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Abstract One of the primary areas of interest in applied algebraic topol-
ogy is persistent homology, and, more specifically, the persistence diagram.
Persistence diagrams have also become objects of interest in topological data
analysis. However, persistence diagrams do not naturally lend themselves to
statistical goals, such as inferring certain population characteristics, because
their complicated structure makes common algebraic operations–such as ad-
dition, division, and multiplication– challenging (e.g., the mean might not be
unique). To bypass these issues, several functional summaries of persistence
diagrams have been proposed in the literature (e.g. landscape and silhouette
functions). The problem of analyzing a set of persistence diagrams then be-
comes the problem of analyzing a set of functions, which is a topic that has
been studied for decades in statistics. First, we review the various functional
summaries in the literature and propose a unified framework for the func-
tional summaries. Then, we generalize the definition of persistence landscape
functions, establish several theoretical properties of the persistence functional
summaries, and demonstrate and discuss their performance in the context of
classification using simulated prostate cancer histology data, and two-sample
hypothesis tests comparing human and monkey fibrin images, after develop-
ing a simulation study using a new data generator we call the Pickup Sticks
Simulator (STIX).
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1 Introduction

Topological data analysis (TDA) seeks to understand and characterize topolog-
ical features of data. In particular, persistent homology provides a framework
for analyzing the topological connectivity of a dataset at different scales. Per-
sistent homology has drawn interest in applied mathematics (Edelsbrunner
et al. 2002, Scopiagno & Zorin 2004, Zomorodian 2005, Ghrist 2008, Carlsson
2009), computer science and machine learning (Adams et al. 2017), statistics
(Worsley 1996, Adler et al. 2010, Chazal et al. 2014, Fasy et al. 2014, Turner,
Mukherjee & Boyer 2014, Bubenik 2015, Chen et al. 2015), and the applied
sciences (Sousbie et al. 2011, Van de Weygaert et al. 2011, Cisewski et al. 2014,
Singh et al. 2014, Bendich et al. 2016). The interest in persistent homology is
due, at least in part, to its ability to extract summaries of data that are other-
wise missed by traditional data analysis methods. Persistent homology gives a
multi-scaled way to view data. Different features (in particular, the homology
generators) are tracked across the scales, resulting in an object known as the
persistence diagram, which is a multi-set of birth-death pairs (indicating the
birth and death of the homology generators). While persistence diagrams con-
tain potentially useful information about a dataset, they are not easy objects
to use directly in machine learning and statistical settings, so work has been
carried out to transform persistence diagrams into one- or two-dimensional
functional summaries and vectorized representations. In this article, we review
functional summaries of persistence diagrams, develop a unified framework for
the functional summaries along with proposing a generalization of a popular
functional summary (persistence landscape functions), discuss various ways
the functional summaries can be used, and compare the results on simulated
and real datasets. Below, we introduce two examples that will be considered
in subsequent sections.

Example: Prostate Cancer Histology. Prostate cancer (PCa) is the second most
common cancer in men worldwide with an estimated 1.1 million cases diag-
nosed in 2012 (Center et al. 2012, Ferlay et al. 2015). Prostate cancer diagnosis
involves histological classification of hematoxylin and eosin (H&E) prepared
slides of a prostate biopsy, such as the region of interest (ROI) from a slide
scan shown in Fig. 1. Slides are classified into five grades based on glandu-
lar architectural features in the Gleason Grading System; a primary and a
secondary grade are assigned, with higher grades corresponding to increas-
ingly poor prognostic outcomes (Humphrey 2004). Initially developed in the
1960s, the Gleason grading system and its recently introduced refinement,
the Grade Groups (Epstein et al. 2016), are the most powerful predictors of
prognostic outcome in prostate cancer. However, the system suffers from high
intra- and inter-observer variability due to the subjective nature of the grading
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(a) Gleason Grade 3 (b) Gleason Grade 5

Fig. 1. Sample ROIs from regions graded Gleason Grade 3 (left) and Gleason
Grade 5 (right). The dark purple are nuclei, and can easily be segmented us-
ing software such as CellProfiler(Lamprecht et al. 2007). In the lower-Gleason
grades, the nuclei form round circles surrounding glands. As the cancer pro-
gresses, these circles become irregular in shape and eventually break open,
losing all structure.

scheme (Engers 2007, Truesdale et al. 2011, Abdollahi et al. 2012, Goodman
et al. 2012, Helpap et al. 2012, Truong et al. 2013, Evans et al. 2016). The Glea-
son grading system and Grade Groups both rely exclusively on architectural
patterns of carcinoma cells for histological classification; these architectural
patterns provide an opportunity to use topological data analysis. Through a
simulation study (Section 5.1), we present a technique for classification of his-
tology slides based on functional summaries of persistence diagrams so that
prevalent patterns can be revealed in order to assist a pathologist or oncolo-
gist in finding glandular architectural patterns that can be used to assign a
Gleason Score or Grade Group.

Example: Fibrin Network Data. Complicated spatial structures are common in
biological data (e.g., fibrin clots, fibroblasts), but are difficult to quantitatively
analyze without losing important information. In particular, the coagulation
cascade culminates in the web-like structure of a fibrin network. Fig. 2 displays
a sample of a human fibrin network collected using a scanning electron micro-
scope; the image are from Pretorius et al. (2009). Features of these structures
have numerous implications for vascular diseases like hemophilia and throm-
bosis (Campbell et al. 2009, Pretorius et al. 2009).

One of the primary goals of Pretorius et al. (2009) was to compare platelet
and fibrin networks of humans and eight other animal species, and carry out
an inference procedure to determine if the differences are statistically signifi-
cant. They focused their comparisons on the thickness of the fibrin fibers and
grouped them into thin, intermediate, and thick fibers, requiring measure-
ments of individual fibers within the collection of fibrin networks. To measure
the fibers, they randomly selected 100 fibers within the sampled and imaged
fibrin networks, and then measured the diameters of the fibers. Next, they
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Fig. 2. Sample of human fibrin network from Figure 1a of Pretorius et al.
(2009), where the white scale bar is 1 µm.

assigned the 100 fibers from each fibrin network into one of the three clus-
ters based on the measured diameter, and then did comparisons between the
fiber classes of the different species. While they focused on fiber thickness, we
compare the topological structure of the fibrin networks using functional sum-
maries of persistence diagrams. In Section 5.2.1, we develop a data-generating
model that mimics some of the characteristics of these spatially complex data,
including allowing for varying thicknesses of the strands, which we call the
Pickup Sticks Simulator (STIX). Before carrying out the hypothesis tests on
the real fibrin data, we run a simulation study on the STIX data where we
know the ground truth and can verify the methodology.

Additional Applications. Though we focus on classification and hypothesis
tests for prostate cancer histology slides and fibrin networks, the methods
we propose can have analogous use in other areas of science. For example, the
complicated spatial structure of fibrin networks is similar to the distribution
of matter in the Universe, often referred to as the Cosmic Web (Worsley 1996,
Sousbie et al. 2011, Van de Weygaert et al. 2011, Wu et al. 2018), and to brain
artery trees (Bendich et al. 2016, Biscio & Møller 2016).

Main Contributions. First, a review is provided of the functional summaries
from the literature. Then, we propose a unified framework for the functional
summaries and generalize the definition of one popular type of persistence
functional summary, the persistence landscape function, to a broader class
of functions that allows for different kernels and bandwidths providing addi-
tional flexibility for the practitioner. Theoretical properties of the persistence
functional summaries are established, putting these functional summaries on
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a solid foundation for various types of statistical inference and methodology.
Then, several of the popular functional summaries, along with the proposed
generalized landscape function, are used in two different applications in order
to compare their performance. The first is using simulated prostate cancer
histology data, where the data are classified according to simulated architec-
tural morphology. The second application carries out two-sample hypothesis
tests comparing human and monkey fibrin images, which is particularly chal-
lenging because the data have a complicated, web-like, spatial structure. In
order to evaluate the performance in a more controlled setting, we develop
a new data-generating mechanism, STIX. STIX generates images that have
similar features to the fibrin data, but are also interesting objects of study on
their own.

2 Functional Summaries of Persistence Diagrams

Before introducing functional summaries of persistence diagrams, we provide
an introduction to persistence diagrams themselves, along with some examples
of the types of inference one may want to do with a set, or sets, of persis-
tence diagrams.

