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ABSTRACT: Determination of ground-state spins of open-shell transition metal complexes is
critical to understanding catalytic and materials properties but also challenging with approximate
electronic structure methods. As an alternative approach, we demonstrate how structure alone
can be used to guide assignment of ground-state spin from experimentally determined crystal
structures of transition metal complexes. We first identify the limits of distance-based heuristics
from distributions of metal-ligand bond lengths of over 2,000 unique mononuclear Fe(II)/Fe(III)
transition metal complexes. To overcome these limits, we employ artificial neural networks
(ANNSs) to predict spin-state-dependent metal-ligand bond lengths and classify experimental
ground state spins based on agreement of experimental structures with the ANN predictions.
Although the ANN is trained on hybrid density functional theory data, we exploit the method-
insensitivity of geometric properties to enable assignment of ground states for the majority (ca.
80-90%) of structures. We demonstrate the utility of the ANN by data-mining the literature for
spin-crossover (SCO) complexes, which have experimentally-observed temperature-dependent
geometric structure changes, by correctly assigning almost all (> 95%) spin states in the 46 Fe(II)
SCO complex set. This approach represents a promising complement to more conventional
energy-based spin-state assignment from electronic structure theory at the low cost of a machine
learning model.



1. Introduction

Determination of the ground-state spins of open-shell transition metal complexes is
essential to understanding their catalytic'® and materials’"® properties. Nevertheless, prediction
of spin-state ordering is extremely sensitive to electronic structure method choice. Correlated

wavefunction theory methods exhibit limitations in predicting properties of open-shell transition
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metal complexes and remain cost-prohibitive for large-scale, high-throughput screening. The
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need to explore large chemical spaces in materials design motivates the use of

computationally affordable approximate density functional theory (DFT). However, ground-state

spin prediction is extremely sensitive to the nature of the DFT functional employed***’. Semi-
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local, generalized gradient approximation (GGA) DFT functionals stabilize delocalize

strongly covalent states34, leading to a bias for low-spin over high-spin states® **>*°. Hybrid
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functionals with an admixture of Hartree-Fock (HF) exchange approximately correct
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delocalization errors and counteract the bias for low-spin states, but the appropriate
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fraction of HF exchange is strongly system dependent . Divergent proposals have been
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> 3254 or increase”® *" 7 HF exchange fractions with respect to common

made to either reduce
values (i.e., 20-25%) in order to accurately predict transition metal complex properties. Still
others have advanced meta-GGAs'"?" **%° meta-GGA hybrids®', or double hybrid functionals®
as candidates to improve spin-state predictions, but such conclusions are often limited to the
modest data sets over which the studies have been carried out.

The emerging area of machine learning (ML)-accelerated high-throughput computational

7677 gver which no one-

screening”® " ©7 has led to exploration of much larger chemical spaces
size-fits-all exchange correlation functional can be expected to be predictive. Our group has

developed representations’””" for training machine learning (e.g., artificial neural networks or



ANNSs) models to predict spin-state ordering to within sub-kcal/mol accuracy of the DFT training
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data and demonstrated the use of these models in the design of a range of spin-state

dependent catalytic”” and materials® "*73 7850

properties. In evaluating such ML model
predictions, we have treated DFT as the ground truth, despite its limitations in predicting ground-
state spin. One avenue we have pursued to overcome challenges associated with DFT
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approximations is to train the ML model on a family of functionals™ ™, providing understanding

. . . )
of which regions of chemical space are most sensitive®” **

to the DFT functional. Nevertheless,
this approach makes the assumption that a typical range of functional variation will include the
experimental result, which cannot be guaranteed.

In comparison to energetic spin-state ordering, other properties such as the spin-state-
dependent metal-ligand bond length are much less sensitive to the exchange-correlation
functional®’ ™. Also in contrast to spin-state energetics, experimental bond lengths can be
extracted from available databases® of crystal structures for a large number of transition metal
complexes. The bond length is related to spin state because high spin (HS) states populate more
antibonding states than do equivalent low spin (LS) states, meaning that the bond length can be a
sensitive indicator of the ground state spin in mid-row transition metal complexes. While this
difference can be expected to depend on the nature of the ligand as well as oxidation state and
identity of the metal, we have observed””** "° the difference in DFT-evaluated HS and LS bond
lengths for mid-row complexes to be large in comparison to their change with DFT functional.

As a motivating example for this work, we first review observations from a range of
transition metal complexes for which we previously computed’ hybrid DFT properties (i.e.,

B3LYP) with varied HF exchange (i.e., anr) fractions. This set of complexes consisted of

homoleptic, mononuclear octahedral complexes with ligand strengths ranging from weak field



(i.e., H,0) to strong field (i.e., CO) in complex with d° Fe(Il) or d° Fe(III) (Figure 1). Over these
Fe(Il) complexes, an increase or decrease of apyr by 0.1 from its default value in B3LYP (aur =
0.2) shifts the HS-LS (here, quintet—singlet) adiabatic energetic splitting (i.e., AEy.1) predictions
by 10-30 kcal/mol (Figure 1). Vertical spin splitting more relevant in light-induced spin state
switching will exhibit larger exchange sensitivity’". This energetic variation can lead to ground
state spin reassignment: Fe(Il) complexes with phen or cyano ligands that are LS at low HF
exchange become HS when the admixture is increased (Figure 1). Over this same range of apr
variation, bond lengths vary far less, and the significantly longer nature of the metal-ligand bond
lengths in HS versus LS states is preserved across the spectrochemical series (Figure 1). In cases
where structural data is available®, comparison of experimental and predicted bond lengths
provides an alternative approach® to ground-state spin assignment’® (Figure 1 and Supporting
Information Table S1). For the phen or cyano complexes with high functional sensitivity for
energetic ground-state assignment, the bond-length based assignment strongly suggests a LS
state (Figure 1). Similar observations hold for Fe(Ill) complexes (Supporting Information Figure

S1).
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Figure 1. Properties of homoleptic, octahedral mononuclear Fe(Il) transition metal complexes
with ligands ordered by their field strength in the spectrochemical series. A schematic of the
structure is shown in inset. Properties shown are evaluated with hybrid DFT (B3LYP, auyr = 0.2,
sold lines and circle symbols) along with the range of properties evaluated at agr = 0.1-0.3
shown as a translucent shaded region. The high-spin to low-spin adiabatic spin splitting energy
(AEy.L, in kcal/mol) is shown at top, and the Fe—L bond lengths (in A) for the high spin (HS) and
low spin (LS) states are shown at bottom. Representative Fe—L bond lengths from crystal
structures are shown as gray squares as indicated in inset legend, and vertical dotted lines are
shown to enable comparison of bond-length-derived spin-state assignment (bottom) and
energetic assignment (top).

