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This paper proposes a probabilistic extension to flexible hybrid state estimation (FHSE) for cyber-physical sys-
tems (CPSs). The main goal of the algorithm is improvement of the system state tracking when realistic com-
munications are taken into account, by optimizing information and communication technology (ICT) usage.
These advancements result in: 1) coping with ICT outages and inevitable irregularities (delay, packet drop and
bad measurements); 2) determining the optimized state estimation execution frequencies based on expected

measurement refresh times. Additionally, information about CPSs is gathered from both the phasor measurement
units (PMU) and SCADA-based measurements. This measurement transfer introduces two network observability
types, which split the system into observable (White) and unobservable (Grey) areas, based on 1) deployed
measuring instruments (MIs) and 2) received measurements. A two-step bad data detection (BDD) method is
introduced for ICT irregularities and outages. The proposed algorithm benefits are shown on two IEEE test cases
with time-varying load/generation: 14-bus and 300-bus.

1. Introduction

With persistent advancements in communication systems and an
ever-increasing demand for reliable and efficient electric energy, ICT is
set to become a vital part of every power system. For electric utilities
ICT is a key enabler for system monitoring, control, protection and data
processing [1-3]. However, this increased reliance also has to ac-
knowledge possible ICT irregularities. Thus, a reshaping of whole
power system perception is required, by modeling and operating them
as heavily intertwined two-layer cyber-physical systems (CPSs), con-
sisting of:

1. Cyber parts—primarily used for information exchange, formed by
ICTs [4].

2. Physical parts—primarily used for electric power generation,
transmission and consumption, formed by power elements [5].

This transition offers opportunities to modify and enhance opera-
tions of Energy Management System (EMS). One important component
is state estimation (SE), which provides vital information for utili-
ties—the system state [6]. A straightforward addition for SE is CPS
observability, which defines at what system’s areas SE can be executed
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based on available measurements. The paper aims at:

1. forming a probabilistic CPS observability model, and
2. acquiring the best possible state tracking when ICT irregularities
and outages are taken into account.

The first objective can be viewed as enhancing the observability
models by incorporating information provided by CPS—formation of a
probabilistic observability model. Conventionally, observability was
derived from deployed measuring instruments (MIs), which represent
devices that transform a physical variable of interest (e.g. voltage
magnitude) into a form that is suitable for recording (measurement)
[7]1. Or rather, the availability of a measurement was determined by the
existence of a corresponding MI [8]. Here, a more comprehensive
model is proposed, by additionally taking into account the measure-
ment transfer details. This gives more thorough ICT information, as the
focus is both on what MI exist and when their sent packets will be
available. One such research idea is presented in [9], where a statistical
model of observability was formed, but for systems with solely PMUs.
This paper follows on this idea by trying to do the same for systems with
remote terminal units (RTUs) and PMUs (hybrid systems), and use such
a model to improve state tracking. Initial exploration of this idea is
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presented in the authors’ recent work [8] which focuses on static SE
(SSE). The approach is extended here by:

e Incorporating the probabilistic observability model into a more
complex state estimator which can tackle ICT irregularities and
outages.

® Developing a two-tail significance test used for testing the prob-
abilistic observability models which are first viewed as a hypothesis.
This test is also adjusted to detect ICT outages.

With this observability platform, the focus can move on to the
second objective—SE with ICT irregularities and outages. Several re-
cent research strands address various ICT issues, their consequences
and how to deal with them when performing SE. The authors’ work in
[11,12] examined packet delays and drops, their sensitivity to com-
munication parameters, and their (negative) effects on SE, where the
lessons learned will be further used in this paper when developing an
appropriate state estimator and its corresponding tools. An Iterated
Extended Kalman Filter (KF)-based SE for cases of observation and in-
novation outliers and non-Gaussian PMU noise is shown in [13]. While
[14] proposes an estimator for the limited number of measurements
and uncertain system parameters, [15] addresses for correlated SCADA
and PMU measurements, non-Gaussian errors and non-synchronized
measurements. Cubature KF for tackling temporary communication
failure or packet loss is given in [16]. Performance degradation due to
observation delays and irregular sampling is analyzed in [17]. Re-
ference [1] examines approaches, scopes and major advancements in
CPS security and reliability. Quantifying the impacts of ICT element
failure and transmission interference on operation reliability is shown
in [18]. Finally, the IEEE Task Force on Power System Dynamic State
and Parameter Estimation recently published an overview of today’s
state-of-the-art estimators [19].

