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Abstract—Large scale data management systems utilize State
Machine Replication to provide fault tolerance and to enhance
performance. Fault-tolerant protocols are extensively used in
the distributed database infrastructure of large enterprises such
as Google, Amazon, and Facebook. However, and in spite of
years of intensive research, existing fault-tolerant protocols do
not adequately address hybrid cloud environments consisting of
private and public clouds which are widely used by enterprises.
In this paper, we consider a private cloud consisting of non-
malicious nodes (crash-only failures) and a public cloud with
possible malicious failures. We introduce SeeMoRe, a hybrid State
Machine Replication protocol that uses the knowledge of where
crash and malicious failures may occur in a public/private cloud
environment to improve overall performance. SeeMoRe has three
different modes that can be used depending on the private cloud
load and the communication latency between the public and
private clouds. SeeMoRe can dynamically transition from one
mode to another. Furthermore, an extensive evaluation reveals
that SeeMoRe’s performance is close to the state of the art crash
fault-tolerant protocols while tolerating malicious failures.

Index Terms—Fault Tolerance, Consensus, Cloud Computing

I. INTRODUCTION

Today’s enterprises mostly rely on cloud storage to run their

business applications. Cloud computing has many benefits

in terms of cost savings, scalability, and easy access [54].

However, storing data on a single cloud may reduce robustness

and performance [15] [26] [31]. Robustness is the ability to

ensure availability (liveness) and one-copy semantics (safety)

despite failures, while performance deals with response time

(latency) and the number of processed requests per time

unit (throughput) [6]. Fault-tolerant protocols are designed to

satisfy both robustness and performance concerns using State

Machine Replication (SMR) [34] techniques. SMR regulates

the deterministic execution of client requests on multiple

copies of a server, called replicas, such that every non-faulty

replica must execute every request in the same order [44] [34].

Large scale data management systems utilize SMR to pro-

vide fault tolerance and to increase the performance of the

system. Fault-tolerant protocols are extensively used in dis-

tributed databases such as Google’s Spanner [21], Amazon’s

Dynamo [24], and Facebook’s Tao [14], thus highlighting the

critical role of SMR in data management.

While large enterprises might have their own Geo-replicated

fault-tolerant cloud storage around the world, smaller enter-

prises may only have a local private cloud that is lacking in

resources to guarantee fault tolerance. One solution is to store

all the data on third-party public cloud providers [5] [52] [8].

Public clouds provide several advantages like elasticity and

durability, but they often suffer from security concerns, e.g.,

malicious attacks [2]. Private clouds, on the other hand, may

not provide sufficient elasticity and durability, however, they

are more secure. The trustworthiness of a private cloud allows

an enterprise to build services that can utilize crash fault-

tolerant protocols, i.e., protocols that make progress when a

bounded number of replicas only fail in a benign manner, for

example by either crashing or being unresponsive. But due to

lack of private resources, if a third-party public cloud is used,

the nodes of the public cloud may behave maliciously, in which

case a more robust fault-tolerant protocol is needed that allows

the system to continue operating correctly, even when some

replicas exhibit arbitrary, possibly malicious behavior. Current

Byzantine fault-tolerant protocols (e.g., PBFT [16]) introduce

significant communication and latency overheads in order to

tolerate failures since they consider all failures as malicious.

An alternative solution to storing all the data in a public

cloud is to use a hybrid cloud storage system consisting of both

private and public clouds [26]. In a hybrid cloud, the nodes in

the private cloud are trusted and may crash but do not behave

maliciously whereas the nodes in the public cloud(s) might

be malicious. Hybrid clouds address the security concerns of

using only public clouds by giving enterprises the ability to

still use their private clouds with their trusted, non-malicious

nodes. In addition, storing data on multiple clouds is more

reliable, e.g., if a cloud outage happens, the system might still

process requests. Moreover, while a small private cloud may

represent a scalability bottleneck, the system can rent as many

servers as required from public clouds. The benefits of hybrid

clouds necessitate designing new protocols that can leverage

the trust of private clouds and the scalability of public clouds.

Despite years of intensive research, existing fault-tolerant

protocols do not adequately address all the characteristics

of hybrid cloud environments. On one hand, the existing

Byzantine fault-tolerant protocols [16] [40] [33] [51] [32] [6]

[39] do not distinguish between crash and malicious failures,

and consider all failures as malicious, thus incurring a higher

cost in terms of performance. On the other hand, the hybrid

protocols [45] [19] that have been designed to tolerate both

crash and malicious failures, make no assumption on where the

crash or malicious failures may occur. As a result, using these

protocols in a hybrid cloud environment, where all machines

in the private cloud are known to be trusted while machines in
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the public cloud could be compromised and hence malicious,

results in an unnecessary performance overhead.
In this paper, we present SeeMoRe1: a State Machine Repli-

cation protocol that leverages the localization of crash and

malicious failures in a hybrid cloud environment. SeeMoRe

considers a private cloud consisting of trusted replicas, a subset

of which may fail-stop, and a public cloud where a subset of

the replicas may behave maliciously. SeeMoRe takes explicit

advantage of this knowledge to improve performance by

reducing the number of communication phases and messages

exchanged and/or the number of required replicas. SeeMoRe

has three different modes of operation which can be used

depending on the load on the private cloud, and the latency

between the public and the private cloud. We also introduce a

dynamic technique to transition from one mode to another.
A key contribution of this paper is to show how being

aware of where different types of failures (crash and malicious)

may occur in hybrid cloud environments, results in designing

more efficient protocols. In particular, this paper makes the

following contributions:

• A model for hybrid cloud environments is presented

which can be used by enterprises that do not have enough

servers in their trusted private cloud to run fault-tolerant

protocols and gives them the option of renting from

untrusted public clouds.

• SeeMoRe, a hybrid protocol that tolerates both crash

and malicious failures, is developed in three different

modes. Being aware of where the crash faults may occur

and where the malicious faults can occur results in

reducing the number of communication phases, messages

exchanged and/or required replicas. In addition, a tech-

nique to dynamically switch between different modes of

SeeMoRe is presented.

The rest of this paper is organized as follows. Section II

presents related work. The system model is introduced in

Section III. Section IV presents a method to compute the

required number of replicas from a public cloud. The design

of SeeMoRe is proposed in Section V. Section VI shows the

performance evaluation, and Section VII concludes the paper.

II. RELATED WORK

State Machine Replication (SMR) is a technique for im-

plementing a fault-tolerant service by replicating servers [34].

Several approaches [44] [35] [42] generalize SMR to support

crash failures among which Paxos [35] is the most well-

known. Paxos guarantees safety in an asynchronous network

using 2f+1 processors despite the simultaneous crash failure

of any f processors. Many protocols are proposed to either

reduce the number of phases, e.g., Multi-Paxos which assumes

the leader is relatively stable or Fast Paxos [36] and Brasileiro

et al. [13] which add f more replicas, or reduce the number

of replicas, e.g., Cheap Paxos [37] which tolerates f failures

with f+1 active and f passive processors.

1SeeMoRe is derived from Seemorq, a benevolent, mythical bird in Persian
mythology which appears as a peacock with the head of a dog and the claws
of a lion. Seemorq in Persian literature also refers to a group of birds who
flew together to achieve a common goal.

