4 0 1 2 3 4 5 6 7 8 9
l l

FIG. S3: Results are robust to receptor clustering. (A) Normalized dimensionless absorption rate &j*/& as a function of 6 and
¢ (see inset), constructed from spherical harmonics, which models an inhomogeneous receptor density. (B) Signed, fractional
difference in average anisotropy measure. We see that difference is less than a percent for the “patchy” receptor configurations.
Here @ = &* = (V17— 1)/4 = 0.78, 8 = 0.05, ¢ = 0.01, and pax = 100.

IX. EFFECT OF NON-SPHERICAL CELL GEOMETRY

Cells polarize and stretch in the direction of motion as they move. In this section, we investigate the effect that
stretching has on the ability of the cell to sense the direction of the fluid flow. For simplicity, we incorporate stretching
(or compressing) by investigating an ellipsoidal cell. We also ignore the effect of impermeability of the medium and
simply use Stokes’ flow. For a spherical cell, we find in the main text that the impermeability halves the error (taking
w from 1 to 2) but does not change the overall scaling, and we expect the effect to be similar here. We also focus
only on the absorbing case, where the deterministic convection-diffusion equation suffices to determine the statistics
of the anisotropy measure.
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A. Ellipsoidal coordinate system

We will find it useful to adapt our coordinates to the shape of the cell surface in order to state the boundary
condition for the convection-diffusion equation. Therefore, we first introduce a new coordinate system that we will
call “ellipsoidal” for simplicity. Our new coordinates are not the same as the standard confocal ellipsoidal coordinates
or the prolate or oblate spheroidal coordinates. They are also non-orthogonal, and therefore they give rise to off-
diagonal terms in definitions such as the Laplacian, as we derive using differential geometry in a later section below.
Nonetheless, they are a continuous deformation of spherical coordinates and are useful for specifying the boundary
and visualizing the system.

The ellipsoidal coordinates are related to the cartesian ones via

T = req_l/g sin @ cos e,
Y= req /3 sin 6, sin De, (S98)
z= reqz/?’ cos b,

where the angular variables (6., ¢.) have the same ranges as the spherical angles (0, ¢): 6. € (0,7) and ¢, € (0, 27).
Ellipsoids are surfaces of constant r.. ¢ > 0 is a parameter characterizing the deformation: the z-axis is compressed
for ¢ < 1, and the z-axis is stretched for ¢ > 1, as illustrated in S4A. The ellipsoidal coordinates reduce to spherical
coordinates when ¢ = 1.

More generally, the relationship between the ellipsoidal and spherical coordinates is obtained by comparing Eq. S98
with the standard spherical-cartesian relations,

x = rsin 6 cos ¢,
y = rsinfsin ¢, (S99)

z=rcos#,

as follows. First, Eq. S98 implies that r. = ¢'/3/22 + y2 + ¢—222. Inserting Eq. S99 for x, y, and z then yields
re = rq'/? \/1 + (¢=2 — 1) cos?2 0. Second, Eq. S98 implies cos 6, = z/r.q>/?. Inserting Eq. S99 for z and the previous
result for 7. gives cos, = g~ cosf/\/1+ (g2 — 1) cos? §. Third, by considering the ratio y/z in both Eq. S98 and
Eq. S99, one sees that tan ¢, = tan ¢, or ¢, = ¢. In summary,

Te :rq1/3\/1+

cosf, =

—2—1)cos? 4,

Lcos®

(S100)

(q
-
(g2 —1)cos?f’
Ge = ¢

» Flow

1.0

0.98+

0.96 -

Relative Noise-to-Signal Ratio R,

e
)

0.9 1.0 1.1 1.2
Relative Scale q

qg<l1 q>1

FIG. S4: Elongating in the flow direction can reduce sensory error. (A) We consider an ellipsoidal cell, where ¢ determines
the elongation or compression while volume is conserved. (B) Sensory error relative to the spherical case (Eq. S148). Here