In this work, we curate data sets of thousands of experimental transition metal complex
structures to demonstrate the potential of structure-based spin-state identification. We leverage
an ANN previously trained® to predict spin-state dependent DFT bond lengths of mid-row
transition metal complexes, exploiting the reduced method sensitivity of structural properties.
Using the relative agreement between experimental and ANN-predicted HS or LS bond lengths,
we develop a robust approach for spin state prediction where alternatives (e.g., heuristics or DFT
energetics) commonly fail. We focus our demonstration on Fe(II)/Fe(IIl) complexes given their

widespread study, but our approach will be applicable for open shell transition metal complexes.
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2. Computational Details
We employ an ANN that separately predicts equatorial and up to two unique axial metal—

7071 and first

ligand bond lengths, which was trained on hybrid DFT bond length data from Refs.
demonstrated in Ref. ®. The ANN consists of 3 fully connected layers and is trained on a revised
autocorrelation (RAC) representation’' of the transition metal complexes (Supporting
Information Table S2). RACs’" are a series of products and differences on the molecular graph
that do not explicitly encode geometric information, making them a suitable representation with
which we can predict spin-state and oxidation-state dependent bond lengths. The hybrid DFT
training data used for these models was obtained with B3LYP**®*® using a LANL2DZ effective
core potential®® on the transition metal and 6-31G* on the remaining atoms with a developer

. -91
version of TeraChem’*”’

. Following conventions in prior work, the high-spin (HS) or low-spin
(LS) bond lengths predicted for @® Fe(Il) are quintets and closed shell singlets, respectively, and
the @ Fe(IIT) HS and LS states are sextets and doublets, respectively. Intermediate spin states are
neglected due to the higher probability of transitioning between HS and LS states
experimentally’”. The ML model employed in this work is freely available online as part of the
molSimplify” code.
3. Results and Discussion
3a. Curation of a Unique Mononuclear Transition Metal Complex Set

We extracted a set of mononuclear octahedral Fe(Il) and Fe(Ill) complex structures from
the Cambridge Structural Database® (CSD) through a series of sequential steps. Overall, this
procedure involved the curation of complexes with the desired coordination and oxidation state,

removal of duplicates, and categorization of whether the complex was compatible with ANN-

based bond length prediction. Refcodes of compounds obtained at each step of the procedure



along with necessary metadata to interpret the outcomes of each step are provided in a
spreadsheet in the Supporting Information. This procedure employed both the Conquest
graphical interface to the CSD as well as the Python API, in all cases applied to the v5.40 data
set with complexes from the November 2018 update.® The Conquest interface was used to query
for structures containing an iron atom that forms exactly six bonds with p-block elements (here,
the first four rows of groups 13-17, excluding boron) or hydrogen. The octahedral coordination
environment was enforced by requiring a 70-90° angle for six angles between ligand
coordinating atom pairs and the iron and a 140-180° angle for three other angles. Although
polymeric species were excluded, no additional filters were applied to the quality of the
structures, and only compounds with a single unique, six-letter code were selected, leading to a
set of 12,981 initial complexes (Table 1).

Table 1. Description of filtering steps applied to obtain unique Fe(Il) and Fe(IlI) mononuclear
octahedral complexes as well as subsets for analysis, with names where appropriate.

Filtering criterion Name All Fe(I)Fe(I)
Fe with 6 bonds in angle range --12,981 -- --
Fe(Il) or Fe(IIl) with non-metals -- 4,862 2,865 1,997
Unique octahedral structures UuoO 3,627 2,179 1,448
Eq. plane element symmetry -- 2,201 1,558 643
Eq. plane bond length distortion outliers removed AC 2,037 1,447 590
Same coordinating atom element HE 1,316 969 347
N and one other element NX 580 369 211

As this query alone does not ensure we obtain only mononuclear transition metal
complexes, the CSD API was used to iterate through all components in the selected refcodes. We
identified a component from the crystal structure that had a single iron center and confirmed that
the deposited structure had either Fe(Il) or Fe(Ill) in its chemical name, producing a smaller
subset of 4,862 complexes (Table 1). The CSD Python API was used to add missing hydrogen

atoms to around 10% (511 of 4,862) of the structures and store the revised, mononuclear



transition metal complex structures in mol2 format, which preserves user and CSD-defined
connectivity in addition to the Cartesian coordinates. In 60 cases, the chemical name contained
both Fe(Il) and Fe(Ill), and these complexes were manually inspected and reassigned to the
appropriate oxidation state based on the components in the full crystal structure in all but one
case where no unambiguous oxidation state could be assigned (see Supporting Information).

We next computed the molecular weights of all complexes, including the added hydrogen
atoms where applicable. For any case where multiple complexes had the same molecular weight,
we used the connectivity recorded in the CSD mol2 file to compute an atomic-number-weighted
connectivity matrix in which the diagonal was the atomic number (i.e., Z) of that element, and
the off-diagonal elements of bonded atoms i and j were ZiZ;. We compared the determinant of
these connectivity matrices and selected a single unique complex based on having a distinct Z-
weighted matrix determinant. This filtering step led to 3,627 unique complexes that we refer to
as the UO set, with slightly more Fe(Il) cases (2,179) than Fe(III) (1,448, see Table 1).

