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Magnetic flux trapped during the cooldown of superconducting radio-frequency cavities through
the transition temperature due to incomplete Meissner state is known to be a significant source of
radio-frequency losses. The sensitivity of flux trapping depends on the distribution and the type
of defects and impurities which pin vortices, as well as the cooldown dynamics when the cavity
transitions from a normal to superconducting state. Here we present the results of measurements
of the flux trapping sensitivity on 1.3 GHz elliptical cavities made from large-grain niobium with
different purity for different cooldown dynamics and surface treatments. The results show that lower
purity material results in a higher fraction of trapped flux and that the trapped flux sensitivity
parameter S is significantly affected by surface treatments but without much change in the mean
free path l. We discuss our results within an overview of published data on the dependencies of
S(l, f) on l and frequency f using theoretical models of rf losses of elastic vortex lines driven by weak
rf currents in the cases of sparse strong pinning defects and collective pinning by many weak defects.
Our analysis shows how multiscale pinning mechanisms in cavities can result in a maximum in S(l)
similar to that observed by the FNAL and Cornell groups and how pinning characteristics can be
extracted from the experimental data. Here the main contribution to S come from weak pinning
regions at the cavity surface, where dissipative oscillations along trapped vortices perpendicular to
the surface propagate into the bulk well beyond the layer of rf screening current. However, the
analysis of S as a function of only the mean free path is incomplete since cavity treatments change
not only l but pinning characteristics as well. The effect of cavity treatments on pinning is primarily
responsible for the change of S without much effect on l observed in this work. It also manifests
itself in different magnitudes and peak positions in S(l), and scatter of the S-data coming from the
measurements on different cavities which have undergone different treatments affecting both l and
pinning. Optimizations of flux pinning to reduce flux sensitivity at low rf fields is discussed.

I. INTRODUCTION

The performance of superconducting radio-frequency
(SRF) cavities is measured in terms of the dependence
of the unloaded quality factor Q0 = G/Rs on the accel-
erating gradient, Eacc, where the factor G depends on
the cavity geometry, and Rs(Eacc) is an average surface
resistance. Recent advances in the processing of bulk nio-
bium cavities have resulted in significant improvements
of the quality factor and reducing Rs via diffusion of im-
purities over a few micrometers from the inner surface
of the cavities [1, 2]. It has been shown both experi-
mentally and theoretically that additional rf losses result
from a residual magnetic flux trapped in the supercon-
ductor in the form of quantized magnetic vortices during
the cavity cooldown through the superconducting transi-
tion temperature, Tc. Understanding the physics of this
process is important to minimize the amount of trapped
magnetic flux and reduce the RF losses. For instance, it
was found that the amount of trapped flux is affected by
the cooling rate, as well as the magnitude and direction
of the temperature gradient during the cavity transition
to the superconducting state [3–8].
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The typical material used for the fabrication of SRF
cavities is bulk, 3 − 5 mm thick, fine-grain (∼ 50 μm
average grain size) niobium with the normal state resid-
ual resistivity ratio (RRR) of ∼ 300. Large-grain nio-
bium, with grain size typically greater than ∼ 1 cm, is
an alternative material for the fabrication of SRF cavi-
ties [9]. One study showed that the losses due to trapped
magnetic flux in a large-grain Nb cavity were lower than
typically measured in fine-grain cavities of comparable
purity and for similar temperature gradients [10]. Fur-
thermore, experiments on SRF cavity-grade Nb samples
showed that pinning in large-grain Nb is weaker than
in fine-grain niobium [11]. The ability to expel flux in
fine-grain cavities improved after annealing in a vacuum
furnace at 900-1000 ◦C [12], which typically results in
grain growth and reduction of density of dislocations.
Flux trapping occurs due to pinning of flexible line

vortices by materials defects distributed throughout the
cavity wall. Yet not all of these vortices contribute to
the rf losses as the rf dissipation is due to the oscillation
of vortex segments driven by the rf current at the sur-
face. Figure 1 depicts four representative configurations
of pinned vortices in the equatorial region of the cavity:
normal to the surface, pinned by strong single pins or
pinned collectively by array of weak pins, parallel to the
surface, or pinned deeper in the bulk.
There can be multiple pinning mechanisms even in
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high-purity niobium, with stronger pinning by large non-
superconducting precipitates like hydrides, grain bound-
aries, dislocation networks and weaker collective pinning
of randomly distributed small precipitates or impurities
resulting in local variations of mean free path, δl or crit-
ical temperature, δTc (see, e.g., a review [13–15]). It is
known that impurities can play a major role in deter-
mining the performance of niobium SRF cavities, and
treatments such as low-temperature baking (LTB) [16]
or doping by thermal diffusion [1, 2] allow changing the
superconducting properties at the surface. Such treat-
ments could not only change the mean free path in the
normal state but also affect the spatial distribution, den-
sity and strength of pinning centers. Experimentally, the
impact of trapped vortices on Q0(Eacc) is characterized
by a trapped flux sensitivity, S = Rres/B0, given by
the ratio of the residual surface resistance, Rres and the
magnitude of the trapped flux, B0. Such quantity re-
flects the overall dissipation due to vortices trapped by
different pinning centers and for different configurations,
some of which are shown in Fig. 1.

FIG. 1. A sketch of the curved cavity wall with trapped vor-
tices in the equator region (not in scale). Dots represent pin-
ning centers, and red lines represent flexible line vortices. The
rf current flows in the inner surface layer within the London
penetration depth ∼ λ. Vortices 1 and 2 have segments nor-
mal to the surface, 1 is pinned by one strong pin, and 2 is
pinned collectively by several weak pins. Vortex 3 has two
pinned segments parallel to the surface within λ. Vortex 4 is
not exposed to the rf field and does not contribute to rf losses.

Recent studies focused on the dependence of S at low
rf field (∼ 20 mT) on the mean free path and the fre-
quency [17–19] of fine-grain, high-purity elliptical cav-
ities. In such studies, different mean free path values
resulted from different annealing processes. However,
such processes can also alter the pinning characteristics.
The objective of this work is twofold: (i) to evaluate the
low-field S-parameter in large-grain cavities with differ-
ent bulk impurities concentration and structural defects
to infer the ability of such impurities and defects to pin

vortices and (ii) to compare the results with published
data and with theoretical models of the rf dissipation of
vortices pinned with different orientations with respect
to the surface and with different pinning strength.
The paper is organized as follows. In Sec. II the experi-

mental setup used for the measurements of S is described.
In Sec. III we present the results of our measurements
of the flux sensitivity parameter S. In Sec. IV we com-
pare our experimental data with other data published in
the literature and fit the data using different theoreti-
cal models to infer flux pinning characteristics and other
important superconducting parameters. In Sec. V we
discuss contributions of different pinning mechanisms to
S and the effect of the mean free path on superconduct-
ing parameters which control S. Sec. VI gives the main
conclusions of our work.

II. EXPERIMENTAL SETUP

Three 1.3 GHz single-cell cavities made from discs
cut from ingots with different purity were used for this
study. The cell shape is that of the cavities for the
TESLA/XFEL project [20], cavity TC1N1 is a center-
cell shape (G = 269.8 Ω), cavities G2 and KEK-R5 are
end-cell shape (G = 271.6 Ω). The cavity name, ingot
Nb manufacturer and main interstitial impurities for each
ingot are shown in Table I.
The cavity TC1N1 and G2 were fabricated and pro-

cessed at Jefferson Lab [21, 22], whereas the cav-
ity KEK-R5 was fabricated and processed initially at
KEK [23][63]. All three cavities were electropolished, re-
moving ∼ 20 μm of material from the inner surface, prior
to this study.
To explore the effect of the surface preparation on the

flux expulsion and the sensitivity of Rres to trapped flux,
the cavity G2 was re-measured after nitrogen doping.
The doping procedure consisted of annealing the cavity
at 800 ◦C for 3 hours in vacuum, followed by 2 minutes
of exposure to nitrogen at pressure ∼ 25 mTorr. The
nitrogen was then evacuated and the cavity temperature
was maintained at 800 ◦C for 6 minutes. The cavity was
electropolished to remove ∼ 7 μm from the inner surface.

