2020 IEEE 36th International Conference on Data Engineering (ICDE)

SeeMoRe: A Fault-Tolerant Protocol for Hybrid
Cloud Environments

Mohammad Javad Amiri, Sujaya Maiyya, Divyakant Agrawal, Amr El Abbadi
University of California Santa Barbara
Santa Barbara, California
{amiri, sujaya_maiyya, agrawal, amr} @cs.ucsb.edu

Abstract—Large scale data management systems utilize State
Machine Replication to provide fault tolerance and to enhance
performance. Fault-tolerant protocols are extensively used in
the distributed database infrastructure of large enterprises such
as Google, Amazon, and Facebook. However, and in spite of
years of intensive research, existing fault-tolerant protocols do
not adequately address hybrid cloud environments consisting of
private and public clouds which are widely used by enterprises.
In this paper, we consider a private cloud consisting of non-
malicious nodes (crash-only failures) and a public cloud with
possible malicious failures. We introduce SeeMoRe, a hybrid State
Machine Replication protocol that uses the knowledge of where
crash and malicious failures may occur in a public/private cloud
environment to improve overall performance. SeeMoRe has three
different modes that can be used depending on the private cloud
load and the communication latency between the public and
private clouds. SeeMoRe can dynamically transition from one
mode to another. Furthermore, an extensive evaluation reveals
that SeeMoRe’s performance is close to the state of the art crash
fault-tolerant protocols while tolerating malicious failures.

Index Terms—Fault Tolerance, Consensus, Cloud Computing

I. INTRODUCTION

Today’s enterprises mostly rely on cloud storage to run their
business applications. Cloud computing has many benefits
in terms of cost savings, scalability, and easy access [54].
However, storing data on a single cloud may reduce robustness
and performance [15] [26] [31]. Robustness is the ability to
ensure availability (liveness) and one-copy semantics (safety)
despite failures, while performance deals with response time
(latency) and the number of processed requests per time
unit (throughput) [6]. Fault-tolerant protocols are designed to
satisfy both robustness and performance concerns using State
Machine Replication (SMR) [34] techniques. SMR regulates
the deterministic execution of client requests on multiple
copies of a server, called replicas, such that every non-faulty
replica must execute every request in the same order [44] [34].

Large scale data management systems utilize SMR to pro-
vide fault tolerance and to increase the performance of the
system. Fault-tolerant protocols are extensively used in dis-
tributed databases such as Google’s Spanner [21], Amazon’s
Dynamo [24], and Facebook’s Tao [14], thus highlighting the
critical role of SMR in data management.

While large enterprises might have their own Geo-replicated
fault-tolerant cloud storage around the world, smaller enter-
prises may only have a local private cloud that is lacking in
resources to guarantee fault tolerance. One solution is to store
all the data on third-party public cloud providers [5] [52] [8].

Public clouds provide several advantages like elasticity and
durability, but they often suffer from security concerns, e.g.,
malicious attacks [2]. Private clouds, on the other hand, may
not provide sufficient elasticity and durability, however, they
are more secure. The trustworthiness of a private cloud allows
an enterprise to build services that can utilize crash fault-
tolerant protocols, i.e., protocols that make progress when a
bounded number of replicas only fail in a benign manner, for
example by either crashing or being unresponsive. But due to
lack of private resources, if a third-party public cloud is used,
the nodes of the public cloud may behave maliciously, in which
case a more robust fault-tolerant protocol is needed that allows
the system to continue operating correctly, even when some
replicas exhibit arbitrary, possibly malicious behavior. Current
Byzantine fault-tolerant protocols (e.g., PBFT [16]) introduce
significant communication and latency overheads in order to
tolerate failures since they consider all failures as malicious.
An alternative solution to storing all the data in a public
cloud is to use a hybrid cloud storage system consisting of both
private and public clouds [26]. In a hybrid cloud, the nodes in
the private cloud are trusted and may crash but do not behave
maliciously whereas the nodes in the public cloud(s) might
be malicious. Hybrid clouds address the security concerns of
using only public clouds by giving enterprises the ability to
still use their private clouds with their trusted, non-malicious
nodes. In addition, storing data on multiple clouds is more
reliable, e.g., if a cloud outage happens, the system might still
process requests. Moreover, while a small private cloud may
represent a scalability bottleneck, the system can rent as many
servers as required from public clouds. The benefits of hybrid
clouds necessitate designing new protocols that can leverage
the trust of private clouds and the scalability of public clouds.
Despite years of intensive research, existing fault-tolerant
protocols do not adequately address all the characteristics
of hybrid cloud environments. On one hand, the existing
Byzantine fault-tolerant protocols [16] [40] [33] [51] [32] [6]
[39] do not distinguish between crash and malicious failures,
and consider all failures as malicious, thus incurring a higher
cost in terms of performance. On the other hand, the hybrid
protocols [45] [19] that have been designed to tolerate both
crash and malicious failures, make no assumption on where the
crash or malicious failures may occur. As a result, using these
protocols in a hybrid cloud environment, where all machines
in the private cloud are known to be trusted while machines in

2375-026X/20/$31.00 ©2020 IEEE
DOI 10.1109/ICDE48307.2020.00120

1345 IEEE
(@ computer
soclety

the public cloud could be compromised and hence malicious,
results in an unnecessary performance overhead.

In this paper, we present SeeMoRe': a State Machine Repli-
cation protocol that leverages the localization of crash and
malicious failures in a hybrid cloud environment. SeeMoRe
considers a private cloud consisting of trusted replicas, a subset
of which may fail-stop, and a public cloud where a subset of
the replicas may behave maliciously. SeeMoRe takes explicit
advantage of this knowledge to improve performance by
reducing the number of communication phases and messages
exchanged and/or the number of required replicas. SeeMoRe
has three different modes of operation which can be used
depending on the load on the private cloud, and the latency
between the public and the private cloud. We also introduce a
dynamic technique to transition from one mode to another.

A key contribution of this paper is to show how being
aware of where different types of failures (crash and malicious)
may occur in hybrid cloud environments, results in designing
more efficient protocols. In particular, this paper makes the
following contributions:

e A model for hybrid cloud environments is presented
which can be used by enterprises that do not have enough
servers in their trusted private cloud to run fault-tolerant
protocols and gives them the option of renting from
untrusted public clouds.

e SeeMoRe, a hybrid protocol that tolerates both crash
and malicious failures, is developed in three different
modes. Being aware of where the crash faults may occur
and where the malicious faults can occur results in
reducing the number of communication phases, messages
exchanged and/or required replicas. In addition, a tech-
nique to dynamically switch between different modes of
SeeMoRe is presented.

The rest of this paper is organized as follows. Section II
presents related work. The system model is introduced in
Section III. Section IV presents a method to compute the
required number of replicas from a public cloud. The design
of SeeMoRe is proposed in Section V. Section VI shows the
performance evaluation, and Section VII concludes the paper.

II. RELATED WORK

State Machine Replication (SMR) is a technique for im-
plementing a fault-tolerant service by replicating servers [34].
Several approaches [44] [35] [42] generalize SMR to support
crash failures among which Paxos [35] is the most well-
known. Paxos guarantees safety in an asynchronous network
using 2f+1 processors despite the simultaneous crash failure
of any f processors. Many protocols are proposed to either
reduce the number of phases, e.g., Multi-Paxos which assumes
the leader is relatively stable or Fast Paxos [36] and Brasileiro
et al. [13] which add f more replicas, or reduce the number
of replicas, e.g., Cheap Paxos [37] which tolerates f failures
with f+1 active and f passive processors.

ISeeMoRe is derived from Seemorq, a benevolent, mythical bird in Persian
mythology which appears as a peacock with the head of a dog and the claws
of a lion. Seemorq in Persian literature also refers to a group of birds who
flew together to achieve a common goal.

Byzantine fault tolerance refers to servers that behave
arbitrarily after the seminal work by Lamport, et al. [38].
Practical Byzantine fault tolerance protocol (PBFT) [16] is
one of the first and probably the most instructive state machine
replication protocol to deal with Byzantine failures. Although
practical, the cost of implementing PBFT is quite high, re-
quiring at least 3f + 1 replicas, 3 communication phases,
and a quadratic number of messages in terms of the number
of replicas. Thus, numerous approaches have been proposed
to explore a spectrum of trade-offs between the number of
phases/messages (latency), number of processors, the activity
level of participants (replicas and clients), and types of failures.