In addition to this set of unique complexes, we curated a subset we refer to as ANN-
compatible. Specifically, our ML model for bond length prediction® was trained on complexes
with a symmetric equatorial ligand field and up to two unique axial ligands. To select a subset of
CSD complexes most likely to be amenable to ANN predictions, we searched for whether an
equatorial plane could be identified in the transition metal complex that contained the same
metal-coordinating-atom element identities. To assign the equatorial plane (and axial positions),
we carried out a series of physically motivated steps designed to be repeatable across the CSD
with a hierarchy of rules (Supporting Information Text S1). In brief, high-denticity (i.e.,
tetradentate) ligands or highest molecular weight planes were selected to be the equatorial plane

first. If following this rule did not ensure the same element for the coordinating atoms in the



equatorial plane but an alternative plane could be selected that did, then the equatorial plane was
reassigned to that alternative plane. After this step, 2,201 unique complexes could be identified
as ANN-compatible (Table 1). These complexes were then filtered further to eliminate extreme
outliers in which the difference of equatorial metal-ligand bond length in the equatorial plane
exceeded 0.15 A in the most symmetric plane or up to the 0.20 A in the selected equatorial plane
(i.e., where multiple planes had four identical coordinating atoms). These additional filters
produced a final AC set of 2,037 complexes (Table 1 and Supporting Information Figures S2-
S3). The AC constraint on the UO set eliminated a higher fraction of Fe(Ill) than Fe(Il)
complexes (60% vs. 34%, Table 1). Nevertheless, overall properties of the UO and AC sets, such
as the wide distribution of molecular weights of complexes in the UO set were similar for both
Fe(Il) and Fe(IIl) complexes (Supporting Information Figures S4-S5).
3b. Analysis of Transition Metal Complex Structural Trends

We evaluated properties of the curated CSD data sets to identify if patterns emerged in
the bond length distributions of experimental data that could enable heuristic spin-state
assignment. For this analysis, we first focused on a subset of complexes in which all
coordinating atoms are the same element in order to simplify effects of strongly mixed ligand

fields (e.g., the trans effect’*”

), which we call the homoelemental (HE) set. A majority of all
3,627 unique complexes obtained from the CSD (i.e., the UO set) satisfy this criterion, and the
majority of the 2,037 complexes we retained as ANN-compatible (AC) are also in this HE set
(Supporting Information Tables S3-S4). This is in part due to the greater geometric symmetry in
complexes with greater ligand coordinating atom symmetry as well as the fact that fewer unique

complexes contain a high number of distinct coordinating elements (Supporting Information

Figures S2-S3 and Tables S3-S6).



In total, 969 Fe(Il) and 347 Fe(Ill) complexes comprise the HE data set (Table 1 and
Supporting Information Figures S6-S7). The coordinating elements are predominantly 2p
elements (i.e., C, N, or O), but some complexes with heavier elements (i.e., P, S, or As) are also
present (Supporting Information Tables S3-S4 and Figures S6-S7). Notably, few halide
complexes are observed due to the strong negative charge (i.e., -3 or -4) on such HE complexes
(Supporting Information Figures S6-S7). Over the HE complexes, we observe significant
variation in the metal-ligand bond lengths by elemental identity, some of which could be
anticipated on the basis of spin-state-dependent bonding (Supporting Information Figures S6-
S7). The largest variations are between elements, following trends of the underlying covalent
radii that are clearest for comparisons within a period (e.g., O: 0.62 A vs. S: 1.05 A leads to 1.9-
2.3 A in Fe-O bonds vs. 2.2-2.7 A in Fe-S bonds, Supporting Information Figures S6-S7 and
Table S7). This observation of strong dependence on the ligand coordinating atom identity holds
across metal-ligand bond lengths if we expand to consider all 2,037 AC complexes or even all
3,627 UO complexes (Table 1 and Supporting Information Figures S8-S11).

Thus, we focus for our analysis on a scaled metal-ligand bond length, d..(Fe-X),

evaluated relative to the sum of covalent radii of each ligand element, X, with iron:

d(Fe-X)

d_ (Fe-X)=
T'Fe + I"X

(1)

Prior analysis®® of experimental structures suggested that appropriate LS and HS Fe covalent
radii are 1.32 and 1.52 A, respectively (Supporting Information Table S7). We use an average
value for Fe of 1.42 A in eqn. (1), which means that a dii(Fe-X) of 0.95 should correspond to a
LS state, whereas a value of 1.05 should correspond to a HS state regardless of ligand
coordinating element (Supporting Information Table S7). Indeed, expected patterns in ligand-

field dependence of spin state ordering emerge when relative metal-ligand bond lengths of
10



complexes are compared (Figure 2 and Supporting Information Figure S12). The nominally
strong-field, C-coordinating Fe(II) complexes (N = 11) are well below the low-spin relative bond
length cutoft (i.e., 0.95), with similar observations for the small number of pnictogen complexes
(Figure 2 and Supporting Information Figure S12). Conversely, typically weak-field oxygen
Fe(Il) complexes (N = 45) approach or exceed the high-spin cutoff, predominantly centered
around relative metal-ligand bond lengths of 1.02 (Figure 2). Interestingly, N-coordinating
species (N = 902), known for their potential as spin-crossover complexes’”, exhibit a bimodal
distribution, with one peak closer to the HS cutoff and the other closer to the LS cutoff. More
surprisingly, the few S-coordinating Fe(Il) complexes (N = 7) in the HE set also span a wide

range of bond lengths (Figure 2).
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Figure 2. Normalized histograms of relative iron—ligand-atom bond lengths for 965 mononuclear
octahedral Fe(Il) complexes in the HE subset, with the coordinating element indicated in the
upper left corner of each panel. Each relative Fe—X bond length is obtained with respect to the
sum of covalent radii of Fe and the ligand atom, X, and the value for each element is indicated in
the bottom right corner of each panel. The total number of complexes used to compute each
histogram 1is indicated in the top right corner of each panel, and all six bond lengths in the
complex are used to construct the normalized histogram. Vertical dotted lines indicate 0.95 and
1.05 relative bond length thresholds to nominally indicate low-spin or high-spin character,
respectively.

Similar trends hold in Fe(Ill) complexes, although the increase in relative metal-ligand
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bond length from C-coordinating to O-coordinating species is less significant (Supporting
Information Figure S12). Due to variations in available data set size, bimodal distributions are
generally most evident in the larger UO or AC sets of Fe(Il)/Fe(Ill) complexes for the specific
cases of Fe-N or Fe-S bonds (Supporting Information Figures S8-S11). Overall, it appears that
the multiple-peak nature of the observed relative bond length distributions may facilitate spin-
state classification, but the width and overlap of these peaks may complicate the use of heuristic
cutoffs.

