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Activity spaces are fundamental to the assessment of individuals’
dynamic exposure to social and environmental risk factors associated
with multiple spatial contexts that are visited during activities of
daily living. In this paper we survey existing approaches for mea-
suring the geometry, size and structure of activity spaces based on
GPS data, and explain their limitations. We propose addressing these
shortcomings through a nonparametric approach called density rank-
ing, and also through three summary curves: the mass-volume curve,
the Betti number curve, and the persistence curve. We introduce a
novel mixture model for human activity spaces, and study its asymp-
totic properties. We prove that the kernel density estimator which,
at the present time, is one of the most widespread methods for mea-
suring activity spaces is not a stable estimator of their structure.
We illustrate the practical value of our methods with a simulation
study, and with a recently collected GPS dataset that comprises the
locations visited by ten individuals over a six months period.

1. Introduction. Collecting and statistical modeling of data on hu-
man movement in time and space is an important research endeavor in
many fields, such as spatial epidemiology, demography and population sci-
ence, urban design and planning, transportation research and environmental
psychology (Apostolopoulos and Sonmez, 2007; Richardson et al., 2013; En-
twisle, 2007; Hurvitz et al., 2014; Chen et al., 2016; Dobra et al., 2017).
Mapping individuals is difficult because a person’s residence does not reflect
their interaction with the physical and social environment (Kwan, 2009).
Individuals spend considerable time away from their residences and tra-
verse multiple administrative boundaries in their daily activities (Zenk et al.,
2011; Kwan, 2013). For this reason, it is paramount to trace an individual
through multiple spatial contexts to study environmental risk factors for
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disease (Cummins et al., 2007). Statistical analyses that connect individ-
uals to places by focusing on residential neighborhoods or administrative
boundaries (e.g., census tracts) cannot capture short term but repetitive ex-
posures to neighborhood-based risk factors (e.g., risk of violence or density
of alcohol outlets). Going beyond the residential neighborhood of a person
by collecting fine-grained positional data about where people actually spend
time is especially relevant in studies that relate individual health to locally
variable environmental factors (Basta et al., 2010).

As human beings are inherently mobile, data about their spatiotempo-
ral trajectories of travel are needed to construct relevant representations of
their activity spaces. The notion of activity space has been introduced in the
social sciences (Golledge and Stimson, 1997), and has its roots in the space-
time-travel geography in which an individual’s movements in time and space
are conceptualized as space-time prisms (Hägerstrand, 1963, 1970). Activity
spaces measure individual spatial behavior, and capture individuals’ expe-
rience of place in the course of their daily living through their observed lo-
cation choices (Golledge, 1999). They have been used to study the influence
of the built environment on individuals’ healthcare accessibility (Sherman
et al., 2005). Activity spaces play a role in the study of social exclusion of
individuals with low use of physical space which are less likely to be engaged
in society (Schönfelder and Axhausen, 2003). Questions of interest relate to
whether such individuals concentrate spatially, or are randomly scattered in
the population. Are these individuals socially excluded from certain parts of
the physical environment which could lead, for example, to lower chances of
securing a job or higher costs of living? Activity spaces have also been used,
among many applications, to assess segregation (Wong and Shaw, 2011),
to measure exposure to food environments (Kestens et al., 2010; Christian,
2012), and to understand the geographic mobility patterns of older adults
(Hirsch et al., 2014).

Until about 15 years ago, research on activity spaces relied on locational
data from travel diaries in which participants shared information about the
trips they took in the past (Schönfelder and Axhausen, 2003, 2004). How-
ever, places outside the home neighborhood that are not socially significant
are harder to be remembered, and consequently they will be more likely to
be missing from surveys. Smartphone-based location traces have recently
become available for the study of human mobility and have proven partic-
ularly interesting, by providing the possibility of recording movements over
time of individual people and aggregate movements of whole populations
(Dobra et al., 2015; Williams et al., 2015). This exciting new type of data
holds immense promise for studying human behavior with a precision and
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accuracy never before possible with surveys or other data collection tech-
niques (Richardson et al., 2013). Many high-resolution smartphone-based
GPS location datasets have already been successfully collected, and subse-
quently employed to assess human spatial behavior and spatiotemporal con-
textual exposures (Matthews and Yang, 2013; Perchoux et al., 2013a; Kwan,
2012), to characterize the relationship between geographic and contextual
attributes of the environment (e.g., the built environment) and human en-
ergy balance (e.g., diet, weight, physical activity) (Berrigan et al., 2015; Zenk
et al., 2011), to study segregation, environmental exposure, and accessibility
in social science research (Kwan, 2013), or to understand the relationship
between health-risk behavior in adolescents (e.g., substance abuse) and com-
munity disorder (Wiehe et al., 2013; Basta et al., 2010; Wiehe et al., 2008).
The wide array of completed and ongoing GPS studies provide key evidence
that many people feel comfortable having their movements tracked (Zenk
et al., 2012).

In this paper, we survey existing approaches for measuring the geometry,
size and structure of activity spaces based on GPS data such as ellipses,
shortest-path spanning trees, and kernel density estimation, and explain
the disadvantages of their use. To correct their shortcomings, we put for-
ward a set of tools for measuring human activity spaces that comprise a
nonparametric approach called density ranking and three types of sum-
mary curves. These curves fall within the broader domain of topological
data analysis which is a flexible framework for detecting the structure and
creating lower-dimensional summaries of distributions of complex or high-
dimensional datasets (Kaczynski et al., 2004; Edelsbrunner and Harer, 2008,
2010; Carlsson, 2009; Lum et al., 2013; Ghrist, 2014; Chazal and Michel,
2017; Wasserman, 2016, 2018). The summary curves we discuss are based
on level sets of density ranking, which is closely related to level sets of a
probability density function and the minimum volume set (Polonik, 1997;
Garcia et al., 2003; Scott and Nowak, 2006; Cadre et al., 2013).

The structure of the paper is as follows. In Section 2 we describe the GPS
data we use to motivate and illustrate our developments. This is a never
before analyzed dataset that comprises the spatiotemporal trajectories of
daily living over a six months period of ten individuals from a rural area in
sub-Saharan Africa. In Section 3 we present background on human activity
spaces, and describe existent methods for measuring them. In Section 4 we
present density ranking, and in Section 5 we discuss three types of summary
curves: the mass-volume curve, the Betti number curve, and the persistence
curve. In Section 6 we introduce a novel mixture model for activity spaces,
and study its asymptotic properties. In Section 7 we present a simulation
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study. In Section 8 we apply density ranking and summary curves to the
GPS data described in Section 2. Finally, in Section 9 we comment on the
relevance of the proposed set of tools in the context of health research.
We provide R scripts that implement our proposed methods at https://

github.com/yenchic/density_ranking.

2. GPS data. We employ data from a GPS pilot study that involved
three men and seven women that reside in a rural region of sub-Saharan
Africa. The study took place in 2016 with the approval of the local biomed-
ical research ethics committee. These data have not been analyzed before.
Each study participant was provided with a GPS-enabled Android smart-
phone for a period of six months. The smartphones together with their voice
and data plans whose costs have been covered by the pilot study served as
an effective incentive for study participation and adherence to the data col-
lection protocol. The participants were asked to carry the smartphones with
them at all times, and also to keep them operational by regularly charging
them. All ten participants have been compliant with the protocol of the
study, and have returned their devices at the end of the study period.

The Android smartphones employ an assisted GPS system which pro-
duces accurate coordinate data with less battery power (allowing a phone
to remain charged for at least 48 hours) than traditional GPS devices (e.g.,
GPS trackers). The positional data that were recorded contain timestamps,
smartphone unique identifiers, latitude and longitude coordinates, and in-
formation related to the accuracy of the reported coordinates (e.g. satel-
lite connectivity). The smartphones were registered with a Mobile Device
Management (MDM) software that allowed the study personnel to manage,
secure, monitor and track the smartphones from an easy to use online dash-
board. The positional data were securely transmitted to a study database
residing on a secure server over cellular or wireless networks using state
of the art encryption techniques every time the smartphones had a data
connection. The data were deleted from the smartphones immediately af-
ter transmission. This protocol guarantees that no confidential positional
information could be accessed if a smartphone was lost or stolen.

The ages of the study participants were between 34 and 48 years. They
share the same place of work. Their residences are located within a short
commute of a couple of kilometers. The rural study area has a township in
which most stores and markets are located. The local road network comprises
a major primary road that traverses the township and several secondary
roads. There are additional unpaved roads about which we did not have GIS
data. The data comprise between 3,500 and 8,500 GPS locations for each of

https://github.com/yenchic/density_ranking
https://github.com/yenchic/density_ranking
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the ten study participants. The MDM software installed on the phones was
set to transmit a new location every time a device moved more than 250
meters. For this reason, more locations were recorded for those participants
that traveled more. Figure 1 shows the GPS locations recorded for one of
the study participants who was most active in the rectangular area shown
in red in the left panel, but also took several trips to more distant locations.
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Fig 1. Plots of the GPS data from one study participant. The left panel displays the
complete GPS records of this individual. The latitude (x-axis) and longitude (y-axis) co-
ordinates were shifted and scaled to preserve the privacy of the study participants. The
middle panel represents the zoom-in area of the rectangular region shown in red in the left
panel. In the right panel, the relevant GIS data was superimposed on the GPS locations:
primary (blue) and secondary (purple) roads, the workplace (red triangle) of the study
participants, and the location of the township of the study area (red cross).