FaB [40] and Bosco [46] reduce the communication phases
by adding more replicas. Speculative protocols, e.g., Zyzzyva
[33], HQ [23], and Q/U [1], also reduce the communication
by executing requests without running any agreement between
replicas and optimistically rely on clients to detect inconsisten-
cies between replicas. To reduce the number of replicas, some
approaches rely on a trusted component (a counter in A2M-
PBFT-EA [18] and MinBFT [49], or a whole operating-system
instance [22]) that prevents a faulty replica from sending
conflicting (i.e., asymmetric) messages to different replicas
without being detected. In addition, optimistic approaches
reduce the required number of replicas during the normal-case
operation by either utilizing the Cheap Paxos [37] solution and
keeping f replicas in a passive mode (REPBFT [25]), or by
separating agreement from execution [53]. In ZZ [51] both
passive replicas and separating agreement from execution are
employed. Note that all these approaches need 3f + 1 replicas
upon occurrence of failures. REMINBFT [25] and CheapBFT
[32] use a trusted component to reduce the network size to
2f 4+ 1 and then keep f of those replicas passive during the
normal-case operation. In contrast to optimistic approaches,
robust protocols (Prime [3], Aardvark [20], Spinning [48],
RBFT [7]) consider the system to be under attack by a very
strong adversary and try to enhance the performance of the
protocol during periods of failure.

In this paper, we focus on hybrid fault tolerance. Consensus
with multiple failure modes were initially addressed in syn-
chronous protocols [41], [47]. Recent efforts have focused on
partial synchrony, a technique that defines a threshold on the
number of slow (partitioned) processes. Let m, ¢, and s denote
the number of malicious, crash, and slow servers respectively,
VFT [43] and XFT [39] require 2m + ¢ +min((m+c),s) +1
and 2(m + ¢ + s) + 1 servers respectively, and SBFT [30]
needs 3m+2c+1 servers as the minimum size of the network
from which 3m + ¢ 4 1 participate in each quorum. VFT is
similar to PBFT regarding the number of phases and massage
exchanges, but optimistically assumes that an adversary cannot
fully control the Byzantine nodes and as a result, reduces the
phases of communication and message exchanges. SBFT also
reduces the number of message exchanges by assuming the
adversary controls only crash failures.

Finally, Scrooge [45] and UpRight [19] are two asyn-
chronous hybrid approaches that use optimistic solutions.
Scrooge [45] uses a speculative technique to reduce the latency

1346

in the presence of 4m + 2c¢ replicas. UpRight [19], which
is the closest protocol to SeeMoRe, requires 3m + 2¢ + 1
nodes as the minimum network size from which 2m +c+1
are required to participate in each communication quorum.
In addition, UpRight utilizes the agreement routines of PBFT
[16], Aardvark [20], and Zyzzyva [33] and similar to [53],
separates agreement from execution. However, UpRight is not
aware which nodes may crash and which may be malicious,
therefore, does not take advantage of this knowledge by
placing particular processes executing specific protocol roles
on crash-only or Byzantine sites. On the other hand, SeeMoRe
knows where the crash or malicious faults may occur, thus,
it either reduces the number of communication phases and
message exchanges by placing the primary in the crash-only
private cloud, or decreases the number of required nodes by
placing the primary in the untrusted public cloud.

Storing data on multiple clouds to enhance fault tolerance
is addressed for both crash (ICStore [8], SPANStore [52])
and malicious (DepSky [9], SCFS [11]) failures. DAPCC
[50] solves the consensus in a dual failure mode assuming
a synchronous environment. Hypris [26] reduces the number
of required servers to 2f + 1 (f + 1 when the system is
synchronous and no faults happen) by keeping the metadata
in a private cloud assumed to be partially synchronous.

III. SYSTEM MODEL

In this section, we introduce the system model wherein an
application layer, such as a distributed database management
system, relies on a replication service to store copies of data
across an environment consisting of private and public clouds.
Such a replication service can use SeeMoRe and we specify
the assumptions on which SeeMoRe is built in this section.
A. Basic Assumptions

We consider a hybrid failure model that admits both crash
and malicious failures where crash failures may occur in the
private cloud and malicious failures may only occur in the
public cloud. Note that a malicious failure can encompass a
crash failure but since the trust assumptions are low, we do not
distinguish between a crash or a malicious failure in the public
cloud. This is indeed a realistic assumption as the private cloud
is hosted locally where the client resides, and hence under
their control, while the public cloud is managed externally
by public cloud providers. We call the nodes in the private
cloud trusted and the nodes in the public cloud untrusted.
In a crash failure model, replicas operate at arbitrary speed,
may fail by stopping, and may restart, however they may
not collude, lie, or otherwise attempt to subvert the protocol.
Whereas, in a malicious failure model, faulty nodes may
exhibit arbitrary, potentially malicious, behavior. We assume
that a strong adversary can coordinate malicious nodes and
delay communication to compromise the replicated service.
However, the adversary cannot subvert standard cryptographic
assumptions about collision-resistant hashes, encryption, and
signatures, e.g., the adversary cannot produce a valid signature
of a non-faulty node.

Each pair of replicas is connected with point-to-point
bi-directional communication channels and each client can

communicate with any replica. Network links are pairwise
authenticated, which guarantees that a malicious replica cannot
forge a message from a correct replica.

Depending on the role of a node and the type of message it
wants to send, messages may contain public-key signatures
and message digests [16]. A message digest is a numeric
representation of the contents of a message produced by
collision-resistant hash functions. We denote a message [
signed by replica r as <u>a and the digest of a message y by
D(u). For signature verification, we assume that all machines
have the public keys of all other machines. In Section V, we
explain when signatures and digests are needed.

B. Quorum and Network Size

We consider a cloud environment consisting of private and
public clouds. The system is an asynchronous distributed
system containing a set of N (IN=S5+P) replicas where S of
them are in a private and P of them are in a public cloud. The
bound on the maximum number of crashed nodes in the private
cloud and malicious nodes in the public cloud is assumed to
be c and m respectively. All the clients and the replicas know
which replicas are trusted and which are untrusted.

Failures are divided into two disjoint classes: malicious
and crash failures. In crash fault-tolerant models, e.g., Paxos
[35], given that ¢ nodes can crash, a request is replicated
to a quorum consisting of at least ¢ + 1 nodes to provide
fault tolerance and to guarantee that a value once decided
will remain decided in spite of failures (safety). Furthermore,
any two quorums intersect on at least one node and as a
result, 2c¢ + 1 is the minimum number of nodes that allows
an asynchronous system to provide the safety property.

In the Byzantine failure models, e.g., PBFT [16], given
that m nodes can be malicious, the quorum size should be
at least 2m + 1 to ensure that non-faulty replicas outnumber
the malicious ones, i.e., a request is replicated in enough non-
faulty nodes to guarantee safety in the presence of m failures.
This implies that any two quorums intersect with at least m+-1
nodes to ensure one correct node in the intersection, thus the
minimum network size is 3m + 1 [12].

Likewise, in the hybrid model, to tolerate c crash and m ma-
licious failures, the quorum size must include at least 2m-+c+1
nodes [19]. This also guarantees that the intersection of any
two quorums includes at least m + 1 nodes. Since the quorum
size is 2m + ¢+ 1 and the intersection of any two quorum @
and Q' is m+1 nodes, |Q|+|Q'| = N+m+1 = 4m+2c+2,
thus, as shown in [19], the (minimum) network size, N, is

N =3m+2c+1. €))
Intuitively, if there are f failures (of any type) in a network,
the network size has to be at least f larger than the quorum
size, as any network with smaller size could lead to a deadlock
situation where none of the f faulty servers are participating.
Since, f = m + ¢ and the quorum size @ is 2m + ¢ + 1, the
network size should be at least Q + f i.e., 3m + 2¢c + 1.
IV. PuBLIC CLOUD
The hybrid failure model presented in Section III can be
used by enterprises that own private clouds with a limited

1347

number of trusted servers which is insufficient to run a fault-
tolerant protocol. This model gives them the option of renting
from untrusted public clouds. In this section, we present two
methods to identify the number of servers an enterprise needs
to rent from a public cloud.

A business that owns an insufficient number of trusted
(crash-only) servers needs to rent more servers from some
untrusted public clouds to satisfy the minimum network size
constraints (3m + 2¢ + 1). Public clouds might provide some
statistics that show the percentage of faulty nodes in the cloud.
We assume that the ratio of malicious nodes in public cloud
(m) to the size of public cloud (P) is known and is equal
to o = 7. Note that, we assume a uniform distribution of
malicious nodes in public cloud, i.e., in any set 7 C P, at
most a X 7 nodes are malicious.

Given the size of the private cloud S, the bound on the
maximum number of crashed nodes c in the private cloud,
and the ratio o of malicious nodes (m) in the public cloud
to the size of the public cloud (P), the task is to identify the
required number of nodes P to be rented from the public cloud
that allows satisfying the protocol constraints.

The total number of nodes in the network is N = S + P.
Given our assumption of «, we get m = oP. Replacing m
in Equation 1, we get N = 3aP + 2c¢ + 1, which means,
Ba—1)P =5 —(2¢+1), thus:

S—(2¢+1)

. g
As an example consider the situation that a private cloud has
2 servers where one of them might be faulty, i.e., S = 2, and
c =1, and we want to rent servers from a public cloud with
a = 0.3. Here, P = % = % = 10, which means we
need to rent 10 servers from the public cloud to provide the
safety constraints of the replication protocol.