The starting point for the second objective (the best achievable state
tracking with ICT irregularities and outages) will be Flexible Hybrid
State Estimation (FHSE), which can deal with measurement packet
delays and drops as shown in [20]. With the derived probabilistic CPS
observability model, FHSE will be further enhanced to:

e Calculate the optimal SE frequency in terms of expected measure-
ment refresh times.

e Detect, identify and deal with ICT irregularities and outages via a
two-step Bad Data Detection (BDD) model, developed for this paper.

The remainder of the paper is as follows. Section 2 formulates the
problem and presents the mathematical model of FHSE. Section 3 dis-
cusses CPS observability in terms of deployed MI and available mea-
surements. Section 4 expands on this idea by including ICT irregula-
rities and forming a probabilistic extension to observability, which is
further used to calculate the optimal SE frequency. Section 5 discusses
cyber-physical reliability and defines the two-step BDD method. The
proposed algorithm and numerical results are shown in Sections 6 and
7, respectively. Conclusions in Section 8 are followed by the list of re-
ferences.

2. Problem formulation
The following CPS information is assumed available:

e Measurements—RTU- and PMU-based (hybrid system). Note that it
is assumed that each measurement has a timestamp specifying when
it was taken.

¢ Measurement transfer details—set of transfer time values based on a
large number of simulations executed by the Network Simulator 2
(NS-2) tool, a discrete-event, object-oriented simulator, targeted at
communication network simulation and examination [21]. Different
communication irregularities may be simulated through classes,

Electrical Power and Energy Systems 122 (2020) 106179

such as packet delays and drops through LinkDelay Class and Er-
rorModel Class, respectively. For further information about simula-
tions in NS-2, please refer to [20].

e Model for slow dynamics—bus power injection pseudo-measure-
ments derived from load/generation forecast or daily profiles. Note
that it is assumed at least one such measurement is available at each
bus.

To have a good overview of ICTs, a system partitioning into ap-
propriate areas is proposed based on 1) deployed MI, and 2) received
measurements.

Deployed Measuring Instruments (MIs)

In terms of the deployed M, the CPS can be split into 1) observable
(White), and 2) unobservable (Grey) areas (see Section 3.A). Ad-
ditionally, by incorporating this with the measurement transfer time
details, the optimal SE frequency can be derived (see Section 4).

Received Measurements

The CPS may also be split in the same way concerning the received
measurements (Section 3.B). Then, the state is estimated using one of
the two FHSE components [20]:

® SSE (Section 2.A)—the state of the entire CPS (or their part) may be
estimated using the SSE if enough measurements are provided for
the entire CPS (or their part) to be observable; or

e Forecasting-Aided State Estimation (FASE) (Section 2.B)—to over-
come measurement deficiency, the state transition matrix (F,) is
used. This matrix is driven by slow stochastic power injection (load/
generation) changes [19], which may be depicted by load/genera-
tion forecast, or daily load/generation curves.

Note that if appropriate measurements are not available, and certain
abrupt changes which cannot be tracked by F, have occurred (e.g. short
circuits, power line outages, etc.) this model cannot be used, as it will
lack appropriate information about the system.

Additionally, based on received measurements and FHSE results, the
proposed two-step BDD is executed (Section 5).

When forming any type of Hybrid SE, the following issues arise (and
are addressed later):

® SE reference bus [22]—since PMU angle measurements exist, there
is no need to define the reference bus, and voltage angles at all buses
are estimated.

¢ PMU-based measurement buffering [23,24]—to fully utilize PMU
fast sampling rates. In this paper, buffer length is set as the time
between two consecutive state estimations.

e Time skew of SCADA [25] and PMU [26] measurements—as all
measurements have time-stamps, SCADA measurements corre-
sponding to a high time skew may simply be disregarded. For PMUs,
ideal sampling clocks are assumed as a practical solution whose
details (local vs. GPS-derived) go beyond the scope of this paper.

A. Static State Estimation (SSE)

The SSE model for the n-th time instant is [6]:
z(t,) = h(x(s,)) + e(z,) (1)

where:

z(-), x(-) - measurement and state vectors, respectively;
h(-) - vector of nonlinear functions relating the measurement and
state vectors;
e(-) — measurement error vector.
B. Forecasting-Aided State Estimation (FASE)

The state transition matrix for the n-th time instant (F,) is derived in
[20]. To calculate this matrix, appropriate (pseudo) measurements from
which bus injection increments can be calculated are needed. These can
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be:

e Real-time measurements of load/generation (if available).
e When that is not the case, appropriate pseudo-measurements may be
1) load/generation forecast, or 2) daily load/generation profiles.