3. Existent approaches for measuring human activity spaces.
Activity spaces represent the spatial areas within which an individual has
direct contact during their daily travels. However, people do not move ran-
domly in space. Due to the various preferences, needs, knowledge, constraints
and limitations of movement, the areas visited by an individual are concen-
trated around one, two or more anchor locations that serve as origin and
destination hubs of the routes followed by an individual. The anchor loca-
tions have key material or symbolic meaning for an individual: they include
their home and work locations, together with, for example, the location of a
child’s school, favorite market and grocery store, a preferred entertainment
venue or an airport. The probability of visiting a particular spatial location
decreases as a function of its distance to the anchor locations, and depends
on its relative position with respect to the most frequent directions of daily
travel. The shape, structure and spatial extent of activity spaces are a func-
tion of the spatial configuration of the anchor locations, and of the routes
travelled between and around them (Schönfelder and Axhausen, 2003).
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Characterizing the activity space of an individual involves: (i) determin-
ing the number and the spatial configuration of the anchor locations; (ii)
identifying the places the individual is most likely to experience in addition
to the anchor locations, and differentiating these places from other places
which the individual is considerably less likely to come in direct contact
with; (iii) mapping the spatial configuration of these locations; and (iv) de-
veloping measures that quantify the geometry and spatial structure of the
individual’s activity space. Such measures capture the individual’s degree of
mobility while accounting for the underlying preferences for certain travel
routes. Activity spaces are not designed to capture the maximal area in
which an individual is active. Instead, they consist of one, two or more spa-
tially contiguous areas structured around the anchor location in which an
individual regularly engages in activities of daily living, together with the
routes used by the individual to travel between these areas.

We denote by T = {T1, T2, . . . , Tn} the GPS positional data of an indi-
vidual. The j-th location is Tj = (xj , yj , tj) where xj denotes latitude, yj
denotes longitude, and tj denotes the time when the location (xj , yj) was
visited. We assume that t1 < t2 < . . . < tn. The set of visited locations
X = {X1, X2, . . . , Xn} where Xi = (xi, yi) is the projection of T onto the
latitude and longitude coordinates. The times when the locations were vis-
ited together with the order in which locations were visited are lost through
this projection. Information about the routes travelled by an individual are
comprised in T , but are absent in X . The set of anchor locations are denoted
by A = {A1, A2, . . . , An0}. We note that A is not necessarily a subset of X
since some anchor locations might need to be inferred from possibly noisy
GPS measurements.

The existent literature has introduced several approaches for characteriz-
ing activity spaces. We describe them below, together with their advantages
and limitations.

3.1. Ellipses. This appears to be one of the earliest and most popular
method for measuring activity spaces which has been concurrently devel-
oped in several research domains such as biological habitat research, trans-
portation research, and human geography (Schönfelder and Axhausen, 2003,
2004). Ellipses are fit to the set of visited locations X based on knowledge
of the most relevant anchor locations in A such as residence and workplace.

There are two kinds of ellipses: the standard deviational or confidence
ellipse, and the home-work ellipse (Chaix et al., 2012). The standard de-
viational ellipse is determined based on the assumption that the locations
X follow a bivariate normal distribution. This distribution can be centered
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around a central location determined as the arithmetic mean of the unique
coordinates in X , or the weighted average by the frequency of visits at some
locations. Since these averages might not designate an actual real-world ad-
dress, the central location can be an anchor location – typically the home
location which is recognized as the focal point of the lives of most people.
The major axis of the standard deviational ellipse is the regression line of
the latitude on the longitude coordinates, thus the orientation of the ellipse
reflects the sign of the correlation between coordinates. It is customary to
report one and two standard deviational ellipses corresponding to 68% and
95% coverage probabilities (Sherman et al., 2005).

The home-work ellipses differ from the standard deviational ellipses in
that they are defined with respect to two anchor locations which become
the two focal points of the ellipse. Typically the focal points of the ellipse
are selected to be the home and work locations. This defines the major
axis of the ellipse. Its minor axis is determined by selecting one additional
visited location which could be another anchor location, or the most distant
location in X from the two focal points (Newsome et al., 1998).

Measures that describe an activity space represented through the space
inside an ellipse are the area of the ellipse which expresses the extent of the
activity space, and the ratio of the length of the major and minor axes which
represents the relative extent to which an individual deviates from its most
frequently used route (e.g., home to work and back) (Newsome et al., 1998).

One major disadvantage of representing activity spaces through ellipses
are their relatively inflexible geometry: the spatial distribution of activity
locations is constrained to the shape of the ellipse. Locations inside the
ellipse are considered to be likely places of daily activities, while the locations
outside the ellipse are viewed as unlikely travel locations. This is a problem
because the actual shape of activity spaces could be quite different than that
of an ellipse, and could comprise non-overlapping spatial regions. Moreover,
ellipses could suggest larger activity spaces since they capture the underlying
variability of locations and are not robust to outliers. In addition, an ellipse
imposes a symmetry of the activity space around its center even if half of
the area covered by the ellipse does not contain any locations in X . To
get around these issues, Schönfelder and Axhausen (2004) proposed using
amalgamations of ellipses constructed around two or more anchor locations
(e.g, one ellipse having home location as its center, and another ellipse having
the work location as its center), while Rai et al. (2007) have shown how to
fit three other curved geometrical shapes: the Cassini oval, the bean curve
and the superellipse which comprises a circle and an ellipse. Selecting one
of these shapes is based on particular assumptions about the form of the
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activity space: one, two, three or four clusters of locations with or without
intermediate locations between them. Nevertheless, determining which (if
any) of these assumptions is appropriate for a certain spatial pattern of
locations X cannot be done without performing a visual inspection which is
problematic for applications that involve a large number of mobility profiles.

3.2. Minimum convex polygons. In this approach, the activity space of
an individual is defined as the area delimited by the smallest convex poly-
gon that contains all the locations in X . This method has been applied to
study both animal and human activity spaces (Worton, 1987; Buliung and
Kanaroglou, 2006; Fan and Khattak, 2008; Lee et al., 2016). Although the
determination of minimum convex polygons is computationally straightfor-
ward, they cannot properly capture the shape of an individual’s activity
space which is typically irregular due to certain areas in the proximity of
the locations in X being very unlikely to be visited (e.g., inaccessible or
undesirable locations). As such, they identify activity spaces as being spa-
tially larger than other approaches (Hirsch et al., 2014). Other shortcomings
of minimum convex polygons include: (i) the anchor locations A and other
most frequently visited locations are not represented or even identified; (ii)
they imply that an individual is active in only one contiguous spatial area;
and (iii) outlier locations in X can significantly change the coverage and the
shape of the resulting activity spaces. The spatial extent of minimum convex
polygons is typically measured using their area and perimeter, while their
shape is measured through their compactness (Manaugh and El-Geneidy,
2012; Harding et al., 2013). This is a measure of how circular a polygon is
defined as the ratio between the area and the perimeter squared, multiplied
by 4π. Its values range from near 1 (a polygon very close to a circle) to near
0 (an elongated polygon close to a line). The shape of ellipses can also be
measured using their compactness scores.

3.3. Shortest-path spanning trees. This method employs a more realistic
representation of human travel: individuals most often move via road net-
works instead of by apparition or “as crow flies” from one place to another.
As opposed to the other three approaches which employ only the locations
X , the shortest-path spanning trees are constructed with respect to a road
network that spans the reference area, and also with respect to the order in
which the locations in X were visited. The routes followed by an individual
during their daily travels are approximated by projecting the locations in X
on the road network, then by connecting each pair of consecutive locations
(seen as an origin-destination trip) by the shortest path on the road network
between them (Schönfelder and Axhausen, 2003, 2004). Golledge (1999) ar-
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gues that road networks affect the individuals’ perception and knowledge
of places, therefore activity spaces should be based on the paths followed
by the travelers. As such, the activity space of an individual is represented
by the spanning tree that covers the part of the network defined by the
union of the shortest road network paths that connect consecutive visited
locations. The spanning tree can be measured using its length, or using the
total area of buffers with a fixed length (e.g., 200 meters) around the road
network segments. These buffers attempt to capture the space around the
road network segments that might be known to an individual by walking
around (Kim and Ulfarsson, 2015). Anchor locations and segments that are
more intensely used on the road network can be determined based on the
visitation frequencies.

An advantage of the shortest-path spanning trees is that this approach
moves away from the assumption that individuals have a continuous knowl-
edge about the space around and between the locations they visit – ellipses
and minimum convex polygons are based on this assumption. Their short-
comings come from their dependence on the availability of road network
data. Such data might not have been collected at all or have lower quality
in rural areas or in low resource countries. Moreover, if the visited locations
are recorded at larger time intervals, approximating the route followed by
an individual by the shortest path between two consecutive locations might
be crude: the individual might have traveled significantly more than the
shortest path would indicate.

3.4. Kernel density estimation. This approach considers a raster grid
cells that partitions a wider area that includes the set of visited locations
X which is seen as a point pattern. An activity surface over this wider
area is generated by assigning a value to each cell in the raster based on
the distances from the center of the cell to the locations X (Kwan, 2000;
Buliung, 2001). The probability that the individual that visited the locations
X was also active in a particular cell is proportional with the value assigned
to that cell. The kernel density estimator (KDE) is the sum of “bumps”
centered at the locations X . The estimate of the bivariate density at grid
point x (also referred to as the intensity at x) is given by (Silverman, 1986):

p̂(x) =
1

nh2

n∑
i=1

K

(
di(x)

h

)
.(1)

Here K(·) is a kernel, h is the bandwidth or smoothing parameter, and
di(x) is the distance between the grid point x and the i-th visited location
Xi = (xi, yi) ∈ X . The most usual choice for K(·) is a radially symmetric
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unimodal probability density function such as the bivariate normal density.
However, since the number of visited locations X could be very large for
some GPS studies, it is preferable to employ a kernel that does not require
evaluating the value of the kernel at all points in X for every grid point. For
example, consider the quartic (biweight) kernel function (Silverman, 1986):

K2(x) =

{
3
π

(
1− x2

)2
, if |x| < 1,

0, otherwise.