To identify the extent to which relative metal-ligand bond lengths can be used for spin
state classification beyond the HE set, we expanded our evaluation of structural properties to a
new subset of the 2,037 ANN-compatible complexes that contain up to two coordinating
elements. Given the observation that relative metal-ligand bond lengths in Fe(II) N-coordinating
complexes exhibit a bimodal distribution, we collected all AC Fe(Il) and Fe(Ill) complexes that
were coordinated by nitrogen and at most one other element (NX subset, Table 1 and Supporting
Information Tables S8-S9). This NX subset contains 369 Fe(Il) and 211 Fe(Ill) complexes in
which either N or the X element is the coordinating species in the equatorial plane (Table 1 and
Figure 3 and Supporting Information Figure S13). Based on the satisfaction of heuristic cutoffs,
we would expect to be confident in the classification of the ground state spin of NX complexes

as HS or LS if both d.i(Fe-X) and d.i((Fe-N) values are over 1.05 or under 0.95, respectively.
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Figure 3. Fe—N vs. Fe-X (X indicated according to inset legend) bond length ratios computed
relative to sums of covalent radii for mononuclear octahedral Fe(II) complexes: Cl, Br, or I
halides (top left), O (top right), P or As pnictogen elements and C (bottom left), and S (bottom
right). Ratios of 0.95 and 1.05 are indicated by gray dotted lines. Circle symbols indicate cases
where N is the majority coordinating element (i.e., equatorial plane and up to one of the axial
positions), whereas square symbols reflect the reverse cases. The Fe—N, Fe—X pair is computed
from the average of all bonds of that type in the complex. The total number of cases is indicated
in the legend.

Indeed, over 118 Fe(Il) or Fe(Ill) complexes, all but one of the strong-field N/X (X = C,
P, As) complexes exhibit low relative metal-ligand bond lengths for both coordinating species
(Figure 3 and Supporting Information Figure S13). From this analysis, it can be concluded that
structures with this combination of elements in the primary coordination sphere are unlikely to
have HS ground states. For other cases, the picture is less clear. The halide-containing NX
complexes exhibit a smooth variation of relative metal-ligand bond lengths that defies
expectations of their role as weak-field ligands (Figure 3 and Supporting Information Figure
S13). For mixtures of nitrogen coordination with other weak-field elements (e.g., O or S), a
continuum of relative metal-ligand bond lengths emerges, with some structures approaching

high- or low-spin thresholds but many residing between the two limits (Figure 3 and Supporting

Information Figure S13). Furthermore, metal-ligand bond lengths can be relatively long for one
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element and short for another, confounding cutoff-based spin-state assignment (Figure 3 and
Supporting Information Figure S13). The limits of cutoff-based assignment even on the NX
subset thus motivates comparison to ANN predictions that can independently predict equatorial
and axial bond lengths all awhile encoding more non-local information’' about the ligand
chemistry’s role in metal-ligand bond length.

3c. Structure-based ANNSs for Experimental Spin-State Classification

We have developed a spin-state classification procedure that uses an ANN previously
trained® on geometry-free representations’' for metal-ligand bond length predictions in order to
overcome the limitations of heuristic cutoffs for spin-state prediction. As previously described,
the ANN predicts one equatorial bond length and two independent axial bond lengths to sub-pm
accuracy on set aside test partition of DFT data®. The assumption of high symmetry in ANN
predictions mirrors that of the underlying training complexes, which had an equatorially
symmetric ligand field with up to two unique axial ligands. The AC subset constrains the
equatorial ligand field to contain only one coordinating element, which leads to reduced overall
asymmetry with respect to the UO set (Supporting Information Figures S2-S3, S14-S17).
Nevertheless, the ligand chemistries in the AC set still may have a higher degree of asymmetry
than the original training data (see Supporting Information).

To carry out spin-state classification, we developed two quantitative metrics to assign
spin state based on agreement between experimental CSD values and those predicted by the
ANN. If the CSD bond lengths were greater than the HS ANN prediction values or shorter than
the LS ANN prediction values, then the spin state was assigned as HS or LS, respectively,
otherwise it was not assigned by this metric. One equatorial and two axial bonds (i.e., ax1, ax2)

are compared between the CSD and ANN, but we reweighted them to reflect the four equatorial
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bonds in an octahedral complex and compared the difference between the CSD and HS or LS

ANN predictions:

1

SDeqavg.  ANN,eq ) + 6 ( CSDaxl ANN,axl ) + 6( CSDax2 ANN,aXZ) ()

1

A(CSD-ANN) = %(dc

We also computed a reweighted root mean squared difference (RMSD) of the bond

lengths between the CSD and the ANN as:

1 1

2 2 2
CSDeqavg. ANN,eq) + 6( CSDaxl ANN,axl) +g( cSDax2 ANN,axZ) €)

RMSD(CSD-ANN) =\/§(d

For all complexes, we chose a spin-state assignment from the ANN prediction (i.e., HS or LS)
with the lower RMSD (i.e., from eqn. (3)) to the CSD structural properties. For the majority of
cases where both assignments were made, the two criteria led to consistent spin state assignment.
In a small number (22 Fe(Il) and 11 Fe(IIl)) of exceptions where two assignments were made but
contradicted each other, we removed any spin state assignment and instead labeled them as
“ambiguous”. When spin states were only assigned based on the second criterion, we provided
the distinguishing classification that these structures are “between” the LS and HS ANN
prediction limits.

Finally, we developed a metric based on the RMSD quantities to provide an estimate of
the uncertainty for the ANN-derived spin-state predictions. We computed the RMSD between
the HS and LS ANN bond length predictions with weights as in eqn. (3). Our composite
uncertainty score is the RMSD of the CSD to the closest ANN prediction divided by the RMSD

of the two ANN spin-state predictions:

min(RMSD(CSD-ANN, ),RMSD(CSD-ANN, )
RMSD(ANN_ —~ANN )

uncertainty =

(4)

This quantity is large if CSD vs. ANN agreement is poor for both candidate spin states or if the

15



structure is relatively spin-state independent according to the ANN model. We thus selected
uncertainty scores < 0.5 as a cutoff for high confidence in ANN-derived spin-state assignments.
Many Fe(Il) and Fe(IIl) complexes have uncertainty scores below 0.5, although a long tail of
high uncertainty scores is observed due to contributions from both poor ANN—CSD agreement

and low spin-state sensitivity of ANN predictions (Figure 4 and see Supporting Information).
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Figure 4. (Top, left) Categorization of ANN-based spin-state assignments for 1,447 Fe(Il) and
590 Fe(IIl) complexes in the AC set: confident LS (red), lean LS (pink), uncertain (gray), likely
HS (light blue), and confident HS (blue). (Bottom, left) Histogram of uncertainty scores for
ANN predictions on Fe(Il) (in green) and Fe(III) (in orange) AC complexes. The 0.5 cutoff used
throughout this work is indicated as a gray dashed line. (Right) Comparison of ANN and CSD
bond distances (in A) averaged over the axial bonds (top) and equatorial bonds (bottom) for
Fe(Il) (circles) and Fe(III) (squares) complexes on the subset of AC complexes for which spin-
state assignment is confident. The LS- and HS-assigned points are shown in red and blue
translucent fill, respectively. A black dotted parity line is shown on both plots.