Once matrix F,, is formed, the system state can be calculated with
the Discrete Kalman Filter (DKF) [27]:

X(tn) = an(tn—l) + W(In—l) (2)

z(t,) = h(x(z,)) + e(tn) (3

where z(-), x(-), h(-) are the same as in Section 2.A, and:

w( -) — process noise, assumed as a zero mean multivariate normal
distribution with covariance Q;

e(-) — measurement noise, assumed as a zero mean multivariate
normal distribution, with covariance R.

Lastly, even though DKF will provide the states, in this paper it is
proposed that the final results be derived from SSE as [20]:

e SSE, which differs to the DKF in inputs/outputs, convergence cri-
teria and mathematical modeling assumptions, still remains the
main tool for state estimation in todays’ power utilities.

e DKF uses pseudo-measurements in form of system slow dynamics
(daily load/generation profiles), which are of low accuracy. The
additional SSE step is hence used to improve the state estimation
accuracy.

Thus, following DKF, the SSE-based state and measurement align-
ment is executed, where results from DKF are used as additional
pseudo-measurement for SSE (1). Note that these measurements have a
slightly better accuracy than the ones in form of system slow dynamics,
as they contain information which went through the DKF-based esti-
mator. Nevertheless, also note that these measurements should have a
lower weighting factor, and they are included only to the degree needed
to achieve observability.

3. Observability of a cyber-physical system (CPS)

Information used to observe a CPS is derived from the cyber layer
formed by ICTs. In this paper, the focus is on the real-time operational
communications [4]—MI, their corresponding communication channels
and information (measurements) they provide. These can be used to
define two types of observabilities, exploited in the proposed algorithm:

e Measuring Instrument observability (denoted by InstrO, Section
3.A)—conventional observability based on the MI deployment.

e Measurement observability (denoted by MeasO, Section 3.B)—ob-
servability based on the available measurements when the system
state is to be estimated.

Note that both of above defined observabilities will fall under the
category of numerical observability models [6].

A. Measuring Instrument Observability (InstrO)

Here, CPS is divided into observable and unobservable areas based
on the deployed MI (note that this convention is used in the rest of this
sub-section with regards to observability). A set of all non-redundant MI
in the system (denoted by £I¥") is formed first, together with its cor-
responding Jacobian matrix:

dhyg (%) ]

instr _
i = ax"

(4
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where hyg(-)is the vector of nonlinear functions relating the mea-
surements from é’&‘};\s“ and the state vector x( - ).

In this context, the non-redundant MI correspond to the linearly
independent rows in Hir?é" (for details of this procedure see [8]). It is
important to note that, for a given CPS, £1" (HNR") is generally not
unique as redundant measurements are usually needed in transmission
systems [28]. This is exploited here, as the proposed algorithm provides

an optimized £)5" (H}{Y") for a stated optimization goal (see Section 4).

Next, by utilizing HIY', the unobservable (and consequently ob-
servable) areas may be defined in a given CPS. By definition of a
Jacobian matrix, if a zero i-th column exists in HI%, it implies that
changes in x; have no effect on measurements from MI which form £
(4). The following proposition further argues that this conclusion can be
expanded to measurements from all systems’ MI.

Proposition 1. If a zero i-th column exists in HIYY, it implies that changes

in x; have no effect on measurements from any MI in the system.

Proof.. If changes in x; have an effect on measurements from an MI that
is not in £}2", by adding the corresponding row to Hy}" a non-zero
value in the i-th column would arise. But, as all other values in that
column are zero, the added MI must be non-redundant with the rest of

Instr, which is inconsistent with its definition.

From Proposition 1 the following may be concluded:

1. A zero i-th column in implies that there is no MI which directly or
indirectly measures x; By examining the analytical forms of the
Jacobian matrix HI%" [6], it may be concluded that no parameters
are measured at: 1) i-th bus; 2) any bus directly connected to i-th
bus, and 3) any branch directly connected to i-th bus. Thus, this
implies that the i-th bus and all branches directly connected to it are
unobservable—these elements form an unobservable area of the
CPS.

2. Expanding on the first conclusion, even though £ (HIES") is
usually not unique for a given system, unobservable (and ob-
servable) areas of the system are indeed unique. That is, measure-
ments from 5;1";" provide observability over the largest possible part

of the CPS.

Note that various other methods for finding unobservable areas
exist (see Section 4 in [6]). Nevertheless, the highlighted set of in-
formation [g%‘f“, HI] is obtained through other steps of the proposed
algorithm, which is why using this specific method becomes natural
(further explained in Section 4).

Thus, InstrO is used to separate the CPS into the following areas

(simplified example is shown in Fig. 1):

e Measuring Instrument White (InstrW)—observable considering the
available MIL.

e Measuring Instrument Grey (InstrG)—unobservable considering the
available MI.