With this choice, the KDE from Eq. (1) becomes:

p̂(x) =
3

πh2

∑
di(x)<h

(
1−

(
di(x)

h

)2
)2

.(2)

Thus, locations in X outside a circle with radius h centered at x are dropped
in the evaluation of p̂(x). The probabilities of visiting grid cells that are at
larger distances from the most frequently visited areas will be smaller com-
pared to the probabilities of visiting grid cells that are at smaller distances.
The choice of bandwidth h is very important as larger bandwidths give more
smoothing. However, for the KDE (2), h also represents the maximum dis-
tance of spatial interaction between locations. Therefore the choice of h for
a particular application could reflect the understanding of proximity and
neighborhood in daily travel for the area in which the location data was
collected (Schönfelder and Axhausen, 2003).

In the KDE approach, the activity space of an individual comprises all the
grid cells with an estimated probability (density) of visitation above a certain
threshold τ1 > 0. The anchor locations can be identified as those grid cells
with an estimated probability density of visitation above a second threshold
τ2 ∈ (τ1,∞). Kernel density estimation can identify activity spaces of any
shape, and can also estimate the corresponding anchor locations which is
something the ellipse and the minimum convex polygon methods cannot do.
The shortest-path spanning trees rule out locations that are not on the road
network they were defined on. For this reason, the KDE approach seems
to be the most flexible existent approach for activity space determination.
Measuring the resulting activity spaces can be done by calculating the area
covered by the grid cells included in them. It is possible to eliminate some of
these areas if they are known to be unfavorable to activities of daily living
(e.g., heavy industrial and utility areas), thereby refining the shape of the
activity spaces (Schönfelder and Axhausen, 2003, 2004).
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4. Density ranking. Despite its flexibility in measuring activity spaces,
kernel density estimation sometimes fails to yield adequate results when ap-
plied to GPS datasets. Consider the left panel of Figure 2 in which we show
the KDE of locations from the region in the middle panel of Figure 1. Al-
though it correctly identifies two peaks with the highest concentration of
locations, the KDE does not capture much of the underlying structure of
the GPS data. In this section, we discuss an alternative to KDE called den-
sity ranking that captures much more of the underlying mobility patterns of
this individual – see the middle and right panels of Figure 2. It is apparent
that many finer structures are not discernible using KDE, but they can be
easily recognized when using density ranking. The KDE map only shows
two grid cells that have high intensity: the workplace and another location
that might be the home of this individual. On the other hand, the density
ranking maps show the existence of numerous other grid cells located on the
spatial trajectory followed by this individual. These regions represent the
location of the township, road intersections or road segments.
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Fig 2. A comparison between KDE and density ranking. In the left panel, we display
the density contours from the KDE associated with the locations shown in the middle and
right panels of Figure 1. In the middle panel, we show the contours identified by density
ranking. In the right panel, we superimpose GIS data to the density ranking contours.

Density ranking is a quantity derived from the KDE defined as

α̂(x) =
1

n

n∑
i=1

I(p̂(Xi) ≤ p̂(x)),

where I(Ω) is the indicator function. The density ranking function α̂(x) is the
fraction of observations in X = {X1, X2, . . . , Xn} whose estimated density
is lower than the estimated density of the given point x. This function was
called the α-function in Chen (2018). The density ranking function α̂(x) is a
probability-like quantity that takes values between 0 and 1. It has a natural
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relationship with the rank of the data points with respect to the KDE p̂.
Let Ri =

∑n
j=1 I(p̂(Xj) ≤ p̂(Xi)) be the rank of Xi with respect to p̂. We

have Ri = 1 if Xi has the lowest density, and Ri = n if Xi has the highest
density. Then

α̂(Xi) =
Ri
n
,

which implies that the density ranking at each observed data point is just
the relative ranking of that point.

Density ranking has a straightforward interpretation related to the loca-
tions visited by an individual: for a point x with α̂(x) = 0.8, the probability
density (measured by the KDE p̂) at point x is higher than the probability
density of 80% of all observed GPS locations. We say that x is in the re-
gion of the top 20% activity. Given a level γ ∈ [0, 1], the level set of density
ranking

Âγ = {x : α̂(x) ≥ 1− γ},

can be interpreted as the area of the top γ × 100% activities. The set Âγ is

the region within the contours of level 1− γ. Note that Âγ is related to the
minimum volume set (Polonik, 1997; Garcia et al., 2003; Scott and Nowak,
2006) and can be interpreted as a density level set with a probability content
of γ (Cadre et al., 2013). In this view, Âγ can be interpreted as an estimator
of the smallest (in terms of volume) area covering at least γ×100% activities.

As explained in Section 3.4, given two pre-specified levels τ1, τ2 with τ1 <
τ2, the activity space based on the KDE p̂ comprises the grid cells x with
p̂(x) ≥ τ1. The anchor locations are those grid cells x with p̂(x) ≥ τ2. Similar
definitions of activity spaces and anchor locations can be given based on
density ranking. We choose two levels γ1, γ2 ∈ (0, 1) with γ2 < γ1. We define
Âγ1 to be the top γ1×100% activity space or γ1-activity space. Then anchor
locations are defined as the γ2-activity space. Choosing particular levels for
the determination of human activity spaces or anchor locations can be done
by examining the top 90, 80, . . . , 10% activity spaces. In Section 7 we show
that the summary curves we introduce in the next section can be used to
guide the choice of levels.

5. Summary curves. Based on density ranking, we obtain a two di-
mensional function (a map) of human activity spaces. However, comparing
maps associated with the activity patterns of multiple individuals is not
straightforward without adequate summaries of the shape of these func-
tions. To define such summaries, we use tools from topological data anal-
ysis (Edelsbrunner and Harer, 2008; Wasserman, 2016; Chazal and Michel,
2017). Specifically, we describe three types of summary curves that quantify
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the shape of a two dimensional function. These curves provide additional in-
formation about the geometry, size and structure of human activity spaces.

5.1. Mass-volume curves. Given a level γ, the size of the region Âγ can
be used to quantify an individual’s mobility in terms of the spatial extent of
the γ-activity space. We measure size with the mass-volume function (Garcia
et al., 2003; Clémençon and Jakubowicz, 2013; Clémençon and Thomas,
2017) which is defined as

V̂ (γ) = Vol(Âγ),

where Vol(A) =
∫
A dx is the volume of the set A. For example, if an individ-

ual has V̂ (0.2) = 3 km2, we say that the top 20% activities of this individual
occur within a region of size 3 km2.

We subsequently define the mass-volume curve V̂ = {(γ, V̂ (γ)) : γ ∈
[0, 1]} which describes how the volume of the γ-activity space Âγ evolves
when we vary the level γ. Mass-volume curves can be used to compare
the degree of mobility of two individuals. Consider two example individuals
with mass-volume curves V̂1 and V̂2 such that V̂1(γ0) > V̂2(γ0) for some level
γ0 ∈ [0, 1]. We say that first individual has a higher mobility than the second
individual in terms of the top γ0 × 100% activities.

5.2. Betti number curves. The mass-volume curve quantifies the activ-
ity space in terms of its size, but it does not provide any information about
the shape of the activity space. Key concepts from topological data analy-
sis (Edelsbrunner and Harer, 2008; Wasserman, 2016; Chazal and Michel,
2017) turn out to be very useful for this purpose. Two points in a set S are
connected if and only if there exists a curve inside S that connects them.
The set S is connected if any two points in the set are connected. The con-
nected components of S are the induced partition from this relation. The
connected components of S are a partitioning of S into sub-regions. Each
connected component must not overlap with other connected components,
and must be connected. Two points that belong to two different connected
components of S cannot be connected with a curve inside S.

We consider the connected components of the γ-activity space Âγ . We
define the Betti number function

β̂(γ) = number of connected components of Âγ ,

and the Betti number curve β̂ = {(γ, β̂(γ)) : γ ∈ [0, 1]}. This curve captures
how the number of connected components of the γ-activity space changes
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with the level γ. Note that the Betti number function is related to the
number of local maxima of α̂(x) and p̂(x). In the cluster analysis litera-
ture, the value β̂(γ) is interpreted as the number of clusters (Hartigan and
Hartigan, 1975; Rinaldo and Wasserman, 2010). The Betti number curve is
closely related to the barcode plot in topological data analysis (Ghrist, 2008;
Wasserman, 2016).

We provide an example in Figure 3. The left panel shows a univariate
function with four local maxima that correspond to levels b1, b2, b3, b4, and
four local minima that correspond to levels d1, d2, d3, d4. A level set Âγ
comprises those regions where the function has a value above 1− γ. A new
connected component is created when, as γ increases from 0 to 1, it passes
one of b1, b2, b3, b4. An existing connected component disappears when γ
passes one of d1, d2, d3, d4. Each of the orange vertical line segments repre-
sents a connected component: its upper and lower ends correspond to the
birth and death time of this connected component, respectively. The middle
panel shows the Betti number curve that corresponds to the function in the
left panel. The Betti number curve goes up when the level γ hits the density
ranking value of a local maximum, and may drop when passing through
the density ranking value of a local minimum or a saddle point. In this
example, the Betti number curve increases whenever it passes b1, b2, b3, b4,
and decreases when it passes d1, d2, d3, d4. For a given value γ, the Betti
number function β̂(γ) tells us the number of connected components in the
top γ × 100% activity region Âγ . For example, if β̂(0.2) = 2, the region of
top 20% activities has two disjoint components. This implies that the in-
dividual’s top 20% activities are concentrated around two areas that could
correspond with the locations of this person’s home and workplace. Individ-
uals that record higher values of the Betti number function are those who
tend to repeatedly visit a larger number of spatially distinct locations.
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Fig 3. An illustration of how the Betti number curve (middle panel) and the persistence
curve (right panel) are computed for the function shown in the left panel.