Another treatment which affects the near-surface su-
perconducting rf properties of niobium is the LTB. After
electropolishing, the cavity KEK-R5 was baked at 120 ◦C
for 24 hours in ultra-high vacuum and re-tested.
The setup of the experiment is shown in Fig. 2. A

Helmholtz coil of diameter ∼ 30 cm was used to create
a uniform magnetic field around the cell. Three single-
axis cryogenic flux-gate magnetometers (FGM) (Mag-F,
Bartington) were mounted on the cavity surface parallel
to the cavity axis in order to measure the residual mag-
netic flux density at the cavity outer surface during the
cooldown process. Two magnetic sensors were placed
at the equator, ∼ 180◦ apart, whereas one sensor was
placed on the beam tube, close to the iris, to ensure the
uniformity of the magnetic flux before the cooldown. The
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TABLE I. Purity and manufacturer of the ingots used for the fabrication of the three single-cell cavities used in this study.

Cavity Name Nb ingot supplier Bulk RRR Ta (wt. ppm) H (wt. ppm) C (wt. ppm) O (wt. ppm) N (wt. ppm)
TC1N1 Ningxia, China 60 < 100 3 9 100 30
KEK-R5 CBMM, Brazil 107 ∼ 1034 < 10 < 30 < 30 10

G2 Tokyo-Denkai, Japan 486 ∼ 81 < 0.5 < 1 < 1 < 1

FIG. 2. Experimental set up of the single-cell cavity with
Helmholtz coils, flux-gate magnetometers and Cernox sensors.

magnetic field uniformity within the cavity enclosure is
∼ ±1 mG. Six calibrated temperature sensors (Cernox,
Lakeshore) were mounted on the cavity: two at the top
iris, ∼ 180◦ apart, two at the bottom iris, ∼ 180◦ apart,
and two at the equator, close to the flux-gate magne-
tometers. The distance between the temperature sensors
at top and bottom iris is ∼ 20 cm.

The measurement procedure is as follows: (i) the mag-
netic field was initially set below 2 mG using the field
compensation coil that surrounds the vertical dewar,
without any current applied to the Helmholtz coils. (ii)
the standard cavity cool-down process was applied, re-
sulting in ∼ 4 K temperature difference between the top
and bottom iris, corresponding to a temperature gradi-
ent of ∼ 0.2 K/cm. The temperature and magnetic field
were recorded until the dewar was full with liquid He and
a uniform temperature of 4.3 K was achieved. (iii) Q0(T )
at low rf field (peak surface rf magnetic fieldBp ∼ 10 mT)
from 4.3−1.5 K was measured using the standard phase-

lock technique. (iv) The cavity was warmed-up above
Tc (∼ 9.2 K). (v) The cavity was cooled back down to
4.3 K while keeping the temperature difference between
two irises below 0.1 K and recording the temperature and
magnetic field. (vi) Q0(T ) from 4.3−1.5 K was measured
once more. (vi) The cavity was warmed up above Tc and
the current on the Helmholtz coils is set to a certain
value. Steps (ii) to (v) were repeated for three different
values of magnetic field.
Fig. 3 shows the results of a magnetostatic finite el-

ement analysis using the software COMSOL [24] for a
single-cell cavity of the same geometry as the one used for
our experiments. A magnetic field of 10 mG was applied
along the cavity axis and the color map shows the dis-
tribution of the magnetic field calculated for a perfectly
diamagnetic cavity in the ideal superconducting state.
Figure 3(b) shows the ratio of the magnetic field just
outside the equator in the superconducting state divided
by the applied field as a function of the permeability of
the cavity. Different values of permeability represent dif-
ferent amount of trapped magnetic field.

III. EXPERIMENTAL RESULTS

A. Cool-down and flux expulsion

The ratio of the residual dc magnetic field measured
after (Bsc) and before (Bn) the superconducting tran-
sition qualitatively explains the effectiveness of the flux
expulsion during the transition. A value of Bsc/Bn = 1
represents complete trapping of magnetic field during
cooldown, whereas a flux expulsion ratio of 1.7 at the
equator and 0.4 at the iris would result from the ideal
superconducting state, as shown in Fig. 3(b). Experi-
mentally, Bsc/Bn depends on the Nb material and on
the temperature gradient along the cavity axis during
the cool-down. Values of Bsc/Bn close to the theoretical
estimate could be achieved with high temperature gradi-
ent (ΔT > 10 K) [4, 10, 12, 17]. A representative plot of
the residual magnetic field at the FGMs locations mea-
sured during one cool-down cycle for cavity G2 is shown
in Fig. 4. The average value of Bsc/Bn for the two FGMs
at the equator was 1.45 ± 0.05, whereas Bsc/Bn = 0.35
for the FGM close to the iris. The jumps in magnetic flux
density occurred at 8.9 K for sensor m1, 9.1 K for sensors
m2 and 9.3 K for sensor m3. The temperature difference
between the top and bottom iris when the bottom iris
reached 9.2 K was 2.6 K.
Figure 5 shows the average flux expulsion ratio at the
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FIG. 3. (a) Contour plot of the magnetic field distribution around the perfectly diamagnetic cavity, Bsc, with an applied axial
uniform magnetic field Bn = 10 mG, shown by the arrow. (b) The flux expulsion ratio as a function of relative permeability
(μr) of the bulk Nb at the center of the FGM at the equator.

FIG. 4. Temperature and magnetic field during transition
from normal to superconducting state measured during a cool-
down cycle of cavity G2.

equator measured for the three cavities (TC1N1, KEK-
R5 and G2) after removal of ∼ 20 μm from the inner
surface by electropolishing and after N-doping of cavity
G2 and LTB of cavity KEK-R5. All three cavities showed
good flux expulsion with Bsc/Bn ∼ 1.5 when the tem-
perature difference between irises was greater than 4 K.

B. rf measurements

The average rf surface resistance was obtained from
the measurement of Q0(T ) at low rf field (Bp ∼ 10 mT)
for two different cool-down conditions, one with uniform

FIG. 5. Average flux expulsion ratio at the equator as a
function of the temperature difference (iris-to-iris) on cavities
after EP surface treatment, N-doping (G2) and LTB (KEK-
R5). The lines are sigmoidal fits to the data and are a guide
to the eye.

temperature (ΔT < 0.1 K) and one with high temper-
ature gradient (ΔT > 4 K). Such measurements were
repeated at different applied dc magnetic field, Ba, prior
to each cool-down. The Rs(T ) data are shown, as an ex-
ample, in Fig. 6 for cavity G2. The data were fitted with
the following equation:

Rs(T ) = RBCS(T, ω, l,Δ) +Rres, (1)

where the BCS surface resistance RBCS was computed
numerically from the Mattis-Bardeen (M-B) theory [25]
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FIG. 6. Rs(T ) measured in electropolished cavity G2 for cool-
downs with ΔT > 4 K with different applied dc magnetic field
values prior to cool-down. Solid lines are fits with Eq. (1).

using the Halbritter code [26]. The mean free path, l and
the ratio Δ/kBTc were regarded as fit parameters, where
Δ is the energy gap at T = 0, and kB is the Boltzmann
constant. We took Tc = 9.2 K, the coherence length,
ξ0 = 39 nm and the London penetration depth, λ0 =
32 nm for Nb in the clean limit, ξ0 � l at T = 0.

The values of l and Δ/kBTc did not change, within
experimental uncertainty, with different cool-down condi-
tions or applied dc magnetic field < 50 mG. The weighted
average values of l and Δ/kBTc from eight data sets for
each cavity are shown in Table II. These mean free path
values indicate that the surfaces of all three cavities were
in a moderate dirty limit l � ξ0. The extracted value
of Δ/kBTc is ∼ 20% lower in the low-purity cavity as
compared to the other two. Since the mean free path
may vary over the scale � λ(T ) perpendicular to the sur-
face the temperature range used to extract l is indicated
between parenthesis in Table II.
The curves of Q0(Bp) measured at 2.0 K after cool-

down with ΔT > 4 K and Bn < 5 mG for each cavity
and treatment listed in Table II are shown in Fig. 7 and
they are fairly typical for those treatments. There was no
field emission in any of the tests. A multipacting barrier
occurred at 136 mT during the test of G2, causing a drop
in the Q-value.