2.1 Persistence Diagrams

In TDA, persistence diagrams (Cohen-Steiner et al. 2007, Edelsbrunner &
Morozov 2012, Wasserman 2016) provide a useful way to summarize the topo-
logical structure of a point-cloud of data or a function1. In this introduction,
we focus on the function-based filtrations for persistence diagrams, but other
types of filtrations can be used. For more details on filtrations over point
clouds, we suggest Zhu (2013) or Ghrist (2014). Given a function f : X → R,
where X is a topological space, we define the upper2 λ-level set of f as

Lλ = {x : f(x) ≥ λ} = f−1([λ,∞)).

For any two level thresholds λ1 > λ2, the corresponding level sets satisfy
Lλ1
⊂ Lλ2

. Thus, the collection of level sets L =
⋃
λ{Lλ} forms a filtration

with the level as the index set.
For each level set Lλ, its topological features are captured through the

generators of its homology groups. Informally, the 0-th order homology groups
(0-th order topological feature) capture the connected components, the 1-st
order homology groups capture regions forming a loop structure, and 2-nd

1 Actually, as long as we have a filtration, we can define a persistence diagram.
2 Some literature considers the lower level set f−1((−∞, λ)). Both definitions are valid

and here we use upper level sets because they yield a very straight forward definition when
we consider the image data or certain functions estimated from a point cloud, such as kernel
density estimates (Wasserman 2006).
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order homology groups capture regions forming a void structure. For the for-
mal definition of homology groups, we refer readers to Edelsbrunner & Harer
(2008) and Edelsbrunner & Morozov (2012). When we decrease the level λ,
new generators for the homology groups may be created (e.g., the formation of
new components), existing generators may merge together (e.g., two connected
components joining together), and existing generators may be eliminated (e.g.,
a loop getting filled in). The level at which a generator is created is called its
birth time and the level at which a generator is eliminated, or merges with
another generator that has an earlier birth time, is called its death time. Thus,
for every generator in L, there are three characteristics: homology order, birth
time, and death time.

The persistence diagram is the collection of all these triplets of the filtra-
tion formed by the given function f . Thus, if a function’s filtration has |D|
generators, then its persistence diagram is

D = {(rj , bj , dj) : j = 1, · · · , |D|},

where rj , bj , and dj are the homology order, birth time, and death time of
the j-th generator, respectively, and the norm |D| denotes the number of off-
diagonal elements in the persistence diagram D.

2.1.1 Example: constructing a persistence diagram from a dataset

There are many ways of constructing a persistence diagram from a dataset.
If the data are images, functions, or fields evaluated on a grid, then the con-
struction of the corresponding persistence diagrams is straight forward – we
just consider the pixels, or grid points, whose value is above a given level and
vary such level to construct a filtration.

When the data are a collection of points, the construction of a persistence
diagram depends on how the function that generates the underlying filtration
is constructed. Here we illustrate the construction using an estimator of the
underlying density function. We use a kernel density estimate (KDE) to esti-
mate the underlying probability density function that generates this data and
construct the filtration using the (upper) level set of the KDE (Fasy et al.
2014, Wasserman 2016). This procedure is summarized in Fig. 3, where we
obtain a persistence diagram for the estimated density function of the given
2D point clouds. Formally, let X1, · · · , Xn ∈ Rd be the observed values for

a single dataset. The KDE is p̂h(x) = 1
nhd

∑n
i=1K

(
‖Xi−x‖

h

)
, where K(x)

is a smooth function called the kernel function (e.g. a Gaussian kernel) and
h > 0 is a quantity called the smoothing bandwidth that controls the amount
of smoothing (Wasserman 2006). Using p̂h and its level sets, we then con-
struct the persistence diagram which contains topological information about
the underlying density function.
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(a) Dataset
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(b) KDE
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Fig. 3. The construction of a persistence diagram from the single dataset
(points) displayed in (a). We construct the persistence diagram (PD, d) using
level sets (e.g., c) of its kernel density estimator (b).

2.2 Modeling multiple persistence diagrams

In this paper, we focus on the case where multiple persistence diagrams,
D1, . . . ,Dn, are observed and we want to perform statistical analysis (e.g.,
estimating population quantities, classification, hypothesis testing) over these
diagrams. In addition to the prostate cancer histology data and fibrin net-
work data mentioned previously, there are many other situations where this
framework is useful, such as when analyzing brain artery trees (Bendich et al.
2016, Biscio & Møller 2016), investigating the large-scale structure of the Uni-
verse using cosmological simulations (Wu et al. 2018), or studying shape data
(Turner, Mukherjee & Boyer 2014, Crawford et al. 2016). A common assump-
tion in these examples is that the persistence diagrams, D1, . . . ,Dn, are gen-
erated from the same population. Thus, we can model this procedure as the
case where there exists a distribution of persistence diagrams P (Mileyko et al.
2011) such that D1, . . . ,Dn are independent and identically distributed from P.

Unfortunately, persistence diagrams are not easy objects to work with.
Even if a sample of persistence diagrams are from the same distribution, each
of them may have different numbers of topological features, and those features
have a complicated covariance. This makes it difficult to carry out common
algebraic operations such as addition, division, and multiplication, hence com-
puting statistical summaries such as means and medians is challenging (Turner
2013, Turner, Mileyko, Mukherjee & Harer 2014). In the multiple diagram set-
ting, a simple but elegant approach is to summarize each diagram by a function
and then analyze the diagrams by comparing their corresponding functions.
Because functions are well-defined objects, and statistical analysis over func-
tions are well-studied, analyzing these functional summaries is a much easier
task than directly studying the diagrams.

The proposed functional summaries use either a univariate or a bivari-
ate function function to summarize the persistence diagram, but, in general,
functions with more variables can be used. A brief review of the existing func-
tional summaries of persistence diagrams is provided next, before giving more
details on the proposed functional summaries. Let F be a collection of func-
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tions. Then, a functional summary of a persistence diagram, F(D), is a map
between D and F . i.e.,

F : D → F .

Using a functional summary F, the random diagrams D1, · · · ,Dn become
random functions F1 = F(D1), · · · , Fn = F(Dn). Moreover, since these ran-
dom diagrams are from the same distribution, the corresponding functional
summaries also come from the same distribution (of functions), PF :

F1, · · · , Fn
i.i.d.∼ PF . (1)

The above characterizes the statistical model for using functional summaries
to analyze persistence diagrams. Except where noted, we focus on topological
features of the same homological dimension.

2.3 Review: Functional Summaries

We review several functional summaries that have been proposed in exist-
ing literature.

2.3.1 Persistence Landscape

The persistence landscape function is a popular univariate functional sum-
mary of a persistence diagram (Chazal et al. 2014, Bubenik 2015). To pro-
duce a persistence landscape function, or simply referred to as a landscape
function, the persistence diagram is rotated clockwise 45 degrees, and then
isosceles right triangles are drawn from each feature of a particular homology
dimension (where the right angle vertex is the homology feature). From the
collection of isosceles right triangles, individual functions are traced out where
the first landscape function is the point-wise maximum of all the triangles
drawn. More specifically, a persistence landscape is a collection of univariate
functional summaries Fk : D → F such that for each k ∈ N,

Fk(D; t) = kmax
j=1,··· ,|D|

{Λj(t)}, (2)

where Λj(t) = min(t−bj , dj− t)+, kmax is a function selecting the k-th largest
value, and the norm |D| denotes the number of off-diagonal elements in the
persistence diagram D. An illustration of this is displayed in Fig. 4.
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Fig. 4. Illustration of a persistence landscape function. The left plot is a per-
sistence diagram and the right plot is its corresponding persistence landscape
function; each color and line style represents a different Fk with F1 as the solid
black line, F2 as the dashed red line, etc.

2.3.2 Persistence Silhouette

Persistence silhouette functions were introduced in Chazal et al. (2014) as a
modification of the persistence landscape function. The persistence silhouette
function maps the persistence diagram to a function D → R, as opposed
to D → R × N with landscape functions, by combining all the layers of the
landscapes functions into a single, average function. The persistence silhouette
is a function F : D → F1 such that

F(D; t) =

∑|D|
j=1 ω(dj − bj)Λj(t)∑|D|
k=1 ω(dk − bk)

,

where ω(dj − bj) is a weight function based on the persistence of the features.
For example, the weight function ω(dj − bj) = |dj − bj |p could be used, where
p is a tuning parameter that has to be selected. Larger values of p put more
weight on the features with longer lifetimes, and smaller values of p emphasize
the features with shorter lifetimes.

2.3.3 Accumulative Persistence Function

The accumulative persistence function (APF), introduced in Biscio & Møller
(2016), is a univariate functional summaries F : D → F1 such that

F(D; t) =

|D|∑
j=1

(dj − bj) · I(dj + bj ≤ 2t).
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The APF behaves like a cumulative distribution function in that it is a non-
decreasing function.