B. Measurement Observability (MeasO)

Analogously, the CPS may be split into observable and unobservable
areas based on received measurements at the time the system state is to
be estimated. To do so, a set of non-redundant measurements (denoted

Fig. 1. Single line diagram of simplified CPS separated into InstrO areas.
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by &4') and its corresponding Jacobian matrix (denoted by Hyz™) are

formed, which are then used the same way as explained in Section 3.A.
Thus, the measurement observability (denoted by MeasO) is used to
separate the CPS into following areas:

¢ Measurement White (MeasW)—observable considering the available
measurements.

e Measurement Grey (MeasG)—unobservable considering the avail-
able measurements.

4. Probabilistic extension to observability

To assign probabilities to data transfer times, the concept of mea-
surement refresh times (t'f) is introduced, which denotes the time be-
tween two consecutive measurements of a certain MI received at the
EMS. These depend on a vast number of ICT parameters and irregula-
rities, such as type of channel, bandwidth, queue limit, send interval,
packet size, packet delay and drop probability [12]. Thus ™ present
stochastic variables with probability models that are difficult to ex-
plicitly describe.

To overcome this, this paper relies on communication simulation
tools, like NS-2 [21], to observe measurement transfer over a realisti-
cally modeled communication system. Thus measurement refresh times
observations, denoted f!-"ff (j-th observation for i-th MI), can be obtained
which represent:

¢ the time between measurements taken at time instances k and k + 1
received at the EMS, if neither of them have been dropped; or

¢ the time between measurements taken at time instances k and k + 2
(or k-1 and k + 1) received at the EMS, if measurement taken at
time instance k + 1 (k) has been dropped.

Thus, both packet delays and drops will be taken into account.

Based on such observations, for every ¢/ an estimate of their cu-
mulative distribution functions (CDF), the empirical CDF (ECDF), can
be derived [29]:

2 Number of elements in observation set<rt
Fri(t) =

N; (5)
where N; is the number of observations for the i-th MI (i.e. j =1, ..., N;

for rifff). Thus, by simulating data transfer over a long, but practically
feasible time period, a large number of observations is collected and a
good estimate of the underlying CDF can be numerically derived [8,28].
As a result, the ECDF will provide a one-on-one relationship between
refresh time values and their probabilities:

Fri(t™) = [T <1™] = o; (6a)
Fron(@r) = inf{teh: Fon (1) 2 g, ) (6b)
where:

g € (0, 1) — corresponding probability;

-1 - . P . . =
Z () — generalized inverse distribution function of .#r;().

Initially, these models are not proclaimed correct, but rather viewed
as hypotheses which have to be tested. Thus, hypothesis H} (ECDF is an
appropriate estimate for CDF of /) is defined for each i-th ML These
hypotheses are then evaluated using the two-tail significance testing
[10], as follows. First, the sample mean for each MI is calculated based
on refresh time observations:

1o
— f
= N Z 1y
: & @)

Using this information, it should be defined in which limits
(u; = AtP™*) does an actual observation of 17" have to be in order for us
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to accept the given H. To do so, the significance level a, which defines
the possibility of a false rejection error [10], has to be set:

o= @[‘#j _ tjrefl > Atibreak] (8)

Note that the same value of o will be assigned to all MI. For a low
false rejection error possibility, a is set to 0.03 (3%).
Next, Aqbreﬂk can be calculated from (8):

o= @[H‘ _ t‘_ref > Af,bmak OR = riref < _A[Jbreak]:

a = ga[tiref < Y — A[ibreak OR Eiref > b+ Atibreak]:>

Fal

o= ff"n(#; _ At‘_breﬂk) +1— (”jé;"l(yi + Al’ihmﬂk) )
After At is calculated, hypothesis H is evaluated as:

Hj isaccepted; g — A" < 1/ <y + AR

H{ isrejected; otherwise. (10)

Once adequate probability models are available, they can be further
used to improve ICT usage. One important aim is to derive the optimal
frequency for SE (denoted by Ar®F) with regards to measurement refresh
times. As seen in Proposition 1, the MI in ng‘}g“ proclaim the largest
possible part of the CPS as an InstrW area. To optimize the proposed
algorithm, the likelihood of this entire area being MeasW when trying
to estimate the system state should be maximized. This will indeed be
true if all measurements from §r£]“§“ are refreshed once MeasO is

checked. Thus, the following methodology is proposed:
1. Define &,
rinstr

2. For a certain calculate MI from &' (6); denote the largest value as
At and set AfSE = At

Two issues can be observed from this pseudo-algorithm:

As 5;1‘;;" is not unique (see Section 3.A), 50 is A (™,

Even for a certain &15", by changing ¢o; the resulting A ™ will
change too. Accordingly, if a higher certainty is requested (larger
%), more time should be allowed for the measurement to arrive
(larger A "), and vice versa. This will represent a trade-off between

At™ (want to minimize) and g (want to maximize).

