
Trends in Genetics
ADAR has roles independent of editing,

during which it partners with proteins

such as DROSHA and DICER1, target-

ing them to miRNAs and other noncod-

ing RNAs, often in a tissue-specific

manner [8]. Localization of different

classes of catalytic machinery to active

genes is also possible through their

binding to flipons, usually by capturing

them in the ‘B’-conformation. Many of

the resulting epigenetic nucleotide

modifications (NMs) are known to

impact flip energetics (Figure 1D and

Table 1). By pushing flipons either left

or right, NMs are able to lock in a partic-

ular chromatin state. Flip energetics

also change when oxidative stresses

and mutagens produce DNA and RNA

adducts, especially on the C5 position

of cytidine and the C8 position of gua-

nosine. Here, flipons act as damage

sensors, enabling a direct and rapid

transcriptional response to cellular

stress through changes in chromatin

state. In all these cases, flipon confor-

mation instructs on how to compile

response-specific transcripts.

Generation of Diversity

The ease with which flipons form, along

with their location, is subject to selec-

tion just like any other genetic variation.

Flipons create phenotypic diversity by

increasing transcriptome entropy. The

genomes that emerge encode informa-

tion by sequence and instructions by

conformation (Table 1). Regions where

flipon and codon sequences overlap

have lower entropy (i.e., they have a

fixed information content) and likely

become hotspots for spawning spe-

cies-specific phenotypic variability.

Germline retrotransposition, recombi-

nation, and repair enhance transcrip-

tome diversity by spreading flipon se-

quences to other parts of the genome.

The noncoding IREs targeted by ADAR

exemplify how this process works. Dur-

ing insertion into active genes, they

bring flipons along for the ride [2].While
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active transposons threaten genomic

stability, the instruction sets they carry

enhance the creation and capture of

novel genetic programs.
Concluding Remarks: Entropy,
Flipons, and Evolution

Codons enable the mapping of nucle-

otide sequence to protein sequence.

Altering their usage is only one way

to diversify phenotypes. Nature has

discovered other strategies to create

novelty through editing and splicing

of RNA, resulting in multiple tran-

scripts from the same reading frame.

Flipons provide a novel innovation for

changing the transcriptome by dynam-

ically switching chromatin states to

change how messages are compiled.

The sequences encoding flipons often

overlap those of codons and other reg-

ulatory elements. Each encodes a

different set of information, is subject

to natural selection, and causes Men-

delian diseases in its own way. Flipons

trade free energy for the extra possibil-

ities that novel transcripts provide. The

increased entropy enhances the re-

working of existing adaptations and

speeds the evolution of traits both

new and unexpected.
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Compensatory
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Expression
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Determining the contribution of cis and

trans components to differences in

gene expression is a powerful approach

for understanding gene regulatory evo-

lution. Specifically, differences in gene

expression that are due to linked poly-

morphisms (cis, allele-specific and local

to the affected gene), or differences

due to diffusible products that do not

need to be linked with the affected

gene (trans, affecting both alleles

equally in diploids). Decomposing the

evolution of gene expression into its
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cis and trans components has contrib-

uted many important insights into evo-

lution, including, for example, the fre-

quency of cis and trans differences in

interspecific versus intraspecific varia-

tion or the evolution of environment-

specific phenotypes [1]. It has

frequently been observed that cis–trans

differences found in pairs are more

frequently compensatory (+/–) rather

than amplifying (–/–; +/+). A confound-

ing factor associated with inferring

compensatory cis- and trans-regulatory

evolution from experiments comparing

allele-specific expression to expression

differences between parental strains

has recently been identified [2–4], call-

ing into question the role of compensa-

tory changes in regulatory evolution re-

ported by prior studies. However, as we

describe later, evidence for compensa-

tory changes being common in regula-

tory evolution does not come solely

from this type of experiment, and the

body of evidence remaining after tak-

ing this limitation of the allele-specific

expression analysis into account still

suggests that compensatory changes

are common in regulatory evolution.
Evidence for compensatory evolution

comes from a variety of study designs.

Expression quantitative trait loci

(eQTL) analysis correlates a molecular

phenotype, such as gene expression,

with genetic variation, and often finds

an enrichment of antagonistic cis and

trans effects which overall serve to

normalize levels of gene expression

(though eQTLs often have low power

to detect trans-eQTL) [5]. Gene dele-

tion experiments have found that the

effects of a deletion are compensated

for by mutations elsewhere in the

genome [6]. Another approach identi-

fied cis differences and overall gene

expression divergence but did not

explicitly detect trans differences. This

work found that while cis-regulatory

divergence increased over time be-
tween species, the number of differ-

ences in total gene expression did not,

which is consistent with compensatory

evolution [7]. Leaving out situations in

which the estimates are potentially

correlated, a classic situation in which

compensatory cis–trans pairs have

been identified (and are due to stabiliz-

ing selection) is in F1 hybrid crosses.

When both parents have the same level

of expression of a given gene, but it

shows both allele-specific expression

and is misregulated in hybrids between

the two species, this is likely due to

compensatory cis–trans evolution [8].

Indeed, much of the literature on Bate-

son–Dobzhansky–Muller incompatibil-

ities posits the accumulation of

compensatory mutations to maintain

gene expression output; as these

require epistatic effects between loci,

this is equivalent to cis–trans pairs.
Interestingly, compensatory evolution

also need not occur exclusively be-

tween cis–trans pairs, and recent work

on the trans-regulatory landscape sug-

gests that trans-regulatory evolution

may be compensatory; for example,

Metzgar and Wittkopp (2019) found

that hundreds of loci affect a single

gene in trans, increasing and

decreasing expression, and that the

unique combination of trans-loci that

any given individual inherits will lead

overall to similar gene expression

among strains [9]. While we cannot

exhaustively compile examples here,

the weight of the evidence from diverse

sources suggests that this is a shared

phenomenon rather than solely an arti-

fact of a particular experimental

approach.

All of this suggests that stabilizing se-

lection is likely an important factor in

the evolution of gene expression; from

Bateson–Dobzhansky–Muller incom-

patibilities, to developmental systems

drift, or antagonistic cis–trans muta-
Trends in G
tions, a common theme is compensa-

tory evolution to maintain a consistent

output. Recent work by Albert et al.

(2018) suggested that trans-eQTL arise

preferentially from certain classes of

genes, while local (cis) eQTL had little

effect in trans [10]. It will be interesting

in the future to understand how gene

network context effects the evolution

of genes, and how stabilizing selection

is distributed throughout network

nodes.
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