2.3.4 Persistence Intensity and Image

The persistence intensity is a bivariate functional summary (Chen et al. 2015),
where F : D → F2 is a map to a bivariate function defined as

F(D; t, s) =
1

|D|

|D|∑
j=1

ω(dj − bj) ·K

(√
|bj − t|2 + |dj − s|2

h

)
, (3)

where ω is a weight function and K is a kernel function with smoothing param-
eter h. The persistence intensity replaces points on the persistence diagrams
by a smooth localized function that is determined by the kernel function L
(the amount of smoothing is determined by the parameter h) and apply a
weighted sum over all points to form an intensity function such that, for ex-
ample, points far away from the diagonal (features that are more persistent)
are given higher weights. This leads to a bivariate function that summarizes a
persistence diagram.

Note that if we evaluate the bivariate functional summary on a grid and
view it as an image, we obtain the persistence image introduced in Adams
et al. (2017). The persistence image framework of Adams et al. (2017) in-
cludes vectorizing the image making it suitable for many machine learning
and statistical methods.3

Remark 1 When we can have an extra scale parameter for each persistence
diagram, we can construct a special bivariate functional summary called the
persistence flamelet. The persistence flamelet (Padellini & Brutti 2017) is a
bivariate functional summary that combines the persistence landscape and
the scale parameter. For instance, the persistence diagram may be constructed
from a KDE of a point could making the smoothing bandwidth h in the KDE
the scale parameter. In this case, the persistence landscape also depends on
the scale parameter h. The persistence flamelet is a bivariate function of (t, h)
such that for each fixed h, the persistence flamelet is the persistence landscape.

Remark 2 In addition to functional summaries of persistence diagrams, one
might want vector-valued summaries for input to machine learning algorithms,
for instance. In Adcock et al. (2016), the authors define an algebra of func-
tions on the space of persistence bar codes. Furthermore, they identify the
generators of this algebra, and show the utility of these functions through
applications of classification of data using machine learning. In addition, us-
ing the maximum persistence alone has proven successful in certain settings
(Khasawneh & Munch 2014, Perea & Harer 2015).

3 Adams et al. (2017) also presented conditions under which persistence images are stable
with respect to changes in the corresponding persistence diagrams.
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3 Generalized Landscape Functions

As noted previously, landscape functions result from a persistence diagram
that is rotated, and then each feature j on the diagram produces an isosceles
right triangle, Λj . However, one need not be restricted to these special tri-
angles when computing one-dimensional functional summaries of persistence
diagrams. We propose an expanded class of persistence landscape functions,
called generalized persistence landscape functions. With these generalized land-
scapes, one can substitute different kernels (e.g. tricube, Epanechnikov) and
different bandwidths in order to better adapt to the details in the persis-
tence diagram. (See Wasserman (2006) for a general discussion about kernel
functions and bandwidth selection.) The triangle kernel used in the original
landscape function definition can also be used, except the width of the base
of the triangle can be adjusted, which could be analogously thought of as
adjusting the angles of the triangle.

More specifically, the change is in the form of Λj from Equation (2), where
the generalized landscapes use

Λ̃j(t;h) =

{
yj

Kh(0)
Kh (t− xj) , for | t−xjh | ≤ 1

0, otherwise,

where Kh is the kernel function with h as the bandwidth, (xj , yj) is the rotated
feature corresponding to (bj , dj) from the persistence diagram, with xj = (bj+

dj)/2 and yj = (dj−bj)/2, and the
yj

Kh(0)
ensures that Λ̃j goes through (xj , yj).

For example, the Epanechnikov kernel would have Λ̃j(t;h) = (yj)(1− | t−xjh |
2)

for | t−xjh | ≤ 1. Using the new definitions of Λ̃j , the generalized landscapes are
defined in the same manner as landscapes:

F̃k(D; t) = kmax
j=1,··· ,|D|

{Λ̃j(t;h)}, . (4)

Illustrations of several generalized landscape functions are displayed in
Fig. 5 using the triangle kernel. As with general nonparametric smoothing
methods, a smaller bandwidth results in a rougher function and a larger band-
width results in a smoother function. In Sections 5.1 and 5.2, we consider both
generalized landscapes and original landscapes in a classification problem and
in two sample hypothesis tests. Although the generalized landscapes and the
landscape functions ultimately contain the same information, a benefit of us-
ing the generalized landscapes is that more features of the persistence diagram
can be isolated to fewer function layers.

4 Methodology

All functional summaries defined in the previous section map a persistence
diagram to a function. The problem of analyzing random persistence diagrams
becomes the problem of analyzing random functions, which is a topic that
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Fig. 5. Generalized persistence landscape functions. The left plot is the per-
sistence diagram used to produce the functional summaries in the right plot.
In the right plot, the black circles are the rotated persistence diagram features,
the solid black line is the first generalized landscape using the triangle kernel
with a bandwidth (half the triangle base) of h = 0.2, the second and third
generalized landscapes are plotted in red dashes and green dots, respectively.
As a comparison, the first landscape function is plotted in gray as lines and
dots.

has been studied for decades in statistics (Van der Vaart 2000). Next, we
describe some analysis methods that can be done using the statistical model
characterized in (1).

4.1 Population quantities

Using the statistical model of (1), we can define various population quantities
associated to the functional summaries such as the mean functional summary
(Chazal et al. 2014, Chen et al. 2015, Biscio & Møller 2016). When averag-
ing functional summaries of diagrams, we obtain a sample mean functional
summary. This quantity can be used as an estimator of the population mean
functional summary. In more detail, the population mean functional summary
is a function

F̄ (t) = E(Fi(t)),

where the expectation E is with respect to the distribution PF . The sample
estimator is then the pointwise estimator

F̂ (t) =
1

n

n∑
i=1

Fi(t),

and the convergence of F̂ toward F̄ can be studied using notions of convergence
of functions (Chazal et al. 2014, Chen et al. 2015).
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Let BF be the set of all possible functions formed by a given functional
summary, and let T be a compact set such that we are interested in the popu-
lation mean functional summary F̄ (t) within t ∈ T. To simplify the problem,
we define F (t) = 0 for all t /∈ T for every F ∈ BF . Throughout the paper,
we assume that the functional summary is uniformly bounded by a constant
Ū <∞. Namely,

sup
F∈BF

sup
x∈T
|F (x)| ≤ Ū . (5)

The following is a simple convergence theorem of the estimator F̂ , which
shows that as long as the functional summary is continuous, the sample mean
function summary F̂ uniformly converges to F̄ almost surely, as expressed in
the following proposition.

Proposition 1 (Pointwise Convergence) Assume Equation (5) holds. If BF
is equicontinuous, then

sup
t∈T
|F̂ (t)− F̄ (t)| a.s.→ 0.

As a result, if there exists a constant L > 0 such that any F ∈ BF is L-
Lipschitz, then

sup
t∈T
|F̂ (t)− F̄ (t)| a.s.→ 0.

The proof is presented in Appendix B. Persistence intensity, persistence land-
scapes and generalized landscapes, and persistence scoring all satisfy the con-
dition in Proposition 1 as long as the number of homological features and the
lifetime of the features are uniformly bounded. Thus, averaging these func-
tional summaries yields a consistent estimate of the corresponding population
mean functional summary.

The difference F̂ (t) − F̄ (t) is tightly related to a normal distribution. In
what follows, we show that it converges to a normal distribution in various
ways. Let W = {Ft : t ∈ T} such that Ft(Di) = Fi(t) for each i = 1, · · · , n
be the mapping from the persistence diagram Di to a functional summary as
displayed in Equation (1). Let Q be a probability measure over BF and define

‖f − g‖Q,2 =
√∫
|f(t)− g(t)|2dQ(t) be the L2(Q) norm for functions and

N(W, L2(Q), ε) be the ε-covering number of W.

Proposition 2 Let σ2(t) = Var(Fi(t)) and σ2 =
∫
σ2(t)dt. Assume Equa-

tion (5) holds, then

√
n
(
F̂ (t)− F̄ (t)

)
D→ N(0, σ2(t))

√
n

∫ (
F̂ (t)− F̄ (t)

)
dt

D→ N(0, σ2).