Byzantine fault tolerance refers to servers that behave

arbitrarily after the seminal work by Lamport, et al. [38].

Practical Byzantine fault tolerance protocol (PBFT) [16] is

one of the first and probably the most instructive state machine

replication protocol to deal with Byzantine failures. Although

practical, the cost of implementing PBFT is quite high, re-

quiring at least 3f + 1 replicas, 3 communication phases,

and a quadratic number of messages in terms of the number

of replicas. Thus, numerous approaches have been proposed

to explore a spectrum of trade-offs between the number of

phases/messages (latency), number of processors, the activity

level of participants (replicas and clients), and types of failures.

FaB [40] and Bosco [46] reduce the communication phases

by adding more replicas. Speculative protocols, e.g., Zyzzyva

[33], HQ [23], and Q/U [1], also reduce the communication

by executing requests without running any agreement between

replicas and optimistically rely on clients to detect inconsisten-

cies between replicas. To reduce the number of replicas, some

approaches rely on a trusted component (a counter in A2M-

PBFT-EA [18] and MinBFT [49], or a whole operating-system

instance [22]) that prevents a faulty replica from sending

conflicting (i.e., asymmetric) messages to different replicas

without being detected. In addition, optimistic approaches

reduce the required number of replicas during the normal-case

operation by either utilizing the Cheap Paxos [37] solution and

keeping f replicas in a passive mode (REPBFT [25]), or by

separating agreement from execution [53]. In ZZ [51] both

passive replicas and separating agreement from execution are

employed. Note that all these approaches need 3f +1 replicas

upon occurrence of failures. REMINBFT [25] and CheapBFT

[32] use a trusted component to reduce the network size to

2f + 1 and then keep f of those replicas passive during the

normal-case operation. In contrast to optimistic approaches,

robust protocols (Prime [3], Aardvark [20], Spinning [48],

RBFT [7]) consider the system to be under attack by a very

strong adversary and try to enhance the performance of the

protocol during periods of failure.

In this paper, we focus on hybrid fault tolerance. Consensus

with multiple failure modes were initially addressed in syn-

chronous protocols [41], [47]. Recent efforts have focused on

partial synchrony, a technique that defines a threshold on the

number of slow (partitioned) processes. Let m, c, and s denote

the number of malicious, crash, and slow servers respectively,

VFT [43] and XFT [39] require 2m+ c+min((m+c), s)+1
and 2(m + c + s) + 1 servers respectively, and SBFT [30]

needs 3m+2c+1 servers as the minimum size of the network

from which 3m + c + 1 participate in each quorum. VFT is

similar to PBFT regarding the number of phases and massage

exchanges, but optimistically assumes that an adversary cannot

fully control the Byzantine nodes and as a result, reduces the

phases of communication and message exchanges. SBFT also

reduces the number of message exchanges by assuming the

adversary controls only crash failures.

Finally, Scrooge [45] and UpRight [19] are two asyn-

chronous hybrid approaches that use optimistic solutions.

Scrooge [45] uses a speculative technique to reduce the latency

1346



in the presence of 4m + 2c replicas. UpRight [19], which

is the closest protocol to SeeMoRe, requires 3m + 2c + 1
nodes as the minimum network size from which 2m+ c + 1
are required to participate in each communication quorum.

In addition, UpRight utilizes the agreement routines of PBFT

[16], Aardvark [20], and Zyzzyva [33] and similar to [53],

separates agreement from execution. However, UpRight is not

aware which nodes may crash and which may be malicious,

therefore, does not take advantage of this knowledge by

placing particular processes executing specific protocol roles

on crash-only or Byzantine sites. On the other hand, SeeMoRe

knows where the crash or malicious faults may occur, thus,

it either reduces the number of communication phases and

message exchanges by placing the primary in the crash-only

private cloud, or decreases the number of required nodes by

placing the primary in the untrusted public cloud.
Storing data on multiple clouds to enhance fault tolerance

is addressed for both crash (ICStore [8], SPANStore [52])

and malicious (DepSky [9], SCFS [11]) failures. DAPCC

[50] solves the consensus in a dual failure mode assuming

a synchronous environment. Hypris [26] reduces the number

of required servers to 2f + 1 (f + 1 when the system is

synchronous and no faults happen) by keeping the metadata

in a private cloud assumed to be partially synchronous.

III. SYSTEM MODEL

In this section, we introduce the system model wherein an

application layer, such as a distributed database management

system, relies on a replication service to store copies of data

across an environment consisting of private and public clouds.

Such a replication service can use SeeMoRe and we specify

the assumptions on which SeeMoRe is built in this section.

A. Basic Assumptions
We consider a hybrid failure model that admits both crash

and malicious failures where crash failures may occur in the

private cloud and malicious failures may only occur in the

public cloud. Note that a malicious failure can encompass a

crash failure but since the trust assumptions are low, we do not

distinguish between a crash or a malicious failure in the public

cloud. This is indeed a realistic assumption as the private cloud

is hosted locally where the client resides, and hence under

their control, while the public cloud is managed externally

by public cloud providers. We call the nodes in the private

cloud trusted and the nodes in the public cloud untrusted.
In a crash failure model, replicas operate at arbitrary speed,

may fail by stopping, and may restart, however they may

not collude, lie, or otherwise attempt to subvert the protocol.

Whereas, in a malicious failure model, faulty nodes may

exhibit arbitrary, potentially malicious, behavior. We assume

that a strong adversary can coordinate malicious nodes and

delay communication to compromise the replicated service.

However, the adversary cannot subvert standard cryptographic

assumptions about collision-resistant hashes, encryption, and

signatures, e.g., the adversary cannot produce a valid signature

of a non-faulty node.
Each pair of replicas is connected with point-to-point

bi-directional communication channels and each client can

communicate with any replica. Network links are pairwise

authenticated, which guarantees that a malicious replica cannot

forge a message from a correct replica.

Depending on the role of a node and the type of message it

wants to send, messages may contain public-key signatures

and message digests [16]. A message digest is a numeric

representation of the contents of a message produced by

collision-resistant hash functions. We denote a message μ
signed by replica r as



μ
�
σr

and the digest of a message μ by

D(μ). For signature verification, we assume that all machines

have the public keys of all other machines. In Section V, we

explain when signatures and digests are needed.

B. Quorum and Network Size
We consider a cloud environment consisting of private and

public clouds. The system is an asynchronous distributed

system containing a set of N (N=S+P ) replicas where S of

them are in a private and P of them are in a public cloud. The

bound on the maximum number of crashed nodes in the private

cloud and malicious nodes in the public cloud is assumed to

be c and m respectively. All the clients and the replicas know

which replicas are trusted and which are untrusted.

Failures are divided into two disjoint classes: malicious

and crash failures. In crash fault-tolerant models, e.g., Paxos

[35], given that c nodes can crash, a request is replicated

to a quorum consisting of at least c + 1 nodes to provide

fault tolerance and to guarantee that a value once decided

will remain decided in spite of failures (safety). Furthermore,

any two quorums intersect on at least one node and as a

result, 2c + 1 is the minimum number of nodes that allows

an asynchronous system to provide the safety property.

In the Byzantine failure models, e.g., PBFT [16], given

that m nodes can be malicious, the quorum size should be

at least 2m + 1 to ensure that non-faulty replicas outnumber

the malicious ones, i.e., a request is replicated in enough non-

faulty nodes to guarantee safety in the presence of m failures.