Using the final qualitative spin-state assignment and the uncertainty score, we then
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classified overall spin states for structures in the AC set as definitively HS or LS if they satisfied
the uncertainty score cutoff (Supporting Information Table S10). For the remaining complexes
that did not satisfy the uncertainty cutoff, if the CSD value was above or below the relevant spin-
derived ANN prediction, we classified these complexes as leaning LS or HS, respectively, to
reflect reduced confidence (Supporting Information Table S10). Finally, both the ambiguous
cases identified earlier as well as any cases both between the two ANN prediction bounds and
above the uncertainty cutoff were classified as complexes with unsure spin states (Supporting
Information Table S10). In total, we assign 78% of Fe(Il) and 90% of Fe(IIl) complexes (Figure
4). A subset of 862 (602 Fe(Il) and 255 Fe(Ill)) complexes (ca. 40% of the full set) have
confident spin-state assignments (Figure 4). More complexes are expected to be LS for both
Fe(II) (54% vs. HS 36%) and Fe(III) (61% vs. 18%), although the frequencies of confident HS
and confident LS assignments are more comparable (Figure 4).

For overall structural properties of the 862-complex subset with confident ANN-derived
spin-state assignments, good qualitative agreement of CSD and ANN equatorially and axially
averaged bond lengths is observed (Figure 4). Since the uncertainty cutoff eliminates complexes
with the poorest agreement between the CSD and ANN values, this result is not particularly
surprising. However, this comparison highlights the extent to which ANN-based assignment can
improve upon heuristic distance cutoffs. The distribution of ANN HS- and LS-classified bond
lengths are similar, with no distinction between the axial LS or HS distributions and limited
clustering of LS equatorial bond lengths at values lower than those sampled by HS-classified
states (Figure 4).

We return to the HE subset of complexes for which confident spin-state assignment was

obtained to determine if the significant overlap in HS and LS bond distances observed in the
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greater data set also hold for relative bond distances when all metal-coordinating bonds are
between iron and a single element. For some elements, only few data points remain once we
isolate confident spin-state assignment, due both to their low numbers in the HE subset (e.g., Cl)
as well as poor ANN performance due to their absence from ANN training data (e.g., As or P,
Supporting Information Table S11). In several of these cases, only one spin state (e.g., LS As or
C) that could be expected based on ligand field arguments was assigned (Supporting Information
Table S11). We therefore focus on N- or O-coordinating Fe(Il) and Fe(IIl) complexes due to the
large number of these complexes in the original HE set and the fact that they correspond to
significant numbers of both HS- and LS-classified spin states after accounting for uncertainty
cutoffs (Figure 5 and Supporting Information Table S11). Consistent with the greater data set,
the distributions of bond lengths in Fe(I[)/O or Fe(Il)/O complexes overlap substantially
between LS and HS complexes (Figure 5). For example, an Fe(Il) complex with four
dimethylformamide and two axial tetrahydrofuran ligands (CSD: CIDLIL”’) is confidently
predicted (uncertainty: 0.3) by the ANN to be LS because its CSD bond lengths (eq. avg.: 2.13
A, ax. avg.: 2.06 A) are much more consistent with the LS ANN prediction (eq. avg.: 2.11 A, ax.
avg.: 2.01 A) than the HS ANN prediction (eq. avg. 2.26 A, ax. avg.: 2.12 A, see Supporting
Information). The CSD bond lengths for a HS-classified Fe(Il) ethyl acetate complex (CSD:
LIFBUX") are similar (eq. avg. 2.12 A, ax. avg. 2.13 A), but a HS state is confidently assigned
(uncertainty: 0.25) because these bond lengths are much closer to the HS than LS ANN bond

length predictions (see Supporting Information).
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Figure 5. Normalized histograms of relative iron—ligand-atom bond lengths for Fe(Il) and Fe(III)
complexes in the HE subset with oxygen coordination (top two panes) and nitrogen coordination
(bottom two panes), as indicated in insets. Only complexes for which ANN-based spin-state
assignment is confident are shown, and the total count in LS (red translucent bars) and HS (blue
translucent bars) are annotated in inset. Each histogram is individually normalized and all six
bond lengths in the complex are used to construct the histogram. Vertical dotted lines indicate
0.95 and 1.05 relative bond length thresholds to nominally indicate heuristic LS or HS character,
respectively.

Unlike Fe/O complexes, we observe differentiation of LS and HS bond distance
distributions for Fe/N complexes (Figure 5). The greatest separation is observed for the Fe(Il)/N
cases, although the sample size of confident HS Fe(III) complexes is significantly smaller than
for Fe(Il), limiting a direct comparison of the two oxidation states (Figure 5). None of the
Fe(IIT)/N high-spin complexes have relative bond distances above the nominal 1.05 cutoff for HS
state designation, and few of the HS Fe(Il)/N complexes do (Figure 5). Despite differences in the
distributions, overlap is observed between the LS and HS bond lengths for both oxidation states
of the Fe/N complexes (Figure 5).

To this point we have only assessed complexes based on the ANN-based spin-state

classification confidence. We next consider the extent to which these classifications are
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consistent with ground-truth observations (e.g., experimental spectroscopy). We carry out this
analysis first on representative Fe(I[)/N complexes and then in greater detail in Sec. 3e. A
representative Fe(II)/N LS complex (CSD: DOQRAC?) consists of three acetonitrile
monodentate ligands along with a tridentate macrocycle (Figure 6). Our algorithm for plane
selection chooses one acetonitrile ligand and one coordination site of the tridentate macrocycle to
be axial, although the range of Fe-N bond lengths across the ligands (2.09-2.15 A) is relatively
small and close to a d..i(Fe—N) of 1.0, meaning that any cutoff-based assignment would fail (see
Supporting Information Table S7). This complex is classified as LS by the ANN (uncertainty:
0.37) due to very good agreement between the CSD and the LS predictions for axial bond
lengths and better agreement of the CSD with the LS ANN than HS ANN predicted average
equatorial bond lengths (Figure 6). Experimental spectroscopy confirms’ the LS assignment

made by our ANN-based classification.