In Equation 2, if the size of the private cloud (5) is equal
or greater than 2c + 1, then the private cloud does not need
to rent any nodes and can run a crash fault-tolerant protocol
like Paxos [35] by itself. If there is no private cloud (S = 0)
or all the nodes in the private cloud are faulty (S = ¢), using
the private cloud has no advantage and it is more reasonable
to rent all the required nodes from the public cloud and run a
Byzantine fault-tolerant protocol in the public cloud. However,
if ¢ < S < 2c+ 1, renting nodes from a public cloud and
running SeeMoRe will result in better performance.

Similarly, if o > 1/3, (i.e., more than one-third of the
nodes in the public cloud are malicious), then the public cloud
cannot satisfy the network size constraint for Byzantine fault-
tolerance. Hence, an enterprise will need to rent servers if its
private cloud size, S, is between ¢+ 1 and 2¢, and it can rent
servers from public cloud providers that satisfy o < 1/3. It
should be noted that even if the size of the private cloud is
equal or greater than 2c + 1, and the public cloud does not
satisfy the a<1/3 constraint, an enterprise might still rent some
replicas from the public cloud for load balancing purposes.

Note that if the public cloud does not guarantee a uniform
distribution of faulty nodes and specifies only the maximum

number of concurrent failures, we can use another method to
identify the required number of nodes from the public cloud
which is discussed in the full version of this paper [4].

V. SEEMORE

In this section we present SeeMoRe, a hybrid fault-tolerant
protocol for a public/private cloud environment that tolerates
m malicious failures in the public and c crash failures in the
private cloud.

SeeMoRe is inspired by the known Byzantine fault-tolerant
protocol PBFT [32]. In PBFT, as can be seen in Figure 1(d),
during a normal case execution, a client sends a request to
a (primary) replica, and the primary broadcasts a pre-prepare
message to all replicas. Once a replica receives a valid pre-
prepare message, it broadcasts a prepare message to all other
replicas. Upon collecting 2 f valid matching prepare messages
(including its own message) that are also matched to the pre-
prepare message sent by the primary, each replica broadcasts
a commit message. In this stage, each replica knows that all
non-faulty replicas agree on the contents of the message sent
by the primary. Once a replica receives 2f 4 1 valid matching
commit messages (including its own message), it executes the
request and sends the response back to the client. Finally, the
client waits for f + 1 valid matching responses from different
replicas to make sure at least one correct replica executed its
request. PBFT also has a view change routine that provides
liveness by allowing the system to make progress when the
primary fails.

SeeMoRe consists of agreement and view change routines
where the agreement routine orders requests for execution
by the replicas, and the view change routine coordinates the
election of a new primary when the current primary is faulty.

The algorithm has to satisfy two main properties, (1) safety:
all correct servers execute the same requests in the same
order, and (2) liveness: all correct client requests are eventually
executed. Fischer et al. [29] show that in an asynchronous
system, where nodes can fail, consensus has no solution that
is both safe and live. Based on that impossibility result,
SeeMoRe, similar to most fault-tolerant protocols, ensures the
safety property without any synchrony assumption, however,
a weak synchrony assumption is needed to satisfy liveness.

We identify each replica using an integer in [0,..., N—1]
where replicas in the private cloud, i.e., trusted replicas, have
identifiers in [0, ..., S—1] and replicas in the public cloud, i.e.,
untrusted replicas, are identified using integers in [S, ..., N—1].

In SeeMoRe, the replicas move through a succession of
configurations called views [27] [28]. In a view, one replica
is the primary and the others are backups. Depending on the
mode, some backups are passive and do not participate in the
agreement. Views are numbered consecutively. All replicas are
initially in view O and are aware of their current view number.

We explain SeeMoRe in three different modes: Trusted
Primary, Centralized Coordination (TPCC), Trusted Primary,
Decentralized Coordination (TPDC), and Untrusted Primary,
Decentralized Coordination (UPDC). In the first mode, TPCC,
the primary is always in the private cloud, thus the primary
is non-malicious. The second mode, TPDC, is used to reduce

1348

the load on the private cloud by assuming that the primary is
still in the private cloud, but instead of processing the client
requests itself, depends on 3m+1 nodes in the public cloud to
process the requests. This mode reduces the load on the private
cloud, because except for the primary, which does a single
broadcast of the client’s request, other replicas in the private
cloud are passive and do not participate in any phases. Finally,
in the third mode, UPDC, an untrusted node is chosen as the
primary and the protocol relies completely on the public cloud
to process requests. This mode is useful when we intentionally
rely completely on the public cloud for two purposes: (1)
load balancing when all the nodes in the private cloud are
heavily loaded, or (2) reducing the delay when there is a large
network distance between the private and the public cloud
and the latency of having one more phase of communication
within the public cloud is less than the latency of exchanging
messages between the two clouds. The agreement routine of
the UPDC mode is the same as PBFT [32], however, the view
change routine can be more efficient.

In this section, we describe each of these three modes in
detail, followed by a technique to dynamically switch between
the modes. We use 7 to show the current mode of the protocol
where m € {1,2,3} and 1, 2, and 3 are the TPCC, TPDC, and
UPDC modes respectively. We also present a short discussion
on the different modes of SeeMoRe and compare them with
some known relevant protocols.

A. TPCC Mode: Trusted Primary, Centralized Coordination

Owning a private cloud gives SeeMoRe the chance to
choose a trusted node as the primary. When the primary is
trusted, all the non-faulty backups receive correct messages
from the primary, which eliminates the need to multicast
messages by replicas to realize whether all the non-faulty ones
receive the same message or not. Thus, we can reduce one
phase of communication and a large number of messages.

Figure 1(a) shows the normal case operation of the TPCC
mode. Here, replicas 0 and 1 are trusted (S = 2) and the four
other replicas, 2 to 5, are untrusted (P = 4). In addition, one
of the trusted replicas (1) is crashed (¢ = 1) and one of the
untrusted replicas (5) is malicious (m = 1). With a trusted
primary, the total number of exchanged messages is 3/V.

The pseudo-code for the TPCC mode is presented in Al-
gorithm 1. Although not explicitly mentioned, every sent and
received message is logged by the replicas. Each replica is
initialized with a set of variables as indicated in lines 1-4 of
the algorithm. The primary of view v is a replica p such that
p = (v mod S). A client ¢ requests a state machine operation
op by sending a message (REQUEST, op,tsc,<)q. to replica p
it believes to be the primary. The client’s timestamp ¢s. is
used to totally order the requests and to ensure exactly-once
semantics. The client also signs the message with signature o
for authentication.

As indicated in lines 5-8, upon receiving a client request,
the primary p first checks if the signature and timestamp in the
request are valid and simply discards the message otherwise.
The primary assigns a sequence number 7 to the request and
multicasts a signed ((PREPARE, v, 7, d),,, i1) message to all the

Algorithm 1 The Normal-Case Operation in the TPCC mode

1: init():

r .= replicald

v := viewNumber

if 7 = (v mod S) then isPrimary := true

upon receiving =(REQUEST, op, ts¢,). and isPrimary:
if p is valid then
assign sequence number n
send ((PREPARE, v, n, d)o,,, 1) to all replicas

RN AN

9: upon receiving ((PREPARE, v, n, d) op» 1) from primary p:
0: if v is valid then
1 send (ACCEPT, v, n,d, r) to primary p

12: upon receiving (ACCEPT, v, n, d, r) from 2m+c replicas and isPrimary:
13: send ((COMMIT, v, n,d),,, p1) to all replicas

14: execute operation op

15: send (REPLY, 7, v, tsc, U)o, to client ¢ with result u

replicas where v is the current view, p is the client’s request
message, and d is the digest of u. At the same time, the
primary appends the message to its log. The primary signs
its message, because it might be used by other replicas later
in view changes as a proof of receiving the message.

As shown in lines 9-11 of the algorithm, upon receipt of
((PREPARE, v, N, d),,, pt) from primary p, replica r checks if
view v is equal to the replica’s view. It then logs the prepare
message, and responds to the primary with (ACCEPT, v, n,d,)
message. Since accept messages are sent only to the trusted
primary and are not used later for any other purposes, there
is no need to sign these messages.

Upon collecting 2m+-c valid accept messages from different
replicas (plus itself becomes 2m + ¢+ 1) for the request p in
view v with sequence number n, as seen in lines 12-15, the
primary multicasts a commit message ({(COMMIT,v,n, d),, it)
to all replicas. The primary attaches the request p to its
commit message, so that if a replica has not received a prepare
message for that request, it can still execute the request. The
primary also executes the operation op and sends a reply
message (REPLY, T, v,1s.,u),, to client . Mode number 7
and view number v are sent to clients to enable them to track
the current mode and view and hence the current primary. It
is important especially when a mode change or view change
occurs, replacing the primary.