This implies that any two quorums intersect with at least m+1
nodes to ensure one correct node in the intersection, thus the

minimum network size is 3m+ 1 [12].

Likewise, in the hybrid model, to tolerate c crash and m ma-

licious failures, the quorum size must include at least 2m+c+1
nodes [19]. This also guarantees that the intersection of any

two quorums includes at least m+1 nodes. Since the quorum

size is 2m+ c+ 1 and the intersection of any two quorum Q
and Q0 is m+1 nodes, |Q|+ |Q0| = N+m+1 = 4m+2c+2,
thus, as shown in [19], the (minimum) network size, N , is

N = 3m+ 2c+ 1. (1)

Intuitively, if there are f failures (of any type) in a network,

the network size has to be at least f larger than the quorum

size, as any network with smaller size could lead to a deadlock

situation where none of the f faulty servers are participating.

Since, f = m+ c and the quorum size Q is 2m+ c+ 1, the
network size should be at least Q+ f i.e., 3m+ 2c+ 1.

IV. PUBLIC CLOUD

The hybrid failure model presented in Section III can be

used by enterprises that own private clouds with a limited
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number of trusted servers which is insufficient to run a fault-

tolerant protocol. This model gives them the option of renting

from untrusted public clouds. In this section, we present two

methods to identify the number of servers an enterprise needs

to rent from a public cloud.

A business that owns an insufficient number of trusted

(crash-only) servers needs to rent more servers from some

untrusted public clouds to satisfy the minimum network size

constraints (3m+ 2c+ 1). Public clouds might provide some

statistics that show the percentage of faulty nodes in the cloud.

We assume that the ratio of malicious nodes in public cloud

(m) to the size of public cloud (P) is known and is equal

to α = m
P . Note that, we assume a uniform distribution of

malicious nodes in public cloud, i.e., in any set π ⊆ P , at

most α× π nodes are malicious.

Given the size of the private cloud S, the bound on the

maximum number of crashed nodes c in the private cloud,

and the ratio α of malicious nodes (m) in the public cloud

to the size of the public cloud (P), the task is to identify the

required number of nodes P to be rented from the public cloud

that allows satisfying the protocol constraints.

The total number of nodes in the network is N = S + P .

Given our assumption of α, we get m = αP . Replacing m
in Equation 1, we get N = 3αP + 2c + 1, which means,

(3α− 1)P = S − (2c+ 1), thus:

P =

�
S − (2c+ 1)

3α− 1

�
(2)

As an example consider the situation that a private cloud has

2 servers where one of them might be faulty, i.e., S = 2, and
c = 1, and we want to rent servers from a public cloud with

α = 0.3. Here, P = 2−2−1
3∗0.3−1 = −1

−0.1 = 10, which means we

need to rent 10 servers from the public cloud to provide the

safety constraints of the replication protocol.

In Equation 2, if the size of the private cloud (S) is equal

or greater than 2c + 1, then the private cloud does not need

to rent any nodes and can run a crash fault-tolerant protocol

like Paxos [35] by itself. If there is no private cloud (S = 0)
or all the nodes in the private cloud are faulty (S = c), using
the private cloud has no advantage and it is more reasonable

to rent all the required nodes from the public cloud and run a

Byzantine fault-tolerant protocol in the public cloud. However,

if c < S < 2c + 1, renting nodes from a public cloud and

running SeeMoRe will result in better performance.

Similarly, if α ≥ 1/3, (i.e., more than one-third of the

nodes in the public cloud are malicious), then the public cloud

cannot satisfy the network size constraint for Byzantine fault-

tolerance. Hence, an enterprise will need to rent servers if its

private cloud size, S, is between c+1 and 2c, and it can rent

servers from public cloud providers that satisfy α < 1/3. It

should be noted that even if the size of the private cloud is

equal or greater than 2c + 1, and the public cloud does not

satisfy the α<1/3 constraint, an enterprise might still rent some

replicas from the public cloud for load balancing purposes.

Note that if the public cloud does not guarantee a uniform

distribution of faulty nodes and specifies only the maximum

number of concurrent failures, we can use another method to

identify the required number of nodes from the public cloud

which is discussed in the full version of this paper [4].

V. SEEMORE

In this section we present SeeMoRe, a hybrid fault-tolerant

protocol for a public/private cloud environment that tolerates

m malicious failures in the public and c crash failures in the

private cloud.
SeeMoRe is inspired by the known Byzantine fault-tolerant

protocol PBFT [32]. In PBFT, as can be seen in Figure 1(d),

during a normal case execution, a client sends a request to

a (primary) replica, and the primary broadcasts a pre-prepare
message to all replicas. Once a replica receives a valid pre-
prepare message, it broadcasts a prepare message to all other

replicas. Upon collecting 2f valid matching prepare messages

(including its own message) that are also matched to the pre-
prepare message sent by the primary, each replica broadcasts

a commit message. In this stage, each replica knows that all

non-faulty replicas agree on the contents of the message sent

by the primary. Once a replica receives 2f +1 valid matching

commit messages (including its own message), it executes the

request and sends the response back to the client. Finally, the

client waits for f +1 valid matching responses from different

replicas to make sure at least one correct replica executed its

request. PBFT also has a view change routine that provides

liveness by allowing the system to make progress when the

primary fails.
SeeMoRe consists of agreement and view change routines

where the agreement routine orders requests for execution

by the replicas, and the view change routine coordinates the

election of a new primary when the current primary is faulty.
The algorithm has to satisfy two main properties, (1) safety:

all correct servers execute the same requests in the same

order, and (2) liveness: all correct client requests are eventually

executed. Fischer et al. [29] show that in an asynchronous

system, where nodes can fail, consensus has no solution that

is both safe and live. Based on that impossibility result,

SeeMoRe, similar to most fault-tolerant protocols, ensures the

safety property without any synchrony assumption, however,

a weak synchrony assumption is needed to satisfy liveness.
We identify each replica using an integer in [0, ..., N−1]

where replicas in the private cloud, i.e., trusted replicas, have

identifiers in [0, ..., S−1] and replicas in the public cloud, i.e.,

untrusted replicas, are identified using integers in [S, ..., N−1].
In SeeMoRe, the replicas move through a succession of

configurations called views [27] [28]. In a view, one replica

is the primary and the others are backups. Depending on the

mode, some backups are passive and do not participate in the

agreement. Views are numbered consecutively. All replicas are

initially in view 0 and are aware of their current view number.
We explain SeeMoRe in three different modes: Trusted

Primary, Centralized Coordination (TPCC), Trusted Primary,
Decentralized Coordination (TPDC), and Untrusted Primary,
Decentralized Coordination (UPDC). In the first mode, TPCC,

the primary is always in the private cloud, thus the primary

is non-malicious. The second mode, TPDC, is used to reduce
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the load on the private cloud by assuming that the primary is

still in the private cloud, but instead of processing the client

requests itself, depends on 3m+1 nodes in the public cloud to

process the requests. This mode reduces the load on the private

cloud, because except for the primary, which does a single

broadcast of the client’s request, other replicas in the private

cloud are passive and do not participate in any phases. Finally,

in the third mode, UPDC, an untrusted node is chosen as the

primary and the protocol relies completely on the public cloud

to process requests. This mode is useful when we intentionally

rely completely on the public cloud for two purposes: (1)

load balancing when all the nodes in the private cloud are

heavily loaded, or (2) reducing the delay when there is a large

network distance between the private and the public cloud

and the latency of having one more phase of communication

within the public cloud is less than the latency of exchanging

messages between the two clouds. The agreement routine of

the UPDC mode is the same as PBFT [32], however, the view

change routine can be more efficient.
In this section, we describe each of these three modes in

detail, followed by a technique to dynamically switch between

the modes. We use π to show the current mode of the protocol

where π ∈ {1, 2, 3} and 1, 2, and 3 are the TPCC, TPDC, and

UPDC modes respectively. We also present a short discussion

on the different modes of SeeMoRe and compare them with

some known relevant protocols.