HS
2.4 . I LI 1 2.4 LI 1 . 1
- : A - : Ocsbp
<231 1 =23 VLS ]
922__ ngzAAHS §
(1} . : (1] : :
221tv O 1 2 2.1 o 1
® [ C Wi
20_ I: 1 1 : 1 ] 20 I: 1 I: 1 ]
2021222324 2021222324
eq. avg. (A) eq. avg. (A)

Figure 6. Representative LS (left) and HS (right) assignments by the ANN of two Fe(II)/N HE
complexes. The structures of the complexes are shown at top (Left, CSD: DOQRAC, Right,
CSD: VILZOH) with stick structures and the iron center shown as a sphere. Carbon atoms are in
gray, nitrogen in blue, hydrogen in white, and iron in brown. The equatorially and axially
averaged bond lengths (in A) from the CSD structure (gray circle) are compared to the ANN-
predicted LS (red, down triangles) and HS (blue, up triangles) values. The 95% and 105%
threshold for the Fe—N bond lengths corresponding to heuristic LS and HS character are shown
as dotted lines for reference.
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In prior work, we’® evaluated the ability of an ANN to predict the HS-LS adiabatic spin
splitting, AEy.., of this same complex. We had observed” that the AEy.. ANN strongly over-
stabilized (AEy.L = -34.7 kcal/mol) the HS state with respect to AEy from hybrid (i.e.,
B3LYP**) DFT. We rationalized this poor AEj.. ANN performance by the significant
dissimilarity of the CSD complex to available training data’. The hybrid DFT energetics
predicted a weakly HS state (AEy.L = -1.4 kcal/mol), inconsistent with the experimentally
observed ground state, although the two states are likely near degenerate due to the observation
of spin-crossover behavior’. The correct LS assignment of this complex that had challenged
energy-based prediction models demonstrates that structure-based classification can provide an
independent corroboration of spin-state assignment, even when training data is limited or
energetics can be expected to be sensitive to the level of theory used. Our analysis of prior,
energetic-based spin state assignment neglects zero point vibrational energy and the crystal field
environment contributions, which could be considered in future work to more quantitatively
assess the magnitude of energetic errors we observe with hybrid DFT.

For comparison, we choose an HS-classified Fe(Il)/N representative complex (CSD:
VILZOH'") consisting of two tridentate, substituted pyridinyl ligands with bond distances (2.08-
2.17 A) relatively comparable to the CSD values in the previously described LS complex (Figure
6). A heuristic approach would fail to classify the spin state of this complex, as the relative bond
lengths are intermediate (0.97-1.02) between the LS and HS cutoffs. Our approach classifies this
structure as HS (uncertainty: 0.47) because the CSD bond lengths are significantly closer to the
HS ANN values (eq. avg., CSD: 2.13 A vs. HS ANN: 2.08 A) than to the LS ANN values
(Figure 6). Notably, the LS and HS ANN values themselves are considerably closer to each other

in this case than they were in the LS complex, leading to a higher uncertainty score (Figure 6).
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Experimental spectroscopy'” indicates that this complex has a HS ground state, confirming our
ANN structure-based assignment. Interestingly, this complex is a methylated derivative of a
well-known temperature-dependent, spin crossover complex (i.e., LS at low temperature).
Experimental characterization showed'” the methylated complex to be in a HS state at low
temperature, suggesting the importance of the single addition of methyl groups three bonds away
from the metal center. Such subtle effects can be expected to be easier to quantify with the
structure-based ANN approach than more standard methods such as direct evaluation of AEy.
with hybrid DFT or an ANN, although we had not previously evaluated AEy. 1 for this complex.

Outside of the HE subset, even more complex relationships are observed in the relative
bond distances when multiple elements are present in the primary coordination sphere, as
exemplified by the NX subset (see Sec. 3b). We revisit NX complexes for which confident
structure-based spin-state assignment was possible. We focus on the Fe(Il)/N and Fe(Ill)/N
complexes that are partly coordinated by Cl, O, or S coordinating atoms due to the significant
number of these complexes in the full NX set as well as the wide range of d,. values that are
observed over these sets (see Figure 3 and Supporting Information Figure S13). Over the subset
of all possible NX (X = Cl, O, or S) complexes, structure-based ANN classification is confident
for 25-50% of the complexes, independent of oxidation state (Supporting Information Table
S12).

Within the confidently assigned subset, the classified spin states for N/S complexes are
most consistent with expectations based on heuristic cutoffs of the relative bond distances
(Figure 7). All LS N/S Fe(II/IIT) complexes have d;.(Fe-N) and d.j(Fe-S) close to or below 0.95,
with significantly higher values (dii(Fe-N) = 1.0, dii(Fe-S) = 1.05) for the single HS N/S Fe(II)

complex (Figure 7). Mossbauer spectroscopy'®’ on the HS complex (CSD: ZERFEK'"")
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corroborates the confident (uncertainty: 0.29) structure-based ANN HS classification, which was
made possible by the ANN’s accurate prediction (HS ANN: 2.54 A vs. LS ANN: 2.31 A) of

elongated, equatorial Fe—S bond lengths (CSD: 2.58 A, Figure 7).
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Figure 7. Fe-N vs. Fe-X (X indicated according to inset in each pane) bond length ratios
computed relative to sums of covalent radii for NX subset octahedral Fe(Il) (top) and Fe(III)
complexes (bottom) with N/CI (left), N/O (middle), and N/S (right) coordinating atoms. Ratios
of 0.95 and 1.05 are indicated by gray dotted lines. Only points for which spin state assignment
is confident are shown, and triangle down symbols indicate LS, whereas triangle up indicates
HS. The total number with each spin assignment is shown in the bottom right corner of each
pane. The Fe-N, Fe-X pair is computed from the average of all bonds of that type in the complex.
Three representative HS Fe(Il) complexes are shown at top and correspond to the only symbol
which is solid filled with a dark colored border in each representative pane: N/Cl (left, CSD:
POKNE]J), N/O (middle, CSD: DAQVEZ), N/S (right, CSD: ZERFEK). Structures are shown as
sticks with carbon in gray, nitrogen in blue, hydrogen in white, chlorine in green, sulfur in
yellow, oxygen in red, and iron in brown.