Once a replica receives a valid commit message with correct
view number from the primary, it executes the operation op,
if all requests with lower sequence numbers than n has been
executed. This ensures that all non-malicious replicas execute
requests in the same order as required to provide the safety
property. Note that even if the replica has not received a
prepare message for that request, as long as the view number
is valid and the message comes from the primary, the replica
considers the request as committed.

When the client receives a reply message (REPLY,
T, v, ts¢, u),, with a valid signature from primary p and with
the same timestamp as the client’s request, it accepts u as the
result of the requested operation. If the client does not receive
a reply from the primary after a preset time, the client may
suspect a crashed primary. The client then broadcasts the same
request to all replicas. A replica, upon receiving the client’s

1349

Request Prepare Accept ﬁg{,“.;“‘“

Commit+
Reply

Request Prepare Accept

3 3

g |replica0 & |replica 0

o — (Primary) 2 — (Primary)

T]

2 |replica 1 g |replica 1

o P a P
'replica 2 replica 2

))

3 . 3 .

S |replica3 S |replica3

£ 7 8 =

5 . 5 %

& |replica4 & |replica4
replica 5 |replica 5

N N N N (3m+1)? (3m+1)*N

(a) The TPCC Mode (b) The TPDC Mode

Private Cloud

Public Cloud

Request Pre-Prepare Prepare Commit | Reply

replica 0 \ //
replica 1 X / /
\/

Request Pre-Prepare Prepare | Commit | Reply

AN i
N X

replica 2 replica 0

(Primary) (Primary)

replica 3 replica 1 \ X< % /
replica 4 \ \ \\ replica 2 \ \ \\
replica 5 replica 3

N (3mH1)? (3m+1)? (3m+l)*N N (3m+1)? (3m+1)? (3m+1)

(¢) The UPDC Mode (d) PBFT

Fig. 1. The normal case operation of the three modes of SeeMoRe and PBFT

request, checks if it has already executed the request; if so,
it simply sends the reply message to the client. The client
waits for a reply from the private cloud or m + 1 matching
reply messages from the public cloud before accepting the
result. The primary will eventually be suspected to be faulty
by enough replicas to trigger a view change.

State Transfer. A fault-tolerant protocol must provide a way
to checkpoint the state of different replicas. It is especially
required in an asynchronous system where even non-faulty
replicas can fall arbitrarily behind. Checkpointing also brings
slow replicas up to date so that they may execute more recent
requests. Similar to [16], in our protocol, checkpoints are
generated periodically when a request sequence number is
divisible by some constant (checkpoint period).

Trusted primary p produces a checkpoint and multicasts a
(CHECKPOINT, 1, d),, message to the other replicas, where n
is the sequence number of the last executed request and d
is the digest of the state. A server considers a checkpoint to
be stable when it receives a checkpoint message for sequence
number n signed by trusted primary p. We call this message
a checkpoint certificate, which proves that the replica’s state
was correct until that request execution.

View Changes. The goal of the view change routine is to pro-
vide liveness by allowing the system to make progress when a
primary fails. It prevents replicas from waiting indefinitely for
requests to execute. A view change must guarantee that it will
not introduce any changes in a history that has been already
completed at a correct client. Most view change routines [28]
[27] [16] [33] [53] [17] [23] are triggered by timeouts and
require enough non-faulty replicas to exchange view change
messages. SeeMoRe uses a similar technique in the TPCC
mode. In such a situation, replicas detect the failure and reach
agreement to change the view from v to v'. The primary of
new view v’ then handles the uncommitted requests, and takes
care of the new client requests.

View changes are triggered by timeout. When a replica
receives a valid prepare message from the primary, it starts a
timer that expires after some defined time 7. When the backup
receives a valid commit message, the timer is stopped, but if
at that point the backup is waiting for a commit message for
some other request, it restarts the timer. If the timer of a replica
r for some prepare message expires, the backup suspects that
the primary is faulty, it stops accepting prepare and commit
messages and multicasts a (VIEW-CHANGE, v+1,n, &, P, C) mes-

sage to all replicas where n is the sequence number of the last
stable checkpoint known to r, £ is the checkpoint certificate,
and P and C are two sets of received valid prepare (without
the request message 1) and commit messages for requests with
a sequence number higher than n. When primary p’ of new
view v + 1 receives 2m + ¢ valid view-change messages from
different replicas, it multicasts a (NEW-VIEW,v + 1, P’,C’ >(,p,
message to all replicas where P’ and C’ are two sets of prepare
and commit messages respectively which are constructed as
follows.

Let [be the sequence number of the latest checkpoint, and
h be the highest sequence number of a prepare message in
all the received P sets. For each sequence number n where
[< n < h, the primary does the following steps:

1) It checks all commit messages in set C of the view-change
messages. If the primary finds a commit message with a valid
signature o, (p was the primary of view v) for request i, the
primary adds a ((coMmIT,v +1,n,d), ,, 1) to C’

2) If no such commit message is found, the primary checks
the prepare messages in P sets:

o If the primary finds 2m + c + 1 valid prepare messages
for n, it adds a ({(commiT,v +1,n,d), ,,p) to C'.

e Else, if it receives at least one valid prepare message for
n, the primary adds a ((PREPARE, v-+1,n,d), ,, 1) to P'.

3) If none of the above situations occur, there is no
valid request for n, so the primary adds a (PREPARE,v+1,
n, d>%, , 1"y to P’ where 1? is a special no-op command that
is transmitted by the protocol like other requests but leaves the
state unchanged. The third situation happens when no replica
has received a prepare message from the previous primary.

In contrast to PBFT, since the primary is trusted, it does
not need to append all the view-change messages in the new-
view message which makes the new-view messages much
smaller. The primary inserts all the messages in P’ and
C’ to its log. It also checks the log to make sure its log
contains the latest stable checkpoint. If not, the primary inserts
checkpoint messages for the checkpoint ! and discards the
earlier information from the log.

Once a replica in view v receives a new-view message from
the primary of view v + 1, the replica logs all prepare and
commit messages, updates its checkpoint in the same way as
the primary, and for each prepare message, sends an accept
message to the primary. Non-faulty replicas in view v will
not accept a prepare message for a new view v’ > v without
having received a new-view message for v’.

1350

Correctness. Within a view, since the primary is trusted and
it assigns sequence numbers to the requests, safety is ensured
as long as the primary does not fail. Indeed, for any two
committed requests r; and ro with sequence numbers n; and
ng respectively, if D(ry) = D(rq), then n = n/'.

If the primary fails a view change is executed. To ensure
safety across views, the primary waits for 2m 4+ c¢ accept
messages (considering itself, a quorum of 2m + ¢ + 1) from
different replicas to ensure that committed requests are totally
ordered across views. In fact, for any two committed requests
rq1 and 79 with sequence numbers n; and nq, since a quorum
of 2m+c+1 replicas commits r; and a quorum of 2m+c—+1
replicas commits 5, and these two quorums have at least m+1
overlapping nodes, there should be at least one non-faulty node
that commits both ; and 75 but this is not possible because
the node is not faulty. As a result, if D(r;) = D(rz), then
n = n’. This guarantees that in the event of primary failure,
any new quorum of 2m+-c+1 replicas will have at least m+1
overlapping nodes that received a prepare message (and sent
accept) for request p from the previous primary. Thus, there
is at least one non-faulty node in that quorum that helps the
protocol to process request y in the new view.

B. TPDC Mode: Trusted Primary, Decentralized Coordination

The TPDC mode is proposed to reduce the load on the
private cloud. In this mode, a trusted primary receives a
request message, assigns a sequence number, and relies on
3m + 1 untrusted nodes (in the public cloud) to process
the request. These 3m + 1 nodes are called proxies. Since
a trusted primary assigns the sequence number to the request
before broadcasting, this reduces the scope of any malicious
behaviour. Whereas in PBFT, when replicas receive a message
from the primary, they perform one round of communication
to make sure all non-faulty replicas agree on a total order
for the requests within a view. However, here, since a trusted
primary assigns the sequence numbers, similar to the TPCC
mode, there is no need for that phase.

Figure 1(b) shows the normal case operation of SeeMoRe
with a trusted primary (node 0). As before, two replicas
are trusted (S = 2), four replicas are untrusted (P = 4),
c =1, and m = 1. Since a trusted primary assigns sequence
numbers, the protocol, similar to Paxos, needs two phases
to process requests. However, since the protocol tolerates
malicious failures, the number of messages in terms of the
number of replicas, similar to PBFT, is quadratic. Here, there
are totally N + (3m+1)%+ (3m+1)* N messages exchanged
where 3m + 1 is the total number of proxies. In this example,
since m = 1, all replicas in the public cloud are proxies.