Figure 8 shows the residual resistance as a function of
the dc magnetic field before the cavity transitions from
the normal to superconducting state, Bn, in the two cool-
down conditions, one which leads to good flux expulsion
(ΔT > 4 K) and one which leads to nearly complete flux
trapping (ΔT < 0.1 K).
For uniform cool-down, the measurements of Bsc/Bn

indicate that nearly all the magnetic flux is trapped,
Bn ∼ B0, therefore Rres(Bn) can be described by:

Rres(Bn) = Rres0 + SBn, (2)

where Rres0 accounts for contributions to the residual

FIG. 7. Q0(Bp) measured at 2.0 K after cool-down with ΔT >
4 K and Bn < 5 mG for each cavity and treatment listed in
Table II. The arrows indicate the quench field.

resistance other than trapped flux, such as nonsupercon-
ducting nano-precipitates, suboxide layer at the surface,
broadening of the density of states [27], etc. For cool-
down with large ΔT , only a fraction ηt of the applied
field is trapped so Rres(Bn) can be described by:

Rres(Bn) = Rres0 + ηtSBn. (3)

The slope from a least-square linear fit of Rres(Bn) for
ΔT < 0.1 K is the trapped flux sensitivity, whereas
the fraction of the applied field which is trapped can
be obtained from the slope of a least-square linear fit
of Rres(Bn) for ΔT > 4 K. The values of S, Rres0 and
ηt are listed in Table II for the three cavities. A common
value of Rres0 was obtained by the least-square fit from
the two data sets for each cool-down condition.
The slope of Rres(Bn) for cavity G2 after N-doping

is close to the value after EP if the cavity is cooled in
a large temperature gradient, however it increases by a
factor of ∼ 2 after a uniform cool-down. The residual
resistance of cavity KEK-R5 after LTB increased by ∼
3 nΩ and S increased by ∼ 40%, compared to the values
after EP. After this set of measurements, the cavity KEK-
R5 was re-processed by annealing at 800 ◦C/3 h in a
vacuum furnace, followed by ∼ 20 μm removal by EP
and LTB at 120 ◦C/24 h. The measurements of Rres(Bn)
were repeated and the results were within one standard
deviation from the results of the previous test after LTB,
indicating the reproducibility of the results.
In order to obtain information about the normal state

mean free path near the surface, we measured the res-
onant frequency and the quality factor while warming
up the cavities from ∼ 5 K to ∼ 10 K using a vector-
network analyzer, from which Rs(T ) and the change in
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TABLE II. S, Rres0 and fraction of the applied field being trapped, ηt, obtained from fits of Rres(Bn) for different cool-down
conditions and weighted average values of mean free path and Δ/kBTc obtained from fits of eight data sets of Rs(T ) between
1.5− 4.3 K for each cavity.

Cavity Name Bulk RRR Treatment l(1.5− 4.3 K) (nm) Δ/kBTc Rres0 (nΩ) S (nΩ/mG) ηt (%)
TC1N1 60 EP 27± 13 1.833± 0.004 2.9± 0.6 0.64± 0.06 56± 15
KEK-R5 107 EP 26± 10 1.856± 0.004 0.7± 0.1 0.29± 0.01 33± 6

LTB 27± 13 1.873± 0.004 3.6± 0.3 0.44± 0.02 30± 12
G2 486 EP 26± 25 1.867± 0.004 1.8± 0.1 0.59± 0.01 19± 3

N-doping 26± 25 1.838± 0.004 1.6± 0.2 1.04± 0.01 16± 7

rf penetration depth Δλ(T ) can be obtained in this tem-
perature region [16]. These measurements were done on
cavities TC1N1 after EP, KEK-R5 after LTB and G2 af-
ter N-doping at a peak surface rf magnetic field in the
range 0.03 − 0.3 mT and the data are shown in Figs. 9
and 10. The data in the superconducting state were fit-
ted using the numerical solution of M-B theory. The ra-
tio Δ/kBTc was obtained from the fit of Rs(T ), whereas
l(7.5−9.1 K) and Tc are weighted averages of the results
from the fit of both Rs(T ) and Δλ(T ). The normal-state
dc resistivity at 10 K, ρn, was calculated from the value
of the surface resistance at 10 K using a numerical so-
lution of the surface impedance of normal metals [28].
To calculate the surface RRR = ρ(293 K)/ρn, we took
ρ(293 K) = 14.7 μΩ cm. The value of mean free path
can be calculated as follows [27]:

l(10K) =
�
(
3π2

)1/3
n
2/3
0 e2ρn

, (4)

where � is Planck constant, e is the electron charge and
n0 is the electron density. We used n0 = 7 · 1028 m−3

obtained from the measurements of the Hall coefficient
RH = 1/en0 in Nb [29]. Table III lists the values of Tc,
Δ/kBTc and l from fitting of the surface impedance in
the superconducting state, as well as the surface RRR,
the skin depth, δn, and l in the normal state at 10 K.

IV. COMPARISON OF EXPERIMENTAL DATA
WITH THEORETICAL MODELS

Rf dissipation due to trapped vortices has been calcu-
lated both for a pinned vortex which has a segment nor-
mal to the inner cavity surface [27, 30] and for a pinned
vortex which has multiple segments parallel to the inner
surface [31], as illustrated by Fig. 1. Such models allow
calculating the trapped flux sensitivity and its depen-
dence on the mean free path and pinning forces. This re-
quires solving the equation of motion of an elastic vortex
under the action of the viscous, bending, pinning and the
rf current driving forces causing the local displacement
of the vortex line u(z, t) in the xy plane [14, 15]:

ηu̇ = εu′′ −
∑
m

fp(u− rm, z − zm) + Fe−z/λ+iωt. (5)

Here F = φ0Bp/μ0λ is the amplitude of rf driving force
with the angular frequency ω, η is the viscous drag coef-
ficient, the overdot and the prime denote differentiation
over time and the coordinate z perpendicular to the sur-
face, respectively. Eq. (5) includes the sum of elementary
pinning forces fp(r − rm) produced by materials defects
located at (xm, ym, zm) and the term εu′′ accounts for
elastic bending distortions. The vortex line tension ε
generally depends on the wave number kω of the vortex
ripple but for long wavelengths λkω � 1 relevant to the
cases considered below, ε can be approximated by [14, 32]

ε � φ2
0

4πμ0λ2
(lnκ+ 0.5) , (6)

where κ = λ/ξ is the Ginzburg-Landau (GL) parameter.
Solution of the nonlinear Eq. (5) can be simplified us-

ing the fact that pinning in Nb cavities is weak, that is,
typical depinning critical current densities Jc are orders
of magnitude lower than Jc of superconducting materials
with artificial pinning centers used in magnets [13]. For
instance, Jc ∼ 108 A/m2 measured on Nb ingots [11] is
4 orders of magnitude smaller than the screening depair-
ing current density Jd � φ0/4πμ0λ

2ξ � 2 · 1012 A/m2

which flows at the surface at H � Hc. This suggests
that pinning may be produced by either dense arrays
of weak materials defects or by sparse arrays of strong
pins spaced by distances � λ. In this case calculation
of the vortex rf losses can be reduced to the analysis of
three representative cases depicted in Fig. 1: 1. A vor-
tex nearly parallel to the surface and pinned strongly by
sparse materials defects; 2. A vortex perpendicular to the
surface and pinned strongly by a materials defect spaced
by � from the surface. 3: A vortex perpendicular to the
surface pinned collectively by randomly distributed weak
defects. Calculations of Rres for these cases were done
in Refs. [27, 30, 31]. The corresponding formulas used
for the analysis of the experimental data are given in the
Appendices. Here we do not consider strong correlated
pinning caused by planar grain boundaries like in Nb3Sn
of α-Ti ribbons like in NbTi, or columnar defects like
dislocations or radiation tracks [14, 15, 33–35].
For vortices parallel to the surface [31], the main con-

tribution to Rres comes from vortex segments exposed
to the rf current. The distance of the vortex from the
surface d cannot be shorter that a critical value dm at
which the attraction of the vortex to the surface exceeds
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TABLE III. Material parameters Tc, l and Δ/kBTc obtained from fits of Rs(T ) and Δλ(T ) between 7.5 − 9.2 K with M-B
theory. The surface RRR, skin depth, δn, and mean free path in the normal state, l(10 K), were obtained from the surface
resistance at 10 K.