Moreover, if ∫ 1

0

√
log sup

Q
N(W, L2(Q), εŪ)dε <∞, (6)
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where Ū is the upper bound of the functional summary and the supremum is
taken over all finitely discrete probability measures on the space of persistence

diagrams 4, then
√
n
(
F̂ − F̄

)
converges in distribution to B, where B(t) is a

Gaussian process over t ∈ T with a covariance function

Cov(B(t),B(s)) = E(Fi(t)Fi(s))− F̄ (t)F̄ (s)

for t, s ∈ T. Futhermore, if there exists a constant L > 0 such that any F ∈ BF
is L-Lipschitz, then the above three convergences hold.

The proof is presented in Appendix B. Proposition 2 presents the asymptotic
normality of the sample mean functional summary. The assumptions are from
the Donsker theorem; see, e.g., page 18 of Kosorok (2007). The convergence to-
ward a Gaussian process further implies the convergence of the supremum, i.e.,

√
n sup
t∈T
|F̂ (t)− F̄ (t)| D→ sup

t∈T
|B(t)|,

by the continuous mapping theorem; see page 16 of Kosorok (2007) for more
detailed discussion.

The assumption (6) is quite mild. If the functional summary is L-Lipschitz,

then Equation (6) holds and thus
√
n
(
F̂ − F̄

)
converges to a Gaussian pro-

cess. A good news is that many functional summaries, such as the persistence
landscapes, persistence silhouette, persistence image, and persistence intensity
are all L-Lipschitz functional summaries under a very mild assumption (the
number of features in the persistence diagrams is finite almost surely). For the
generalized landscape, as long as the kernel function K is Lipschitz (which
is true for most of the common kernel functions), the functional summary is
also Lipschitz.

4.2 Confidence Bands

Confidence bands provide a way to assess and visualize the uncertainty in the
sample mean functional summary, which can be constructed using a boot-
strapping procedure (Chazal et al. 2014). Specifically, given a confidence level
α, the bootstrap can be employed to find a fixed bandwidth upper envelope
function U1−α(t) and a lower envelope function L1−α(t) such that

P (L1−α(t) ≤ F̄ (t) ≤ U1−α(t) ∀t ∈ [a, b])

= 1− α+ o(1),

for some regions [a, b]. See Proposition 3 below for more details.
The following are the details of the construction of a confidence band. Note

that we assume the functional summary is a univariate function for simplicity;
one can easily generalize the following for multivariate functions.

4 A finitely discrete probability measure Q puts probability mass only finitely many
points in BF .
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1. The initial estimate. First, compute the sample mean functional sum-
mary, F̂ (t) = 1

n

∑n
i=1 Fi(t), for t ∈ [a, b], a given interval.

2. The bootstrap procedure. Sample diagrams with replacement and com-
pute the corresponding functional summaries and the sample mean func-
tional summary, denoted as F̂ ∗(t). Namely, generate D∗1, · · · ,D

∗
n by sam-

pling randomly (with replacement) from D1, · · · ,Dn in a way such that
each diagram has an equal probability (1/n) of being selected. Then com-
pute the the corresponding functional summaries F ∗1 , · · · , F ∗n , and calculate

the sample mean functional summary, F̂ ∗(t).
3. Replication. Repeat the bootstrap procedure B times, leading to B boot-

strap realizations of the sample mean functional summary, denoted as

F̂ ∗(1)(t), · · · , F̂ ∗(B)(t).

4. Width of band. For a given significance level α, choose

t̂1−α = Ĝ−1(1− α), Ĝ(s) =
1

B

B∑
j=1

I

(
sup
t
‖F̂ ∗(j)(t)− F̂ (t)‖ ≤ s

)
,

where t̂1−α is the 1−α quantile of the L∞-distance between the bootstrap
realizations and the initial estimate.

5. Output. The upper and lower bound of the confidence band is

U1−α(t) = F̂ (t) + t̂1−α, L1−α(t) = F̂ (t)− t̂1−α.

The following proposition shows that the confidence band is consistent
under mild assumptions.

Proposition 3 (Functional Bands) If the assumptions in Proposition 2,
including Equation (6), hold, then

P (L1−α(t) ≤ F̄ (t) ≤ U1−α(t) ∀t ∈ T) = 1− α+ o(1).

The proof is presented in Appendix B. Proposition 3 shows that the confi-
dence band is asymptotically valid. Note that if a slightly stronger assumption
is made,

sup
Q
N(W, L2(Q), εŪ) ≤ A

(
1

ε

)ν
, (7)

for some constants A, ν > 0, then we can replace the o(1) in proposition 3 by
O(n−1/8); see the derivation of Chazal et al. (2014).

The above procedure provides a fixed bandwidth confidence band. A variable-
bandwidth confidence band can also be constructed using a simple modifica-
tion in Step 4 and 5. First, compute a variance estimator of the functional
summaries

σ̂2(t) =
1

n

n∑
i=1

(
Fi(t)− F̂ (t)

)2
. (8)
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Then, in Step 4, choose

ŝ†1−α = Ĝ−1† (1− α), Ĝ†(s) =
1

B

B∑
j=1

I

(
sup
t

∥∥∥∥∥ F̂ ∗(j)(t)− F̂ (t)

σ̂(t)

∥∥∥∥∥ ≤ s
)
.

And, in Step 5, we construct the band via

U†1−α(t) = F̂ (t) + ŝ†1−α · σ̂(t), L†1−α(t) = F̂ (t)− ŝ†1−α · σ̂(t).

Using a similar derivation as Chazal et al. (2014), one can prove that such a
confidence band is also valid

Note that both equations (6) and (7) hold if the functional summaries
are L-Lipschitz. Therefore, we have the following result for the generalized
landscapes.

Corollary 1 Assume that T is compact and the number of topological features
of a persistence diagram is bounded by a constant almost surely. If the func-
tional summaries are constructed by a generalized persistence landscape with a
Lipschitz kernel function and a fixed h > 0, then the conclusions in proposition
1, 2, and 3 are true.

Corollary 1 is a direct result from the three propositions when the kernel
function is Lipschitz. Most common kernel functions such as the triangle kernel
and the Gaussian kernel satisfy this condition. Thus, this corollary implies
that the generalized landscape function is a stable functional summary for
data analysis.

4.3 Prediction Bands

A sample mean functional summary F̂ can be used to predict the outcome of
a future persistence functional summary. Let d : F × F 7→ R be a metric for
functional summaries. For every functional summary, say Fi, we first compute
the residual, ei = d(Fi, F̂ ), and then pick q̂γ to be the γ-quantile of e1, · · · , en.
Then a γ-prediction set is

F̂γ = {F : d(F, F̂ ) ≤ q̂γ}. (9)

The following Proposition 4 proves that the prediction set in Equation (9)
is a valid prediction set in our setting.

Proposition 4 Let d be a metric for functional summaries such that

d(F̂ , F̄ )
P→ 0.

Moreover, assume that the function

Q(t) = P (d(Fi, F̄ ) < t)
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has a finite derivative bounded away from 0 at an open neighborhood containing
t = qγ , where qγ solves Q(qγ) = γ. Let F̂γ be as defined in Equation (9). Then

P (Fnew ⊂ F̂γ |F1, · · · , Fn) = γ +OP

((
1√
n

)
+ d(F̂ , F̄ )

)
.

The proof is presented in Appendix B. Note that the assumption d(F̂ , F̄ )
P→ 0

is very mild requiring that our estimator is consistent under the metric d.
The second assumption, the continuity of Q(t) at t = qγ , is also very weak; if
the random variable d(Fi, F̄ ) has a density function that takes non-zero value
around t = qγ , then this assumption holds. Just as other propositions, Propo-
sition 4 also applies to the generalized landscape when the kernel function
is Lipschitz.

There are many possible metrics d, and common choices are

dp,ω(F,G) =

(∫ (
|F (t)−G(t)|

ω(t)

)p
dt

) 1
p

d∞,ω(F,G) = sup
t

∣∣∣∣F (t)−G(t)

ω(t)

∣∣∣∣
(10)

where ω(t) > 0 is a weight function and p is a positive number. When ω(t) =
1, dp,ω becomes the Lp-metric for functions and we often write dp = dp,ω
for simplicity. d1 and d2 are popular choice in data analysis. However, the
prediction set F̂γ from d1 or d2 (or any other dq for 0 < q < ∞) is hard to
visualize. The L∞ metric d∞ leads to a prediction set that is easy to visualize,
but d∞ can be too sensitive to small perturbations.

To obtain a stable metric with a simple visualization property, we con-
sider the metric d∞,ω with ω(t) = σ̂(t) =

√
σ̂2(t), the estimated standard

deviation of F1(t), . . . , Fn(t) from Equation (8). This leads to a variable-width
prediction band. The prediction band can be constructed by first computing
ei = d∞,σ̂(Fi, F̂ ) for each i = 1, · · · , n. Given a prediction level γ > 0, let

q̂γ = γ-quantile of {e1, · · · , en}.