A. TPCC Mode: Trusted Primary, Centralized Coordination
Owning a private cloud gives SeeMoRe the chance to

choose a trusted node as the primary. When the primary is

trusted, all the non-faulty backups receive correct messages

from the primary, which eliminates the need to multicast

messages by replicas to realize whether all the non-faulty ones

receive the same message or not. Thus, we can reduce one

phase of communication and a large number of messages.
Figure 1(a) shows the normal case operation of the TPCC

mode. Here, replicas 0 and 1 are trusted (S = 2) and the four

other replicas, 2 to 5, are untrusted (P = 4). In addition, one

of the trusted replicas (1) is crashed (c = 1) and one of the

untrusted replicas (5) is malicious (m = 1). With a trusted

primary, the total number of exchanged messages is 3N .
The pseudo-code for the TPCC mode is presented in Al-

gorithm 1. Although not explicitly mentioned, every sent and

received message is logged by the replicas. Each replica is

initialized with a set of variables as indicated in lines 1-4 of

the algorithm. The primary of view v is a replica p such that

p = (v mod S). A client ς requests a state machine operation

op by sending a message hREQUEST, op, tsς , ςiσς
to replica p

it believes to be the primary. The client’s timestamp tsς is

used to totally order the requests and to ensure exactly-once

semantics. The client also signs the message with signature σς

for authentication.
As indicated in lines 5-8, upon receiving a client request,

the primary p first checks if the signature and timestamp in the

request are valid and simply discards the message otherwise.

The primary assigns a sequence number n to the request and

multicasts a signed hhPREPARE, v, n, diσp
, μi message to all the

Algorithm 1 The Normal-Case Operation in the TPCC mode

1: init():
2: r := replicaId
3: v := viewNumber
4: if r = (v mod S) then isPrimary := true

5: upon receiving μ=hREQUEST, op, tsς , ςiσς and isPrimary:
6: if μ is valid then
7: assign sequence number n
8: send hhPREPARE, v, n, diσp , μi to all replicas

9: upon receiving hhPREPARE, v, n, diσp , μi from primary p:
10: if v is valid then
11: send hACCEPT, v, n, d, ri to primary p

12: upon receiving hACCEPT, v, n, d, ri from 2m+c replicas and isPrimary:
13: send hhCOMMIT, v, n, diσp , μi to all replicas

14: execute operation op
15: send hREPLY, π, v, tsς , uiσp to client ς with result u

replicas where v is the current view, μ is the client’s request

message, and d is the digest of μ. At the same time, the

primary appends the message to its log. The primary signs

its message, because it might be used by other replicas later

in view changes as a proof of receiving the message.

As shown in lines 9-11 of the algorithm, upon receipt of

hhPREPARE, v, n, diσp
, μi from primary p, replica r checks if

view v is equal to the replica’s view. It then logs the prepare
message, and responds to the primary with hACCEPT, v, n, d, ri
message. Since accept messages are sent only to the trusted

primary and are not used later for any other purposes, there

is no need to sign these messages.

Upon collecting 2m+c valid accept messages from different

replicas (plus itself becomes 2m+ c+1) for the request μ in

view v with sequence number n, as seen in lines 12-15, the

primary multicasts a commit message hhCOMMIT, v, n, diσp
, μi

to all replicas. The primary attaches the request μ to its

commit message, so that if a replica has not received a prepare
message for that request, it can still execute the request. The

primary also executes the operation op and sends a reply
message hREPLY, π, v, tsς , uiσp

to client ς . Mode number π
and view number v are sent to clients to enable them to track

the current mode and view and hence the current primary. It

is important especially when a mode change or view change

occurs, replacing the primary.

Once a replica receives a valid commit message with correct

view number from the primary, it executes the operation op,
if all requests with lower sequence numbers than n has been

executed. This ensures that all non-malicious replicas execute

requests in the same order as required to provide the safety

property. Note that even if the replica has not received a

prepare message for that request, as long as the view number

is valid and the message comes from the primary, the replica

considers the request as committed.

When the client receives a reply message hREPLY,
π, v, tsς , uiσp

with a valid signature from primary p and with

the same timestamp as the client’s request, it accepts u as the

result of the requested operation. If the client does not receive

a reply from the primary after a preset time, the client may

suspect a crashed primary. The client then broadcasts the same

request to all replicas. A replica, upon receiving the client’s
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(a) The TPCC Mode (b) The TPDC Mode (c) The UPDC Mode (d) PBFT
Fig. 1. The normal case operation of the three modes of SeeMoRe and PBFT

request, checks if it has already executed the request; if so,

it simply sends the reply message to the client. The client

waits for a reply from the private cloud or m + 1 matching

reply messages from the public cloud before accepting the

result. The primary will eventually be suspected to be faulty

by enough replicas to trigger a view change.

State Transfer. A fault-tolerant protocol must provide a way

to checkpoint the state of different replicas. It is especially

required in an asynchronous system where even non-faulty

replicas can fall arbitrarily behind. Checkpointing also brings

slow replicas up to date so that they may execute more recent

requests. Similar to [16], in our protocol, checkpoints are

generated periodically when a request sequence number is

divisible by some constant (checkpoint period).

Trusted primary p produces a checkpoint and multicasts a

hCHECKPOINT, n, diσp
message to the other replicas, where n

is the sequence number of the last executed request and d
is the digest of the state. A server considers a checkpoint to

be stable when it receives a checkpoint message for sequence

number n signed by trusted primary p. We call this message

a checkpoint certificate, which proves that the replica’s state

was correct until that request execution.

View Changes. The goal of the view change routine is to pro-

vide liveness by allowing the system to make progress when a

primary fails. It prevents replicas from waiting indefinitely for

requests to execute. A view change must guarantee that it will

not introduce any changes in a history that has been already

completed at a correct client. Most view change routines [28]

[27] [16] [33] [53] [17] [23] are triggered by timeouts and

require enough non-faulty replicas to exchange view change

messages. SeeMoRe uses a similar technique in the TPCC

mode. In such a situation, replicas detect the failure and reach

agreement to change the view from v to v0. The primary of

new view v0 then handles the uncommitted requests, and takes

care of the new client requests.