Cavity Name Bulk RRR Treatment Tc (K) l(7.5− 9.1) K (nm) Δ/kBTc Surface RRR δn (nm) l(10 K) (nm)
TC1N1 60 EP 9.19± 0.06 107± 58 1.90± 0.09 49 776 254± 7
KEK-R5 107 LTB 9.19± 0.05 122± 74 2.0± 0.2 107 573 550± 16

G2 486 N-doping 9.24± 0.03 114± 29 1.96± 0.06 37 884 189± 7

the pinning force. As shown in Appendix B 1, dm is de-
termined by the following equation:

e−2dm/λ � κJc
Jd

√
dm
πλ

, (7)

where Jc ∼ fp/�φ0 is a depinning current density, � is a
mean pin spacing, and fp is an elementary pinning force:

fp = ζμ0πH
2
c ξ

2. (8)

The parameter ζ which quantifies the gain in the conden-
sation energy at the pinning defect is maximum (ζ ∼ 1)
for the strongest core pining by a dielectric precipitate of
radius r0 � ξ [13–15, 35]. For a small precipitate r0 < ξ,
we have ζ ∼ (r0/ξ)

3 � 1 [13, 14]. For atomic impu-
rities, ζ ∼ σ/ξ2 � 1, is proportional to the scattering
cross-section σ on the impurity in the normal state [36].
If the vortex stretched along the applied dc fieldB0 [37]

gets within the expulsion distance dm from a curved cav-
ity surface, it splits into two disconnected parts, as shown
in Fig. 1. The parallel vortex segments exist within a
belt of width h along the equator, where h can be eval-
uated from the condition R2 � (R − dm)2 + h2. Hence,
h � (2Rdm)1/2, where R is the curvature radius of the
cavity and dm ∼ (λ/2) ln(Jd/κJc) follows from Eq. (7)
with a logarithmic accuracy in ln−1(Jd/Jc) � 1. Thus,

h ∼
√
λR ln1/2

Jd
κJc

. (9)

For R � 0.1 m, λ = 40 nm, Jc ∼ 10−3Jd, and κ = 1,
Eq. (9) gives h ∼ 0.1 mm. The flux sensitivity is then
S‖ ∼ Rresγ‖/B0, where γ‖ = 2πhR/A is the fraction
of the cavity surface area A contributing to the trapped
flux losses. Our calculations of S‖ using the formulae for

Rres(B0) [31] at γ‖ ∼ 10−4 have shown that pinned vor-
tex segments parallel to the surface result in S‖ which
is some 4 orders of magnitude smaller than S values ob-
served on Nb cavities. Therefore, the main contribution
to the flux sensitivity in Nb cavities comes from trapped
vortices perpendicular to the surface [30]. Two essential
contributions to S are considered below.

For a perpendicular vortex pinned by a strong defect
at z = �, the trapped flux sensitivity is given by [30]:

S � γφ0χ
2

2ηλ

[
5 + χ2

(1 + χ2)2
− 2

χ3/2
Im

tanh
√
iν√

i(1− iχ)2

]
, (10)

χ =
ωη

ε
λ2, ν =

ωη

ε
�2. (11)

Here the rf current causes bending disturbance extending
over the ripple length Lω along the vortex line [30]

Lω =

√
ε

ηω
=

ξ

2λ

√
gρn
πμ0f

, (12)

where g = ln(λ/ξ) + 1/2, f is the rf frequency and
η = φ2

0/2πξ
2ρn. For Nb with λ ≈ ξ and ρn = 10−9 Ω m,

we have Lω � 180 nm at 1 GHz. Thus, oscillating bend-
ing distortions of the elastic vortex can extend well be-
yond the rf field penetration depth, Lω being practically
independent of T and decreasing as the m.f.p. decreases.
For instance, in the dirty limit, λ � λ0(ξ0/l)

1/2 and

ξ � √
ξ0l, we have Ldirty

ω � Lclean
ω

√
l/ξ0. If the pin

distance � exceeds Lω the flux sensitivity is independent
of the pinning force. The factor γ in Eq. (10) takes into
account the spatial distribution of trapped vortices over
the cavity surface (see Appendix B):

γ =
φ0

∫
n(r)H2(r)dA

Bn

∫
H2(r)dA

, (13)

where n(r) is the local areal density of vortices com-
ing out of the inner cavity surface, H(r) is a tangen-
tial component of RF magnetic field at the surface. For
a statistically-homogeneous distribution of trapped vor-
tices piercing the cavity along the dc field Bn, the ratio
n(r)φ0/Bn → cos θ(r) depends only on the angle θ(r)
between the normal to the cavity surface and Bn, and γ
depends only on the cavity shape and the rf mode. For
the TM010 mode in the elliptical cavities studied in this
work, we calculated γ = 0.61 numerically and used this
value in the analysis of the experimental data.
Since the amplitude of the rf ripples along the vor-

tex line decreases exponentially over the length Lω, pins
spaced by � � Lω from the surface have no effect on
Rres, whereas pins closer to the surface reduce Rres. For
sparse pins, Rres is dominated by dissipative oscillations
of free vortex segments between the pins. Thus, vortex
segments of length � > Lω cause the highest rf losses in-
dependent of details of the pinning forces fp(u). The net
rf power is determined by statistical averaging of Rres

over the random pin spacing from the surface [30, 31]

R̄res =

∫ ∞

0

G(�)Rres(�)d�, (14)

where G(�) is a distribution function of the pin spacings.
Random distribution of the nearest pin positions along
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FIG. 8. Residual resistance as a function of applied dc mag-
netic field, Bn, measured for different cool-down conditions
and surface treatments for cavities TC1N1 (top), KEK-R5
(middle) and G2 (bottom). The solid lines are linear least-
squares fits to the data.

the cavity surface manifests itself in strong fluctuations
of local vortex losses in hotspots caused by vortex bun-
dles pinned deep inside the cavity wall and having long
dangling segments of length � Lω at the surface.
In the case of weak collective pinning of a perpendic-

ular vortex, Eq. (5) can be simplified to the following
equation for small displacement of the vortex u(z, t):

ηu̇ = εu′′ − αu+ Fe−z/λ+iωt. (15)

Here the term −αu describes the effect of pinning, and
the Labusch spring constant α [13–15, 32] is evaluated

FIG. 9. Surface resistance versus temperature between 7.5 K
and 12 K measured on cavity TC1N1 after EP, KEK-R5 after
LTB and G2 after N-doping.

FIG. 10. Change of penetration depth as a function of the re-
duced temperature parameter y = 1/

√
1− (T/Tc)4 measured

on cavity TC1N1 after EP, KEK-R5 after LTB and G2 after
N-doping. Solid lines are fit with M-B theory.

in Appendix C for arrays of small nanoprecipitates or
atomic impurities. The rf current flowing at the surface
causes oscillations of the vortex line which extend over
the complex Campbell penetration length [13, 15, 32]:

λc =

[
ε

α+ iωη

]1/2
. (16)

For weak collective pinning at GHz frequencies, ωη � α,
Eq. (16) reduces to Eq. (12), giving Lω → λc which
can significantly exceed λ, as it was shown above. In this
case the rf losses occur not only in the surface layer of
the rf currents but also come from oscillations of long
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segments of vortex lines extending deep inside the cav-
ity wall over the length ∼ Lω � λ. In the static
limit λc reduces to the Larkin pinning correlation length
Lc � ξ(Jd/Jc)

1/2 which defines a length scale of bending
distortion along the vortex line [14, 15, 38]. For Nb with
λ ≈ ξ ≈ 40 nm, Jd � φ0/4πμ0λ

2ξ = 2 · 1012 Am−2

and Jc ∼ 108 − 109 Am−2 [11, 13], we have Jc ∼
(10−4 − 10−3)Jd and Lc � 2 − 4 μm, consistent with
the fits of experimental data presented below.
The trapped flux sensitivity in the case of weak collec-

tive pinning is given by (see Appendix B):

S(ω, l) = −γφ0χ

2ηλ
Im

[
s+ 2

s(s+ 1)2

]
, (17)

where s = λ/λc =
√
k + iχ and k = αλ2/ε.