& =0.74, 3 =0.04, ¢ = 0.01, and T max/a = 100.
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Eq. S100 gives the ellipsoidal coordinates in terms of spherical coordinates. The inverse is

r= req_l/?’\/l + (¢%2 — 1) cos? 6.,

qcos b,
cosf = , S101
V1+ (g% —1)cos? 0, ( )
¢ = ¢e-

The parametrization in Eq. S98 explicitly conserves the volume of the ellipsoid. To see this fact, we recall that if
the x, y, and z semi-axis lengths are A, B, and C respectively, then the volume of the ellipsoid is

V= 4éTABC. (S102)
Taking A = B = r.¢~ /3 and C = r.q*/3, we see that the ellipsoid has the same volume as a sphere of radius 7. > 0,
independent of q. Note that ¢ is the ratio of axis lengths, as ¢ = C/A.
Although the volume is conserved, the surface area is not. This means that o and § should change with ¢ in order
to keep the total number of receptors on the surface and the rate of secretion constant, respectively. To account for
this, we need the area element. A point on the surface of an ellipse in cartesian components is

7= Teq_l/?’ (sin @ cos ¢, sin b, sin ¢, g cos b, . (S103)

The area element may be computed as the cross-product

dS,, = ||0p,7 x Dy, 7|dOcde = r2q" sin0./1+ (=2 — 1) cos2 0, db.do.. (S104)
Letting .S,., denote the integral of dS,, over the full ranges of the angular variables, we take

4ma’B
Sa

dra’a
S,

Be = : (S105)

Qe

We perform the integral S, numerically.

B. Flow lines

Next we find the laminar flow lines around the ellipsoid, where the flow points along the stretched/compressed axis
(Fig. S4A). We do so following Ref. [46] of the main text, which specifies a numerical method for calculating flow
lines in the laminar limit of the incompressible Navier-Stokes equations around an object with azimuthal symmetry.
We report the solution of Ref. [46] here in spherical coordinates, and then exploit our ellipsoidal coordinates when
imposing the boundary conditions.

The flow velocity can be written

rsinf

T=Vx <¢(7~9)¢> 7 (S106)

or in terms of its components,

ov . =0, (S107)

—

-7 =

Opt LA
S Ul=——0,
r2sin 6 rsin 6
where 1) is the so-called stream function, and the last expression reflects the azimuthal symmetry. The general solution
for ¢ given in Ref. [46] is

W(r,0) = Z <an7"7”Jrl + b ™ + d,ﬂ“”“) OV (cosh), (S108)
n=2

where the C{) are Gegenbauer polynomials.
We solve for the coefficients by imposing the boundary conditions. The flow at spatial infinity should point in the
Z direction

lim &= vp2 = vo(cos 7 — sin 00). (S109)
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Considering Eq. S107, we see that this holds if we have the asymptotic relation for large r
1)01"2 .92 1)07’2 2
¢ ~ T sin“ 0 = T(l — COS 9) (SllO)

Aside from the factor vor2, the final expression is exactly Cé_l/ 2) (cos®). This can be used to solve for the ¢, and d,
coefficients:

Cp = ’U()(Sn,g, dn =0. (S].].l)
The general solution now takes the form
vor? =
P(r,0) = 07(1 —cos?0) + Z (an?“*"+1 + bnr*’”g) CY2 (cosh). (S112)
n=2

The remaining coefficients are determined by requiring the fluid velocity to vanish at the surface of the cell, which
implies

81/}_0 oy

or 9(cos ) =0 (S113)

there. The relationship between r and 6 on the surface of the cell is given by the first line of Eq. S100 with r. = a,

a
@3/ T+ (g2 —1)cos?

(S114)

We use Eq. S114 to solve for the coeflicients a,, and b,, in Eq. S112 using the following sampling procedure from Ref.
[46]. We sample m points uniform randomly in cosf on the surface of the ellipsoid. For each point, we have two
equations that result from inserting Eq. S112 into the two boundary conditions (Eq. S113) with  written in terms
of cosf according to Eq. S114. This gives 2m equations. We truncate the sum in Eq. S112 at nya.x = m + 1. This
gives 2m unknowns (the coefficients {a,}7""" and {b,}5" ™). The resulting linear system in the coefficients is solved
by matrix inversion. Numerically, the matrix may be singular, and therefore we use the singular value decomposition.