Then the γ-prediction band is{
f(t) : L̃γ(t) ≤ f(t) ≤ Ũγ(t), t ∈ T

}
, (11)

where

Ũγ(t) = F̂ (t) + q̂γ · σ̂(t) and L̃γ(t) = F̂ (t)− q̂γ · σ̂(t). (12)

Thus, a simple way to visualize the prediction set is to plot a band governed
by the lower envelope L̃γ(t) and the upper envelope Ũγ(t).
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Remark 3 (Conformal prediction band) The above prediction bands have 1−α
coverage asymptotically. If we want to obtain a prediction band with exact
1 − α coverage, we may use the conformal prediction approach (Vovk et al.
2005, Shafer & Vovk 2008, Lei et al. 2015). Lei et al. (2015) proposed two
methods of constructing a prediction band for functional data combining the
data splitting and conformal prediction, which can be used to construct an
exact 1− α prediction band for functional summaries.

4.4 Two-Sample Test

Because functional summaries can be averaged, two-sample tests of two groups
of persistence diagrams can be carried out (Chen et al. 2015, Biscio & Møller
2016). This scenario is common in biomedical applications where one set of
diagrams comes from a control group and another set from a treatment group.

There are many ways to carryout two-sample tests, but here we consider a
permutation test approach. Assume we observe two sets of diagrams

D1,1, · · · ,D1,n ∼ PF,1, D2,1, · · · ,D2,m ∼ PF,2,

then the goal is to test the null hypothesis

H0 : PF,1 = PF,2. (13)

Namely, we want to see if there is evidence suggesting the two sets of diagrams
were sampled from different populations.

Let F`,i = F (D`,i) be the functional summaries of the corresponding per-
sistence diagrams for set `, and let

F̂1(t) =
1

n

n∑
i=1

F1,i(t), F̂2(t) =
1

m

m∑
i=1

F2,i(t)

denote the sample mean functional summary of each group. To perform a per-
mutation test, we first choose a metric of functions, such as one from Equation
(10), and then define

T = d(F̂1, F̂2)

as the test statistic. To compute the permutation p-value, the functional sum-
maries from both samples are combined and then randomly split into two
groups, one group with n functions and the other with m functions. New sam-
ple mean functional summaries of both groups are computed along with the
test statistic using the new averages. Assume the above procedure is repeated
B times, then T ∗(1), · · · , T ∗(B) realizations of the test statistic are obtained.
The p-value is the proportion of T ∗(j) that are greater than or equal to the
original test statistic T , i.e.,

permutation p-value =
1

B

B∑
j=1

I
(
T ∗(j) ≥ T

)
.
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The idea of permutation test is that when H0 is true, permuting the diagrams
or their corresponding functions does not change the distribution significantly.
A powerful feature of the permutation test is that it is test; namely, the sig-
nificance level α can be controlled at any level exactly (Wasserman 2006).

4.5 Classification

Using the statistical model (1), the problem of classification of persistence di-
agrams can be studied (Biscio & Møller 2016). We consider the binary classifi-
cation for simplicity, which can be generalized to multiple classes. The problem
of classification is as follows. Suppose a collection of diagrams with labels are
observed as

(D1, Y1), · · · , (Dn, Yn),

where each Yi ∈ {0, 1} denotes the class label of i-th diagram. Statistical
classification addresses how to predict the class label of a new persistence
diagram, Dnew. Using functional summaries, the goal is to predict the class
label for Fnew = F (Dnew). This can be solved by techniques from classifying
functional data (Wang et al. 2016).

Here, we provide a simple approach based on the k-nearest neighbor (kNN)
classifier. First a metric d is chosen, possibly from Equation (10), and
then a new functional summary Fnew, is used to compute the distances
d(F1, Fnew), · · · , d(Fn, Fnew). Let F(`) denotes the `-th closest functional sum-
mary to Fnew and Y(`) be its corresponding class label. The kNN classifier
is then

ck(Fnew) =

{
1, if

∑k
`=1 Y(`) >

k
2

0, if
∑k
`=1 Y(`) ≤

k
2 .

Namely, if more than half of Fnew’s k neighborhoods have a class label 1, the
label of Dnew is 1; otherwise the label of Dnew is 0. In practice, one can choose k
by minimizing the classification errors using cross-validation.

4.6 Clustering and Visualization

There are two major approaches for clustering diagrams based on functional
summaries. The first approach is to directly cluster functional summaries us-
ing clustering techniques from functional data analysis. For instance, one can
use functional k-means clustering (Wang et al. 2016) or mode clustering (Ciol-
laro et al. 2014) to separate functional summaries into clusters and partition
diagrams accordingly.

The other approach is based on a pairwise distance matrix. A metric is
chosen, possibly from Equation (10), and then a pairwise distance matrix of
functional summaries is computed. Based on the distance matrix, clustering
can be carried out using ideas similar to spectral clustering or hierarchical
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clustering to partition the functions into several clusters (Von Luxburg 2007,
Jacques & Preda 2014).

An extra advantage of the second approach is that it automatically provides
a way to visualize the distance/similarity between diagrams. Using the distance
matrix, the classical multidimensional scaling (or other approaches) can be
performed to see how each diagram is related to one another (Chen et al.
2015, Biscio & Møller 2016).

Remark 4 (Connection to Functional Data Analysis) In all the above analyses,
a number of statistical approaches are available from functional data analysis
(Ferraty & Vieu 2006, Ramsay 2006, Wang et al. 2016). This is because the
functional summaries of (1) map the persistence diagrams into functions that
provide a link between the two fields. Because of this mapping, one can apply
the tools from functional data analysis to analyze the persistence diagrams
(Biscio & Møller 2016) and the current research along this direction has yielded
many fruitful results (Chazal et al. 2014, Adams et al. 2017, Chen et al. 2015,
Biscio & Møller 2016).

5 Experimental Evaluation

Next we consider the two applications introduced in Section 1: the Gleason
data and the fibrin network data. These datasets are considered because they
highlight two different types of persistence diagrams. The Gleason data has an
underlying loop structure with topological randomness due to sampling and
to variability around the shape of the loop (indicating a spectrum from benign
to cancerous) with a persistence diagram containing fewer features. While the
spatially complex fibrin data has a complicated persistence diagram with many
features. Classification and two-sample tests are carried out using functional
summaries of the persistence diagrams to investigate their effectiveness.

5.1 Simulated Gleason Data

Preliminary analysis has shown that clustering regions of interest (ROIs) cor-
relates with the Gleason grades for purely-graded regions (Lawson et al. 2017,
2018). In an effort to both better understand the progression of cancer and
to curate a larger data set with known / controlled grading, and because ob-
taining digital slides is both expensive and time-consuming, we are developing
a mock slide synthesizer (Fasy et al. 2018). The data we study in this paper
are obtained from the gland synthesizer used in the mock slide synthesizer,
where a benign gland would be one that is round, with a diameter about 80-
100µm (similar to glands found in Grade 3 ROIs). The unhealthy state is one
where the gland and cribriform are indistinguishable, leaving what looks like
a sheet of cells (i.e., the nuclei appear to be uniformly distributed). With a
tuning parameter, we create cells that range from benign (Type A) to less
and less healthy (Types B and C, respectively) to unhealthy (Type D); see
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(a) Type A (b) Type B (c) Type C (d) Type D

Fig. 6. These glandular structures model typical glands found in prostate
biopsy slides, with type A being the least cancerous, and type D being the
most cancerous.

Fig. 6. Note that we refer to these as Types A–D, rather than using the usual
Gleason grading scheme of, for example, grades 1–5, to emphasize that our
data is computationally generated and the types have not been verified by a
pathologist to correspond to particular Gleason grades.

To illustrate how functional summaries can be useful in analyzing Gleason
data, we conduct a classification analysis with functional summaries. More-
over, we compare the performance in terms of classification based on three
functional summaries: the silhouette functions, the landscape functions, and
the generalized landscape functions with the triangle kernel. Specifically, we
performed k-nearest neighbors (kNN) classification using the L2-metric with
k being chosen by the leave-one-out cross-validation (LOOCV). We created a
training set consisting of 2000 simulated glands with 500 of each type (A–D),
and computed persistence diagrams for each observation. Then we generated
a test set of 400 simulated glands, 100 of each type, and computed the corre-
sponding persistence diagrams as well.