In this work we focus on trapped vortex losses at low
fields, Hp � Hc � 200 mT, leaving aside complex issues
of nonlinear vortex losses at high fields. Low-frequency
vortex losses at high rf fields have been addressed theo-
retically both for weak collective pinning and hysteretic
depinning of vortices from strong pins [32]. A quasi-static
theory of collective pinning was used to address the linear
dependence of the vortex surface resistance on the rf field
amplitude [39] observed on Nb cavities. In what follows
we use Eqs. (10) and (17) to reveal manifestations of dif-
ferent pinning mechanisms in the observed dependencies
of S on the mean free path in Nb cavities.

A. Mean free path dependence

The electron mean free path can be altered by sur-
face treatments so getting the values of l from the cav-
ity measurements is not always straightforward. Usu-
ally l is extracted from fitting the observed surface
impedance, Zs(T ), using numerical solutions of the M-B
theory [25, 26]. The l values can vary depending on the
temperature-dependent depth probed by rf current [16].
There are many uncertainties in evaluating l from the
M-B fits coming from both the BCS model assumptions
and/or computational intensive grid-search methods to
find a global minimum of chi-squared [40]. Additional
contributions to the rf losses can result from a proxim-
ity coupled thin suboxide metallic layer [42, 43], common
broadening of the gap peaks in the idealized BCS density
of state [27], significant effects of strong electron-phonon
coupling in Nb [44] or two-level systems [45] which are
not taken into account in the M-B model. By contrast,
obtaining l from the Drude Eq. (4) only requires knowl-
edge of ρn and the electron density.
At GHz frequencies the normal skin depth is about

3−10 larger than the rf penetration depth at T < 0.85Tc,
so measurements of Zn(T, f) in the normal state probe a
thicker surface layer across which l can vary due to ma-
terials treatment. However, measurements of Zn(T ) at
microwave frequencies on Nb coupons at T slightly above
Tc may give a more reliable information about l in the

40 − 100 nm thick surface layer relevant to SRF cavi-
ties. Evidences of variation of l across the surface were
obtained from muon spin rotation (μSR) experiments on
Nb samples treated by EP and LTB which showed that l
changes from l � 2 to 16 nm within the depth in the 100
nm surface layer [41]. The M-B fit of Rs(T ) in LTB cav-
ities gave l ∼ 26 nm and l � 200 nm in cavities treated
by EP [16]. The values of l(1.5 − 4.3 K) ∼ 26 nm ex-
tracted fom the M-B fits for all three EP cavities shown
in Table II are lower than typical, which may be due to
the cavities’ treatment history.

Our flux sensitivity data plotted as a function of l are
shown in Fig. 11 (a) and (b). To see how different cavity
treatments manifest themselves in the observed flux sen-
sitivity, we also plotted the S(l) data observed on fine-
grain 1.3 GHz cavities made of high-purity Nb and of
the same shape as the cavities in our work [17, 18]. In
Ref. 18 fifteen different cavities were subjected to dif-
ferent annealing treatments followed by EP. In Ref. 17
six different cavities were subjected to different anneal-
ing followed by different amount of material removal by
EP. The S-values of Ref. 17 were multiplied by a correc-
tion factor of 0.58 [46] to be compared with the data of
Refs. 18 and 19 and our work. As far as we are aware,
all flux sensitivity data shown in Fig. 11 have been ob-
tained using the same experimental methodology, where
the l values have been extracted from the M-B fits of the
temperature-dependent surface impedance [25, 26].

Both S(l) data sets of Refs. 17 and 18 have clear max-
ima as functions of the m.f.p. but with very different val-
ues of the peak position and magnitude, lmax and Smax.
This indicates that different treatments of cavities done
in Refs. 17 and 18 produce different distribution and
type of pinning centers which manifest themselves in dif-
ferent flux trapping efficiency and rf losses. However, if
the flux sensitivity data of Refs. 17 and 18 are normal-
ized to their respective values of Smax and plotted as
functions l/lmax, both datasets approximately collapse
onto a universal bell-shape curve, as shown in Fig. 11
c. This behavior suggests a scaling of S(l) which will
be discussed later. Strong scatter of experimental data
likely results from the fact that all data points in Fig.
11 correspond to different cavities which have undergone
different treatments resulting in particular values of l.
However, such materials treatment can not only change
the mean free path but also spatial distribution, strength
and volume density of pins, so the data in Fig. 11 repre-
sent a convoluted effect of materials treatments on both
l and pinning characteristics. Indeed, our experimental
data exhibit significant changes in the S-values but rather
small changes in l after the cavity treatments, indicating
that they mostly affected pinning characteristics rather
than the mean free path.

Now we relate the correlation of S and l observed Refs.
17 and 18 and shown in Fig. 11 to different pinning
mechanisms. Consider first the rf losses caused by per-
pendicular vortex segments pinned by strong sparse pins.
Shown in Fig. 11(a) is S(l) calculated from Eq. (10) at



10

FIG. 11. Trapped flux sensitivity at 1.3 GHz as a function
of mean free path. Solid lines are calculated for the case of a
vortex normal to the surface pinned by a strong pin (a) or by
weak collective pinning (b). Dashed lines are extrapolations
to the clean limit for each case. The mean free path values
were obtained from M-B fits above 5 K using Halbritter’s
code. The trapped flux sensitivity data from Refs. [17] and
[18] are shown normalized to the respective peak value and
plotted as a function of the mean free path scaled to the value
at which S is maximum in each data set in (c).

1.3 GHz using � as a fit parameter and the dependencies
of λ(l), ξ(l), η(l) on mean free path from Appendix A.
We used the vortex viscosity η(l) = φ2

0/2πξ
2ρn given

by the Bardeen-Stephen model, although this model is
valid only in the dirty limit l � ξ0. Therefore, a discrep-
ancy between the theory and experimental data can be

expected in a moderate clean limit l � ξ0, where the re-
sults of calculations are shown as dashed lines in Fig. 11.
Here S(l) calculated at a fixed � has a broad maximum
at l � 100 nm. The maximum in S(�) becomes more
pronounced if the pin spacing � is proportional to l, as it
was proposed in [17]. This assumption might be justified
if pinning is caused by small precipitates which also act
as electron scattering centers.
Figure 11(b) shows the fits of the flux sensitivity data

to the model in which S(l) is caused by perpendicular
vortices pinned collectively by weak small pins. Here S
was calculated from Eq. (17) at 1.3 GHz and γ = 0.61,
using the Labusch spring constant α(l) = α0(1 + ξ0/l)
evaluated in Appendix C and regarding the pinning pa-
rameter k0 = α0λ

2
0/ε0 in the clean limit as a fit param-

eter. As l decreases, a maximum in S(l) occurs due to
interplay in the decrease of the vortex viscosity η(l) in
a moderately clean limit and the increase of the pinning
constant k(l) = αλ2/ε � k0(1 + ξ0/l)

3 as the vortex line
gets softer in the dirty limit.
As follows from Fig. 11, perpendicular trapped vor-

tices pinned by either strong sparse pins or by collective
interaction with random array of weak pins can result
in bell-shape S(l) dependencies, in qualitative agreement
with experiments. The fits are hardly perfect, which may
reflect the fact that both l and pinning characteristics are
generally affected by the cavity treatments. In addition,
several pinning mechanisms operating on different scales
can contribute to S, the relative weight of these contribu-
tions can vary along the cavity surface. For instance, vor-
tex hotspots can occur either in regions devoid of strong
pins or regions with weak δl pinning due to impurity fluc-
tuations or regions with weak random δTc pinning. Net-
works of dislocations can be clustered in some regions
of the surface and be absent in others. Because of very
low densities of vortices in cavities, lateral fluctuations
of pinning along the cavity surface are very strong, and
different pinning mechanisms can operate simultaneously
in different hotspots. Here the largest contributions to S
likely come from regions with weak or no pinning in the
first 100− 200 nm at the inner surface of the cavity.
If S is mostly determined by the weak collective pin-

ning, the value of the parameter k0 = α0λ
2
0/ε0 used to fit

the S(l) data in Fig. 11 (b) allows us to roughly evaluate
pinning characteristics. For small dielectric nanoprecip-
itates of radius r0 < ξ0, the mean pin spacing � can be
expressed in terms of k0 using Eq. (C5):