A question may be raised now whether an optimal pair of é’&’g“ and
g exists (yielding an optimal At™), with a goal of maximizing the
number of times MeasO proclaims the entire InstrW area as MeasW over
a certain time period t. If so, this will produce an optimal AtSE, which
can be formalized as:

. t
ArSE = max { —}
S e a1
subject to:
At = max{r/*" | instrument i € {12 (11b)
eq. (6); (11c)
gr €0, 1). (11d)

Note that A ¢5F is to be determined only once at the beginning of the
algorithm, or when ICT outages occur, which is why (11) is solved by a
direct (exhaustive search) method [8].

Finally, through the procedure of acquiring AfE (11), corre-
sponding &' and Hfy" needed for InstrO are found (see Section 3.A).
In the text bellow, the set of these parameters [£%", HIST A r5E] will be

SNR
denoted by .
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5. Reliability of information and communication technologies
(ICTs)

Bad data from ICTs (CPS cyber portion) may have a significant in-
fluence on SE results, making an improved and efficient BDD model
necessary. Note that the focus is on ICT reliability (component failures),
rather than security. A two-step procedure, fully integrated into the
proposed SE algorithm, is thus proposed:

1. Pre-Estimation BDD (Section 5.A), executed before estimating the
state, based on the received measurements.

2. Post-Estimation BDD (Section 5.B), executed after estimating the
state, based on the SE results.

The following ICT bad data are thus examined:

e Measurement packet delays and drops—certain time has to pass
between a measurement being sent and received, with a possibility
of it being lost (dropped). This is taken into account with ECDF
models of t'f (see Section 4).

e Measurement errors—measured and actual parameter values often
differ. If this difference is significant, measurement errors are de-
tected. This is examined in the Post-Estimation BDD step.

¢ Component outages—due to failure of MI or communication chan-
nels. This is examined in the Pre-Estimation BDD step.

A. Pre-Estimation BDD

This step detects and identifies ICT outages using the two-tail sig-
nificance test, by checking if a measurement has not been received for
more than the predefined Atib'eak (10). It is important to note that
outages will be distinguished from packet drops, as the ECDF models
and thus Af™* are formed by taking into account possible packet
drops, which extends the waiting time before declaring ICT outages (see
Section 4).

Two types of such outages can be observed:

e ICT outage from £55"—a new W has to be defined (£53" can no
longer be the same).

e ICT outage not from £ %" —even though this will generally result in
SE result degradation, defining a new W is not required (£5", Hij"
and Ar*E will not change).

B. Post-Estimation BDD

This step utilizes SE results to further examine if measurement er-
rors exist in MeasW areas, or rather if the measured values deviate
significantly from the true parameter values. Note that as true para-
meter values are practically unattainable, this is tested by comparing
values calculated using the estimates and corresponding measurements.
One such well-known method, used in this paper, is the Largest
Normalized Residual (LNR) test [6].

If the LNR is greater than the predefined border value:

Foax Z B (12)

the test has failed, and the corresponding measurement is dis-
regarded from all future calculations. 3 is set to 3 for a high confidence
level [20].

6. The overall proposed algorithm

Steps of the proposed algorithm are described as:
Step 1: Initialize CPS

e Physical part: network parameters, load/generation parameters
(forecasts or daily profiles) and topology.

e Cyber part: the set of available MI (the initial system is assumed
entirely InstrW) and ICT parameters, such as channel types,
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bandwidths, queue limits, send intervals, packet sizes, etc.

Step 2: Form the set of measurement transfer times

Using the NS-2 or an analogous tool, simulate the packet transfer
through the observed CPS, and form a set of measurement refresh time
observations for every MI (see Section 4). Note that in test examples
these simulations are run for one hour (3600 s).

Step 3: Define the transfer time probability models

This step is done as explained in Section 4—based on information
from Step 2 define ECDFs and set up corresponding hypotheses Hy,. If it
is assumed ICT outages will not occur immediately, the hypotheses are
accepted (or rejected) after the first few arrived measurements (10).

Step 4: Define the initial ¥

This step is done as explained in Section 4, (11).

Step 5: Measurement reinstatement

If measurements have been received from MI previously lost (de-
noted as an outage), reinstate them into the set of available MI. Check
InstrO and form InstrW(G) areas (see Section 3.A). Finally, define ¥
over InstrW area (see Section 4).