Algorithm 2 provides the pseudo-code for the TPDC mode.
Lines 1-5 indicate the initialization of state variables for the
primary and proxies. A replica r in the public cloud is a
proxy in view v if r—(v mod P)€[S, ..., S+3m]. Here since
replicas are in the public cloud, r is an integer in [S, ..., N—1].
The public cloud might have more than 3m+1 replicas,
however, 3m+1 is enough to establish consensus and any
additional replicas may degrade the performance. The trusted

1351

Algorithm 2 The Normal-Case Operation in the TPDC mode

1: init():

2: r:=replicald

3: v := viewNumber

4: if r = (v mod S) then isPrimary := true

5: elseif r — (v mod P) € [S,.., S + 3m)] then isProxy := true

6: upon receiving 1 = (REQUEST, op, ts¢,). and isPrimary:

7. if p is valid then

8: assign sequence number n

9: send ((PREPARE, v, n,d),, i) to all replicas
10: upon receiving ((PREPARE, v,n,d),,, 1) from the primary p and isProxy:
11: if v is valid then
12: send (ACCEPT, v, n,d,r),,. to all proxies
13: upon receiving (ACCEPT, v, n, d, r) from 2m+1 proxies:
14: send (COMMIT, v, n,d, r)s, to all other proxies
15: send (INFORM, v,n,d,), to all private cloud nodes and non-proxy nodes

in public cloud

16: execute operation op
17: send (REPLY, 7, v, ts¢, u)s, to client ¢ with result u

primary of view v is chosen in the same way as the first mode,
i.e., p is the primary if p=(v mod S).

As shown in lines 6-9 of the algorithm, the primary, upon
receiving request j, validates the timestamp and signature of
1, assigns a sequence number 7, and multicasts signed prepare
message ((PREPARE,v,7,d),,,) to all replicas.

When a proxy receives a prepare message from the pri-
mary, as indicated in lines 10-12, it validates the view num-
ber, logs the message and sends a signed accept message
(ACCEPT, v, m,d, T),, to all the other proxies. Here, in contrast
to the first mode, the proxy signs its message as a proof of
message reception in case of a view change.

As described in lines 13-17 of the algorithm, upon receiving
2m+1 matching accept messages (including its own message)
with correct signatures, a proxy r multicasts a commit message
(comMmIT, v, n,d, r), to the other proxies. Each proxy r also
sends a signed inform message (INFORM,v,n,7,d),, to all
the nodes in the private cloud and all non-proxy nodes in
the public cloud. Non-proxy nodes wait for 2m + 1 valid
matching inform messages from different proxies which are
matched by the prepare message that they received from the
primary before executing the request. If a proxy has executed
all requests with sequence numbers lower than n, it executes
the request n and sends a reply message (REPLY, T, v, tSc, U)o,
to the client.

Any other replica that receives m+1 matching commit mes-
sages from the proxies with valid signatures, correct message
digest, and view numbers equal to its view number considers
the request as committed, and executes the request. Since all
the replicas receive prepare messages from the primary, they
have access to the request and can execute it.

The client also waits for m + 1 matching reply messages
from different proxies before accepting the result. If the client
has not received a valid reply after a preset time, the client
multicasts the request to the proxies. The proxies re-send the
result if the request has already been processed and the client
waits for m + 1 matching reply messages from the proxies
before accepting the result. Otherwise, similar to the first
mode, eventually the primary will be suspected to be faulty

by enough replicas and a view change will be triggered.

State Transfer. Checkpointing in the TPDC mode works in
the same way as the TPCC mode. Trusted primary p multicasts
a signed checkpoint message to all other replicas with the
sequence number of the last executed request and the digest
of the state. Upon receiving a checkpoint message from the
primary, a server considers that a checkpoint is stable and logs
the message which is used later as a checkpoint certificate.

View Changes. In the TPDC mode, similar to the TPCC mode,
the primary of new view handles the view change, however,
only nodes in the public cloud send view-change messages.
The view-change messages (VIEW-CHANGE,v + 1,n,&,P) are
sent to all the nodes in the public cloud and the primary of
the next view where ¢ is the checkpoint certificate for sequence
number n, and P is the set of received valid prepare messages
with a sequence number higher than n.

Primary p’ of the new view waits for 2m + 1 valid view-
change messages from the proxies of the last active view, i.e.,
the view with a non-faulty primary, and multicasts a new-view
message (NEW-VIEW,v+1,7P"), to all the replicas where for
each sequence number n (between the latest checkpoint and
the highest sequence number of a prepare message), if there
is any valid prepare message in set P of the received view-
change messages, the primary adds a (PREPARE, v+ 1,7, d)ap,
to P’. Else, there is no valid request for n, so similar to
the TPCC mode, the primary adds a no-op prepare message
(PREPARE, v + 1,1, d), ,, i¥) to P

Here, again, since the primary is trusted it does not need
to include view-change messages in the new-view message.
The primary then inserts all the messages in P’ to its log and
updates its checkpoint, if needed.

Once a proxy of view v 4 1 receives a new-view message
from the primary of view v 4 1, the proxy logs all prepare
messages, updates its checkpoint, and multicasts an accept
message to all the proxies for each prepare message in
P’. Other replicas also receive the new-view message to be
informed that the view is changed.

Correctness. Within a view, since the primary is trusted and it
assigns sequence number to the requests, similar to the TPCC
mode, safety is ensured as long as the primary does not fail.
To ensure safety across views, since 3m + 1 nodes participate
in the protocol, to commit a message, 2m+ 1 matching accept
messages are needed. In fact, for any two committed requests
r1 and ro with sequence numbers n; and no, since a quorum
of 3m+1 replicas commits r; and a quorum of 3m + 1
replicas commits 75, and these two quorums have at least m+1
overlapping nodes, there is at least one non-faulty node that
commits both r; and ry. But this is not possible because the
replica is non-faulty. As a result, if D(r1)=D(rs), then n=n’.
C. UPDC Mode: Untrusted Primary, Decentralized Coordi-
nation

The third mode of the protocol, the UPDC mode, is

presented to handle two different situations. First, when the
private cloud is heavily loaded and the public cloud can handle

the requests by itself for load balancing. Second, when there
is a large network distance between the private and the public
cloud and the latency due to one more phase is less than the
latency of exchanging messages between the two clouds. In
both situations, the nodes in the private cloud become passive
replicas in the agreement routine and are only informed about
the committed messages. However, they still may participate
in the view change routine.

In the UPDC mode, SeeMoRe completely relies on 3m + 1
nodes in the public cloud to process the requests using PBFT
[16]. The untrusted primary of view v in the UPDC mode is
replica p where p = (v mod P) + S. Similar to the TPDC
mode, since there might be more than 3m + 1 replicas in the
public cloud, in each view, 3m+-1 are chosen as proxies. Node
i is a proxy in view v if i — (v mod P) € [S,..., S + 3m].
This ensures that the primary is always a proxy. As indicated in
Figure 1(c), similar to PBFT, the UPDC mode processes the
requests in three phases: pre-prepare, prepare, and commit.
As can be seen, the replicas in the private cloud have no
participation in any phases and are only informed about the
committed requests. The total number of exchanged messages
in the UPDC mode is N +2%* (3m+1)% + (1 +.9) * (3m +1).

View Changes. In the UPDC mode, we rely on a trusted node
in the private cloud, called transferer, to change the view.
Indeed, instead of the primary of the new view, a transferer
changes the view. Replica t in the private cloud is the transferer
of view v’ (changes the view from v to v’) if ¢ = (v mod S).
Choosing a transferer to change views helps in minimizing
the size of new-view messages and more importantly, reduces
the delay between the request and its reply. Because even
if there are consecutive malicious primary nodes, since the
transferer takes care of the uncommitted requests of view v,
the protocol does not carry the messages from one view to
another. In contrast, in PBFT, it is possible that a valid request
in view v be committed in view v + m (when there are m
consecutive primaries). Other than the transferer, view change
in the UPDC mode is similar to PBFT. Proxies multicast
view-change messages to all replicas. When the transferer has
changed the view and the new primary receives the new-view
message from the transferer, the new primary starts to process
new requests in view v + 1.

Correctness. In the UPDC mode, the protocol ensures safety
and liveness similar to PBFT [16].
D. Dynamic Mode Switching

We now show how to dynamically switch between different
modes of SeeMoRe. An enterprise might prefer to use the
TPCC mode of SeeMoRe, because it needs fewer phases (in
comparison to the UPDC mode) and less number of message
exchanges (in comparison to the TPDC or UPDC mode).
However, if the private cloud becomes heavily loaded, or at
some point, a high percentage of requests are sent by clients
that are far from the private cloud and much closer to the
public cloud, it might be beneficial to switch to the TPDC
or UPDC mode. SeeMoRe might also plan to switch back to
the TPCC mode, e.g., when the load on the private cloud is

1352

TABLE I
COMPARISON OF FAULT-TOLERANT PROTOCOLS

Protocol | phases | messages |Receiving Network | Quorum size
TPCC 2 O(n) 3m+2c+1 2m+c+1
TPDC | 2 | O(n?) 3m+1 2m+1
UPDC | 3 | O(n?) 3m+1 2m+1
Paxos 2 O(n) 2f+1 f+1
PBFT | 3 | O(n?) 3f+1 2f+1

UpRight| 2 | O(n?) 3m4-2c+1 2m4-c+1

reduced. To change the mode, the protocol also has to change
the view, because the primary and the set of participant replicas
might be different in different modes. Therefore, to handle a
mode change, the protocol first performs a view change, and
then the primary of the new view in the new mode starts to
process new requests.