MEASURING HUMAN ACTIVITY SPACES 15

5.3. Persistence curves. The previous two types of curves focus refer to
specific γ-activity spaces. Next we define a third type of curve called a per-
sistence curve that simultaneously consider all levels γ ∈ [0, 1]. The concept
of persistence plays a key role in persistent homology, a branch of topologi-
cal data analysis (Edelsbrunner and Harer, 2008; Wasserman, 2016; Chazal
and Michel, 2017). The persistence curve is related to the accumulated per-
sistence function (Biscio and Møller, 2016). The Betti number curve and
the persistence curve can be viewed as functional summaries of topological
features (Berry et al., 2018).

We first define the persistence of a connected component. When we vary
the level γ, new connected components may be created and existing con-
nected components may disappear by merging with other connected com-
ponents. We define the birth time of a connected component to be the level
when this component is created, and its death time to be the level at which
this component disappears. A connected component is created at the level
of the density ranking of a local mode, and is often eliminated at the level
of the density ranking of a local minimum or a saddle point. When two
connected components merge into one, we apply the following seniority rule
(Wasserman, 2016; Chazal and Michel, 2017): the older one (created at a
lower level) stays alive while the younger one (created at a higher level) is
eliminated. We define the death time of the connected components at level
γ = 0 to be 0.

In the left panel of Figure 3, the two end points of an orange line segment
correspond to the birth (creation) and death (elimination) of a connected
component. The corresponding levels of the end points, b` and d`, are the
birth time and death time of that connected component. There is a direct
relationship between birth and death times and the Betti number curve:
the Betti number increases by 1 whenever it passes the birth time of a
connected component, and it decreases by 1 when it passes the death time of
a connected component. In Figure 3, two connected components are created
at levels b1 and b2, and are eliminated at levels d1 and d2. At b1 and b2,
the Betti number increases by 1, and it decreases by 1 at d1 and d2. Since
b1 < b2, the connected component created at b1 is older than the connected
component created at b2. When the two connected components merge at
level d2 ∈ (b2, d1), the connected component created at b1 remains, while
the connected component created at b2 is eliminated.

For each connected component, its persistence (also called life time) is
the difference between the birth and the death time. In Figure 3, the length
of an orange line segment is the persistence of that connected component.
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We define the persistence function

ρ̂(t) = number of connected components whose persistence ≥ t,

and the persistence curve ρ̂ = {(t, ρ̂(t)) : t ∈ [0, 1]}. An example persistence
curve is shown in the right panel of Figure 3. The persistence curve is a
non-increasing curve since we are thresholding on the life time of connected
components. There will always be a connected component with a life time
close to 1 because, by definition, the data point with the highest KDE value
has rank equal to the sample size n, making its density ranking equal to
1. Due to the resolution of the underlying grid used, it is possible to see a
connected component with life time close to but less than 1.

The persistence curve provides new information about the spatial distri-
bution of the activity space. Unlike the mass-volume curve or Betti num-
ber curve that describes characteristics of level sets Âγ at particular lev-
els γ, the persistence curve characterizes the collection of all level sets{
Âγ : γ ∈ [0, 1]

}
. This is because in order to compute the persistence of

each connected component, we need to consider various levels to determine
its persistence. An individual has a high persistence curve when the corre-
sponding density curve has many highly persistent connected components.
These are regions this individual repeatedly visits: most likely, these repre-
sent their anchor locations. This type of information is not directly related
to a particular γ-activity space. Instead, it is a quantity describing patterns
across activity spaces at different levels.

6. A mixture model for human activity spaces. In this section
we propose a statistical model that captures the most significant features
of human activity spaces. We denote by PGPS the probability distribution
that defines the activity space of an individual. The observed locations X =
{X1, . . . , Xn} are independent samples from PGPS. We write this distribution
as a mixture with three components

(3) PGPS(x) = π0P0(x) + π1P1(x) + π2P2(x),

where P0(x) is an atomic distribution, P1(x) is a one-dimensional distribu-
tion, P2(x) is a two dimensional distribution, and π0 + π1 + π2 = 1 with
πj ≥ 0 are proportions. The three components of the mixture (3) represent
the key elements of the activity space represented by PGPS: P0 is a distri-
bution that puts probability on the anchor locations A; P1 is a distribution
describing the roads R used by an individual when traveling between an-
chor locations; and P2 is a distribution describing the areas O around the
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anchor locations in which an individual moves. Although P0 and P1 do not
have conventional probability density functions, they admit a generalized
density function called the Hausdorff density (Preiss, 1987; Mattila, 1999).
Let B(x, r) be the ball centered at x with a radius r > 0. For a positive
integer s, the s-dimensional Hausdorff density (s-density) at x given PGPS is

Hs(x) = lim
r→0

PGPS(B(x, r))

Cs · rs
,

where Cj is the volume of an j-dimensional unit ball (C0 = 1, C1 = 2, and
C2 = π). We denote by p0, p1 and p2 the 0, 1, and 2-dimensional Hausdorff
densities given P0, P1 and P2. Namely, p0(x) is a mass at point x, p1(x) is a
one dimensional density value at x, and p2(x) is a two dimensional density
value at x. Furthermore, A,R, and O represent the support of p0, p1 and
p2, respectively.

We define the dimension ω(x) of a point x with respect to PGPS as follows:

(4) ω(x) =


0, if x ∈ A,
1, if x ∈ R\A,
2, if x /∈ A ∪R.

The dimension of an anchor location is 0. The dimension of a location on
a road inside the activity space that is not an anchor location is 1. The
dimension of all the other locations is 2.

The following result shows that there are two equivalent ways to define
the dimension ω(x).

Theorem 1. Given assumption (S) from Appendix B, the definition of
ω(x) in equation (4) is equivalent with the following two definitions:

ω(x) = max{s : Hs(x) <∞, s = 0, 1, 2},

and

ω(x) =


0, if p0(x) > 0,

1, if p0(x) = 0, p1(x) > 0,

2, if p0(x) = 0, p1(x) = 0, p2(x) ≥ 0.

The proof of Theorem 1 is given in Appendix C. Using ω(x) and pj(x),
j = 0, 1, 2, we define a ranking comparison between two points x1 and x2.
We write x1 � x2 if

ω(x1) < ω(x2), or ω(x1) = ω(x2), pω(x1)(x1) > pω(x2)(x2).
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To compare two points, we first compare their dimension. The point that
has the higher dimension is ranked higher. If both points have the same
dimension, we compare their density value in that dimension. Then the
population quantity that density ranking is approximating is

(5) α(x) = PGPS(x � X1),

where X1 is a random variable with distribution function PGPS. Theorem 1
is needed to prove the next result that shows that α̂(x) is a consistent
estimator of α(x), which explains why density ranking yields stable results
in measuring human activity spaces.

Theorem 2. Given assumptions (K1-2), (S) and (P1-2) from Appendix

B, and nh6

logn →∞, h→ 0, we have∫
|α̂(x)− α(x)|2 dPGPS(x)

P→ 0,∫
|α̂(x)− α(x)|2 dx

P→ 0.

The proof of Theorem 2 is given in Appedix C.
The collection of anchor locations A and roads connecting anchor points

R are of key interest, and must be properly recovered from GPS data. Next
we show that the level set of α̂(x), under suitable choices of level, will be a
consistent estimator of A and R. Recall that Âγ = {x : α̂(x) ≥ 1− γ} is the
level set of density ranking.

Theorem 3. Given assumptions (K1-2), (P) and (S0) from Appendix

B, and nh2

logn →∞, h→ 0, we have

PGPS

(
Âπ04A

)
P→ 0,

where for sets A and B, A4B = (A\B) ∪ (B\A) is their set difference and
PGPS(A) = P (X1 ∈ A), where X1 is has distribution PGPS. Moreover, if we
further assume (S1) from Appendix B, we have

PGPS

(
Âπ0+π14(A ∪R)

)
P→ 0.
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The proof of Theorem 3 is given in Appendix C. The set difference 4 is a
conventional measure of the difference between two sets. Applying the prob-
ability PGPS to the set difference is a common measure of the convergence
of a set estimator (Mason and Polonik, 2009; Rigollet and Vert, 2009; Qiao,
2017; Doss and Weng, 2018). Theorem 3 shows that Âπ0 and Âπ0+π1 are con-
sistent estimators of A and A ∪R, respectively. With this fact, we can use
the difference Âπ0+π1\Âπ0 as an estimator of R. Namely, Âπ0 can be used
to recover the anchor locations and Âπ0+π1\Âπ0 can be used to reconstruct
the sections of the roads covered by an individual’s activity space.

Finally, we show that under the mixture model in Eq. (3), the KDE p̂(x)
diverges with a probability tending to 1 at any anchor location or any point
on a road connecting two anchor points.

Theorem 4. Under assumptions (K1–2) from Appendix B and h → 0,
we have E(p̂(x))→∞ for any x ∈ A ∪R.

The proof of Theorem 4 is given in Appendix C. This result shows why
the KDE does not give a stable estimator of A and R which explains why
for the activity space in Figure 2, the KDE does not properly detect its
structure.