Step 6: Pre-estimation BDD

This step is done as explained in Section 5.A. If outage from gl{,“;" has
occurred: check InstrO, form InstrW(G) areas, and define ¥ over InstrW
area.

Step 7: Creating the set of available measurements

To create the measurement set, information is obtained from two
different MI types used in this paper:

o RTU—latest received measurements are taken from each RTU,
which is common practice in real-life CPS [20]. However, in order to
overcome possible SCADA time-skew problems (see Section 2),
measurement considered as “old” are disregarded. In this paper, to
detect old measurements, it is observed how long ago they have
been taken—if this time is more than twice the sampling rate of
corresponding instruments, they are considered old.

e PMU—as measurement buffering is used, the average measurement
values are taken, where the buffer length is the time between two
consecutive state estimations (see Section 2).

Step 8: The FHSE
Based on the measurement set formulated in Step 7, check MeasO,
form MeasW(G) areas, and estimate the system state by utilizing:

e SSE (Section 2.A)—if the entire system is MeasW.
® FASE (Section 2.B)—if MeasG areas exist.

Step 9: Post-estimation BDD

This step is explained in Section 5.B. If measurement errors exist,
check InstrO, form InstrW(G) areas, and define ¥ over InstrW area.

Step 10: BDD imposed FHSE

If no measurement errors are detected in Step 9, the system state is
as calculated in Step 8. Otherwise, first disregard the corresponding MI
and their measurements, and then estimate the system state, as ex-
plained in Step 8.

7. Application

For the proposed algorithm, physical and cyber system parts are
modeled in MATLAB and NS-2 [21], respectively. These two parts are
then co-simulated using PiceSIM [30], providing the final CPS
models—14-bus (Section 7.A) and 300-bus (Section 7.B). For all ex-
amples note the following:

e CPSs are simulated for one hour (3600 s).

e Measurements are formed as random variables, with power flow
solution means and variances as following percentage of their
measured values: 1) 10~ for voltage magnitudes and angles; and 2)
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1072 for power injections and branch flows. These values are later
denoted in figures as ‘Measured’.

e Measurement weights for SSE are set as the reciprocal value of
corresponding measurement variances.

e RTU and PMU sampling rates are 2 s and 0.02 s, respectively. Note
that for both measurement types, corresponding measurements are
assumed to have been taken taken at the same moment (same
snapshot).

e To quantify the proposed algorithm, its results (denoted in tables
and figures as ‘FHSE’) are compared with SSE results (denoted as
‘SSE’) and measured values.

e SSE is attempted every 2 s only over InstrW areas as it cannot es-
timate the states where appropriate MI, and thus measurements, are
not available (InstrG areas). On the other hand, FHSE can overcome
this by utilizing the proposed FASE (see Section 2.B).

C. IEEE 14-Bus Test System

Details of the physical and cyber (ICT) parts are given in [31] and
[20], respectively. Note that two measurement transfer types are ex-
amined, depending on used MI:

e PMU—measurements travel directly to EMS [phasor data con-
centrator (PDC) and EMS are physically at the same location].

e RTU—measurements are first collected at a data center and then
forwarded to EMS (SCADA and EMS are not physically at the same
location).

Finally, details of available measurements are given in Table 1. Note
that measurement types and corresponding MI are chosen arbitrarily,
and that the proposed algorithm will work for all other combinations.

An example is demonstrated here when ICT outages occur at
t = 1000 s, and remain persistent for the rest of the simulations, for
measurements at:

® Bus 12—measurement # 13, denoted by PQf;5_¢ (Table 1).
® Bus 13—measurement # 11, denoted by PQf;3_14 (Table 1).

Utilizing the algorithm provided in Section 6, the CPS is first in-
itialized (Step 1). Next, through the NS-2 tool, packet transfer may be
simulated, whose results are used to calculate ECDFs for all measure-
ment refresh times and set up corresponding two-tail significance tests
(Steps 2-3). For example, critical transfer times [At"™ (9)] for
PQf,, ¢ and PQf,5 4 are 2.53 s and 2.45 s, respectively.

The initial ¥ is then calculated (Step 4):

e APSE = 24 ;
o £ — 1;2; 3; 4,5, 7; 8 10; 11; 12; 13; 14; 15; 16].