Our first analysis was done using the silhouette function. For each persis-
tence diagram, a silhouette function was computed with weights equal to the
lifetime of each feature. We apply LOOCV to the training set to choose the
number k that minimizes the classification error on the training set. With this
choice of k, we use the entire training set to construct a kNN classifier. To
evaluate the performance of this classifier, we use the test set, which leads to
an 11.75% overall test classification error, with 47 glands misclassified. Figure
7b displays the confusion matrix for the silhouette functions. To demonstrate
an approach for visualizing functional summaries, we used multidimensional
scaling (MDS; see, .e.g, Friedman et al. 2001) on the silhouette functions to
obtain a two-dimensional visualization of the true classes, as seen in Figure 7a.

This exercise was repeated for landscape functions and generalized
landscape functions with the triangle kernel and bandwidths of h =
0.01, 0.025, 0.05, 0.10, and 0.25. Since the landscape approach (generalized
landscape) contains several landscape functions, a decision has to be made
regarding the number functions to use for each setting. We carried out the
simulation study using 1 : j functions for j = 1, . . . , 6 (i.e. only using the first
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function, using only the first and second function, to using the first through
sixth functions). For each function type, bandwidth, and number of functions,
we apply LOOCV to the training set to choose the tuning parameter k, then
construct the kNN classifier using the training set, and evaluate the accuracy
using the test set, as was done for the silhouette functions. Note that in the case
of generalized landscape function, we also choose the smoothing bandwidth us-
ing LOOCV. The results for the landscape functions are displayed in Table 1,
and the results for the best generalized landscape setting (which was the set-
ting with a bandwidth of h = 0.25) are displayed in Table 2. The best setting
for the landscape functions was the case using landscapes 1 through 6 with a
total number of 57 misclassifications resulting in an overall test classification
error rate of 14.25%. The best setting for the generalized landscape functions
with h = 0.25 were the cases using generalized landscapes 1 through 5, or 1
through 6, with a total number of 39 misclassifications resulting in an overall
classification error rate of 9.75%.

Between the silhouette functions, landscape functions, and generalized land-
scape functions considered in this study, the best generalized landscape func-
tions had the best overall performance in terms of test misclassification error.
Most of the errors in classification occurred with gland types B and C where
true gland type B was sometimes misclassified as type C, and true gland type
C was sometimes misclassified as type B or D. The generalized landscape func-
tions are able to include more details in fewer functions, which may explain
why they performed better than the landscapes functions. Silhouette functions
contain more layers of information than the landscape functions considered,
though the information is averaged based on the lifetime of the features, which
may explain their resulting performance between that of the landscape and
silhouette functions.

5.2 Fibrin Data

As noted previously, Pretorius et al. (2009) carried out hypothesis tests be-
tween fibrin networks of different species. We use functional summaries of
persistence diagrams to carryout two-sample hypothesis tests of a human fib-
rin network and a monkey fibrin network, both based on images from Pretorius
et al. (2009). The modeled human and monkey fibrin images are displayed in
Fig. 8, and are produced by removing the white scale bar from the original
images of Pretorius et al. (2009) (see Fig. 2 for the original human fibrin net-
work). The modeling carried out is a minimal amount of smoothing to reduce
the high contrasts of the image. Namely, local quadratic regression is used with
an adaptive bandwidth that includes the 0.1% of the nearest neighbors of the
point of interest. The corresponding persistence diagrams use upper-level set
filtrations on the modeled images, and are displayed in Fig. 9. Both diagrams
have similar features with H0 features appearing early in the filtration, which
die off and produce H1 features.
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Type A

Type B

Type C

Type D

(a) MDS Plot

Type A B C D
A 99 1 0 0
B 1 86 13 0
C 0 10 76 14
D 0 0 8 92

(b) Confusion Matrix

Fig. 7. (left) A two-dimensional MDS plot of the test set using silhouette func-
tions. (right) Silhouette function classification test results. Confusion matrix
for the knn classification tests given as percentages using silhouette functions.
The rows are the actual type, and the columns are the classified type.

Before jumping into the fibrin dataset, we carryout a simulation study
using, what we refer to as, the Pickup Sticks Simulator (STIX), in order to
check the performance of the proposed two-sample tests using different types
of functional summaries when the ground truth is known. The goal of STIX is
to mimic some of the spatially complex features apparent in the fibrin data.

5.2.1 Pick-up Sticks Simulation Data

Motivated by fibrin networks, we developed data simulator that attempts to
mimic some of the complicated spatial structure of fibrin. The STIX generates
data that resembles the web-like features of the fibrin networks. The following
is the STIX recipe supposing n segments, or sticks, are desired in the image.
Two sets of n points are randomly sampled from a Uniform distribution with
segments drawn between points in the same position of the two lists of random
numbers. The thickness of each segment is randomly drawn from a χ2 distri-
bution with thickness = t degrees of freedom.5 Fig. 10 displays realizations of
STIX with two different average thicknesses, 5 and 6.

We carryout a simulation study using STIX to check the performance of
the two-sample hypothesis tests using landscape and generalized landscape
functions. Using the two-sample test framework from Section 4.4, and Equa-
tion (13) in particular, we generate images from two populations with the

5 R (R Core Team 2017) is used to produce the STIX images, and the thickness t of the
segments are set by the lwd plotting option.
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(a) Function orders 1
Type A B C D

A 98 2 0 0
B 1 82 17 0
C 0 17 69 14
D 0 1 14 85

(b) Function orders 1:2
Type A B C D

A 98 2 0 0
B 1 86 13 0
C 0 16 71 13
D 0 0 13 87

(c) Function orders 1:3
Type A B C D

A 98 2 0 0
B 1 84 15 0
C 0 16 70 14
D 0 0 12 88

(d) Function orders 1:4
Type A B C D

A 98 2 0 0
B 1 82 17 0
C 0 16 70 14
D 0 0 12 88

(e) Function orders 1:5
Type A B C D

A 99 1 0 0
B 1 83 16 0
C 0 16 70 14
D 0 0 13 87

(f) Function orders 1:6
Type A B C D

A 99 1 0 0
B 1 85 14 0
C 0 16 70 14
D 0 0 11 89

Table 1: Landscape function gland classification test results. Confusion matrix
for the knn classification tests given as percentages using landscape functions.
(a)–(f) are the results using function orders 1, 1:2, 1:3, 1:4, 1:5, and 1:6, respec-
tively. The number of nearest neighbors, k, was selected using leave-one-out
cross-validation for each setting using the training data, and then the test data
was used with the optimal k for each setting to obtain the correct classification
percentages displayed in these tables. The rows are the actual gland type, and
the columns are the classified gland type.

(a) Modeled human fibrin (b) Modeled monkey fibrin

Fig. 8. Modeled human fibrin network (left) and monkey fibrin network
(right); original images are from Pretorius et al. (2009). The modeling step
uses local quadratic regression with an adaptive bandwidth that includes the
0.1% of the nearest neighbors of the point of interest.
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(a) Function orders 1
Type A B C D

A 100 0 0 0
B 1 89 10 0
C 0 10 77 13
D 0 2 8 90

(b) Function orders 1:2
Type A B C D

A 100 0 0 0
B 1 89 10 0
C 0 12 71 17
D 0 0 5 95

(c) Function orders 1:3
Type A B C D

A 100 0 0 0
B 1 89 10 0
C 0 15 72 13
D 0 0 7 93

(d) Function orders 1:4
Type A B C D

A 100 0 0 0
B 1 91 8 0
C 0 14 76 10
D 0 1 6 93

(e) Function orders 1:5
Type A B C D

A 100 0 0 0
B 1 91 8 0
C 0 14 78 8
D 0 1 7 92

(f) Function orders 1:6
Type A B C D

A 100 0 0 0
B 1 91 8 0
C 0 14 78 8
D 0 1 7 92

Table 2: Generalized landscape function gland classification test results. Con-
fusion matrix for the knn classification tests given as percentages using general-
ized landscape functions with triangle kernels and a bandwidth of 0.25. (a)–(f)
are the results using function orders 1, 1:2, 1:3, 1:4, 1:5, and 1:6, respectively.
The number or nearest neighbors, k, was selected using leave-one-out cross-
validation for each setting using the training data, and then the test data was
used with the optimal k for each setting to obtain the correct classification
percentages displayed in these tables. The rows are the actual gland type, and
the columns are the classified gland type.

(a) Human fibrin persistence diagram (b) Monkey fibrin persistence diagram

Fig. 9. Persistence diagrams for the modeled human (left) and monkey (right)
fibrin networks displayed in Fig. 8 computed using an upper-level set filtration
on the modeled images.