For the switch to happen a trusted replica s multicasts a
(MODE-CHANGE, v + 1, 7"), to all the replicas where 7’ is the
new mode of the protocol, i.e., TPCC, TPDC, or UPDC. When
the protocol wants to switch to the TPCC or TPDC mode,
replica s is the primary of view v + 1, and when it switches
to the UPDC mode, replica s is the transferer of view v + 1.

E. Discussion

In this section, we compare the different modes of SeeMoRe
with three well-known protocols: the crash fault-tolerant pro-
tocol Paxos [35], the Byzantine fault-tolerant protocol PBFT
[16], and the hybrid fault-tolerant protocol UpRight [19]. We
consider (1) the number of communication phases, (2) the
number of message exchanges, (3) the receiving network size,
and (4) the quorum size in this comparison. The results are
reported in Table I.

The knowledge of where a crash or a malicious failure may
occur and thus choosing a trusted primary simply reduces one
phase of communication. In fact, in PBFT, the prepare phase
is needed only to make sure that non-faulty replicas receive
matching pre-prepare messages from the primary. In contrast,
in the TPCC and TPDC modes of SeeMoRe, since the primary
is a trusted node, replicas receive the same message from the
primary, thus there is no need for that phase of communication
and the requests, similar to Paxos, are processed in two
phases (while in contrast to Paxos malicious failures can
occur in the public cloud). In comparison to Upright, although
Upright processes the requests in two phases, it utilizes the
speculative execution technique introduced by Zyzzyva [33]
which becomes costly in the presence of failures.

The number of message exchanges in the TPCC mode is
similar to Paxos and is linear in terms of the total number
of replicas. In the TPDC mode, the number of messages is
quadratic, however it is still much less than PBFT (since it has
one phase of n-to-n communication instead of two). UPDC
and Upright also have a quadratic number of messages. The
higher number of message exchanges results in higher latency
especially in networks with a large number of nodes.

The TPCC mode, similar to Upright, needs 3m + 2¢ + 1
nodes to receive a client request. In the TPDC mode, however,
only the trusted primary and 3m + 1 nodes from the public
cloud participate in each phase. Since the UPDC mode utilizes

PBFT, the number of phases and message exchanges are the
same as PBFT. However, since the primary is in the public
cloud, communicating with the private cloud has no advantage,
thus it proceeds with 3m + 1 nodes instead of 3m +2c+1 as
in the TPCC mode and UpRight.

VI. PERFORMANCE EVALUATION

This section evaluates the performance of the SeeMoRe
protocol. SeeMoRe is implemented by adapting the BFT-
SMaRt library [10]. We mainly reuse the communication layer
of BFT-SMaRt but implement our agreement and view change
routines for the different modes of the protocol. Note that
the SeeMoRe implementation follows the optimized imple-
mentation of Paxos and PBFT from the original BFT-SMaRt
codebase, resulting in a similar implementation complexity.

In each experiment, we compare different modes of
SeeMoRe with an asynchronous crash fault-tolerant (CFT)
protocol, an asynchronous Byzantine fault-tolerant (BFT) pro-
tocol, and a simplified version of the asynchronous hybrid
fault-tolerant protocol UpRight [19] (we call it S-UpRight). For
both CFT and BFT we use the original BFT-SMaRt codebase
(the optimized implementations of Paxos [35] and PBFT [16]).
UpRight consists of first, a hybrid model that tolerates both
crash and malicious failures (in a network of size 3m+2c+1),
and second, an optimistic protocol that combines a set of
techniques such as speculative execution [33] and separation of
ordering and execution [53]. S-UpRight includes the UpRight
hybrid model since this part of the UpRight is relevant to
SeeMoRe, however, to ensure a fair comparison with other
protocols and since all other protocols use the pessimistic
approach, we use a PBFT-like protocol (i.e., PBFT protocol
with 3m + 2¢ 4+ 1 nodes instead of 3f 4+ 1 nodes) instead of
the UpRight protocol. Note that, both the speculative execution
and separation of ordering from execution techniques can be
integrated into SeeMoRe as well.

The experiments were conducted on the Amazon EC2 plat-
form. Each VM is Compute Optimized c4.2xlarge instances
with 8 vCPUs and 15GB RAM, Intel Xeon E5-2666 v3
processor clocked at 3.50 GHz. In the experiments (except
for part C), both the public and private clouds are located in
the same data center i.e., AWS US West Region.

In each experiment, we vary the number of requests sent
by all the clients per second from 10 to 10° (by increasing
the number of clients running on a single VM) and measure
the end-to-end throughput (2 axis) and latency (y axis) of
the system. Each client waits for the reply before sending a
subsequent request.

A. Fault-Tolerance Scalability

In the first set of experiments, we evaluate the performance
of SeeMoRe with different number of maximum possible
failures (f). We consider the 0/0 micro-benchmark (both
request and reply payload sizes are close to 0 KB) and eval-
uate SeeMoRe, S-UpRight, CFT, and BFT protocols. Since,
f = c¢+m, we evaluate CFT and BFT to tolerate c+m failures
in each experiment. In all these scenarios and for SeeMoRe,
we put 2¢ nodes in the private and 3m + 1 nodes in the public
cloud. The results are shown in Fig. 2(a)-(d).

1353

; ; : : : ;
s|[& BET ® | sl [& BFT |
—6- S-UpRight —&— S-UpRight ®
@ UPDC ‘. _® UPDC i
¢l|-= TPDC ¢l|-= TPDC | |
’ TPCC ‘ “ ¢ ’ | ?
A CFT | A CFT I
‘ /
Bl
|

Latency [ms]
Latency [ms]

TPCC [@
[
|
[
|
|

. \ . . . \ \ \ .
1 8 12 16 20 0 3 6 9 12
Throughput [Kregs/sec] Throughput[Kregs/sec]

@ f=2(=1m=1) b) f=4(c=2,m=2)
N: SeeMoRe, S-UpRight=6, CFT=5, N': SeeMoRe, S-UpRight=11, CFT=9,

T T T T T T
s|[-& BT | s|[-& BT

—&— S-UpRight [| —6— s-UpRight ®

-@ UPDC -@ UPDC I
79| T Zo[§ M | o
z TPCC Z TPCC | | %
= | |& oFr = | |& cFr | 7 |
g g |
E [
= 3 | |

LA

. , , . . \ . . .
0 3 6 9 12 0 4 8 12 16 20
Throughput [Kregs/sec] Throughput [Kregs/sec]

© f=4@C=1m=3) @@ f=4(c=3m=1
N': SeeMoRe, S-UpRight=12, CFT=9, N: SeeMoRe, S-UpRight=10, CFT=9,

BFT=7 BFT=13 BFT=13 BFT=13
Fig. 2. Throughput/Latency measurement by increasing the number of failures

In the first scenario, when f = 2 (¢ = m = 1), the wl= s | ‘ T e | e]

. . . —o—S-UpRight ' —6— S-UpRight | f
network size of the different protocols is close to each other 10}|-e- UPDC T ® 4 10}{-e- uPDC &

. . . TPDC TPDC |

(BFT requires 7, SeeMoRe and S-UpRight require 6, and CFT sl rrec ‘ ‘J‘ sl trec / ,

| —& CFT % /

requires 5 nodes). As a result, as can be seen in Fig. 2(a),
the performance of the TPCC mode becomes very close to
CFT (8% difference in their peak throughput). Similarly, the
performances of S-UpRight and BFT are close to each other
(4% difference in their peak throughput). Note that the UPDC
mode shows better performance than S-UpRight (still worst
than the TPDC and TPCC modes) because in the UPDC mode,
SeeMoRe relies only on the public cloud which consists of
only 4 nodes. In addition, while in comparison to the TPCC
mode, both the UPDC and TPDC modes need less number
of nodes, the TPCC mode has better performance because it
needs less number of phases and message exchanges.

In the next three scenarios, the network tolerates the same
number of failures (f = 4), as a result, the performance of
BFT and CFT does not change from one scenario to another.
However, since the number of crash and malicious failures are
varied, the network size of SeeMoRe and S-UpRight changes.
Hence, they show different performance in different scenarios.