NR
Table 1
Available measurements.
# Type MI Sending bus Receiving bus Denoted by
1 Py (Qmy) PMU 2 / PQiz
2 Py (Qms) PMU 3 / PQis
3 P (Qmip) PMU 6 / PQig
4 Py (Qman) RTU 8 / PQig
5 Py (Qmi) RTU 9 / PQig
6 Py (Qmis) RTU 11 / PQin
7 Py (Qmir) RTU 14 / PQiyq
8 Prrow (QrLow) PMU 4 7 PQf, 7
9 Prrow (Qeow) RTU 8 7 PQfg 5
10 Prrow (Qrrow) RTU 9 10 PQfy_ 1o
11 Prrow (QrLow) RTU 13 14 PQf13 14
12 Prrow (Qrrow) RTU 11 6 PQf}; 6
13 Prrow (QrLow) RTU 12 6 PQf12 6
14 0 (V) PMU 1 / BV,
15 68 (V) PMU 4 / v,
16 0 (V) PMU 5 / BVs
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Fig. 2. Measurement arrivals and outage detection.

Finally, the set of available measurements is formed (Step 7) and the
system state is calculated (Step 8) every ArSE, while bad data is mon-
itored. Once outages occur, they are detected and identified by the Pre-
estimation BDD (Step 6), as shown in Fig. 2. Note how measurement
refresh times differ, due to ICT irregularities (e.g. packet delays). Once
measurements have not been received for the predetermined ArP®,
outages are detected and identified.

As outage of measurement from initial ¥ has occurred, InstrO is
checked and InstrW(G) areas formed, as demonstrated on Fig. 3. Ad-
ditionally, recalculating of ¥ is needed:

o AfSE = 23¢;
o LN = [1; 2; 3; 4; 5; 7; 8 10; 12; 14; 15; 16].

Due to ICT outages, and thus fewer available measurements, a de-
cline in estimation results quality can be observed, as shown in Fig. 4.
This is most expressed in:

e Buses 12 and 13—they form InstrG area.
e Buses 6, 11 and 14—effect of InstrG area is conveyed by measure-
ments 12, 13 and 6 (see Table 1 and Fig. 3).

Note that even though ICT outages have occurred, good state
tracking still exists as the proposed algorithm will switch to FASE, and
continue estimating even the InstrG area states.

Finally, the errors of average voltage magnitudes and angles for

InstrW area

<> PMU location
————— Transmission
System 1 (T-1)

{ RTU location

- Multiprotocol Label
Switching (MPLS)

Communication
outage

Fig. 3. IEEE 14-bus test system split into observable and unobservable areas
based on available ML
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Fig. 4. Errors of bus voltage angle (a) and magnitude (b).

Table 2
Errors of average voltage magnitudes and angles.

Time interval Pre-outage Post-outage Entire interval

Area InstrtW + InstrG InstrW InstrG InstrW + InstrG
FHSE V [p.u] 0.0014 0.0017 0.0041 0.0024

0 [rad] 0.0011 0.0011 0.0032 0.0018
SSE V [p.u.] 0.0016 0.0024 0.0063 0.0034

0 [rad] 0.0014 0.0018 0.0048 0.0027

both FHSE and SSE are shown in Table 2.
The following can be concluded from results in Table 2:

e FHSE gives slightly better results before ICT outages. This is due to
existing ICT irregularities which split the network into MeasW(G)
areas. Unlike the SSE, the FHSE can estimate states in MeasG areas
utilizing FASE.

e Once outages occur, the FHSE gives slightly better results again in
InstrW area, due to existing ICT irregularities. But, it gives sig-
nificantly better results for InstrG areas, where MI, and thus mea-
surements, are no longer available—SSE cannot estimate the states
without appropriate measurements, whereas FHSE may utilize the
proposed FASE (see Section 4.B).

e Better overall state tracking is achieved when using FHSE.

D. IEEE 300-Bus Test System

While the physical part details are given in [32], cyber part (ICT)

state is estimated with 1) SSE; 2) FHSE with non-optimal ASF = 2,05,
and 3) FHSE with optimal Af*E=22s. Note that the optimal
AfSE = 225 remains the same after bad data is detected and corre-
sponding measurements are disregarded.

The results may be summarized as follows:

o The advantage of using the optimal frequency for SE is observed in
Fig. 6, as the number of possible SSE executions (entire InstrW area
is also MeasW, Section 3). Note that the filled and empty dots in the
zoomed-in area denote the time intervals where SSE execution was
possible or not, respectively. Even though SSE will be attempted
more often when At>E = 2.0s (zoomed-in area), more SSE executions
are possible for ArSE = 2.2, as it is derived while taking into ac-
count inevitable ICT irregularities (Section 4).

Numerical results are provided in Table 3. Notice the advantages of
using the proposed algorithm instead of SSE, due to the ICT irre-
gularities and the existence of InstrG area (all of which are not dealt
with in SSE). Slightly better results are achieved for At*F = 2.25 than
AfSE = 2,05, as measurement usage is optimized (Fig. 6).