Once we solve for a,, and b, the flow lines follow from Eq. S107.

C. Convection-diffusion equation

Given the flow lines ¢, we numerically solve the convection-diffusion equation (Eq. 2 of the main text),
0=DV?—7- Ve (S115)

This equation is subject to the secretion/absorption boundary condition at the ellipsoidal cell surface (analogous to
Eq. 3 of the main text),

—Dit- Ve, —q = Be — aeC

re=a; (S116)

where 7 is the outward-pointing unit vector orthogonal to ellipsoid, and o, and B, are given in Eq. S105. To solve
Eq. S115 subject to the ellipsoidal boundary condition, we derive the forms of the Laplacian V2¢ and convective term
7-Véin ellipsoidal coordinates. Because the coordinates are non-orthogonal, it is most convenient to use the language
of differential geometry (see Ref. [47] of the main text) to derive these forms.

1. Laplacian in ellipsoidal coordinates

Suppose that we change from one set of coordinates {z*} to another {y“/}. A vector that transforms covariantly
transforms like the chain rule for derivatives

v ozt

AL (S117)
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In the usual cartesian coordinates, we may write the derivative of a scalar in the direction of ¢ as V,, = V*0,,, where
the V# transform contravariantly

, w
_ Wy (S118)

1
v oxH

under a change of coordinates. A tensor is an object with multiple indices, where each index transforms covariantly or
contravariantly independently. The basis vectors on a manifold can change from point to point, so one must specify a
curve to transport vectors and covectors along to define derivatives. This method of using transport to differentiate
is called the covariant derivative, and its components for a general tensor take the form

{a} _ {a} a; plalai—p} p {a}
ViT(gy = 0Ty + Z Loy Z U T (18,010 (S119)

a;e{a} Bie{B}

where {a|o; — p} means that the i-th index has been changed to p and summed over, 9, is ordinary differentiation
with respect to the coordinates, and the I',, are the Christoffel symbols. The Christoffel symbols are not tensorial
and are defined in terms of derivatives of the metric tensor g,

9™
Ffw = 7 (aI/gMOé + 6#91/@ - 8aguu) . (8120)

The metric tensor g, is defined in terms of the differential arc length d¢ of curves
(d0)? = g, dxtda”. (S121)

The metric tensor g,,, may be used to lower indices, converting a contravariant vector to a covariant one. The inverse
metric g"” may raise indices and perform the inverse conversion. When thought of as matrices, the inverse metric
may be computed as the inverse of the metric.

We know that the metric in cartesian coordinates geart,u. is the identity matrix. It is often easier to compute the
matrix of partial derivatives dz*/0y", where z* = (z,y,2) denotes cartesian coordinates and y* denotes any new
coordinates. We can use this to compute the metric

oxH oV’

cart, /v’ 122
ayu ay 5. Jeart,; (S )

Inew,uv =

Letting y* = (r., 0., ¢) be the ellipsoidal coordinates, the metric tensor in ellipsoidal coordinates is

q% cos? 0, + qu sin? 6, T sin 0, cos b, (q*% — q§> 0
Ye,uv = | resinf, cos b, (q_% — q%) r2 (q% sin? 0, + q_% cos? 96) 0 . (S123)
0 0 ¢ 3r2sin? 6,

Inverting this gives the inverse metric

q% sin? 96—|—q_%cos2 0. isin@ cosf, (q% —q_%) 0
gt = | L sinf, cost, (q% - q’%) 5 (qs cos? 6, + ¢~ sin? 0 ) 0 (S124)
e 2
0 0 r2 sgr?2 0.
With the metric and inverse metric, we may compute the Christoffel symbols
0 0 0 0 .- 0
Fl;w: 0 —re 0 , I‘ZW— 1 0 ,
3 .9 ’ Te .
0 0 -—7resin“6, 0 0 —sinf.cosf,
(S125)
0o 0 &+
3 0.
F e, = (1) 00 g?ﬁee
Te sin 0: 0
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We can use this to find the gradient and Laplacian of a scalar in the new coordinates. The gradient describes the
components of the covariant derivative, which is just the ordinary derivative, as scalars are invariant under changes
of coordinates