View changes are triggered by timeout. When a replica

receives a valid prepare message from the primary, it starts a

timer that expires after some defined time τ . When the backup

receives a valid commit message, the timer is stopped, but if

at that point the backup is waiting for a commit message for

some other request, it restarts the timer. If the timer of a replica

r for some prepare message expires, the backup suspects that

the primary is faulty, it stops accepting prepare and commit
messages and multicasts a hVIEW-CHANGE, v+1, n, ξ,P , Ci mes-

sage to all replicas where n is the sequence number of the last

stable checkpoint known to r, ξ is the checkpoint certificate,

and P and C are two sets of received valid prepare (without

the request message μ) and commit messages for requests with

a sequence number higher than n. When primary p0 of new

view v+1 receives 2m+ c valid view-change messages from

different replicas, it multicasts a hNEW-VIEW, v + 1,P 0, C0 iσp0
message to all replicas where P 0 and C0 are two sets of prepare
and commit messages respectively which are constructed as

follows.

Let l be the sequence number of the latest checkpoint, and

h be the highest sequence number of a prepare message in

all the received P sets. For each sequence number n where

l < n ≤ h, the primary does the following steps:

1) It checks all commit messages in set C of the view-change
messages. If the primary finds a commit message with a valid

signature σp (p was the primary of view v) for request μ, the
primary adds a hhCOMMIT, v + 1, n, diσp0 , μi to C0

2) If no such commit message is found, the primary checks

the prepare messages in P sets:

• If the primary finds 2m + c + 1 valid prepare messages

for n, it adds a hhCOMMIT, v + 1, n, diσp0 , μi to C0.• Else, if it receives at least one valid prepare message for

n, the primary adds a hhPREPARE, v+1, n, diσp0 , μi to P 0.
3) If none of the above situations occur, there is no

valid request for n, so the primary adds a hPREPARE, v+1,
n, diσp0 , μ

∅i to P 0 where μ∅ is a special no-op command that

is transmitted by the protocol like other requests but leaves the

state unchanged. The third situation happens when no replica

has received a prepare message from the previous primary.

In contrast to PBFT, since the primary is trusted, it does

not need to append all the view-change messages in the new-
view message which makes the new-view messages much

smaller. The primary inserts all the messages in P 0 and

C0 to its log. It also checks the log to make sure its log

contains the latest stable checkpoint. If not, the primary inserts

checkpoint messages for the checkpoint l and discards the

earlier information from the log.

Once a replica in view v receives a new-view message from

the primary of view v + 1, the replica logs all prepare and

commit messages, updates its checkpoint in the same way as

the primary, and for each prepare message, sends an accept
message to the primary. Non-faulty replicas in view v will

not accept a prepare message for a new view v0 > v without

having received a new-view message for v0.
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Correctness. Within a view, since the primary is trusted and

it assigns sequence numbers to the requests, safety is ensured

as long as the primary does not fail. Indeed, for any two

committed requests r1 and r2 with sequence numbers n1 and

n2 respectively, if D(r1) = D(r2), then n = n0.
If the primary fails a view change is executed. To ensure

safety across views, the primary waits for 2m + c accept
messages (considering itself, a quorum of 2m + c + 1) from

different replicas to ensure that committed requests are totally

ordered across views. In fact, for any two committed requests

r1 and r2 with sequence numbers n1 and n2, since a quorum

of 2m+c+1 replicas commits r1 and a quorum of 2m+c+1
replicas commits r2, and these two quorums have at least m+1
overlapping nodes, there should be at least one non-faulty node

that commits both r1 and r2 but this is not possible because

the node is not faulty. As a result, if D(r1) = D(r2), then

n = n0. This guarantees that in the event of primary failure,

any new quorum of 2m+c+1 replicas will have at least m+1
overlapping nodes that received a prepare message (and sent

accept) for request μ from the previous primary. Thus, there

is at least one non-faulty node in that quorum that helps the

protocol to process request μ in the new view.

B. TPDC Mode: Trusted Primary, Decentralized Coordination

The TPDC mode is proposed to reduce the load on the

private cloud. In this mode, a trusted primary receives a

request message, assigns a sequence number, and relies on

3m + 1 untrusted nodes (in the public cloud) to process

the request. These 3m + 1 nodes are called proxies. Since

a trusted primary assigns the sequence number to the request

before broadcasting, this reduces the scope of any malicious

behaviour. Whereas in PBFT, when replicas receive a message

from the primary, they perform one round of communication

to make sure all non-faulty replicas agree on a total order

for the requests within a view. However, here, since a trusted

primary assigns the sequence numbers, similar to the TPCC

mode, there is no need for that phase.

Figure 1(b) shows the normal case operation of SeeMoRe

with a trusted primary (node 0). As before, two replicas

are trusted (S = 2), four replicas are untrusted (P = 4),
c = 1, and m = 1. Since a trusted primary assigns sequence

numbers, the protocol, similar to Paxos, needs two phases

to process requests. However, since the protocol tolerates

malicious failures, the number of messages in terms of the

number of replicas, similar to PBFT, is quadratic. Here, there

are totally N+(3m+1)2+(3m+1)∗N messages exchanged

where 3m+1 is the total number of proxies. In this example,

since m = 1, all replicas in the public cloud are proxies.

Algorithm 2 provides the pseudo-code for the TPDC mode.

Lines 1-5 indicate the initialization of state variables for the

primary and proxies. A replica r in the public cloud is a

proxy in view v if r−(v mod P )∈[S, ..., S+3m]. Here since

replicas are in the public cloud, r is an integer in [S, ..., N−1].
The public cloud might have more than 3m+1 replicas,

however, 3m+1 is enough to establish consensus and any

additional replicas may degrade the performance. The trusted

Algorithm 2 The Normal-Case Operation in the TPDC mode

1: init():
2: r := replicaId
3: v := viewNumber
4: if r = (v mod S) then isPrimary := true
5: else if r − (v mod P ) ∈ [S, .., S + 3m] then isProxy := true

6: upon receiving μ = hREQUEST, op, tsς , ςiσς and isPrimary:
7: if μ is valid then
8: assign sequence number n
9: send hhPREPARE, v, n, diσp , μi to all replicas

10: upon receiving hhPREPARE, v, n, diσp , μi from the primary p and isProxy:
11: if v is valid then
12: send hACCEPT, v, n, d, riσr to all proxies

13: upon receiving hACCEPT, v, n, d, ri from 2m+1 proxies:
14: send hCOMMIT, v, n, d, riσr to all other proxies
15: send hINFORM, v, n, d, riσr to all private cloud nodes and non-proxy nodes

in public cloud
16: execute operation op
17: send hREPLY, π, v, tsς , uiσr to client ς with result u

primary of view v is chosen in the same way as the first mode,

i.e., p is the primary if p=(v mod S).
As shown in lines 6-9 of the algorithm, the primary, upon

receiving request μ, validates the timestamp and signature of

μ, assigns a sequence number n, and multicasts signed prepare
message hhPREPARE, v, n, diσp

, μi to all replicas.

When a proxy receives a prepare message from the pri-

mary, as indicated in lines 10-12, it validates the view num-

ber, logs the message and sends a signed accept message

hACCEPT, v, n, d, riσr
to all the other proxies. Here, in contrast

to the first mode, the proxy signs its message as a proof of

message reception in case of a view change.