Good state tracking can be observed for the proposed algorithm in
Fig. 7 for buses 198, 211 and 50. Note that once bad measurements
are detected, the degradation of results is observed in buses 198 and
211, due to loss of observability—InstrG area (see Fig. 5). However,
this is not the case for bus 50, as it remains in an InstrW area.

Finally, a few notes on the practical implementation of the proposed

algorithm:

details are given the Appendix.

An example is demonstrated here when measurement errors are
introduced in buses 197, 198, 203, and 211 at t = 2000 s until the end
of the simulations (this is done by increasing their variances 10° times).
In order to visualize this, the corresponding area is shown in Fig. 5.

To demonstrate the effectiveness of the proposed algorithm, the

e Due to insufficient modern ICT equipment (e.g. fast-sampling
PMUs), many of todays’ real-life power systems still operate their
state estimators at low refresh rates. This might be even slower than
RTU refresh times, limiting the effectiveness of optimal state esti-
mation frequencies (Section 4). Nevertheless, this paper strives to
motivate future practical implementations, especially in power
systems with modern ICT.
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Fig. 5. System area affected by bad measurements. Fig. 6. Possibility of executing SSE over a time.
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Table 3

Errors of average voltage magnitudes and angles.

SSE FHSE (AtSE = 25) FHSE (AfSE = 2.25)
V [pu.] 0.0045 0.0035 0.0031
0 [rad] 0.0053 0.0041 0.0035

e On the other hand, the proposed two-step BDD may be integrated
into various types of state estimators applied in real-life power
systems, regardless of available ICT equipment, as the probabilistic
network observability extension is not constrained by it (Section 5).

8. Conclusion

This paper proposes a probabilistic extension of flexible hybrid state
estimation for cyber-physical systems (CPS) with realistically modeled
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information and communication technologies (ICT). Such ICTs do ex-
perience difficulties, including irregularities (packet delays, drops and
measurement errors) and component outages. To deal with such sys-
tems, two distinct network observabilities are formulated, based on
deployed MI and actual received measurements. They are then further
enhanced by a probabilistic extension to CPS’s observability model,
used to optimize measurement usage. These concepts are used for: 1)
ICT outage detection and identification, based on the two-tail sig-
nificance test; and 2) finding the optimal frequency for state estimation
based on measurement refresh times. Additionally, to robustly deal
with identified ICT issues, a two-step bad data detection model is fully
integrated in the proposed algorithm.
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Appendix A. 300-Bus system cyber layer parameters

The entire CPS is split into three parts (denoted as CPS-section 1, 2
and 3). To cover all relevant cases, the different measurement para-
meters are set for the three sections [20]:

e Measuring instrument (MI) and channel types —

CPS-section 1 has RTU measurements at every bus, which are sent
directly to the EMS. These measure both power flows and injections.

CPS-section 2 has PMU measurements at every bus, which are first
collected at four different PDCs and then forwarded to the EMS. These
measure complex bus voltages.

CPS-section 3 has RTU measurements at every bus, which are first
collected at 3 different SCADAs and then forwarded to the EMS. These
measure both power flows and injections.

e Type of link — duplex link assumed for each channel, which is a
two-way communication link.

e Traffic type — Constant Bitrate (CBR) for each channel is assumed,

meaning that traffic moves at a constant rate.

Packet size — 1000 bits for each channel.

Bandwidth — 2 Mb assumed for each channel.

e Default delay distribution — normal distribution assumed for each

channel.

Send interval — PMU measurements are sent 50 times per second,

while RTU measurements are sent every 2 s.

e Queue type — drop-tail for each channel, which operates through a
first in first out (FIFO) mechanism.

e Default delay rate —

CPS-section 1: RTU-EMS: mean 500 ms, standard deviation 50 ms.

CPS-section 2: 1) PMU-PDC: mean 1000 ms, standard deviation
150 ms; 2) PDC-EMS: 100 ms.

CPS-section 3: 1) RTU-SCADA: mean 400 ms, standard deviation
50 ms; 2) SCADA-EMS: 100 ms.

® Queue Limit —
CPS-section 1: RTU-EMS: 2; CPS-section 2: 1) PMU-PDC: 100; 2) PDC-
EMS: 1000;
CPS-section 3: 1) RTU-SCADA: 10; 2) SCADA-EMS: 100.

e Drop model rate — CPS-section 1: RTU-EMS: 2%; CPS-section 1: 1)
PMU-PDC: 2%; 2) PDC-EMS: 1%;

Electrical Power and Energy Systems 122 (2020) 106179

CPS-section 1: 1) RTU-SCADA 2%; 2) SCADA-EMS: 1%.
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