7. Simulation study. We consider an example individual whose ac-
tivity space has three anchor locations A: home (located at (0, 0)), office
(located at (0, 2)), and gym (located at (2, 0)) – see Figure 4. We assume
that the anchor locations A are connected by three straight segments of road
R. The individual spends 60% of their time in the anchor locations, and 30%
of their time traveling on the roads. In the rest of their time, this individual
walks in the neighborhoods around their office and home, but never walks
in the vicinity of their gym. When the individual is at an anchor location,
they spend 50% of their time at home, 30% of their time at work, and 20%
of their time at the gym. For this individual’s activity space, the mixture
model in Eq. (3) is written as (π0 = 0.6, π1 = 0.3, π2 = 0.1):

(6) PGPS(x) = 0.6P0(x) + 0.3P1(x) + 0.1P2(x),

with
P0(x) = 0.5δ(0,0)(x) + 0.3δ(0,2) + 0.2δ(2,0).

Here δ(a,b)(x) is a function that puts a point mass at (a, b). The time in which
the individual travels between the anchor locations is divided as follows:
30% on the road between home and gym, 20% on the road between gym
and office, and 50% on the road between home and office. We assume that
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the individual travels with the same speed on all road segments. For 70%
of their total walk time the individual moves uniformly within the square
[−0.5, 0.5] × [−0.5, 0.5] centered at their home, and for remaining 30% the
individual moves uniformly within the square [1.6, 2.4]× [−0.4, 0.4] centered
at their office. With these assumptions, the distributions P1 and P2 in Eq.
(6) are completely specified.
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Fig 4. Activity space for the simulation study, and scatter plot of n = 8, 000 locations
sampled from the mixture model (6). The anchor locations are shown as follows: home
(red diamond), office (red triangle), and gym (red cross).

We generate n = 8, 000 samples from the mixture model (6) – see Figure
4. We use a smoothing bandwidth of 0.5 to compute the density ranking.
The corresponding contours (top left panel of Figure 5) show a very good
agreement with the anchor locations and the road segments (top right panel
of Figure 5). We determine two level sets of density ranking (see the bottom
panels of Figure 5): Â0.6 (π0 = 0.6) and Â0.9 (π0 + π1 = 0.9) corresponding
with the mixture weights in Eq. (6). We see that Â0.6 recovers all three
anchor locations A, while Â0.9 recovers the anchor locations and the road
segments A∪R. This is consistent with our theoretical results, in particular,
with Theorem 3.

We compare the relative performance of kernel density estimation and
density ranking by simulating n = 8, 000 samples from the mixture model
(6) 100 times. For density ranking, we determine the level sets {Âγ : γ =
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Fig 5. Analysis of simulated data. Top left panel: contours of density ranking. Top right
panel: the anchor locations and the road segments superimposed on the density ranking
contours. Bottom left panel: the level set Â0.6 of density ranking. Bottom right panel: the
level set Â0.9 of density ranking.

0.05, 0.10, . . . , 0.95}. For kernel density estimation, we determine the level
sets {Âγ·maxx p̂(x) : γ = 0.05, 0.10, . . . , 0.95}. For each simulation experi-
ment and each of level set A, we calculate the distances PGPS(A4A) and
PGPS(A4(A ∪ R)). These distances represent the error of estimating the
anchor locations A and the combined anchor locations and road segments
A ∪ R with the level set A. The average estimation errors are displayed in
Figure 6. The standard errors of the curves in Figure 6 are extremely small
(0.003− 0.005), and have been omitted.

For the purpose of estimating the anchor locations A, the left panel of Fig-
ure 6 shows that the level sets from both kernel density estimation and den-
sity ranking work well, although the level sets from density ranking achieve a
smaller error for levels below π0 = 0.6 which represents the true percentage
of time spent in the anchor locations by the example individual. However, for
the purpose of recovering the combined anchor locations and road segments
A ∪ R, the level sets from density ranking are significantly more accurate
compared to the level sets from kernel density estimation.

In Figure 7, we display the three summary curves presented in Section 5.
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Fig 6. Errors for detecting the anchor locations A (left panel) and the combined anchor
locations and road segments A∪R (right panel) in the simulation study. The x-axis shows
the level γ. In the left panel, the y-axis shows the error PGPS(Aγ4A). In the right panel,
the y-axis shows the error PGPS(Aγ4(A ∪R)).
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Fig 7. Summary curves from the 100 simulated datasets. The left panel shows the mass-
volume curve, the middle panel shows the Betti number curve, and the right panel shows
the persistence curve. The three flat regions in the left and middle panels correspond to
the three anchor points A.

Each panel contains 100 curves corresponding with each simulation replicate,
but many of these curves overlap. The mass-volume curve and the Betti
number curve (left and middle panels) are flat around the intervals [0, 0.3],
[0.3, 0.5], and [0.5, 0.6]. These flat regions provide insight about the existence
of anchor locations: [0, 0.3] is for home, [0.3, 0.5] is for work, [0.5, 0.6] is for
gym. The persistence curve (right panel) also indicates that there are three
connected components with a high persistence. Each connected component
is associated with an anchor point.

The summary curves allow us to choose the density ranking level to re-
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cover the anchor points. For example, the flat region at [0.5, 0.6] of the
mass-volume curve and the Betti number curve correspond to the valley
in the error curves in the left panel of Figure 6. As such, using level sets
Âγ with γ ∈ [0.5, 0.6] to estimate A yields the smallest estimation errors.
Thus the summary curves are very informative about the choice of ranking
thresholds to employ in the identification of anchor points.

8. Analysis of GPS data. We illustrate the application of our method-
ology to the GPS data from the pilot study described in Section 2.

8.1. Density ranking. We apply density ranking based on the KDE in Eq.
(2) with a smoothing bandwidth h of 200 meters. This choice implies that
every observed GPS location will affect its neighborhood up to a distance
of 200 meters. In Appendix A we compare several smoothing bandwidths:
h = 200 seems to give an appropriate amount of smoothing for these data.

We consider GPS locations that belong to the zoom-in area shown in
Figure 1 since this area contains most locations of the 10 individuals in the
pilot study. The density ranking of each individual is given in Figure 8. The
pattern of density ranking varies from individual to individual. Individuals 2,
4 and 6 have more widespread GPS location distributions, while individuals
1 and 5 recorded GPS locations that seem to be more clustered. There are
two key locations shared by all 10 individuals: the workplace and the location
of the center of the township. The density ranking of all 10 individuals is
high at the locations of the workplace and the township, along the road that
connects them.

In Figure 9 we overlap the top activity spaces of the 10 individuals at
three levels: γ = 0.2, 0.5, and 0.8. The workplace was included in all top
20% activity spaces (top left panel), while the township was included in all
top 50% activity spaces (top right panel). Paths that follow several local
roads are included in most of the top 80% activity spaces (bottom panels).
Except for the workplace and the township, the rest of the top 20% activity
spaces of the 10 individuals are not overlapping: these regions are probably
indicative of the locations of their homes.

8.2. Mass-volume curve. In Figure 10, we give the mass-volume curves
of the 10 study participants. We plot the function log V (γ) instead of V (γ)
since the size of activity space evolves rapidly when γ changes. The gray
curve which corresponds to individual 9 dominates the others in the range of
γ ∈ [0.1, 0.7], while the purple curve which corresponds to individual 6 takes
over when γ > 0.7. This means that individual 9 has the highest degree
of mobility when we consider the activity space of top 10–70% activities.
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Individual:  1 Individual:  2 Individual:  3 

Individual:  4 Individual:  5 Individual:  6 

Individual:  7 Individual:  8 Individual:  9 

Individual:  10 

Fig 8. Maps showing the density ranking of the locations recorded for each of participant
in the GPS pilot study. The location of the workplace of the study participants is marked
with a red triangle, while the location of the center of the township in the study area is
marked with a red cross.
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γ=0.2 γ=0.5

γ=0.8 γ=0.8

Fig 9. The top activity spaces at levels γ = 0.2, 0.5, 0.8 from density ranking of the 10
study participants. Colors indicate different individuals. The bottom right panel also shows
the primary and secondary roads. There are two key locations shared by all 10 individuals:
the workplace (red triangle) and the location of the center of the township (red cross).

Individual 6 has the highest degree of mobility in terms of the activity
space of top 70% or higher activities. The reason why these two curves
dominate the others can be seen in Figure 8. The regions Âγ for γ ∈ [0.1, 0.7]
correspond to where the density ranking is between 0.3–0.9 (1 − γ), which
is the region with a darker color. The contours of individual 9 have a wider
region with darker color compared to others. When we consider regions with
γ > 0.7, we are looking at regions with a lighter color. In this case, we see
that the density ranking of individual 6 spans a larger area compared to
others. The mass-volume curves flatten out when the log size of the area is
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roughly below −2. This is due to the resolution of the raster grid of cells
used to compute the size of the level sets. The corresponding calculations
cannot be performed if the size of the level sets falls below the resolution of
the grid.
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Fig 10. The mass-volume curve of the 10 individuals in the GPS pilot study measured on
the log scale (log volume).

8.3. Betti number curve. Figure 11 displays the Betti number curve of
every individual. There are three curves that dominate the others for dif-
ferent ranges of γ. When γ < 0.5, the gray curve (individual 9) dominates
the others. When 0.5 < γ < 0.7, the orange curve (individual 4) dominates.
When 0.7 < γ, the purple curve (individual 6) is the highest. This means
that when we consider activity space of top 50% activity (or an even higher
level of activity), the activity space of individual 9 has the largest number
of connected components. This can actually be seen in Figure 8: the darker
regions in density ranking of individual 9 have more distinct connected com-
ponents. The contours of density ranking of individuals 4 and 6 have many
small bumps, resulting in a large number of connected components. The
black and green curves associated with individuals 1 and 5 are smaller than
50. This is the result of their density ranking contours (Figure 8) being very
concentrated. Unlike the density ranking of individuals 4, 6 and 9 which
have many little bumps, the contours of individuals 1 and 5 do not have a
spurious distribution which keeps their Betti number curves at lower values.