The N/CI complexes have more ambiguous d,. values in comparison to N/S complexes,
despite a similar data set size (Figure 7). Shorter d..(Fe-Cl) values are observed for Fe(III)
complexes regardless of spin state, likely due to stronger electrostatic attraction than in Fe(II)
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complexes (Figure 7). While longer di.i(Fe-N) values (i.e., > 1.05) are observed for some HS-
classified Fe(II) complexes, exceptions are also apparent, and no such trend is observed in the
Fe(Ill) complexes (Figure 7). We selected as a representative example the HS Fe(Il) N/CI
complex (CSD: POKNEJ'"), which has the shortest HS d,e(Fe-N) and a comparable d,.(Fe-Cl),
both of which are around 1.0 (Figure 7). Susceptibility experiments'®> were consistent with a HS
ground state, confirming the classification by the structure-based ANN. In comparison, heuristic
distance-cutoff-based assignment of this complex would not be possible since the complex has
dr values equidistant between the HS and LS heuristics.

For the largest N/O complex subsets, there appears to be little separation between the LS
and HS d, values (Figure 7). The few points with short simultaneous d;.((Fe-N) and d.(Fe-O)
around 0.95 for both are indeed classified as LS states (Figure 7). A similar classification of
extreme HS points is more challenging, as LS and HS states have similarly long (> 1.05) d.i(Fe-
N) values (Figure 7). Most of the points either have intermediate d,.j(Fe-N) and d,.i(Fe-O) values
(i.e., close to 1.0) or have a combination of one long bond type with one short bond type (Figure
7). Thus, heuristic cutoff-based assignment of spin states would only be possible for a small
fraction of N/O complexes. As a representative example HS Fe(Il) N/O complex, we selected a
complex (CSD: DAQVEZ'®) of a tridentate dicarboxylated pyridine ligand with water
molecules in the three remaining coordination sites (Figure 7). The average Fe-N and Fe-O
bond lengths are both relatively short (2.08-2.12 A), likely due to the overriding influence of the
coordinating carboxylates, but ANN-based assignment provides a confident (uncertainty: 0.16)
HS classification (Figure 7 and see Supporting Information). Despite this unusual structure,
magnetometry experiments on related complexes'® are suggestive of a HS ground state

assignment, consistent with the structure-based ANN prediction. Thus, ANN structure-based
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spin-state classification shows promise as an alternative to energy-based or heuristic distance-
based spin-state assignment across a range of complex ligand chemistries.
3d. Curation of a Spin Crossover Complex Set

Given their frequent study as candidate spin-crossover (SCO) materials, one of which we
discussed in Sec. 3¢, we curated a broad set of putative Fe(I) SCO complexes. From the original
set of 2,865 non-unique Fe(Il) complexes, we carried out a series of steps to identify the refcodes
most likely to correspond to experimentally identified SCO complexes, those deposited at
multiple temperatures believed to correspond to distinct low- and high-spin states and identified
by the authors in the associated publication as SCOs. The CSD refcodes containing multiple
copies of the same six-letter code with a number appended were expected to represent structures
diffracted at multiple temperatures. For cases where multiple refcodes were present, we reviewed
every component (i.e., isolated chemical species) of the CSD crystal structure to identify the one
that matched the original six-letter code Fe(II) structure based on both molecular weight and
connectivity. For the 95 Fe(Il) complexes that satisfied these criteria, the resulting axial and
equatorial bond lengths were then saved for the highest and lowest recorded temperatures as
candidate high- and low-spin geometries, respectively.

To narrow the results of this query, we carried out text search and sentiment analysis to
narrow the pool of candidate SCO complexes. We mined titles and abstracts using the
pybibliometrics'®*/Scopus API package using article DOIs obtained from the CSD. For titles and
abstracts, VADER'® text analysis was performed on sentences containing essential keywords
(i.e., “spin crossover”, “cross over”, or “sco”). We required that these keywords were not just
present but had positive mentions of SCOs in their titles or abstracts, avoiding instances where

the text was referring to the compound not being a SCO complex by requiring positive VADER
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sentiment. A large number (i.e., 626) of Fe(Il) complexes were identified through the text
analysis step, but only 66 complexes were identified in both the temperature-dependent bond
length extraction step and in this text analysis step.

Finally, to select an ANN-compatible subset of SCO complexes, we eliminated any cases
where the change in spin state did not exhibit expected bond elongation from low- to high-spin
either experimentally or predicted by our ANN. We also eliminated cases that had either low- or
high-temperature structures with high equatorial plane bond distortion (> 0.2 A) as in our other
data set curation steps. Finally, low- and high-temperature structures with averaged equatorial
bond lengths that differed by < 0.05 A were also excluded because these bonds are nearly
identical within the uncertainty resulting from the resolution of the X-ray diffraction experiment.
After all of these steps, we obtain a final set of 46 unique complexes that both exhibit
temperature-dependent equatorial bond lengths and have been positively noted as SCO
complexes by their authors. Details of candidate SCO complexes eliminated at intermediate steps
are provided in the Supporting Information.
3e. Analyzing Structure-based Spin State Prediction on SCO Complexes

To evaluate the promise of the structure-based ANN to classify experimental spin states,
we analyzed the performance of the approach over all 46 curated Fe(Il) SCO complexes for
which both sentiment analysis and distinguishable, multiple temperature (T) X-ray diffracted
(XRD) structures were available (see Sec. 3d). All identified complexes belong to the HE set
with nitrogen coordination, consistent with the tendency’” of Fe(II)/N complexes to exhibit SCO
behavior. Here, we assume the low-T XRD iron—ligand bond length corresponds to the LS state
and the high-T XRD iron-ligand bond length corresponds to the HS state because the LS state is

typically enthalpically favored, whereas the HS state is typically entropically favored®*. Given
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the weak separation between HS and LS axial bond lengths, we focus on the equatorially
averaged bond lengths to quantify differences in the LS and HS CSD structures (see Figure 4).
The difference in the equatorial bond lengths between low- and high-T XRD structures for the
46-complex SCO set is large (average: 0.18 A, range: 0.10-0.22 A, Figure 8 and see Supporting
Information Table S13). Individual XRD bond length distributions (LS: 1.93-2.09 A and HS:
2.09-2.22 A) do overlap over the full set, corresponding in many cases to intermediate (i.e.,

between 0.97 and 1.02) d;.((Fe-N) values (Supporting Information Table S13).
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Figure 8. (left) Fe—L equatorially averaged bond lengths (in A) of identified CSD Fe(II)/N SCO
complexes: low- and high-T XRD values (red and blue horizontal lines) are compared to
predictions from the ANN for the LS (red diamonds) and HS (blue squares) states. An example
SCO complex is shown as a stick structure in inset (CSD: BAKGUR), corresponding to the
points outlined in gray and highlighted by the gray line. Atoms are colored as: gray for carbon,
blue for nitrogen, white for hydrogen, and brown for iron. The CSD values for the equatorially
averaged bond lengths are compared to the ANN-predicted values as shown in the inset table.
(right) Overlapping histograms of deviations of ANN-predicted bond lengths from XRD values
(in A) for low-T (red) and high-T (blue) XRD structures. Structures to the left of the vertical line
are classified as LS while structures to the right are classified HS.