When both m and ¢ increase to 2 (Fig. 2(b)), The TPDC
mode shows similar performance to the TPCC mode. This is
the result of the trade-off between the quorum size and the
message complexity; Only 5 nodes (2m + 1) participate in
the TPDC mode which requires O(n?) number of messages
whereas the quorum size of the TPCC mode is 7 (2m+c+1)
but it requires O(n) messages (see Table I). In addition, since
SeeMoRe in the UPDC mode communicates with only 7
nodes, it shows much better performance than BFT (24% more
throughput) and even S-UpRight (18% more throughput).

By increasing the number of tolerated malicious failures
to 3 while reducing the number of tolerated crash failures
back to 1 (Fig. 2(c)), the network size of SeeMoRe becomes
closer to the BFT network size. As a result, CFT shows better
performance (12% difference in its peak throughput) than the
TPCC mode and also the performance of the UPDC and TPDC
modes, which communicate with 10 nodes in the public cloud,
becomes closer to S-UpRight and BFT (with 12 and 13 nodes).

On the other hand, increasing the number of tolerated
crash failures to 3 while maintaining the number of malicious
failures to 1 (Fig. 2(d)) results in a network size close to CFT.
In this setting, the performance of the TPDC and UPDC modes

Latency [ms]
Latency [ms]

0 5 10 15 20 0 3 6 9 12 15
Throughput [kregs/sec] Throughput [kreqs/sec]

(a) Benchmark 0/4 (b) Benchmark 4/0
Fig. 3. Throughput/Latency with different payload size (c = m = 1)

become better than both the TPCC mode and CFT. This is
expected because the TPDC mode processes a request in the
public cloud which needs only 4 replicas (since m = 1) but
with the same number of phases as the TPCC mode. Similarly,
although the UPDC mode processes requests in three phases,
since it needs fewer servers to proceed, its performance is
better than the TPCC mode and CFT. In fact, since the number
of malicious failures in this scenario is the same as the first
scenario, both the TPDC and UPDC modes show the same
performance as the first scenario (Fig. 2(a)).

B. Changing Payload Size

We now repeat the base case scenario (c=m=1) of the
previous experiments (Fig. 2(a)) using two micro-benchmarks
0/4, 4/0 to show how request and reply sizes affect the
performance of different protocol. Figs. 3(a) and 3(b) show
the throughput and latency for 0/4 and 4,/0 micro-benchmarks
respectively. Since the TPCC and TPDC modes need less com-
munication phases and message exchanges, their performance
is close to CFT, e.g., for latency equal to 4 ms, the throughput
of the TPCC and TPDC modes is 10% and 17% less than
CFT respectively. Similarly, the UPDC mode and S-UpRight
are close to BFT, e.g., with 4 ms latency, the throughput of
the UPDC mode is the same as BFT. Note that due to the
overhead of request transmission, the request size affects the
performance of all protocols more than the reply size.

C. Scalability Across Multiple Data Centers

We next repeat the base case scenario (c=m=1) of the first
experiment (Fig. 2(a)), however, place the private and public
clouds on different data centers, i.e., California and Oregon,
with RTT = 22ms and place clients first close to the private
cloud (Fig. 4(a)) and then close to the public cloud (Fig. 4(b)).

1354

. . .
nl] [; = BFT
45 60 M —&—S-UpRight
R @ UPDC
50 B
-] % & TPDC
Z [sFr R ! ThCC
£ . E Ve _—Ba— Q-4 CFT
5 |6 S UpRight | > = Q/@
Z 3| @ upDC 2 30f TP N
% |-& TPDC 5 |e—9 °
2 TPCC | 201 N
N crr ®
/‘.ﬁ// 0f g
P ——=
DA I | h N .—++Mt4o
0 3 3 9 12 0 1 s 12 16

Throughput [Kregs/sec] Throughput [Kregs/sec]

(b) Clients close to Public Cloud
=1)

(a) Clients close to Private Cloud
Fig. 4. Throughput/Latency with multiple data centers (¢ = m

In this set of experiments, we assume that the primary node
of CFT, BFT, and S-UpRight protocols is in the private cloud.

Fig. 4(a) clearly shows the advantages of SeeMoRe as
the clients are close to the private cloud. In this case all
requests in all three modes of SeeMoRe as well as CFT only
require two phases of cross-cloud communication (one round
trip). BFT and S-UpRight, on the other hand, require three
phases of communication between the clouds which results in
significantly higher latency.

Fig. 4(b) clearly demonstrates the significant advantages
of the UPDC mode, where the clients are close to the
public cloud and hence all requests are entirely processed
in the public cloud without any cross-cloud communication.
TPDC requires two cross-cloud phases of communications
(clients to the primary and the primary to the public cloud)
whereas TPCC as well as CFT process the requests with three
phases of cross-cloud communication. Finally, BFT and S-
UpRight process requests with higher latency because of the
four required phases of cross-cloud communication (including
request messages coming from clients to the primary).

Comparing the results of multi data centers experiments and
the experiments with more number of nodes shows that latency
within a quorum of recipients (across data centers) is much
more important than the quorum size.

D. Performance During View Change

Finally, we evaluate the impact of view change on the per-
formance of SeeMoRe. We trigger a primary failure during the
processing of the last request before the end of a checkpoint
period to evaluate the worst-case overhead that can be caused
by a failure. To simulate failures, the process of the faulty
nodes has been terminated. We consider the base case scenario
(¢ = m = 1) with a total network of N = 6 nodes (for
SeeMoRe), where 2 nodes are in the private cloud and 4 in the
public cloud (both clouds are placed in the same data center).
The experiment was run with micro-benchmark 0/0 and with a
checkpoint period of 10000 request i.e., a checkpoint is taken
every 10000 requests. Fig. 5 shows the behavior of SeeMoRe,
S-UpRight and BFT where the y-axis is throughput and the
z-axis is a timeline with a failure injected around time 30. As
can be seen, the protocols behave as expected until the failure
is triggered. This failure and the view change routine cause the
protocols to be temporarily out of service (in particular, 15,
20, and 24 millisecond in the TPCC, TPDC, and UPDC modes
respectively). However, when the view change is complete, the
throughput increases to the original level for each protocol. As

Z BFT
_;: o S-Upright
2 —@— UPDC
= —o— TPDC
TPCC

L w0
40 60 80 100

Timeline [ms]

Fig. 5. Performance during view change

can be seen, BFT takes twice as much time as the TPCC mode
to revive and continue to process the requests. The UPDC
mode also recovers faster than S-UpRight and BFT due to its
use of transferers. Note that since mode switching is performed
in the same way as view change, the results of this experiment
are applicable to mode switching as well.

Overall, the evaluation results for a network that tolerates
f = m + c failures can be summarized as follow. First, when
c is equal or less than m (for small ¢ and m), the performance
of SeeMoRe in the TPCC mode is very close to Paxos due
to the required number of phases and message exchanges
in the TPCC mode. In addition, when ¢ is larger than m,
SeeMoRe in both TPDC and UPDC modes demonstrates better
performance than the TPCC mode and Paxos since in both
modes, SeeMoRe relies completely on the public cloud to
process the requests. Furthermore, if the clients are close to the
public cloud, UPDC processes the requests with significantly
lower latency. Moreover, all three modes of SeeMoRe show
better performance than the hybrid protocol S-UpRight since
SeeMoRe is aware of where different types of faults may
occur. Finally, all three modes also have better performance
than BFT since they reduce the number of communication
phases, messages exchanged and required nodes.

VII. CONCLUSIONS

In this paper, we proposed SeeMoRe, a hybrid state ma-
chine replication protocol to tolerate both crash and malicious
failures in a public/private cloud environment. SeeMoRe is tar-
geted to be used by smaller enterprises that own a small set of
servers and intend to rent servers from public cloud providers.
Such an enterprise can highly benefit from SeeMoRe, as the
protocol distinguishes between crash failures that could occur
within the trusted private cloud and malicious failures that
could only occur in the public cloud. SeeMoRe can execute
in any one of three modes, TPCC, TPDC, and UPDC, and
can dynamically switch among these modes. The TPCC and
TPDC modes of SeeMoRe require less communication phases
and message exchanges while the UPDC mode is useful for a
heavily loaded private cloud or when there is a large network
distance between the two clouds. Our evaluations show that
the performance of TPCC and TPDC modes is close to Paxos
while in contrast to Paxos, which only tolerates crash failures,
malicious failures can occur in both TPCC and TPDC. In the
UPDC mode, since the primary is in the public cloud, its
performance is similar to PBFT with m failures. However,
in comparison to UpRight, which requires quorums of size
2m + c+ 1, UPDC needs quorums of size 2m + 1, and hence
is more efficient.

1355

As future work, SeeMoRe can be used in the context of
permissioned blockchain systems. Permissioned blockchain
systems extensively use fault-tolerant protocols to establish
consensus on the order of transactions between a set of
known, identified nodes that do not fully trust each other. A
permissioned blockchain system can benefit from SeeMoRe in
a setting where some nodes are trusted but not all.