Based on Figure 11, we say that individuals 4, 6 and 9 have a higher
degree of mobility, while individuals 1 and 5 have lower mobility in terms of
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Fig 11. The Betti number curve of the 10 individuals in the GPS pilot study.

the number of connected components of their activity spaces. Remark that
the higher degree of mobility of individual 4 becomes apparent based on the
Betti number curve, but is not evident based on the mass-volume curve.

8.4. Persistence curve. Figure 12 presents the persistence curves of the
10 study participants. The left panel displays the persistence curve in the
full range, and the right panel is the zoom-in version with the range of
y-axis restricted to the interval [0, 40]. In the left panel, we see that the
purple curve (individual 6) dominates the others when the range of persis-
tence is within [0, 0.2]. This range corresponds to many small bumps in its
distribution of density ranking – see Figure 8. These small bumps create
several connected components with a short life span: they all merge with
other connected components quickly, so they have small persistence. These
connected components with short life spans contribute to the larger values
of the persistence curve. The fact that individual 6 has many small and
spurious bumps in their density ranking implies that this person repeatedly
visits a larger number of locations. It is possible that this individual has a
job that involves driving on a daily basis.

In the right panel of Figure 12, the dark green curve that corresponds to
individual 8 stands out. This means that individual 8 has more persistent
connected components when we threshold on the persistence with a level
above 0.4. This also implies that the activities of individual 8 have several
modes. From the density ranking distribution of individual 8 (Figure 8), we
see that this individual has several distinct connected components isolated
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Fig 12. The persistence curve of the 10 individuals in the GPS pilot study. The left panel
shows the full range of the persistence curve, and the right panel is the zoom-in version of
the gray dashed box in the left panel.

from each other, confirming that this individual’s activities have several
modes. This is not evident from the mass-volume curve and the Betti number
curve. Therefore the persistence curve reveals key information about human
mobility which complements the information provided by the other two types
of curves we discussed.

9. Discussion. In this paper we described the key elements of human
activity spaces (anchor locations, roads and areas around anchor locations),
and proposed a mixture model for representing these elements. We discussed
density ranking as an alternative to KDE, presented three types of summary
curves, and demonstrated their relevance for determining the geometry, size
and structure of human activity spaces. We remark that these summary
curves can also be calculated based on the KDE. However, using kernel
density estimation instead of density ranking is not advisable since, as we
proved in Section 6, the KDE’s expectation diverges at anchor locations and
along road segments. Density ranking has a powerful property that guaran-
tees its convergence even when the underlying distribution contains lower
dimensional structures (Chen, 2018). For this reason, it is a more appropri-
ate to employ density ranking as opposed to KDE in the determination and
measurement of human activity spaces from GPS data.

The collection of high resolution movement data of individuals over long
periods of time is possible thanks to today’s technological advances. Smart-
phones are an especially versatile device that an evergrowing proportion of
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people from most countries carry around every day. At the present time,
GPS datasets collected from smartphones are recorded as part of federally
funded studies from many research fields. This collection effort will without
doubt continue to expand in the coming years, and will provide detailed in-
formation about where people spend their time. The methods we presented
in this paper could constitute a key component of these studies that will
help translate raw GPS locations into meaningful, easily interpretable in-
formation about individuals’ daily selective mobility. We demonstrated that
density ranking and summary curves have substantial advantages over exis-
tent methods for activity space determination since they are not constrained
to a fixed geometrical shape, allow the determination of anchor locations and
roads used for travel, are less influenced by outlier locations, and are not
dependent on the availability of quality road network data.

Human activity spaces are fundamental for health research (Perchoux
et al., 2013b), and can be interpreted as indicators of social activity, self-
confidence and knowledge about the physical environment. They capture
the dynamics of the geographic context (Kwan, 2012) which is critical in
assessing individuals’ exposure to social and environmental risk factors over
multiple neighborhoods that are visited during activities of daily living. In
particular, they are one of the foundation constructs of contextual expol-
ogy (Kwan, 2009; Chaix et al., 2012). This is a subdiscipline that focuses
on modeling the individuals’ spatiotemporal patterns of exposure, and on
the derivation of related multiplace environmental exposure variables. The
premise is that even individuals from the same residential community could
spend different amounts of time away from their home, and travel to loca-
tions with different characteristics. This leads to various levels of exposure
to spatially-varying risk factors. Contextual expology creates customized ex-
posure measures based on the shape, spatial spread, and configuration of the
activity space of each person by taking into account their spatial polygamy
(Matthews, 2008, 2011), i.e. the amount of time spent at, around or traveling
between their anchor locations. Density ranking and summary curves could
be used in developing much needed exposure measures to contextual or en-
vironmental influences that take into account the spatiotemporal patterns
of human mobility (Kwan, 2013).

An open research question relates to linking sociodemographic character-
istics of individuals with their activity spaces, and studying the interactions
that might exist between the characteristics of places and the characteris-
tics of individuals that visit these places (Schönfelder and Axhausen, 2003).
Research on activity spaces could lead to more effective individual-tailored
interventions that take into consideration multiple geographic contexts. Such
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interventions could provide customized information to individuals about
sources of healthy food, outdoor places to walk or exercise, or local social
events based on their own spatial mobility patterns.
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E. Giné and A. Guillou. Rates of strong uniform consistency for multivariate kernel den-
sity estimators. In Annales de l’Institut Henri Poincare (B) Probability and Statistics,
volume 38, pages 907–921. Elsevier, 2002.

R. G. Golledge. Human wayfinding and cognitive maps. In R. G. Golledge, editor,
Wayfinding Behavior, pages 5–45. The Johns Hopkins University Press, Baltimore,
1999.

R. G. Golledge and R. J. Stimson. Spatial Behavior. The Guildford Press, New York,
1997.
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APPENDIX A: THE EFFECT OF VARYING THE SMOOTHING
BANDWIDTH
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Fig 13. The effect of smoothing bandwidth on density ranking.

We explore the sensitivity of our methodology with respect to the choice
of smoothing bandwidth. In Figure 13 we display the density ranking of
locations observed for individual 9 in the GPS pilot study under different
smoothing bandwidths h. The top left (h = 50) and top middle (h = 100)
panels show under-smoothing: paths that connect anchor locations are sep-
arated into disjoint pieces. On the other hand, the bottom middle (h = 500)
and bottom right (h = 1000) panels show over-smoothing: although the
paths connecting anchor locations were recovered, many fine structures ap-
pear blurred due to excessive smoothing. The upper right (h = 200) and the
bottom left (h = 300) panels seem to show an appropriate level of smooth-
ing. We picked h = 200 for the analysis presented in this paper.

We remark that, when evaluating density ranking, the resolution of the
underlying grid of cells employed is important. Grids with higher resolution
are always preferred if the computational cost is not an issue: when the
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resolution of the grid is decreased, the sensitivity of density ranking to the
choice of smoothing bandwidth is increased. However, one has to keep in
mind that when the resolution of the grids improves, the computational
cost also increases. So, in practice, one has to balance between the quality
of resolution and the computational burden.

APPENDIX B: THEORETICAL ASSUMPTIONS

We denote by f (`)(x) the `-th derivative of a function f(x). A function is
called a Morse function if all its critical points are non-degenerated. In the
development of our theoretical results, we make the following assumptions:

(K1) K(x) has compact support and is non-increasing on [0, 1] and has at
least second-order bounded derivative and∫

x2K(β)(x)dx <∞,
∫ (

K(β)(x)
)2
dx <∞

for β ≤ 2 and K(2)(0) < 0 and K(2)(0) ≥ k2 > 0 for some constant k2.
(K2) Let

Kβ =

{
y 7→ K(β)

(
x− y
h

)
: x ∈ R, h̄ > h > 0

}
,

be a collection of β-th derivatives of kernel functions, where h̄ is some
positive number. Let K∗2 =

⋃2
r=0Kr.

We assume that K∗2 is a VC-type class. i.e. there exists constants A, v
and a constant envelope b0 such that

(7) sup
Q
N(K∗2,L2(Q), b0ε) ≤

(
A

ε

)v
,

where N(T, dT , ε) is the ε-covering number for a semi-metric set T with
metric dT and L2(Q) is the L2 norm with respect to the probability
measure Q.

(S) A contains a finite number of points. R is the union of a finite number
of smooth curves, and each of these curves is a closed set such that
A ⊂ R. Furthermore, we assume that these curves intersect each other
in a finite number of points. O is a compact and smooth set. Moreover,
there exists positive constants a0, A0 such that a0 ≤ p0(x) ≤ A0 for
x ∈ A, and a0 ≤ p1(x) ≤ A0 for x ∈ R, and a0 ≤ p2(x) ≤ A0 for
x ∈ O.

(P1) The one dimensional density function p1(x) is a Morse function on R,
and has bounded fourth order derivatives.
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(P2) The two dimensional density function p2(x) is a Morse function on O,
and has bounded fourth order derivatives.

Assumption (K1) is a common condition on kernel functions (Wasserman,
2006; Scott, 2015) to control the bias and variance of the KDE for both
density and density derivative estimation. Assumption (K2) regularizes the
complexity of kernel functions so we have the uniform convergence of the
KDE (Giné and Guillou, 2002; Einmahl and Mason, 2005; Genovese et al.,
2014; Chen et al., 2015) and its derivatives when the probability density
function exists and is smooth. Note that most common kernel functions,
such as the Gaussian kernel, quartic kernel, or any compact support kernel,
satisfy both assumptions (K1) and (K2). The purpose of assumption (S)
is to regularize the behavior of the supports. The first part requires that
every anchor points is connected to a road. The later part of the assumption
assumes the densities are bounded from both the above and from 0. This
means that the activity pattern on an anchor point, a road, or an open
space has to be different. Both assumptions are very reasonable for GPS
data. Note that assumption (S) implies that each curve (path) is a one
dimensional smooth manifold.