� � λ0√
k0

(
2

3g

)2/3(
r0
ξ0

)2

, (18)

where np = �−3 is the volume density of pins. For in-
stance, if r0 = 5 nm, ξ0 = λ0 = 40 nm, and g =
lnκ + 1/2 = 1/2, Eq. (18) yields � � λ0 � 38 nm at
k0 = 4 · 10−4. Weaker proximity coupled metallic nano-
precipitates require a higher pin density as compared to
dielectric precipitates to provide the same value of k0. On
the other hand, Eq. (18) may overestimate the volume
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density of nanoprecipitates because another contribution
to α comes from δl pinning due to fluctuations of the
mean free path. As shown in Appendix C, δl pinning
can be essential in a dirty surface layer with sparse small
nanoprecipitates if the condition (C11) is satisfied.
The Labusch constant α can be expressed in terms of a

depinning current density Jc by equating the Larkin pin-
ning correlation length Lc ∼ ξ

√
Jd/Jc [14] to the static

Campbell length λc =
√
ε/α, where Jd = φ0/4πμ0λ

2ξ
and ε is given by Eq. (6). Hence,

α � φ0gJc/ξ. (19)

It is instructive to express Jc and Lc in terms of the
dimensionless pinning parameter k = αλ2/ε extracted
from the fits of Eq. (17) to the flux sensitivity data:

Jc = kJd/κ
2, Lc = λ/

√
k. (20)

For the typical values of k0 ∼ 10−3, we obtain Jc ∼
10−3Jd and Lc ∼ 30λ for clean Nb with κ � 1. This
shows that: 1. Pinning in Nb cavities is indeed weak, as
was mentioned above. 2. Dissipative oscillations of the
elastic vortex extend well beyond the layer of the surface
rf current which excites these oscillations. Notice that
these Jc values correspond to a layer z � λc at the Nb
surface where the density of structural defects which can
pin vortices is typically much higher than in the bulk.
Because of stronger pinning in the surface layer caused
by different materials and mechanical treatments used
in the cavity production, it is not surprising that the Jc
values extracted from the S-fits are an order of magnitude
higher than global Jc obtained from the measurements of
magnetization loops on Nb ingots [11].

B. Frequency dependence

Figure 12 shows the trapped flux sensitivity normalized
to the respective high-frequency limits Sn = S/Shf as a
function of the dimensionless frequency χ = ωηλ2/ε. The
data from Refs. 17–19, and 48 are plotted along with the
data from this work and are fitted to Eqs. (10) and (17)
for different values of the model parameters.
Since χ depends on l, cavities resonating at the same

frequency but with different mean free path values result
in different values of χ. While most of the data shown in
Fig. 12 are for 1.3 GHz cavities, there are also three data
points each for 650 MHz, 2.6 GHz and 3.9 GHz elliptical
cavities [19]. The data in Ref. 48 were obtained from
different cavities with frequencies in the range 81 MHz -
21.5 GHz and had been corrected for the cavity geometry
with respect to the direction of the applied field.
It should be pointed out that in Refs. 18 and 19 the

mean free path in cavities after LTB was not obtained
from RF measurements but the same value l = 16 nm was
assigned, based on μ-SR measurements on Nb coupons.
The mean free path close to the surface was also not
measured in Ref. 48 and we used the value obtained

from the reported bulk RRR in order to calculate Shf

and χ for such set of data. These assumptions along with
the issues discussed above can contribute to the strong
scatter of the data in Fig. 12.

FIG. 12. Normalized trapped flux sensitivity as a function of
the dimensionless frequency χ = ωηλ2/ε for a vortex normal
to the surface by a strong pin (a) or weak collective pinning
(b). Solid lines are calculated with Eqs. (10) and (17) with
different values of models parameters shown in the legend.

V. DISCUSSION

A. Bulk vs. surface pinning

The data listed in Tables II show that the fraction of
magnetic field trapped during cool-down with ΔT > 4 K
increases with decreasing bulk RRR of the cavity and it
is not significantly affected by surface treatments, such
as N-doping and LTB. This important finding suggests
that pinning is dominated by the bulk materials proper-
ties, which is consistent with the results of Ref. 12. The
grain structure is similar in all three cavities, and the
major differences are in the concentration of interstitial
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impurities, which should be uniformly distributed in the
material. On the other hand, the trapped-flux sensitiv-
ity does not seem to be correlated with the bulk RRR.
This can be expected since only trapped-vortex segments
at the surface contribute to rf losses. The flux sensitiv-
ity S increased by ∼ 50% after LTB and ∼ 76% after
N-doping, showing that surface treatments significantly
affect S, consistent with published data on fine-grain Nb
cavities [12, 17, 18]. Lower material purity can result in a
larger fraction of the trapped flux because the vortex line
tension ε � ε0(1+ξ0/l)

−1 decreases as l decreases, there-
fore making it easier for a vortex to be pinned. While the
surface RRR is similar to the bulk value for the low-purity
cavity after EP and the medium purity cavity after LTB,
it is much smaller than the bulk value for the high-purity
cavity after N-doping. This suggests that the diffusion of
N during the infusion process occurs over a depth of the
order of the skin-depth ∼ 1 μm in this case. This result
is consistent with measurements of the impurities depth
profile in N-doped Nb samples [49, 50].

The scatter of the S(l) data shown in Figs. 11 and 12
likely comes from the measurements of S on different cav-
ities which have undergone different treatments affecting
both l and pinning characteristics. Another contribution
to the scatter of the S-data may come from the ambi-
guity in determining l within the top ∼ 40 nm surface
layer, as it was discussed in Sec. IVA. The data from
Refs. [17, 18] exhibit a maximum in S(l) but the position
of the maximum lm in these two sets of data differ by
an order of magnitude. Such a big difference in the peak
positions lm can hardly be entirely attributed to differ-
ent ways of extracting l from the data used by differ-
ent groups but rather indicates a significant difference in
pinning strengths which causes flux trapping in the first
place. After rescaling S/Smax as a function of l/lmax

both datasets approximately collapse onto a universal
curve as shown in Fig. 11 (c). Such scaling is indica-
tive of S(p) being a function of one parameter p which
absorbs both the mean free path and pinning character-
istics. The single-parameter scaling takes place in S(s)
given by Eq. (17) for the collective pinning model and
S(ν) in Eq. (10) for strong sparse pins in the limit of
χ � 1 characteristic of Nb cavities (see Fig. 12).

Analyzing S(l) as a function of only the mean free path
does not give a complete picture of flux sensitivity since
heat treatments change not only l but also spatial distri-
butions of impurities or oxide/hydride nanoprecipitates
affecting the δ� or δTc collective pinning, or correlated
pinning by grain boundaries or dislocation networks. For
instance, our data which show a significant change in flux
sensitivity without much change in l could be understood
assuming that LTB or N doping facilitate either a dif-
fusive coalescence or dispersion of pinning nanoprecipi-
tates. In this case both the radius of precipiates r0 and
the pin spacing � would change after each heat treatment
but the volume fraction of a nonsuperconducting phase
4πr30np/3 = (4π/3)(r0/�)

3 remain constant. As a result,
the pinning parameter k0 which controls the behavior of

S(l) for the collective δTc pinning would evolve as k0 ∝ r20
at a constant ratio r0/� in Eq. (C5). Cavity treatments
could cause diffusive shrinkage or dissolution of sparse
strong pinning oxide or hydride nanoprecipitates within
the layer of thickness � Lω at the surface, which would
obviously increase flux losses. Heat treatments can also
affect segregation of impurities on dislocations or grain
boundaries which changes pinning forces [34].