ACKNOWLEDGEMENT

This work is funded by NSF grants CNS-1703560 and CNS-
1815733.

REFERENCES

[1] M. Abd-El-Malek, G. R. Ganger, G. R. Goodson, M. K. Reiter, and J. J.
Wylie. Fault-scalable byzantine fault-tolerant services. OSR, 39(5):59—
74, 2005.

[2] A. AlZain, B. Soh, and E. Pardede. Mcdb: Using multi-clouds to ensure
security in cloud computing. In DASC, pages 784-791. IEEE, 2011.

[3] Y. Amir, B. Coan, J. Kirsch, and J. Lane. Prime: Byzantine replication
under attack. IEEE TDSC, 8(4):564-577, 2011.

[4] M. J. Amiri, S. Maiyya, D. Agrawal, and A. El Abbadi. Seemore: A
fault-tolerant protocol for hybrid cloud environments. arXiv preprint
arXiv:1906.07850, 2019.

[S] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, et al. A view of cloud
computing. Communications of the ACM, 53(4):50-58, 2010.

[6] P. Aublin, R. Guerraoui, N. KneZevié, V. Quéma, and M. Vukoli¢. The
next 700 bft protocols. TOCS, 32(4):12, 2015.

[7] P. Aublin, S. B. Mokhtar, and V. Quéma. Rbft: Redundant byzantine
fault tolerance. In ICDCS, pages 297-306. IEEE, 2013.

[8] C. Basescu, C. Cachin, I. Eyal, R. Haas, A. Sorniotti, M. Vukoli¢é, and

I. Zachevsky. Robust data sharing with key-value stores. In DSN, pages

1-12. IEEE, 2012.

A. Bessani, M. Correia, B. Quaresma, F. André, and P. Sousa. Depsky:

dependable and secure storage in a cloud-of-clouds. ACM TOS, 9(4):12,

2013.

[10] A. Bessani, J. Sousa, and E. Alchieri. State machine replication for the
masses with bft-smart. In DSN, pages 355-362. IEEE, 2014.

[11] A.N. Bessani, R. Mendes, T. Oliveira, et al. Scfs: A shared cloud-backed
file system. In USENIX ATC, pages 169-180, 2014.

[12] G. Bracha and S. Toueg. Asynchronous consensus and broadcast
protocols. Journal of the ACM (JACM), 32(4):824-840, 1985.

[13] F. Brasileiro, F. Greve, A. Mostéfaoui, and M. Raynal. Consensus in one
communication step. In International Conference on Parallel Computing
Technologies, pages 42-50. Springer, 2001.

[14] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, et al. Tao: Facebook’s
distributed data store for the social graph. In USENIX ATC, pages 49-60,
2013.

[15] C. Cachin, I. Keidar, and A. Shraer. Trusting the cloud. Acm Sigact
News, 40(2):81-86, 2009.

[16] M. Castro and B. Liskov. Practical byzantine fault tolerance. In OSDI,
volume 99, pages 173-186, 1999.

[17] M. Castro, R. Rodrigues, and B. Liskov. Base: Using abstraction to
improve fault tolerance. TOCS, 21(3):236-269, 2003.

[18] B. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested append-
only memory: Making adversaries stick to their word. In OSR, volume
41-6, pages 189-204. ACM, 2007.

[19] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche. Upright cluster services. In SOSP, pages 277-290. ACM,
2009.

[20] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti.
Making byzantine fault tolerant systems tolerate byzantine faults. In
NSDI, volume 9, pages 153-168, 2009.

[21] J. C. Corbett, J. Dean, M. Epstein, et al. Spanner: Google’s globally
distributed database. TOCS, 31(3):8, 2013.

[22] M. Correia, N. F. Neves, and P. Verissimo. How to tolerate half less one
byzantine nodes in practical distributed systems. In IEEE Int. Symposium
on Reliable Distributed Systems, pages 174-183. IEEE, 2004.

[23] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. Hq
replication: A hybrid quorum protocol for byzantine fault tolerance. In
OSDI, pages 177-190, 2006.

[9

—

[24]

[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]
[35]
[36]
[37]
[38]
[39]
[40]
[41]
[42]

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

1356

G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, et al. Dynamo:
amazon’s highly available key-value store. In OSR, volume 41, pages
205-220. ACM, 2007.

T. Distler, C. Cachin, and R. Kapitza. Resource-efficient byzantine fault
tolerance. IEEE Transactions on Computers, 65(9):2807-2819, 2016.
D. Dobre, P. Viotti, and M. Vukoli¢. Hybris: Robust hybrid cloud
storage. In SoCC, pages 1-14. ACM, 2014.

A. El Abbadi, D. Skeen, and F. Cristian. An efficient, fault-tolerant
protocol for replicated data management. In ACM SIGACT-SIGMOD
symp. on Principles of database systems, pages 215-229. ACM, 1985.
A. El Abbadi and S. Toueg. Availability in partitioned replicated
databases. In SIGMOD, pages 240-251. ACM, 1985.

M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of
distributed consensus with one faulty process. Journal of the ACM,
32(2):374-382, 1985.

G. G. Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas, M. Reiter,
D. Seredinschi, O. Tamir, and A. Tomescu. Sbft: a scalable and
decentralized trust infrastructure. In IEEE/IFIP DSN, pages 568-580.
IEEE, 2019.

H. S. Gunawi, M. Hao, R. O. Suminto, A. Laksono, et al. Why does
the cloud stop computing?: Lessons from hundreds of service outages.
In SoCC, pages 1-16. ACM, 2016.

R. Kapitza, J. Behl, C. Cachin, et al. Cheapbft: resource-efficient
byzantine fault tolerance. In EuroSys, pages 295-308. ACM, 2012.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
speculative byzantine fault tolerance. OSR, 41(6):45-58, 2007.

L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558-565, 1978.

L. Lamport. Paxos made simple. ACM Sigact News, 32(4):18-25, 2001.
L. Lamport. Fast paxos. Distributed Computing, 19(2):79-103, 2006.
L. Lamport and M. Massa. Cheap paxos. In International Conference
on Dependable Systems and Networks, pages 307-314. IEEE, 2004.

L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem.
TOPLAS, 4(3):382-401, 1982.

S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic. Xft: Practical
fault tolerance beyond crashes. In OSDI, pages 485-500, 2016.

J.-P. Martin and L. Alvisi. Fast byzantine consensus. [EEE Trans. on
Dependable and Secure Computing, 3(3):202-215, 2006.

F. J. Meyer and D. K. Pradhan. Consensus with dual failure modes. /EEE
Transactions on Parallel & Distributed Systems, (2):214-222, 1991.

D. Ongaro and J. K. Ousterhout. In search of an understandable
consensus algorithm. In USENIX ATC, pages 305-319, 2014.

D. Porto, J. Leitdo, C. Li, A. Clement, A. Kate, F. Junqueira, and
R. Rodrigues. Visigoth fault tolerance. In EuroSys, page 8. ACM,
2015.

F. B. Schneider. Implementing fault-tolerant services using the state
machine approach: A tutorial. ACM Computing Surveys (CSUR),
22(4):299-319, 1990.

M. Serafini, P. Bokor, D. Dobre, M. Majuntke, and N. Suri. Scrooge:
Reducing the costs of fast byzantine replication in presence of unre-
sponsive replicas. In DSN, pages 353-362. IEEE, 2010.

Y. J. Song and R. van Renesse. Bosco: One-step byzantine asynchronous
consensus. In DISC, pages 438—450. Springer, 2008.

P. Thambidurai, Y. Park, et al. Interactive consistency with multiple
failure modes. In SRDS, pages 93-100. IEEE, 1988.

G. S. Veronese, M. Correia, A. N. Bessani, and L. C. Lung. Spin one’s
wheels? byzantine fault tolerance with a spinning primary. In SRDS,
pages 135-144. IEEE, 2009.

G. S. Veronese, M. Correia, A. N. Bessani, L. C. Lung, and P. Verissimo.
Efficient byzantine fault-tolerance. IEEE TC, 62(1):16-30, 2013.

S.-S. Wang, K.-Q. Yan, and S.-C. Wang. Achieving efficient agreement
within a dual-failure cloud-computing environment. Expert Systems with
Applications, 38(1):906-915, 2011.

T. Wood, R. Singh, A. Venkataramani, and P. Shenoy. Zz and the art of
practical bft execution. In EuroSys, pages 123-138. ACM, 2011.

Z. Wu, M. Butkiewicz, D. Perkins, E. Katz-Bassett, and H. V. Mad-
hyastha. Spanstore: Cost-effective geo-replicated storage spanning
multiple cloud services. In SOSP, pages 292-308. ACM, 2013.

J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Separating
agreement from execution for byzantine fault tolerant services. ACM
SIGOPS Operating Systems Review, 37(5):253-267, 2003.

Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of internet services and applications,
1(1):7-18, 2010.