Assumptions (P1) and (P2) require that the critical points of p1 and p2
are well-defined. Although these assumptions seem to be technical, they are
quite reasonable because the actual (realized) speed of travel on a road is
often location-specific: there will be regions with higher driving speeds, and
regions with lower driving speeds due to legal speed limits, intersections,
built environment or natural obstacles.

APPENDIX C: PROOFS OF THEORETICAL RESULTS

For any set A and a positive number r0, we define the set

A⊕ r0 = {x : d(x,A) ≤ r0},

where d(x,A) = infy∈A ‖x− y‖ is the shortest distance from point x to A.

Proof of Theorem 1. Case of ω(x) = 0. By definition, we have ω(x) =
0 ⇔ x ∈ A ⇔ p0(x) > 0. Thus, all we need to prove is the equivalence to
the last definition. When p0(x) > 0 and π0 > 0, for any positive integer s,

PGPS(B(x, r))

rs
≥ π0P0(B(x, r))

rs

will diverge when r → 0. Thus, max{s : Hs(x) < ∞} = 0. This proves
that ω(x) = 0 implies max{s : Hs(x) < ∞} = 0. On the other hand,
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max{s : Hs(x) < ∞} = 0 implies that there is a point mass at x, so
p0(x) > 0 and thus, ω(x) = 0. This proves the case of ω(x) = 0.

Case of ω(x) = 1. Recall that, by definition, ω(x) = 1 ⇔ x ∈ R\A.
Using the definition of the support A andR, ω(x) = 1 implies that p0(x) = 0
(x /∈ A), p1(x) > 0 (x ∈ R), and p0(x) = 0 with p1(x) > 0 implies ω(x) = 1.
Thus we proved the equivalence of the first and the third definition.

To show the equivalence to the second definition, the condition that
p1(x) ≤ A0 for every x ∈ R implies that p1(x) > 0 =⇒ H1(x) < ∞. And
PGPS(B(x,r))

r2
≥ π1P1(B(x,r))

r2
will diverge when r → 0 so H2(x) =∞. Therefore,

ω(x) = 1⇒ max{s : Hs(x) <∞} = 1.
On the other hand, max{s : Hs(x) < ∞} = 1 implies H2(x) = ∞ and

H1(x) <∞. We have H2(x) =∞⇒ x ∈ A ∪R, and also

H1(x) = lim
r→0

PGPS(B(x, r))

C1r
,

= lim
r→0

π0P0(B(x, r)) + π1P1(B(x, r)) + π2P2(B(x, r))

C1r
.

Thus we must have p0(x) = 0 because otherwise the first term will diverge.
Moreover, p0(x) = 0⇒ x /∈ A. Thus, x ∈ R\A ⇔ ω(x) = 1.

Case of ω(x) = 2. Because ω(x) = 2 ⇔ x /∈ A ∪ R, p0(x) = p1(x) = 0.
Thus, p2(x) ≥ 0 so this is equivalent to the third definition. Now we derive
the equivalence to the second definition. Assumption (S) implies that A∪R
is a closed set. Thus, for a point x /∈ A ∪ R, there exists a constant r0 > 0
such that B(x, r0) ∩ (A ∪R) = ∅. It follows that, when r < r0, we have

PGPS(B(x, r))

C2r2
=
π2P2(B(x, r))

C2r2
.

Therefore

H2(x) = lim
r→0

PGPS(B(x, r))

C2r2
= lim

r→0

π2P2(B(x, r))

C2r2
= π2p2(x) <∞

which proves that ω(x) = 2⇒ max{s : Hs(x) <∞, s = 0, 1, 2} = 2.
To prove the other direction, we assume thatH2(x) <∞, and try to prove

that p0(x) = p1(x) = 0 (this is equivalent to ω(x) = 2). We proceed by proof
by contradiction. Assume that p0(x) or p1(x) are positive. By definition,

H2(x) = lim
r→0

PGPS(B(x, r))

C2r2
≥ lim

r→0

Pj(B(x, r))

C2r2

for j = 0 and 1. Because p0(x) or p1(x) are positive,

lim
r→0

Pj(B(x, r))

C2r2
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will diverge, which implies H2(x) = ∞, a contradiction. Thus, we conclude
that p0(x) = p1(x) = 0, which completes the proof.

Proof of Theorem 2. By Theorem 1, we have

ω(x) = max{s : Hs(x) <∞, s = 0, 1, 2},

hence α(x) is equivalent to the one defined in Chen (2018).
We will prove this theorem using Theorem 10 of Chen (2018). Note that

Theorem 10 of Chen (2018) requires four assumptions, two assumptions on
kernel functions that are the same as ours. The other two assumptions of
Theorem 10 of Chen (2018) include a manifold assumption denoted as (S’)
and a density assumption denoted as (P’).

To apply their result, we need to verify that our assumptions (S) and (P1-
2) are sufficient to satisfy their assumptions (S’) and (P’). Assumption (P’)
requires that p1 and p2 are Morse functions with bounded continuous fourth-
order derivative, and each pj(x) is uniformly bounded from the above and
from 0. Thus, our assumption (S) and (P1-2) are sufficient to the assumption
(P’). Assumption (S’) requires that the set R is a smooth manifold. Our
assumption (S) only requires that R is the union of finite number of smooth
curves (1D manifolds), which is weaker than assumption (S’).

We will argue that their results still apply. Recall that assumption (S)
requires that curves of R only intersect on a finite number of points. Let I
be the collection of these intersections. Let rn → 0 be a sequence of positive
numbers, and restrict our attention to the data within (I ⊕ rn)C = {x :
d(x, I) ≥ rn}. Then under assumption (S), p1 within (I⊕rn)C has a support
that is a smooth manifold, which satisfies assumption (S’). Thus, Theorem
10 of Chen (2018) applies and we obtain the desired result on (I ⊕ rn)C .
Note that this introduce an error of PGPS(I⊕ rn) = O(rn), which shrinks to
0 when rn → 0. Therefore, asymptotically we obtain the desired result.

Note that Theorem 3 is substantially a different result compared to the
results presented in Chen (2018). Their results focus on the convergence
of a function estimator rather than a level set estimator. Convergence of a
function estimator does not imply the corresponding level sets converge.

Before proving Theorem 3, we first define some useful notations. Under
assumption (P2), there is a global minimum of p1(x) on R. Let m0 be this
global minimum.

We define a sequence of sets

Wn = (A ∪R)\(m0 ⊕ h−
1
4 ).
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This sequence will be very useful when proving the second assertion of The-
orem 3.

For any set A, we define PGPS(A) = P(X ∈ A) such that X has a
distribution function PGPS and P̂n(A) = 1

n

∑n
i=1 I(Xi ∈ A). Note that

P̂n(Âγ) = γ +O(n−1) by construction.
Finally, we prove two useful lemmas.

Lemma 5. Given assumptions (K1-2) and (S) and (P1), we have

P
(
Âπ0 ⊂ (A⊕ h)

)
→ 1.

If we further assume (P2), we have

P
(
Âπ0+π1 ⊂ ((A ∪R)⊕ h)

)
→ 1.

Proof. First assertion. Let K0(h) = (A ⊕ h)C be the complement of
(A⊕ h). Note that

Âπ0 ⊂ (A⊕ h)⇔ Âπ0 ∩K0(h) = ∅.

We will prove the result by showing that P(Âπ0 ∩K0(h) 6= ∅)→ 0.
Because PGPS has point mass on A, p̂ diverges much faster than other

regions. Moreover, because the kernel function K(x) is smooth due to as-
sumption (K1), points around A also get smoothing effect from A. As a
result, any point within A⊕ h

2 will gain the smoothing effect from A. There-
fore, when h→ 0,

P

(
sup

x∈K0(h)
p̂(x) ≤ min

x∈A⊕h
2

p̂(x)

)
→ 1.

Thus, if Âπ0 contains any point in K0(h), with a probability tending to
1, Âπ0 must contain A⊕ h

2 . Because PGPS(A⊕ h
2 ) = π0 +O(h), P̂(A⊕ h

2 ) ≥
π0 +O(h)−∆n, where ∆n = supr>0 |P̂(A⊕ r)− PGPS(A⊕ r)|. As a result,

a necessary condition of Âπ0 ∩K0(h) 6= ∅ is P̂(A⊕ h
2 ) < π0, which requires

π0 +O(h)−∆n ≤ P̂

(
A⊕ h

2

)
< π0.

Thus, we need ∆n > O(h).
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Because the set {A ⊕ r : r > 0} has a VC dimension 1, due to VC
theory (e.g., Theorem 2.43 of Wasserman 2006), P(∆n > ε) ≤ a0ne−8nε2 for

some constant a0. Under the assumption that nh2

logn → ∞, we have P(∆n >

O(h))→ 0, and this implies that P(Âπ0∩K0(h) 6= ∅)→ 0, the desired result.
Second assertion. The proof of the second assertion follows the same

way as the first assertion. The key is replacing A by A∪R and use the fact
that any point within (A ∪ R) ⊕ h

2 diverges faster than any point outside
(A ∪R)⊕ h. Thus, we omit the proof.

Lemma 6. We assume (K1-2) and (S) and (P0-1). Given the above
notations, we have

P
(
Wn ⊂ Âπ0+π1

)
→ 1.