26 Eric Berry et al.

Fig. 10. Realizations of the Pick-up Sticks Simulation Data (STIX) with
average thicknesses of (left) 5 and (right) 6.

difference in the two populations being the average thickness of the segments
via the degrees of freedom of the χ2 distribution.

For the simulation study, PF,1 is the null population, and a thickness
of t1 = 5 is used. The alternative populations consider a range of thicknesses,
t2 = 5, 5.25, 5.5, 5.75, 6, 7, 8, where t2 = 5 is used to check the power of the
test.6 For null thickness, t1 and alternative thickness t2, 100 repetitions of the
following are carried out. First, 12 STIX images are produced using both t1
and t2 (24 images total). Then each image is smoothed using local quadratic
regression with an adaptive bandwidth that includes the 0.1% of the near-
est neighbors, and a persistence diagram is computed using upper-level sets
on the modeled images. Then landscape functions and generalized landscapes
with the triangle kernel and varying bandwidths (0.01, 0.025, 0.05, 0.10) were
computed. Permutation p-values were computed using the permutation test
framework introduced in Section 4.4 using 10,000 random permutations.

The results of this simulation study for t2 = 5 and 5.5 using the 1st homol-
ogy dimension are displayed in Fig. 11 with the remaining results displayed in
Appendix A. The median p-values or log10(p-values) are displayed along with
their interquartile range for 10 function orders of the landscapes and gener-
alized landscapes considered. Fig. 11a displays the results for the case where
the null and alternative populations are the same (with an average thickness
of 5), all methods perform well with p-values distributed around 0.5. As the
alternative population’s thickness increases, all methods have p-values that get
smaller. The landscape function orders tend to have larger p-values than the
generalized landscape function orders, with the generalized landscapes with
the smallest bandwidth considered, 0.01 (red triangles), tending to have the

6 This is important to ensure that the tests do not consistently incorrectly reject the null
hypothesis.



Functional Summaries of Persistence Diagrams 27

(a) Homology dim=1, Thickness 5 vs. 5 (b) Homology dim=1, Thickness 5 vs. 5.5

Fig. 11. STIX simulation results for Homology dimension 1. The median
permutation p-values are plotted along with their interquartile range (the ver-
tical lines) for two-sample hypothesis tests comparing samples drawn from the
null population, PF,1, with an average thickness of t1 = 5. The alternative
hypotheses include average thicknesses of t2 = 5 and 5.5, corresponding to
plots A and B, respectively. The permutation p-values are based on 100 rep-
etitions of 12 STIX images drawn from the null and alternative hypothesis,
with 10,000 random permutations. The different plot colors and symbols rep-
resent the different functions and bandwidths considered; the function order
is the ordering of the landscape and generalized landscape functions (see the
discussion around Equation (2)). The results for t2 = 5, 5.25, 5.5, 5.75, 6, 7 are
displayed in Fig. 14.

lowest p-values among the generalized landscapes. The results for the case
with the alternative hypothesis average thickness of 8 are not displayed since
all tests resulted in the minimum p-value. In Appendix A, the simulation re-
sults for the 0th homology dimension are displayed in Fig. 13 and rest of the
results for the 1st homology dimension are displayed in Fig. 14.

5.2.2 Fibrin Data Results

In order to carryout a two-sample test of the human and monkey fibrin images
from Pretorius et al. (2009), the images are first divided into 12 sub-images
(3 by 4) because only a single image of each group was available. The sub-
images are then smoothed using local quadratic regression with an adaptive
bandwidth that includes the 0.1% of the nearest neighbors, and a persistence
diagram is computed using upper-level sets on the modeled sub-images. Then
landscape functions and generalized landscapes with the triangle kernel and
varying bandwidths (0.01, 0.025, 0.05, 0.10) were computed for each sub-image,
and permutation tests were carried out. The results are displayed in Fig. 12.
For homology dimension 0, the generalized landscapes tended to have lower
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(a) Homology dim=0 (b) Homology dim=1

Fig. 12. Human vs. monkey fibrin results. Log10 p-values from the two-sample
permutation hypothesis tests using the images of monkey and human fibrin
from Pretorius et al. (2009) (a modeled version of these images are displayed
in Fig. 8). The human and monkey dataset were composed of 12 images each
(the original image divided). The tests were carried out using 10,000 random
permutations. The different plot colors and symbols represent the different
functions and bandwidths considered; the function order is the ordering of
the landscape and generalized landscape functions (see the discussion around
Equation (2)).

p-values than the landscapes for all function orders except all methods had the
minimum p-value for the first function order. For function orders 2 - 10, the
generalized landscape with the smallest bandwidth considered (0.01) tended
to have the next highest p-values, and the generalized landscape with the
largest bandwidth considered tended to have the lowest p-values. For homology
dimension 1, all of the generalized landscapes achieved the minimum p-value,
and the landscape p-values tended to be slightly higher.

6 Discussion

Statistical analysis of persistence diagrams is challenging, which has led to
the development of a variety of functional transformations of the persistence
diagrams. We reviewed the popular functional summaries proposed in the lit-
erature. For the landscape function, we generalize the formulation in order
to allow more flexibility in the shape and width of the kernel, rather than
requiring isosceles right triangles.

By putting analysis of persistence diagrams into a functional framework, we
explained how the many tools of functional data analysis can be employed for
their analysis. We find that the average of functional summaries is a consistent
estimator of the population mean function, which allows us to view the sample
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mean functional summary as an estimator for this population characteristic.
We analyze some basic functional convergence theorems for the persistence
functional summaries, including a pointwise convergence and a uniform con-
vergence theorem. Moreover, we propose a bootstrap procedure for assessing
the uncertainty of the the sample mean functional summary and show that
one can construct an asymptotically valid confidence band of the underly-
ing population mean functional summary. Using the proposed framework and
the convergence theorems, we show that one can conduct various statistical
analyses of the data such as constructing a prediction region for future func-
tional summaries, performing a two-sample test to determine if two sets of
persistence diagrams are from the same population, classifying persistence di-
agrams into multiple classes, partitioning persistence diagrams into clusters,
and visualizing the relationship between several persistence diagrams.

In the simulation studies of Section 5, the proposed generalized landscapes
performed better than the traditional landscapes and the silhouettes in terms
of test classification error for the Gleason data, and generally had lower p-
values than the traditional landscapes in the two-sample hypothesis tests for
the STIX simulation study (when the alternative hypothesis was true). How-
ever, the generalized landscapes come with the cost of needing to select a kernel
and, more importantly, the bandwidth. One benefit of the generalized land-
scape formulation is that more information of the persistence diagram can be
packed in fewer function orders, which can aid in dimension reduction. Before
carrying out the two-sample hypothesis tests on the fibrin network images from
Pretorius et al. (2009), we developed a new data simulator, STIX, which has
a similar complicated spatial structure to the fibrin network and provided an
interesting testing ground for the proposed methods. Without needing to mea-
sure the widths of any of the sticks, the proposed tests based on the persistence
functional summaries were able to detect small differences in the sampled pop-
ulations when the two populations actually differed, and detected no difference
in the case where the two samples came from the same population.
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(a) Hom. dim=0, 5 vs. 5 (b) Hom. dim=0, 5 vs. 5.25 (c) Hom. dim=0, 5 vs. 5.5

(d) Hom. dim=0, 5 vs. 5.75 (e) Hom. dim=0, 5 vs. 6 (f) Hom. dim=0, 5 vs. 7

Fig. 13. STIX simulation results for Homology dimension 0. The median per-
mutation p-values (a) - (c) and log10(pvalues) (d) - (f) are plotted along with
their interquartile range (the vertical lines) for two-sample hypothesis tests
comparing samples drawn from the null population, PF,1, with an average
thickness of t1 = 5. The alternative hypotheses include average thicknesses
of t2 = 5, 5.25, 5.5, 5.75, 6, 7, 8, corresponding to images (a) - (f), respectively
(except average thickness of 8 is not displayed). The permutation p-values are
based on 100 repetitions of 12 STIX images drawn from the null and alterna-
tive hypothesis, with 10,000 random permutations. The different plot colors
and symbols represent the different functions and bandwidths considered; the
function order is the ordering of the landscape and generalized landscape func-
tions (see the discussion around Equation (2)).

A STIX simulation results

For completeness, the full results for the STIX simulation study from §5.2.1 are displayed
in Fig. 13 and 14. These are the full results corresponding to the 0th and 1st homology
dimension, respectively, while a subset of the results for the 1st homology dimension are
displayed in Fig. 11 and discussed in the main text.

B Proofs

The proofs from the propositions of Section 4 are presented below.