Vuf=0uf (S126)
The scalar Laplacian is the divergence of the gradient, which is
VEf = gV = gt (0u00f = T2,,0,f ) - (s127)

Using the expressions derived above, we find

2 o%f 1 of
2r _ 35 i 02 -2 2 - 2 —2 .. 92
Vf=q l(sm B + g~ cos 93) o2 + o <1+cos 0 + g~ “sin 96) e
1 9 _9 . o 0%f 1 [cosb, 9\ . of
+E(cos fe + q “sin 96>6793+E sin o, —Z(Ifq )sm@ecosee 20,
1 9%f 2 o\ . o2 f
77“2 20, 992 + - (1 —q ) sin 6, cos 9673%6@ . (S128)

This is the Laplacian in ellipsoidal coordinates.

2. Convective term in ellipsoidal coordinates

The convective term can be written in contravariant form as
7-Vé=VHo,e. (S129)

The gradient vector 9, = (Or,,0p,,0p,) is straightforward to write in ellipsoidal coordinates, but for the velocity
vector it is easiest to transform to spherical coordinates,

s .

v-Ve= @nghauc, (5130)
and then write dy* /dz" and Vi, in terms of re, 0, and ¢e. The former is obtained by differentiating Eq. S100, and

S

then inserting Eq. S101 into the results,

e req (q? — 1) sin 6, cos 0 0
Oy _ Olre,0e,0c) _ | Vit@-Deoso L (S131)
dar ~ olr6,0) 0 307 [L4+ 0% + (4 = 1) cos(26,)] 0
0 0 1
The latter is obtained by writing the curl (Eq. S106) in tensor notation,
Ve = eaﬁwaﬂqu (S132)

where ¥ = 1/)@?) /rsin @ and €57 is the Levi-Civita tensor. For orthogonal coordinate systems, like spherical coordinates,
the Levi-Civita tensor may be written in terms of the Levi-Civita symbol €

P = \/det(grv)eh, (S133)

where € is +1 for even permutations of (1,2, 3), —1 for odd permutations, and 0 for repeated indices. The metric in
spherical coordinates is well-known (and may be obtained from our ellipsoidal metric by taking ¢ — 1),

10 0
1
ggpyh = 0 ﬁ (1) ’ (8134)
00

r2gin? 6
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which implies that

1
wry
Vdet(glyn) = ———. (S135)

However, the basis vectors that are commonly used in differential geometry are not normalized like (,ZAS To find the
basis vectors, we will start from the usual cartesian basis vectors, which are normalized and take the familiar form,
and transform them. We expect ¢ to be proportional to é'si’)h. We need the inverse Jacobian

Bzt 8(x,y, ) si.nﬁcpsqb rcosﬁcpsqb —r.sinﬁsin(b
B = 0.8 sinflsing rcosflsing rsinfcos¢ | . (S136)
Y (r,0,9) cosf —rsinf 0
We compute é’sih
23 _ 93# %5 _ g %g _ 7 sin 0(— sin P€car,1 + COS P€car.2)
sph sph 8y” car,v sph 8:[/3 car,v 7"2 sin2 0 9 (8137)
. sin ¢€car,1 + cos ¢gcar,2 o ¢
o rsin 6 "~ rsinf’
We find the covariant components of U in spherical coordinates by writing V=0 Mé'sgh, which implies
U, =0, ¥y=0, U3=n1). (5138)
Using this to evaluate Eq. S132 gives
Ogt) oy
1 2 _ r 3 _
‘/sph - M7 sph — _m7 sph — 0. (8139)

Note that these are not the same as the components of ¥ along the unit vectors in spherical coordinates (Eq. S107).
They are slightly different because they are the components along the covariant basis vectors in spherical coordinates.

Thus, the convective term in ellipsoidal coordinates is given by Eq. S130, with dy*/dz" given by Eq. S131 and Vion
given by Eq. S139. In Eq. S139, ¢ is given by Eq. S112, and r and 0 are converted to ellipsoidal coordinates via Eq.
S101.