B. Models of the trapped flux sensitivity and
comparison with experimental data

The flux sensitivity S(l, f) calculated for different pin-
ning mechanisms increases as l decreases in the clean
limit and then decreases at shorter l, as shown in Fig. 11.
Here the maximum in S(l) results from interplay of the
decrease of the vortex viscosity and increase of the pin-
ning strength as l decreases as was also pointed out
by Checchin et al. [51] using the Gittleman-Rosenblum
(GR) model [52]. We showed that the observed S-values
can be obtained from Eq. (10) with � � λ0 or from
Eq. (17) with reasonable assumptions regarding the size
and concentration of defects. The position and the mag-
nitude of the maximum of S(l) depend on frequency and
the pinning strength quantified by either the Labusch
constant α of the pin spacing �. The main contribution
to S comes from weak pinning regions in which dissipa-
tive oscillations along vortices extend into the bulk well
beyond the layer of rf screening current.
Identifying a correlation between the materials defects

and vortex hotspots would require rf measurements of
Q(T ) and temperature maps on the cavity combined with
electron microscopy of coupons cut out from the same
cavity. Yet even such putative state-of-the-art experi-
ments may not pinpoint the pinning defects responsible
for the dominating rf losses of trapped flux. Indeed, the
strongest hotspots are produced by perpendicular vortex
segments which are either pinned collectively by many
weak pins such as clusters of atomic impurities or by
strong pins like nonsuperconducting precipitates, which
can be hundreds nanometers away from the surface. In
that case surface probes can miss the materials defects
resulting in the strongest vortex losses.
Models of pinned vortices driven by the rf current must

include a finite vortex line tension ε, otherwise there
would be no pinning [13–15, 33, 35]. Indeed, at ε → ∞
a straight stiff vortex cannot be pinned by randomly dis-
tributed materials defects. In the limit of zero ε, soft vor-
tex segments between pinning centers would bow out and
reconnect under any infinitesimal Lorentz force of current
[15, 33, 35]. These issues are relevant to the models of rf
vortex losses [51, 53] in which the vortex line tension was
disregarded and the GR model [52] was used. However,
the GR model was proposed to describe short perpendic-
ular vortices driven by a uniform rf current in a thin film.
By contrast, a rf current flowing at the cavity surface ex-
cites dissipative ripples along the elastic vortex extending
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over the length Lω � λ and producing losses deep inside
the cavity wall. This effect cannot be described by the
GR model which is applicable to nearly straight perpen-
dicular vortices in thin films or SRF thin coatings, if the
film thickness is smaller than the Campbell penetration
depth λc [38]. In the static limit λc becomes the Larkin
pinning correlation length Lc ∼ 102λ estimated above.
At 2 GHz Lω drops down to � 200 nm which is about 5
times larger than λ in clean Nb.
The randomness of spatial distribution of pinning cen-

ters in the cavity wall can result in strong local fluc-
tuations of flux trapping efficiency which are especially
pronounced at low density of trapped vortices. The flux
sensitivity S then results from spatial averaging over dis-
tributions of �-values, pinning strengths and positions
of vortex segments relative to the surface. However, S
also depends on such extrinsic factors as the history of
cooling the cavity through Tc, temperature cooling rate
and the directions and magnitudes of local temperature
gradients. Moreover, local flux losses can vary signif-
icantly even if the average densities of pinning centers
and trapped vortices are constant. Indeed, the regions
which have pinning centers within the rf surface layer
would greatly reduce flux losses, whereas pin free regions
at the rf surface would have much stronger flux losses if
the vortex is trapped by pins deep inside the cavity wall.

C. Optimization of flux pinning

Given the multitude of mechanisms of flux trapping
and their strong dependencies on the materials treat-
ment, one could pose the question: Is flux trapping in-
evitable and to what extent can the vortex losses be re-
duced to an acceptable level by optimizing pinning nanos-
tructure? The answer to the first part of the question
is yes: flux trapping occurs during the cavity cooldown
through Tc at which the energy barrier for the vortex
creation vanishes so any materials defects both in the rf
layer and deep inside the cavity wall can trap vortices. A
fraction of these vortices escapes upon cavity cooldown
but some of them remain trapped. The statistical na-
ture of pinning and the effect of cooling conditions make
distributions of trapped vortices very cavity-dependent.
The answer to the second part of the question depends

on the rf field range. At low fields H � Hc, flux losses
can be mitigated by materials defects which pin vortices
at the surface, and S can be further reduced by engineer-
ing a dirty layer at the surface. At the same time, a high
density of metallic pins spaced by � λ would greatly
increase the eddy current losses even without trapped
vortices, whereas non-metallic pins such as nano pores
would increase the BCS losses by reducing the current-
carrying cross-section and increasing the rf field penetra-
tion depth. At high rf fields mitigation of flux losses
by pinning becomes ineffective because it cannot pro-
vide Jc � Jd to counter the rf screening current den-
sity close to the depairing limit at H ≈ Hc = 200 mT.

Previous works on artificial pinning centers in high-Jc
superconductors [56–60] have shown that the maximum
Jc ∼ (0.1 − 0.2)Jd can be reached at the optimum vol-
ume fraction of pins xc ∼ 10% due to interplay of vortex
pinning and current blocking by pins [33, 35, 38]. Thus,
even the optimum pinning structure cannot really reduce
flux losses at H � 0.1Hc, not to mention that such dense
array of nanoprecipitate would greatly increase the eddy
current and BCS losses. At high rf fields, trapped vortices
can also result in a significant field dependence of Rs(H),
possibly contributing to the extended Q(H) rise due to
the Larkin-Ovchinnikov decrease of the vortex drag η(v)
with the vortex velocity [62].

VI. CONCLUSION

Our results of measurements of flux trapping and
trapped flux sensitivity of large-grain cavities made for
Nb ingots with different content of interstitial impurities
suggest that the fraction of trapped flux increases with
decreasing purity of the material and it is insensitive to
surface treatments. On the other hand, the trapped flux
sensitivity depends on the surface conditions such as the
local mean free path and distribution of pinning centers.
The mean free path and frequency dependencies of the

low-field trapped flux sensitivity observed on different
elliptical cavities by different groups show similar cor-
relations and universal behaviors after proper rescaling.
Models of rf dissipation due to oscillating trapped vor-
tices perpendicular to the surface can capture the behav-
ior of flux sensitivity observed in this paper and previous
works although the available data are not sufficient to
determine which pinning mechanisms dominates.
Given a limited extent by which flux sensitivity at high

fields can be mitigated by pinning defect nanostructure,
we believe that a more efficient way of reducing vortex
losses would be to optimize the cooling procedure of the
cavity to minimize the amount of trapped flux. As was
shown in previous works, this can be achieved by inho-
mogeneous cooling the cavity through Tc, which can push
out a significant portion of trapped vortices [3–10] due to
strong temperature gradients [30, 31].
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Appendix A: Dependencies of superconducting
parameters on the mean free path

Here we summarize dependencies of superconducting
parameters on the mean free path used in our fitting of
the experimental data. At T � Tc the BCS theory gives
an analytical formula for λ and ξ as functions of l caused
by scattering on nonmagnetic impurities [27]. Popular
approximations of λ(l) and ξ(l) are:

λ = λ0

(
1 + ξ̃0/l

)1/2

, (A1)

ξ = 0.74ξ0

(
1 + ξ̃0/l

)−1/2

, (A2)

where ξ̃0 = 0.88ξ0. The product ξλ is independent of l
as a consequence of the Anderson theorem, according to
which the thermodynamic critical field Bc is unaffected
by nonmagnetic impurities. At T ≈ Tc, this also follows
from the GL result Bc = φ0/2

3/2λξ, whereas at T = 0
the BCS theory gives

Bc(0) = (μ0Nn)
1/2Δ0, (A3)

where Nn = m2vF /2π
2
�
3 is the normal density of states,

and the gap Δ0 is independent of l. Here ξ0 = �vF /πΔ0

and λ0 = (m/μ0ne
2)1/2 are the clean limit values of ξ

and λ at l � ξ0, where vF is the Fermi velocity, m is the
effective electron mass, and n is the electron density.

The vortex drag coefficient η = φ2
0/2πξ

2ρn in the
Bardeen-Stephen model is obtained assuming that the
vortex core is a normal cylinder of radius ξ with a bulk
resistivity ρn. This implies that the mean free path is
smaller than the core diameter, l �

√
lξ0, that is, the

Bardeen-Stephen formula is only applicable in the dirty
limit l � ξ0. Substituting Eq. (A2) into η = φ2

0/2πξ
2ρn

and using the Drude formula for ρn = pF /ne
2l, gives:

η � π2
�nΔ

4EF

(
l

ξ0
+ 1

)
, (A4)

where pF and EF are the Fermi momentum and energy.
Thus, η is independent of l in the dirty limit. Yet the
Bardeen-Stephen model has been used in many works
to describe moderately clean superconductors l � ξ0 for
which Eq. (A4) is not really applicable. Microscopic
calculations of η in a moderately clean limit give [47]

η � φ2
0

8πξ20ρn
ln

Δ

kBT
. (A5)

Here η exhibits a linear dependence on l similar to that
of Eq. (A4). However, the use of the Bardeen-Stephen
model in a moderately clean limit l � ξ0 disregards a
factor � 0.25 ln(Δ/kBT ) which can be essential when
fitting the experimental data.