Proof of Proposition 1. This proof uses ideas from Rubin (1956) and Yuan (1997).
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(a) Hom. dim=1, 5 vs. 5 (b) Hom. dim=1, 5 vs. 5.25 (c) Hom. dim=1, 5 vs. 5.5

(d) Hom. dim=1, 5 vs. 5.75 (e) Hom. dim=1, 5 vs. 6 (f) Hom. dim=1, 5 vs. 7

Fig. 14. STIX simulation results for Homology dimension 1. The median per-
mutation p-values (a) - (c) and log10(pvalues) (d) - (f) are plotted along with
their interquartile range (the vertical lines) for two-sample hypothesis tests
comparing samples drawn from the null population, PF,1, with an average
thickness of t1 = 5. The alternative hypotheses include average thicknesses
of t2 = 5, 5.25, 5.5, 5.75, 6, 7, 8, corresponding to images (a) - (f), respectively
(except average thickness of 8 is not displayed). The permutation p-values are
based on 100 repetitions of 12 STIX images drawn from the null and alterna-
tive hypothesis, with 10,000 random permutations. The different plot colors
and symbols represent the different functions and bandwidths considered; the
function order is the ordering of the landscape and generalized landscape func-
tions (see the discussion around Equation (2)).

Let ε > 0 be given. Because BF is equicontinuous, the collection of differences

B∆ = {F̂ − F̄ : n = 1, 2, · · · }

is also equicontinuous. Since T is compact, there exists a number M > 0 and points
t1, · · · , tM ∈ T such that

sup
∆∈B∆

min
j=1,··· ,M

|∆(t)−∆(tj)| < ε/2.

Namely, t1, · · · , tM forms a ε/2-covering of B∆.



36 Eric Berry et al.

Let ∆n(t) = F̂ (t)− F̄ (t), and note that ∆n ∈ B∆. Then

sup
t∈T
|F̂ (t)− F̄ (t)| = sup

t∈T
|∆n(t)|

≤ sup
t∈T

min
j∈1,··· ,M

|∆n(t)−∆n(tj)|+ sup
j∈1,··· ,M

|∆n(tj)|

≤ ε/2 + sup
j∈1,··· ,M

|∆n(tj)|.

By Equation (5), every t ∈ T satisfies E|Fi(t)| <∞ so by the strong law of large number,

|∆n(tj)|
a.s.→ 0

for every j = 1, · · · ,M and this implies that for any δ > 0, there exists N > 0 such that

P

(
sup
n≥N

|∆n(tj)| >
ε

2M

)
<

δ

M

for every j = 1, · · · ,M .
As a result,

P

(
sup
t∈T
|F̂ (t)− F̄ (t)| > ε

)
≤ P

(
ε/2 + sup

j∈1,··· ,M
|∆n(tj)| > ε

)

≤ P
(

sup
n≥N

sup
j∈1,··· ,M

|∆n(tj)| >
ε

2

)

≤
M∑
j=1

P

(
sup
n≥N

|∆n(tj)| >
ε

2M

)
≤ δ

and the result follows.

Proof of Proposition 2.
Note that by Equation (5), the functional summary satisfies

sup
t∈T

Var(Fi(t)) ≤ sup
t∈T

E(F 2
i (t)) ≤ Ū2 <∞.

Pointwise normality. The first assertion
√
n(F̂ (t)− F̄ (t))→ N(0, σ2(t)) follows from

the usual central limit theorem.
Normality of integrated difference. To show the normality for the integrated dif-

ference, note that

√
n

∫
(F̂ (t)− F̄ (t))dt =

√
n

∫ (
1

n

n∑
i=1

Fi(t)− F̄ (t)

)
dt

=
√
n

1

n

n∑
i=1

∫ (
Fi(t)− F̄ (t)

)
dt︸ ︷︷ ︸

=Yi

=
√
nȲn,

where Ȳn = 1
n

∑n
i=1 Yi and Y1, · · · , Yn are IID with mean E(Yi) = 0 and variance

Var(Yi) =

∫
Var(Fi(t))dt =

∫
σ2(t)dt <∞.

Thus, by the usual central limit theorem again, we obtain the normality.
Convergence to a Gaussian process. The assumption in Equation (6) along with

Theorem 2.5 in Kosorok (2007) implies that the class W is Donsker, which implies that the
empirical process converges to a Gaussian process.
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Proof of Proposition 3. Because Equation (6) implies that the class W is Donsker, this
proposition is a well-known result in the empirical process theory. For instance, see the
discussion on page 21 of Kosorok (2007). Here we briefly highlight the basic idea.

By Proposition 3 and the continuous mapping theorem (see, e.g., page 16 of Kosorok
(2007)),

√
n sup
t∈T
|F̂ (t)− F̄ (t)| D→ sup

t∈T
|B(t)|.

In the case of the bootstrap, using the same proposition but now apply it to the bootstrap
version, we obtain

√
n sup
t∈T
|F̂ ∗(t)− F̂ (t)| D|F

⊗n
→ sup

t∈T
|B(t)|,

where
D|F⊗n
→ denotes convergences in distribution given F1, · · · , Fn.

Therefore, the bootstrap quantile converges to the corresponding quantile of the original
difference.

Proof of Proposition 4. This proof consists of two parts. In the first part, we prove that

q̂γ
P→ qγ . In the second part, we prove the desired result.
Part 1. Given F1, · · · , Fn, we define

Q̂(t) =
1

n

n∑
i=1

I(d(Fi, F̄ ) ≤ t)

to be the empirical version of Q(t) and define

q̃γ : Q̂(q̃γ) = γ,

to be the corresponding γ quantile.
Because Q̂ is just the empirical distribution function (EDF) of Y1, · · · , Yn where Yi =

d(Fi, F̄ ) and Q(t) is the cumulative distribution function (CDF) of Yi,

sup
t
|Q̂(t)−Q(t)| = OP

(
1
√
n

)
.

By the mean value theorem and the fact that Q̂(q̃γ)−Q(q̃γ) = oP (1),

Q̂(q̃γ)−Q(q̃γ) = Q(qγ)−Q(q̃γ)

= Q′(q∗γ)(qγ − q̃γ)

for some q∗γ ∈ [qγ , q̃γ ]. By assumption, Q′(q∗γ) ≥ q0 > 0 so

|qγ − q̃γ | ≤
1

q0

∣∣∣Q̂(q̃γ)−Q(q̃γ)
∣∣∣ = OP

(
1
√
n

)
.

Now, because max i = 1, · · · , n|d(Fi, F̄ )−d(Fi, F̂ )| ≤ d(F̄ , F̂ ), q̃γ , the quantile of d(F1, F̄ ), · · · , d(Fn, F̄ ),

and q̂γ , the quantile of d(F1, F̂ ), · · · , d(Fn, F̂ ), are bounded by

|q̃γ − q̂γ | ≤ d(F̄ , F̂ ).

which implies

|q̂γ − qγ | = OP

(
1
√
n

)
+ d(F̄ , F̂ ).

Part 2. Let

Âγ = P (Fnew ⊂ F̂γ |F1, · · · , Fn) = P (d(Fnew, F̂ ) ≤ q̂γ |F1, · · · , Fn).
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be the probability of interest. By the triangular inequality,

|d(Fnew, F̄ )− d(Fnew, F̂ )| ≤ d(F̄ , F̂ ).

Thus,

Aγ = P (d(Fnew, F̂ ) ≤ q̂γ |F1, · · · , Fn)

≥ P (d(Fnew, F̄ ) ≤ q̂γ − d(F̂ , F̄ )|F1, · · · , Fn)

= Q(q̂γ − d(F̂ , F̄ ))

≥ Q
(
qγ − 2d(F̂ , F̄ ) +OP

(
1
√
n

))
= Q(qγ) +OP

((
1
√
n

)
+ d(F̂ , F̄ )

)
.

Aγ = P (d(Fnew, F̂ ) ≤ q̂γ |F1, · · · , Fn)

≤ P (d(Fnew, F̄ ) ≤ q̂γ + d(F̂ , F̄ )|F1, · · · , Fn)

= Q(q̂γ + d(F̂ , F̄ ))

≤ Q
(
qγ + 2d(F̂ , F̄ ) +OP

(
1
√
n

))
= Q(qγ) +OP

((
1
√
n

)
+ d(F̂ , F̄ )

)
.

Thus,

Aγ = P (Fnew ⊂ F̂γ |F1, · · · , Fn) = Q(qγ)︸ ︷︷ ︸
=γ

+OP

((
1
√
n

)
+ d(F̂ , F̄ )

)
,

which completes the proof.
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