D. Relative error

Finally, after obtaining the concentration ¢ from Eq. S115, we calculate the mean and variance of the anisotropy
measure. The anisotropy measure is defined analogously to Eq. 6 of the main text, as

1

T
A, = ﬁ/ dt/dSaaeC(aaeea¢6)t) cosd, (8140)
0

where
N = T/dSaaeé(a,Ge) (5141)

is the mean number of absorbed molecules in time 7. The mean of Eq. S140 is

A, = %/dSaaeé(a,Qe)cos 0. (S142)

Eqgs. S141 and S142 are evaluated numerically using ¢, where we write cos# in terms of cos #. according to Eq. S101.

The variance of Eq. S140 is 1/N, just as in Eq. 8 of the main text. To prove this fact, we use a generalization of
the argument in Section V above. Specifically, Eq. S66 still holds for the statistics in the Z direction, and Eq. S67
still holds for the Poissonian N in general. However, the variance of A is no longer the variance in the 2 direction
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multiplied by a factor of three (Eq. S68) because the ellipsoid breaks the spherical symmetry. Instead, we must write
the components from the Z, g, and Z directions explicitly,

N N N
1
0124& =5z Var Z sin@; cos ¢; | + Var Z sin 0; cos ¢; | + Var Z cos 0; . (5143)
i=1 i=1 i=1

Nonetheless, we can still write the analogs of Eq. S66 explicitly for the &, g, and 2 directions,

2
N N
< Z sin 6; cos ¢; > = <Z sin? 6; cos? ¢i> + <Z sin 0; cos ¢; sin f; cos ¢j>

i=1 i=1 i#j
= (N) (sin? 0 cos® ¢) + (N(N — 1)) (sinf cos ¢)* , (S144)
N 2 N
< Z sin 6; sin ¢; > = <Z sin? 0, sin® ¢i> + <Z sin 0; sin ¢; sin 0 sin ¢j>
i=1 i=1 i#j
= (N) (sin? fsin? ¢) + (N(N — 1)) (sin Osin ¢)° , (S145)
N 2 N
< Zcos 0; > = <Z cos? 91> + <Z cos 0; cos 9j> = (N) (cos?0) + (N(N — 1)) (cos 0)* . (S146)
i=1 i=1 i#]
Due to Eq. S67, the final terms in Eqs. S144-S146 are still the squares of the means. Therefore, Eq. S143 becomes
_ _ _ 1
0%, = % {N (sin” @ cos® ¢) + N (sin? sin® ¢) + N (cos? 0) | = i (5147)

as we sought to prove.

E. Results

For a given value of the ellipsoidal scale factor ¢, we compute the flow lines according to section B using m = 50
points, and we solve the convection-diffusion equation for ¢ according to section C. The ellipsoidal boundary condition
in Eq. S116 is implemented in Mathematica using the “NeumannValue” function. We also use an ellipsoid at r. =
Te,max for the outer boundary, where we impose ¢, -, .., = 0. We compute the error o4, /Ae, relative to the spherical
case 04/A, as

o O-AC/Ae
T gy /A

(S148)

where 04 /A is also computed numerically.

Fig. S4B shows the ratio R, over the range where ¢ deviates from 1 by as much as 20%. We see that elongating
in the flow direction (¢ > 1) decreases the sensory error, whereas compressing in the flow direction (¢ < 1) increases
the sensory error. Going beyond this range in ¢ requires prohibitively large computational runtime, as more than
m = 50 terms are required in the flow lines for numerical accuracy, which significantly increases the runtime of the
numerical routine for solving the convection-diffusion equation. Nonetheless, we can extrapolate out to ¢ = 2, which
corresponds to a cell that is twice as long as it is wide, for a rough idea of the effect. Treating the result in Fig. S4B
as a line (although it is slightly concave up) indicates that elongation to this extent would reduce the sensory error
by about 30%. Thus, we conclude that elongation in the flow direction can lead to a moderate improvement in the
precision of flow sensing.