As described in lines 13-17 of the algorithm, upon receiving

2m+1 matching accept messages (including its own message)

with correct signatures, a proxy r multicasts a commit message

hCOMMIT, v, n, d, riσr
to the other proxies. Each proxy r also

sends a signed inform message hINFORM, v, n, r, diσr
to all

the nodes in the private cloud and all non-proxy nodes in

the public cloud. Non-proxy nodes wait for 2m + 1 valid

matching inform messages from different proxies which are

matched by the prepare message that they received from the

primary before executing the request. If a proxy has executed

all requests with sequence numbers lower than n, it executes
the request n and sends a reply message hREPLY, π, v, tsς , uiσr

to the client.

Any other replica that receives m+1 matching commit mes-

sages from the proxies with valid signatures, correct message

digest, and view numbers equal to its view number considers

the request as committed, and executes the request. Since all

the replicas receive prepare messages from the primary, they

have access to the request and can execute it.

The client also waits for m + 1 matching reply messages

from different proxies before accepting the result. If the client

has not received a valid reply after a preset time, the client

multicasts the request to the proxies. The proxies re-send the

result if the request has already been processed and the client

waits for m + 1 matching reply messages from the proxies

before accepting the result. Otherwise, similar to the first

mode, eventually the primary will be suspected to be faulty
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by enough replicas and a view change will be triggered.

State Transfer. Checkpointing in the TPDC mode works in

the same way as the TPCC mode. Trusted primary p multicasts

a signed checkpoint message to all other replicas with the

sequence number of the last executed request and the digest

of the state. Upon receiving a checkpoint message from the

primary, a server considers that a checkpoint is stable and logs

the message which is used later as a checkpoint certificate.

View Changes. In the TPDC mode, similar to the TPCC mode,

the primary of new view handles the view change, however,

only nodes in the public cloud send view-change messages.

The view-change messages hVIEW-CHANGE, v + 1, n, ξ,Pi are

sent to all the nodes in the public cloud and the primary of

the next view where ξ is the checkpoint certificate for sequence

number n, and P is the set of received valid prepare messages

with a sequence number higher than n.
Primary p0 of the new view waits for 2m + 1 valid view-

change messages from the proxies of the last active view, i.e.,

the view with a non-faulty primary, and multicasts a new-view
message hNEW-VIEW, v+1,P 0 iσp0 to all the replicas where for

each sequence number n (between the latest checkpoint and

the highest sequence number of a prepare message), if there

is any valid prepare message in set P of the received view-
change messages, the primary adds a hPREPARE, v+1, n, diσp0
to P 0. Else, there is no valid request for n, so similar to

the TPCC mode, the primary adds a no-op prepare message

hPREPARE, v + 1, n, diσp0 , μ
∅i to P 0.

Here, again, since the primary is trusted it does not need

to include view-change messages in the new-view message.

The primary then inserts all the messages in P 0 to its log and

updates its checkpoint, if needed.

Once a proxy of view v + 1 receives a new-view message

from the primary of view v + 1, the proxy logs all prepare
messages, updates its checkpoint, and multicasts an accept
message to all the proxies for each prepare message in

P 0. Other replicas also receive the new-view message to be

informed that the view is changed.

Correctness. Within a view, since the primary is trusted and it

assigns sequence number to the requests, similar to the TPCC

mode, safety is ensured as long as the primary does not fail.

To ensure safety across views, since 3m+1 nodes participate

in the protocol, to commit a message, 2m+1 matching accept
messages are needed. In fact, for any two committed requests

r1 and r2 with sequence numbers n1 and n2, since a quorum

of 3m+1 replicas commits r1 and a quorum of 3m + 1
replicas commits r2, and these two quorums have at least m+1
overlapping nodes, there is at least one non-faulty node that

commits both r1 and r2. But this is not possible because the

replica is non-faulty. As a result, if D(r1)=D(r2), then n=n0.
C. UPDC Mode: Untrusted Primary, Decentralized Coordi-

nation
The third mode of the protocol, the UPDC mode, is

presented to handle two different situations. First, when the

private cloud is heavily loaded and the public cloud can handle

the requests by itself for load balancing. Second, when there

is a large network distance between the private and the public

cloud and the latency due to one more phase is less than the

latency of exchanging messages between the two clouds. In

both situations, the nodes in the private cloud become passive

replicas in the agreement routine and are only informed about

the committed messages. However, they still may participate

in the view change routine.

In the UPDC mode, SeeMoRe completely relies on 3m+1
nodes in the public cloud to process the requests using PBFT

[16]. The untrusted primary of view v in the UPDC mode is

replica p where p = (v mod P ) + S. Similar to the TPDC

mode, since there might be more than 3m+ 1 replicas in the

public cloud, in each view, 3m+1 are chosen as proxies. Node

i is a proxy in view v if i − (v mod P ) ∈ [S, ..., S + 3m].
This ensures that the primary is always a proxy. As indicated in

Figure 1(c), similar to PBFT, the UPDC mode processes the

requests in three phases: pre-prepare, prepare, and commit.
As can be seen, the replicas in the private cloud have no

participation in any phases and are only informed about the

committed requests. The total number of exchanged messages

in the UPDC mode is N +2∗ (3m+1)2+(1+S)∗ (3m+1).

View Changes. In the UPDC mode, we rely on a trusted node

in the private cloud, called transferer, to change the view.

Indeed, instead of the primary of the new view, a transferer

changes the view. Replica t in the private cloud is the transferer

of view v0 (changes the view from v to v0) if t = (v0 mod S).
Choosing a transferer to change views helps in minimizing

the size of new-view messages and more importantly, reduces

the delay between the request and its reply. Because even

if there are consecutive malicious primary nodes, since the

transferer takes care of the uncommitted requests of view v,
the protocol does not carry the messages from one view to

another. In contrast, in PBFT, it is possible that a valid request

in view v be committed in view v + m (when there are m
consecutive primaries). Other than the transferer, view change

in the UPDC mode is similar to PBFT. Proxies multicast

view-change messages to all replicas. When the transferer has

changed the view and the new primary receives the new-view
message from the transferer, the new primary starts to process

new requests in view v + 1.

Correctness. In the UPDC mode, the protocol ensures safety

and liveness similar to PBFT [16].

D. Dynamic Mode Switching
We now show how to dynamically switch between different

modes of SeeMoRe. An enterprise might prefer to use the

TPCC mode of SeeMoRe, because it needs fewer phases (in

comparison to the UPDC mode) and less number of message

exchanges (in comparison to the TPDC or UPDC mode).

However, if the private cloud becomes heavily loaded, or at

some point, a high percentage of requests are sent by clients

that are far from the private cloud and much closer to the

public cloud, it might be beneficial to switch to the TPDC

or UPDC mode. SeeMoRe might also plan to switch back to

the TPCC mode, e.g., when the load on the private cloud is
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TABLE I
COMPARISON OF FAULT-TOLERANT PROTOCOLS

Protocol phases messages Receiving Network Quorum size
TPCC 2 O(n) 3m+2c+1 2m+c+1
TPDC 2 O(n2) 3m+1 2m+1
UPDC 3 O(n2) 3m+1 2m+1
Paxos 2 O(n) 2f+1 f+1
PBFT 3 O(n2) 3f+1 2f+1

UpRight 2 O(n2) 3m+2c+1 2m+c+1

reduced. To change the mode, the protocol also has to change

the view, because the primary and the set of participant replicas

might be different in different modes. Therefore, to handle a

mode change, the protocol first performs a view change, and

then the primary of the new view in the new mode starts to

process new requests.