To carry out ANN structure-based spin-state classification on this set of complexes, we

compare the equatorially averaged bond lengths of the low- or high-T XRD structures to the
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predictions of the equatorial bond length from the LS and HS ANN. Through comparison of the
expected ANN bond length to the appropriate XRD structure (i.e., LS for low-T or HS for high-
T), we observe low discrepancies especially for the LS states (avg: 0.027 A, range: 0.00-0.097 A,
see Supporting Information Table S13). Larger disagreements observed for the HS states (avg:
0.070 A) could be due to the fact that the DFT bond lengths are obtained at 0 K but the high-T
structures are solved at higher temperatures (HS: 160-420 K vs. LS 25-243 K) where thermal
corrections to the bond lengths could be more significant (Supporting Information Table S13).
To classify spin states based on the low-T and high-T equatorial bond lengths, we select
the spin state corresponding to the ANN in better agreement with the experimental structure
(Supporting Information Table S13). Over the 92 low- or high-T XRD structures, 96% of
structures are correctly classified by the ANN, with only two low-T and two high-T structures
misclassified (Figure 8). For the small number of cases for which the ANN incorrectly classifies
the spin state, incorrect classification for the LS states is due to long low-T bond lengths that are
underpredicted by the LS ANN in higher denticity (i.e., tridentate in RIPZAS'® or hexadentate

71 . . .
707 The incorrect classification

in IMANIT'") structures not present in the ANN’s training data
of high-T structures as LS in two cases occurs when the LS state has a relatively long bond
length and the ANN overestimates the HS elongation, leading the high-T bond length to be
closer to the LS ANN value (Figure 8 and Supporting Information Table S13).

For the remaining 88 cases, the ANN-based classification is robust when the bond length
of a compound is atypical because the ANN encodes significant information about ligand
chemistry. For example, the relevant HS/LS ANN predicts the equatorial bond lengths of a

homoleptic, facial isomer complex with bidentate methylimidazole/methylideneamino ligands

(CSD: BAKGUR'*®) to within 0.02 A for both low-T (2.00 A) and high-T (2.22 A) XRD

28



structures (see inset in Figure 8). The bond length in the high-T structure of a heteroleptic
complex with isothiocyanate ligands (CSD: AKENAF'®, high-T XRD: 2.09 A) is comparable to
that in the low-T structure of a homoleptic complex with six monodentate substituted tetrazole
ligands (CSD: YAGYIP'', low-T XRD: 2.09 A), but the two structures are correctly classified
as HS and LS by the ANN, respectively (Figure 8 and see Supporting Information Table S13).
Thus, we expect this low-cost machine learning model approach to provide a valuable
complement to experimental interpretation in spin-state assignments, particularly where
energetically derived assignments from approximate electronic structure methods are challenging
and time consuming.
4. Conclusions and Summary

Given the challenges associated with predictive spin-state energetics using widely
employed electronic structure methods (e.g., density functional theory), we have investigated
alternative approaches to assigning the ground-state spin of experimentally characterized
transition metal complexes. For a small set of mononuclear octahedral iron complexes in the
spectrochemical series, we observed that metal-ligand bond lengths were both less sensitive to
method choice than spin state energetics and also distinguishable between spin states. These
observations motivated a quantitative assessment of the degree to which experimental metal—
ligand bond lengths could be used for spin-state classification. From a database of
experimentally characterized structures, we curated a data set of over 3600 unique, structurally
characterized Fe(II)/Fe(IIl) mononuclear octahedral complexes. Analysis of metal-ligand bond
lengths in subsets of the data suggested trends in distance distributions that could sometimes be
used to assign ground-state spin. Nevertheless, intermediate bond lengths for many complexes

indicated limits to purely heuristic, distance-cutoff based spin-state assignment.

29



To generalize our approach, we employed an ANN trained on hybrid DFT data to predict
spin-state dependent metal-ligand bond lengths. On a 2,037 complex subset of Fe(Il)/Fe(III)
structures compatible with the ANN, this approach led to spin-state assignments in 80-90% of all
complexes. We showed how even when ANN and experimental metal-ligand bond lengths
differed slightly, the use of proximity to one of the two predictions enabled confident spin-state
assignment. Confident ANN ground-state spin assignments were obtained even when bond
distances were paradoxical in comparison to heuristic distance cutoffs. These ANN-classified
spin states were corroborated by available experimental characterization from the literature. In a
representative case for which we had prior hybrid DFT energetics and ANN energetic
predictions, we showed that this bond-length classification approach reversed the ground-state
spin assignment in improved agreement with experiment. To generalize the approach beyond the
presently ANN-compatible subset, necessary next steps would be to broaden the ANN’s training
data and assess its ability to predict spin-state dependent bond lengths in asymmetric complexes.

To develop a quantitative measure of the promise of our ANN classification approach, we
screened the unique complex data set with sentiment analysis to extract known Fe(Il) SCO
complexes for which multiple spin states had been structurally characterized. Over these 46 SCO
complexes, the bond-length-based ANN spin-state classification correctly assigned low-T and
high-T XRD spin states in over 95% of cases.

In brief, the chief insights and conclusions from this study were:

* Relative bond length is a valuable measure that enables distinguishing of spin-state-
dependent metal-ligand chemical bonding.
* An ANN we have trained to predict DFT-level metal-ligand bond lengths can distinguish

differences in bond length in differing spin states from experimental structures where any
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heuristic rules would fail.

*  Our ANN succeeds because the RAC featurization it has learned encodes key aspects of
non-local ligand chemistry (i.e., beyond the metal and its direct coordinating atoms).

* This structure-based approach improved upon DFT-energetics-assigned ground states and
correctly predicted experimental spin states mined from the literature.

* In a set of all text-mined Fe(Il) SCO complexes, we correctly assigned 96% of spin
states.

Thus, our bond-length-based ANN classification approach represents a promising
complement to energy-based spin-state assignment from DFT at the reduced cost of ANN model
evaluation. By combining bond-length ML models with energetic models or DFT predictions, we
envision improved robustness in high-throughput computational screening of challenging

materials spaces.
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