Proof. Recall that Wn = (A∪R)\(m0⊕h−1/4). Because m0 is the global
minimum of p1(x) on R, and p1(x) is a smooth function along R, we can
assume that every point of Wn has a one dimensional density that is above
or equal to p1(m0) + c1

√
h for some constant c1. Namely,

inf
x∈Wn

p1(x) ≥ p1(m0) + c1
√
h,

where c1 is a constant related to the second derivative of p1(x).
We will derive the probability by considering the complement event, i.e.,

Wn 6⊂ Âπ0+π1 , and then show that such an event occurs with a probability
tending to 0. If Wn 6⊂ Âπ0+π1 , we can then find a point x0 ∈ Âπ0+π1 but
x0 /∈Wn. Therefore, p1(x0) ≥ p1(m0) + c1

√
h.

Let p̂∗ be the density threshold used for constructing Âπ0+π1 , i.e.,

Âπ0+π1 = {x : α̂(x) ≤ π0 + π1} = {x : p̂(x) ≤ p̂∗}.

Because x0 /∈ Âπ0+π1 , p̂(x0) < p̂∗.
By Theorem 8 of Chen (2018), p̂ will be a consistent estimator of p1 after

rescaling. Specifically, we have

∆1,n = sup
x∈R\(A⊕h)

|C†1 · h · p̂(x)− p1(x)| = O(h) +OP

(√
log n

nh

)
,

where C†1 is a constant depending only on the kernel function. This implies
that

C†1 · h · p̂(x0) ≥ p1(x0)−∆1,n ≥ p1(m0) + c1
√
h−∆1,n.
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Thus,

(8) C†1 · h · p̂∗ > p1(m0) + c1
√
h−∆1,n.

Consider a set

Γ =

{
x ∈ R : p1(x) ≤ p1(m0) +

1

3
c1
√
h

}
.

Whenever ∆1,n <
1
3c1
√
h, uniformly for every x1 ∈ Γ, we have

C†1 · h · p̂(x1) ≤ p1(x1) + ∆1,n

< p1(x1) +
1

3
c1
√
h

≤ p1(m0) +
2

3
c1
√
h

≤ p1(m0) + c1h−∆1,n

< C†1 · h · p̂∗.

Thus, Γ ∩ Âπ0+π1 = ∅. When h→ 0 and nh2

logn →∞,

P

(
∆1,n <

1

3
c1h

)
→ 1

because ∆1,n = O(h) + OP

(√
logn
nh

)
. Therefore, when Wn 6⊂ Âπ0+π1 , with

a probability tending to 1, Γ ∩ Âπ0+π1 = ∅.
Next, we will show that it is very unlikely that the set Âπ0+π1 does not

contain the set Γ. By Lemma 5, Âπ0+π1 ⊂ (A ∪ R) ⊕ h with a probability
tending to 1. In the event Wn 6⊂ Âπ0+π1 , we can assume Γ ∩ Âπ0+π1 = ∅
because it happens with a probability tending to 1. Then

Âπ0+π1 = Âπ0+π1\Γ ⊂ ((A ∪R)⊕ h) \Γ.

Let

∆2,n = sup
r>0
|P̂n(((A ∪R)⊕ r) \Γ)− PGPS(((A ∪R)⊕ r) \Γ)|.

Then

π0 + π1 = P̂n(Âπ0+π1) ≤ P̂n(((A ∪R)⊕ h) \Γ)

≤ PGPS(((A ∪R)⊕ h) \Γ) + ∆2,n

≤ π0 + π1 +O(h2) + ∆2,n − PGPS(Γ).
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Therefore, we need O(h2) + ∆2,n − PGPS(Γ) > 0 so that there is no contra-
diction within the inequalities. Because Γ is the collection of points on R
around m0, PGPS(Γ) ≥ c2h−1/4, where c2 is some constant that is related to
the lower bound on the second derivative of p1 around m0. Thus, a necessary
condition (ignoring O(h2) since it is of a smaller order) is ∆2,n > c2h

−1/4,
which occurs with a probability

P(∆2,n > c2h
−1/4)→ 0,

because the VC theory implies that ∆2,n = OP

(
logn
n

)
and we require

nh2

logn → ∞. Thus a necessary condition to Wn 6⊂ Âπ0+π1 is ∆2,n > c2h
−1/4,

which occurs with a probability tending to 0. So we conclude that

P(Wn 6⊂ Âπ0+π1)→ 0,

which implies
P(Wn ⊂ Âπ0+π1)→ 1.

Proof of Theorem 3. Part I: recovering A. Because of Lemma 5,

we assume that Âπ0 ⊂ (A⊕ h). We will first prove that P
(
A ⊂ Âπ0

)
→ 1,

and then show that PGPS(Âπ0\A)
P→ 0.

Let E1 = {A 6⊂ Âπ0} = {∃s0 ∈ A : s0 /∈ Âπ0}. We now assume E1 is true
and study the probability P(E1). Let s0 ∈ A and s0 /∈ Âπ0 . Using Lemma 5,
Âπ0 ⊂ (A⊕ h) so

PGPS(Âπ0) ≤ PGPS(A⊕ h).

Because s0 /∈ Âπ0 , we can rewrite the above inequality as

(9) PGPS(Âπ0) ≤ PGPS((A⊕ h)\s0) ≤ π0 +O(h)− p0(s0).

Using the property that P̂n(Âπ0) = π0 +O(n−1), we obtain

(10) π0 +O(n−1) = P̂n(Âπ0) ≤ P̂n((A⊕ h)\s0) ≤ PGPS((A⊕ h)\s0) + ∆′n,

where ∆′n = supr>0 |P̂n((A⊕ r)\s0)− PGPS((A⊕ r)\s0)|.
When E1 is true, both equations (9) and (10) must hold, which requires

π0 +O(n−1)−∆′n ≤ PGPS((A⊕ h)\s0) ≤ π0 +O(h)− p0(s0).

Namely, we need
∆′n ≥ p0(s0)−O(h) +O(n−1).
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Again, using the fact that the set {(A⊕ r)\s0 : r > 0} has a VC dimension
1, the VC theory implies

P(∆′n > ε) ≤ c0ne−8·nε
2
.

Thus,

P(E1) ≤ P(∆′n ≥ p0(s0)−O(h) +O(n−1)) ≤ O(c0ne
−8·np0(s0)2)→ 0.

We conclude that

(11) P(A ⊂ Âπ0)→ 1.

Now we prove the other result. Because Âπ0 ⊂ (A⊕ h) and the fact that

PGPS((A⊕ h)\A) = O(h),

it follows that

PGPS(Âπ0\A) ≤ PGPS((A⊕ h)\A) = O(h)→ 0

so PGPS(Âπ0\A) is a random variable with a bound shrinking at rate O(h),

which implies PGPS(Âπ0\A)
P→ 0.

Putting it altogether,

PGPS(Âπ04A) = PGPS(Âπ0\A) + P(A\Âπ0),

where the first quantity PGPS(Âπ0\A)
P→ 0 as we have demonstrated in the

above and the second quantity

PGPS(A\Âπ0)

{
= 0, with a probability → 1,

≤ 1, with a probability → 0.

Hence PGPS(Âπ04A)
P→ 0, which proves the first assertion.

Part II: recovering A ∪ R. Again due to Lemma 5 we will assume
Âπ0+π1 ⊂ ((A ∪R)⊕ h).

We will make use of the set Wn because by construction

Wn ⊂ (A ∪R).

Lemma 6 states that with a probability tending to 1,

Wn ⊂ Âπ0+π1 .
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Because Wn is a subset of both (A ∪R) and Âπ0+π1 ,

(A ∪R)\Âπ0+π1 ⊂ (A ∪R)\Wn,

Âπ0+π1\(A ∪R) ⊂ Âπ0+π1\Wn.

Thus,

PGPS((A ∪R)\Âπ0+π1) ≤ PGPS((A ∪R)\Wn)

≤ PGPS((A ∪R) ∩ (m0 ⊕
√
h))

= O(
√
h).

Moreover, using the fact that Âπ0+π1 ⊂ ((A ∪R)⊕ h),

PGPS(Âπ0+π1\(A ∪R)) ≤ PGPS(Âπ0+π1\Wn)

≤ PGPS(((A ∪R)⊕ h)\Wn)

= O(h2) +O(
√
h)

= O(
√
h).

The above inequalities show that the two probabilities are bounded random
variables with a bound shrinking at rate O(

√
h), so PGPS(Âπ0+π1\(A∪R)) =

OP (
√
h) and PGPS((A ∪R)\Âπ0+π1) = OP (

√
h). When h→ 0, we conclude

PGPS(Âπ0+π14(A ∪R))
P→ 0,

which completes the proof.

Proof of Theorem 4. Due to assumption (K1), the kernel function is
non-increasing between x ∈ [0, 1] so

K(x) ≥
{
K
(
1
2

)
, if x ≤ 1/2,

0, if x > 1/2.

That is, K(x) ≥ K
(
1
2

)
I
(
x ≤ 1

2

)
. Using this inequality, the KDE

p̂(x) =
1

nh2

n∑
i=1

K

(
d(x,Xi)

h

)
,

≥ 1

nh2

n∑
i=1

K

(
1

2

)
I

(
d(x,Xi)

h
≤ 1

2

)
,

=
K
(
1
2

)
4

1

n(h/2)2
I

(
d(x,Xi) ≤

h

2

)
.
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Thus,

E(p̂(x)) ≥ K
(
1
2

)
4

1

(h/2)2
P

(
d(x,Xi) ≤

h

2

)
=
π ·K

(
1
2

)
4

1

π(h/2)2
PGPS

(
B

(
x,
h

2

))
.

Because x ∈ A∪R, 1
π(h/2)2

PGPS

(
B
(
x, h2

))
→∞ when h→ 0. Therefore,

E(p̂(x))→∞

when h→ 0, which completes the proof.
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