For the switch to happen a trusted replica s multicasts a

hMODE-CHANGE, v + 1, π0iσs
to all the replicas where π0 is the

new mode of the protocol, i.e., TPCC, TPDC, or UPDC. When

the protocol wants to switch to the TPCC or TPDC mode,

replica s is the primary of view v + 1, and when it switches

to the UPDC mode, replica s is the transferer of view v + 1.

E. Discussion

In this section, we compare the different modes of SeeMoRe

with three well-known protocols: the crash fault-tolerant pro-

tocol Paxos [35], the Byzantine fault-tolerant protocol PBFT

[16], and the hybrid fault-tolerant protocol UpRight [19]. We

consider (1) the number of communication phases, (2) the

number of message exchanges, (3) the receiving network size,

and (4) the quorum size in this comparison. The results are

reported in Table I.

The knowledge of where a crash or a malicious failure may

occur and thus choosing a trusted primary simply reduces one

phase of communication. In fact, in PBFT, the prepare phase

is needed only to make sure that non-faulty replicas receive

matching pre-prepare messages from the primary. In contrast,

in the TPCC and TPDC modes of SeeMoRe, since the primary

is a trusted node, replicas receive the same message from the

primary, thus there is no need for that phase of communication

and the requests, similar to Paxos, are processed in two

phases (while in contrast to Paxos malicious failures can

occur in the public cloud). In comparison to Upright, although

Upright processes the requests in two phases, it utilizes the

speculative execution technique introduced by Zyzzyva [33]

which becomes costly in the presence of failures.

The number of message exchanges in the TPCC mode is

similar to Paxos and is linear in terms of the total number

of replicas. In the TPDC mode, the number of messages is

quadratic, however it is still much less than PBFT (since it has

one phase of n-to-n communication instead of two). UPDC

and Upright also have a quadratic number of messages. The

higher number of message exchanges results in higher latency

especially in networks with a large number of nodes.

The TPCC mode, similar to Upright, needs 3m + 2c + 1
nodes to receive a client request. In the TPDC mode, however,

only the trusted primary and 3m + 1 nodes from the public

cloud participate in each phase. Since the UPDC mode utilizes

PBFT, the number of phases and message exchanges are the

same as PBFT. However, since the primary is in the public

cloud, communicating with the private cloud has no advantage,

thus it proceeds with 3m+1 nodes instead of 3m+2c+1 as

in the TPCC mode and UpRight.

VI. PERFORMANCE EVALUATION

This section evaluates the performance of the SeeMoRe

protocol. SeeMoRe is implemented by adapting the BFT-

SMaRt library [10]. We mainly reuse the communication layer

of BFT-SMaRt but implement our agreement and view change

routines for the different modes of the protocol. Note that

the SeeMoRe implementation follows the optimized imple-

mentation of Paxos and PBFT from the original BFT-SMaRt

codebase, resulting in a similar implementation complexity.
In each experiment, we compare different modes of

SeeMoRe with an asynchronous crash fault-tolerant (CFT)

protocol, an asynchronous Byzantine fault-tolerant (BFT) pro-

tocol, and a simplified version of the asynchronous hybrid

fault-tolerant protocol UpRight [19] (we call it S-UpRight). For
both CFT and BFT we use the original BFT-SMaRt codebase

(the optimized implementations of Paxos [35] and PBFT [16]).

UpRight consists of first, a hybrid model that tolerates both

crash and malicious failures (in a network of size 3m+2c+1),
and second, an optimistic protocol that combines a set of

techniques such as speculative execution [33] and separation of

ordering and execution [53]. S-UpRight includes the UpRight

hybrid model since this part of the UpRight is relevant to

SeeMoRe, however, to ensure a fair comparison with other

protocols and since all other protocols use the pessimistic

approach, we use a PBFT-like protocol (i.e., PBFT protocol

with 3m + 2c + 1 nodes instead of 3f + 1 nodes) instead of

the UpRight protocol. Note that, both the speculative execution

and separation of ordering from execution techniques can be

integrated into SeeMoRe as well.
The experiments were conducted on the Amazon EC2 plat-

form. Each VM is Compute Optimized c4.2xlarge instances

with 8 vCPUs and 15GB RAM, Intel Xeon E5-2666 v3

processor clocked at 3.50 GHz. In the experiments (except

for part C), both the public and private clouds are located in

the same data center i.e., AWS US West Region.
In each experiment, we vary the number of requests sent

by all the clients per second from 103 to 106 (by increasing

the number of clients running on a single VM) and measure

the end-to-end throughput (x axis) and latency (y axis) of

the system. Each client waits for the reply before sending a

subsequent request.

A. Fault-Tolerance Scalability
In the first set of experiments, we evaluate the performance

of SeeMoRe with different number of maximum possible

failures (f ). We consider the 0/0 micro-benchmark (both

request and reply payload sizes are close to 0 KB) and eval-

uate SeeMoRe, S-UpRight, CFT, and BFT protocols. Since,

f = c+m, we evaluate CFT and BFT to tolerate c+m failures

in each experiment. In all these scenarios and for SeeMoRe,

we put 2c nodes in the private and 3m+1 nodes in the public

cloud. The results are shown in Fig. 2(a)-(d).
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Fig. 2. Throughput/Latency measurement by increasing the number of failures

In the first scenario, when f = 2 (c = m = 1), the

network size of the different protocols is close to each other

(BFT requires 7, SeeMoRe and S-UpRight require 6, and CFT

requires 5 nodes). As a result, as can be seen in Fig. 2(a),

the performance of the TPCC mode becomes very close to

CFT (8% difference in their peak throughput). Similarly, the

performances of S-UpRight and BFT are close to each other

(4% difference in their peak throughput). Note that the UPDC

mode shows better performance than S-UpRight (still worst

than the TPDC and TPCC modes) because in the UPDC mode,

SeeMoRe relies only on the public cloud which consists of

only 4 nodes. In addition, while in comparison to the TPCC

mode, both the UPDC and TPDC modes need less number

of nodes, the TPCC mode has better performance because it

needs less number of phases and message exchanges.

In the next three scenarios, the network tolerates the same

number of failures (f = 4), as a result, the performance of

BFT and CFT does not change from one scenario to another.

However, since the number of crash and malicious failures are

varied, the network size of SeeMoRe and S-UpRight changes.

Hence, they show different performance in different scenarios.

When both m and c increase to 2 (Fig. 2(b)), The TPDC

mode shows similar performance to the TPCC mode. This is

the result of the trade-off between the quorum size and the

message complexity; Only 5 nodes (2m + 1) participate in

the TPDC mode which requires O(n2) number of messages

whereas the quorum size of the TPCC mode is 7 (2m+c+1)
but it requires O(n) messages (see Table I). In addition, since

SeeMoRe in the UPDC mode communicates with only 7
nodes, it shows much better performance than BFT (24% more

throughput) and even S-UpRight (18% more throughput).

By increasing the number of tolerated malicious failures

to 3 while reducing the number of tolerated crash failures

back to 1 (Fig. 2(c)), the network size of SeeMoRe becomes

closer to the BFT network size. As a result, CFT shows better

performance (12% difference in its peak throughput) than the

TPCC mode and also the performance of the UPDC and TPDC

modes, which communicate with 10 nodes in the public cloud,

becomes closer to S-UpRight and BFT (with 12 and 13 nodes).