Appendix B: Trapped flux sensitivity formulae

Here we summarize the formulae for Rres(B0) obtained
by solving the dynamic equation for a flexible vortex line

driven by weak rf surface current and interacting with
pinning centers for three characteristic configurations of
trapped vortices shown in Fig. 1. In all cases, the normal
state resistivity used in the calculation of η is given by
Eq. (4): ρn = (7.48× 10−10μΩm2)/l.

1. Pinned vortex parallel to the surface

The minimum distance of a stable vortex segment from
the surface dm is determined by the following balance of
the pinning and the vortex image forces:

φ2
0

2πμ0λ3
K1

(
2dm
λ

)
= φ0Jc. (B1)

For weak pinning, Jc � Jd the asymptotic expansion of
K1(z) = (π/2z)1/2e−z at z > 1 can be used. In this case
Eq. (B1) reduces to Eq. (7).

2. Vortex perpendicular to the surface. Sparse
strong pins.

Dynamics of a perpendicular vortex segment of length
� pinned by a defect spaced by z = � from the surface is
described by the equation:

ηu̇ = εu′′ + F exp(−z/λ+ iωt) (B2)

with the boundary condition u(�, t) = 0 and u′(0, t) = 0.
Using the solution of Eq. (B2) and the surface obtained
in Ref. [30], the flux sensitivity S = Rres/B0 can be
recast to Eqs. (10) and (11). In the high-frequency limit,
χ � 1, Eq. (10) yields:

Shf =
φ0

2ηλ
. (B3)

3. Vortex perpendicular to the surface. Weak
collective pinning.

For a vortex interacting collectively with a radom array
of weak pinning centers spaced by distances smaller than
λ, the dynamic equation for the vortex perpendicular to
the surface takes the form:

ηu̇ = εu′′ − αu+ F exp(−z/λ+ iωt), (B4)

where the Labusch spring constant α describes the av-
eraged effect of pinning [13, 14, 32] as discussed in Ap-
pendix C. The solution of Eq. (B4) which satisfies the
boundary condition u′ = 0 at z = 0 is:

u(z, t) =
Hpφ0e

iωt

αλ2 − ε+ iωηλ2

(
λe−z/λ − λce

−z/λc

)
. (B5)

Here the complex Campbell penetration depth λc [13, 14,
32] which defines the ripple length of the elastic vortex
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line disturbed by the rf current is given by Eq. (16). The
surface resistance takes the form [27]:

Rres = −2πB0μ0λ
3ω

φ0g
Im

[
s+ 2

s(s+ 1)2

]
, (B6)

where s = λ/λc =
√
k + iχ, and k = αλ2/ε. In the

high-frequency limit, χ � 1, Shf is given by Eq. (B3).
To relate Rres with the flux sensitivity in a cavity we

write the quality factor in the form:

Q0 =
ωμ0

∫
H2(r)dV∫

Rres(r)H2(r)dA+RBCS

∫
H2(r)dA

. (B7)

Here Rres(n) = Rres(B0)n(r)φ0/B0 depends linearly
on the density of perpendicular vortices n(r), where
Rres(B0) is defined by Eqs. (??) and (B6). Hence,

Q0 =
G

RBCS + γRres(B0)
, (B8)

where G is a geometric cavity constant and the factor γ
accounting contributions of trapped vortices at different
locations on the inner cavity surface is given by Eq. (13).
Consider a model spherical cavity with H2 ∝ sin2 θ

and n(r)φ0/B0 = | cos θ|, where θ is the polar angle be-
tween the direction of the dc magnetic field B0 and the
local normal unit vector to the surface. This implies a
statistically uniform distribution of trapped vortices in
the plane perpendicular to B0 in which case:

γ =

∫ π

0

| cos θ| sin3 θdθ
[∫ π

0

sin3 θdθ

]−1

=
3

8
. (B9)

The integrand in the numerator of Eq. (B9) is maximum

at sin θ =
√
3/2 so vortices coming out of the inner cavity

surface at θ � 60◦ contribute most to S.

Appendix C: Evaluation of the Labusch constant

To evaluate α in Eq. (B4) we use the standard ap-
proach of the collective pinning theory [14] for randomly-
distributed weak pins, for example, small dielectric pre-
cipitates of radius r0 < ξ producing the maximum pin-
ning energy up ∼ 4πB2

c r
3
0/3μ0. The Larkin pinning cor-

relation length Lc is determined by the condition that
the elastic bending energy ∼ εu2/Lc of a vortex segment

of length Lc is of the order of the pinning energy up

√
N

produced by the fluctuation number of pins N within the
interaction volume r2pLc. Here N ∼ npr

2
pLc, where np is

the volume density of pins, rp ∼ ξ is a pin interaction
radius, and u ∼ rp:

ε
r2p
Lc

∼ (npLcr
2
p)

1/2up. (C1)

Hence,

Lc ∼
(

εξ

up
√
np

)2/3

, up � 4πr30B
2
c

3μ0
. (C2)

Comparing Eq. (C2) with Lc = (ε/α)1/2 expressed in
terms of the Labusch constant α, yields

α ∼ u
4/3
p n

2/3
p

ξ4/3ε1/3
. (C3)

To see the dependence of α on the m.f.p., we notice that
up is independent of l because of the Anderson theorem,

whereas ε = φ2
0g/4πμ0λ

2 = ε0(1 + ξ̃0/l), and ξ � ξ0(1 +

ξ̃0/l)
−1/2, where ξ̃0 ≈ 0.88ξ0. Thus,

α = α0

(
1 +

ξ̃0
l

)
. (C4)

Substituting Eq. (6) for ε and the GL formula for Bc =
φ0/2

3/2πλξ into Eqs. (C2) and (C3), the dimensionless
pinning parameter k0 = α0λ

2
0/ε0 which we used to fit the

experimental data can be written in the form:

k0 =

(
λ0

�

)2(
2

3g

)4/3(
r0
ξ0

)4

, (C5)

where the mean pin spacing � is defined by np = �−3.
The above contribution to α comes from δTc pinning

caused by small precipitates of reduced (or zero) Tc. An-
other contribution to α comes from δl pinning resulting
from statistical fluctuations of the m.f.p. of atomic im-
purities. The formula for α is obtained in the same way
as Eq. (C3) with the replacement of the density of nano-
precipiates np → ni to the density of impurities ni and
the elementary pinning energy at T ≈ Tc [14, 36, 61]:

up � 4πB2
c

3μ0
r3i , ri ∼ (Gξ0σ0)

1/3, (C6)

G(ξ0/l) ≈ 1

1 + ξ̃0/l
. (C7)

Here the effective interaction radius ri depends on the
scattering cross-section on impurity σ0 [36] related to l
and ni by σ0ni = l−1. Using Eq.(C3), (C6), we obtain:

α ∼ u
4/3
p n

2/3
i

ξ4/3ε1/3
. (C8)

From Eqs. (C6)-(C7) and ni = 1/σ0l, it follows that

αi =
αi0(ξ̃0/l)

2/3

(1 + ξ̃0/l)1/3
, (C9)

αi0 �
(
4πB2

c

3μ0

)4/3
σ
2/3
0

ξ
2/3
0 ε

1/3
0

. (C10)

Equations (C4) and (C9) show that δTc and δl pinning
result in different dependencies of αi on the m.f.p. Here
δl pinning becomes ineffective in the clean limit l � ξ0
and gives a weaker dependence of α ∝ l−1/3 on l than
α ∝ l−1 for δTc pinning in the dirty limit. Yet αi can
exceed α in the dirty limit if

σ2
0ni

(ξ−1
0 + l−1)2

� r60np. (C11)
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Here the impurity scattering length ∼ √
σ0 is of the order

of atomic size, so that
√
σ0 � r0 < ξ0, but the volume

density of impurities ni can be much larger than the vol-
ume density of nanoprecipitates, np � ni.
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