On the other hand, increasing the number of tolerated

crash failures to 3 while maintaining the number of malicious

failures to 1 (Fig. 2(d)) results in a network size close to CFT.

In this setting, the performance of the TPDC and UPDC modes
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Fig. 3. Throughput/Latency with different payload size (c = m = 1)

become better than both the TPCC mode and CFT. This is

expected because the TPDC mode processes a request in the

public cloud which needs only 4 replicas (since m = 1) but

with the same number of phases as the TPCC mode. Similarly,

although the UPDC mode processes requests in three phases,

since it needs fewer servers to proceed, its performance is

better than the TPCC mode and CFT. In fact, since the number

of malicious failures in this scenario is the same as the first

scenario, both the TPDC and UPDC modes show the same

performance as the first scenario (Fig. 2(a)).

B. Changing Payload Size

We now repeat the base case scenario (c=m=1) of the

previous experiments (Fig. 2(a)) using two micro-benchmarks

0/4, 4/0 to show how request and reply sizes affect the

performance of different protocol. Figs. 3(a) and 3(b) show

the throughput and latency for 0/4 and 4/0 micro-benchmarks

respectively. Since the TPCC and TPDC modes need less com-

munication phases and message exchanges, their performance

is close to CFT, e.g., for latency equal to 4 ms, the throughput

of the TPCC and TPDC modes is 10% and 17% less than

CFT respectively. Similarly, the UPDC mode and S-UpRight

are close to BFT, e.g., with 4 ms latency, the throughput of

the UPDC mode is the same as BFT. Note that due to the

overhead of request transmission, the request size affects the

performance of all protocols more than the reply size.

C. Scalability Across Multiple Data Centers

We next repeat the base case scenario (c=m=1) of the first

experiment (Fig. 2(a)), however, place the private and public

clouds on different data centers, i.e., California and Oregon,

with RTT = 22ms and place clients first close to the private

cloud (Fig. 4(a)) and then close to the public cloud (Fig. 4(b)).
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Fig. 4. Throughput/Latency with multiple data centers (c = m = 1)

In this set of experiments, we assume that the primary node

of CFT, BFT, and S-UpRight protocols is in the private cloud.

Fig. 4(a) clearly shows the advantages of SeeMoRe as

the clients are close to the private cloud. In this case all

requests in all three modes of SeeMoRe as well as CFT only

require two phases of cross-cloud communication (one round

trip). BFT and S-UpRight, on the other hand, require three

phases of communication between the clouds which results in

significantly higher latency.

Fig. 4(b) clearly demonstrates the significant advantages

of the UPDC mode, where the clients are close to the

public cloud and hence all requests are entirely processed

in the public cloud without any cross-cloud communication.

TPDC requires two cross-cloud phases of communications

(clients to the primary and the primary to the public cloud)

whereas TPCC as well as CFT process the requests with three

phases of cross-cloud communication. Finally, BFT and S-

UpRight process requests with higher latency because of the

four required phases of cross-cloud communication (including

request messages coming from clients to the primary).

Comparing the results of multi data centers experiments and

the experiments with more number of nodes shows that latency

within a quorum of recipients (across data centers) is much

more important than the quorum size.

D. Performance During View Change
Finally, we evaluate the impact of view change on the per-

formance of SeeMoRe. We trigger a primary failure during the

processing of the last request before the end of a checkpoint

period to evaluate the worst-case overhead that can be caused

by a failure. To simulate failures, the process of the faulty

nodes has been terminated. We consider the base case scenario

(c = m = 1) with a total network of N = 6 nodes (for

SeeMoRe), where 2 nodes are in the private cloud and 4 in the

public cloud (both clouds are placed in the same data center).

The experiment was run with micro-benchmark 0/0 and with a

checkpoint period of 10000 request i.e., a checkpoint is taken

every 10000 requests. Fig. 5 shows the behavior of SeeMoRe,

S-UpRight and BFT where the y-axis is throughput and the

x-axis is a timeline with a failure injected around time 30. As

can be seen, the protocols behave as expected until the failure

is triggered. This failure and the view change routine cause the

protocols to be temporarily out of service (in particular, 15,
20, and 24 millisecond in the TPCC, TPDC, and UPDC modes

respectively). However, when the view change is complete, the

throughput increases to the original level for each protocol. As

0 20 40 60 80 100
0

4

8

12

16

20

Timeline [ms]

T
h
ro
u
g
h
p
u
t
[K

re
q
/s
]

BFT

S-Upright

UPDC

TPDC

TPCC

Fig. 5. Performance during view change

can be seen, BFT takes twice as much time as the TPCC mode

to revive and continue to process the requests. The UPDC

mode also recovers faster than S-UpRight and BFT due to its

use of transferers. Note that since mode switching is performed

in the same way as view change, the results of this experiment

are applicable to mode switching as well.
Overall, the evaluation results for a network that tolerates

f = m+ c failures can be summarized as follow. First, when

c is equal or less than m (for small c and m), the performance

of SeeMoRe in the TPCC mode is very close to Paxos due

to the required number of phases and message exchanges

in the TPCC mode. In addition, when c is larger than m,

SeeMoRe in both TPDC and UPDC modes demonstrates better

performance than the TPCC mode and Paxos since in both

modes, SeeMoRe relies completely on the public cloud to

process the requests. Furthermore, if the clients are close to the

public cloud, UPDC processes the requests with significantly

lower latency. Moreover, all three modes of SeeMoRe show

better performance than the hybrid protocol S-UpRight since

SeeMoRe is aware of where different types of faults may

occur. Finally, all three modes also have better performance

than BFT since they reduce the number of communication

phases, messages exchanged and required nodes.

VII. CONCLUSIONS

In this paper, we proposed SeeMoRe, a hybrid state ma-

chine replication protocol to tolerate both crash and malicious

failures in a public/private cloud environment. SeeMoRe is tar-

geted to be used by smaller enterprises that own a small set of

servers and intend to rent servers from public cloud providers.

Such an enterprise can highly benefit from SeeMoRe, as the

protocol distinguishes between crash failures that could occur

within the trusted private cloud and malicious failures that

could only occur in the public cloud. SeeMoRe can execute

in any one of three modes, TPCC, TPDC, and UPDC, and

can dynamically switch among these modes. The TPCC and

TPDC modes of SeeMoRe require less communication phases

and message exchanges while the UPDC mode is useful for a

heavily loaded private cloud or when there is a large network

distance between the two clouds. Our evaluations show that

the performance of TPCC and TPDC modes is close to Paxos

while in contrast to Paxos, which only tolerates crash failures,

malicious failures can occur in both TPCC and TPDC. In the

UPDC mode, since the primary is in the public cloud, its

performance is similar to PBFT with m failures. However,

in comparison to UpRight, which requires quorums of size

2m+ c+1, UPDC needs quorums of size 2m+1, and hence

is more efficient.
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As future work, SeeMoRe can be used in the context of

permissioned blockchain systems. Permissioned blockchain

systems extensively use fault-tolerant protocols to establish

consensus on the order of transactions between a set of

known, identified nodes that do not fully trust each other. A

permissioned blockchain system can benefit from SeeMoRe in

a setting where some nodes are trusted but not all.
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