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Abstract

We introduce two-stage distributionally robust disjunctive programs (TSDR-DPs) with disjunctive

constraints in both stages and a general ambiguity set for the probability distributions. The TSDR-

DPs subsume various classes of two-stage distributionally robust programs where the second stage

problems are non-convex programs (such as mixed binary programs, semi-continuous program,

nonconvex quadratic programs, separable non-linear programs, etc.). TSDR-DP is an optimiza-

tion model in which the degree of risk aversion can be chosen by decision makers. It generalizes

two-stage stochastic disjunctive program (risk-neutral) and two-stage robust disjunctive program

(most-conservative). To our knowledge, the foregoing special cases of TSDR-DPs have not been

studied until now. In this paper, we develop decomposition algorithms, which utilize Balas’ linear

programming equivalent for deterministic disjunctive programs or his sequential convexification ap-

proach within L-shaped method, to solve TSDR-DPs. We present sufficient conditions under which

our algorithms are finitely convergent. These algorithms generalize the distributionally robust inte-

ger L-shaped algorithm of Bansal et al. (SIAM J. on Optimization 28: 2360-2388, 2018) for TSDR

mixed binary programs, a subclass of TSDR-DPs. Furthermore, we formulate a semi-continuous

program (SCP) as a disjunctive program and use our results for TSDR-DPs to solve general two-

stage distributionally robust SCPs (TSDR-SCPs) and TSDR-SCP having semi-continuous inflow

set in the second stage.
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1. Introduction

Disjunctive programming (DP) is a well-known area in optimization where a linear programming

problem has disjunctive constraints, i.e. linear constraints with “or” (∨, disjunctive) operations.

More specifically, DP optimizes over a union of polyhedra Ri = {z ∈ Rn+ : Eiz ≥ f i}, denoted

by R := ∪iRi = {z ∈ Rn+ : ∨i(Eiz ≥ f i)}. In this paper, we introduce two-stage distributionally

robust disjunctive programs (TSDR-DPs) where both the first and second stages have disjunctive

constraints, and the random parameters in the second stage follow the worst-case distribution

belonging to an ambiguity set of probability distributions. We write a TSDR-DP as follows:

min

{
cTx+ max

P∈P
EP [Qω(x)] :

∨
s∈S

(Asx ≥ bs), x ∈ {0, 1}p
}
,

where |S| is finite, a random vector associated to uncertain data parameters is defined by probability

distribution P ∈ P (a set of distributions) with support Ω, and for any scenario ω ∈ Ω and a finite

set H,

Qω(x) := min

{
gTω yω : Wωyω ≥ rω − Tωx,

∨
h∈H

(
Dh
ω,1yω ≥ dhω,0 −D

h
ω,2x

)
, yω ∈ Rq+

}
.

Here, the parameters c ∈ Rp, As ∈ Rm1×p, bs ∈ Rm1 for s ∈ S, and for each ω ∈ Ω, gω ∈ Rq,
Wω ∈ Rm2×q, Tω ∈ Rm2×p, and rω ∈ Rm2 . Likewise, Dh

ω,1, D
h
ω,2, and dhω,0 are real matrices/vectors

of appropriate dimensions. Note that the parameters of the first stage disjunctive constraints are

deterministic, and therefore, we reformulate the first stage feasible region, i.e. {x ∈ {0, 1}p : x ∈∨
s∈S(Asx ≥ bs)} using binary variables with linear constraints (Nemhauser and Wolsey, 1988):

Asx ≥ bs −M(1− χs)1, s ∈ S, (1a)∑
s∈S

χs = 1, (1b)

x ∈ {0, 1}p, χs ∈ {0, 1}, s ∈ S, (1c)

where M is a constant and 1 is a vector of all ones. The constant M is selected such that Asx ≥
bs −M1 for all x ∈ {0, 1}p and s ∈ S. This formulation, defined by (1a)-(1c), has only binary

variables which in a compact form can be written as {x ∈ {0, 1}p : Ax ≥ b} where x = (x, {χs}s∈S),

A ∈ Rm1×p, and b ∈ Rm1 . Note that this reformulation has m1 = m1×|S|+1 linear constraints and

p = p + |S| binary variables, in comparison to p binary variables and |S| disjunctive constraints,

each defined by m1 linear constraints, in the original formulation.

In light of the above reformulation, in the rest of the paper, we utilize the following definition
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of the TSDR-DP (without loss of generality):

min

{
cTx+ max

P∈P
EP [Qω(x)] : Ax ≥ b, x ∈ {0, 1}p

}
, (2)

where

Qω(x) = min gTω yω (3a)

s.t. Wωyω ≥ rω − Tωx (3b)∨
h∈H

(
Dh
ω,1yω ≥ dhω,0 −Dh

ω,2x
)

(3c)

yω ∈ Rq+, (3d)

for ω ∈ Ω, c ∈ Rp, and Tω ∈ Rm2×p, ω ∈ Ω. The formulation defined by (3), constraint (3c), the

function Qω(x), and the set of distributions P are referred to as the second-stage subproblem, the

disjunctive constraint in the disjunctive normal form, the recourse function, and the ambiguity set,

respectively. In this paper, we also consider TSDR-DPs where the disjunctive constraint in the

second stage are defined in conjunctive normal form, i.e., for ω ∈ Ω

Qω(x) = min gTω yω (4a)

s.t. Wωyω ≥ rω − Tωx (4b)

m̄2∧
j=1

 ∨
i∈Hj

ηiω,1yω ≥ ηiω,0 − ηiω,2x

 (4c)

yω ∈ Rq+, (4d)

where ∧ denotes “and” or conjunction operation, m̄2 and |Hj | for all j are finite, and ηiω,1 ∈
Rq, ηiω,0 ∈ R, and ηiω,2 ∈ Rp. Observe that, since the logical operations ∨ (disjunction) and ∧
(conjunction) obey the distributive law, i.e., (a1 ∧ a2)∨ (b1 ∧ b2) = (a1 ∨ b1)∧ (a1 ∨ b2)∧ (a2 ∨ b1)∧
(a2 ∨ b2), the disjunctive constraint (3c) can also be written in the conjunctive normal form, i.e.,

(4c), where each disjunction j contains exactly one inequality from each system of inequalities in the

corresponding disjunctive constraint, and |Hj | = |H|. Conversely, since (a1 ∨ b1)∧ (a2 ∨ b2) = (a1 ∧
a2)∨(a1∧b2)∨(b1∨a2)∨(b1∨b2), the disjunctive constraint (4c) can also be written in the disjunctive

normal form, i.e., (3c). For example, z ∈ {0, 1}2 = {(z1, z2) : ∧2
i=1 ((zi = 0) ∨ (zi = 1))} = {(z1, z2) :

(z1 = 0, z2 = 0) ∨ (z1 = 0, z2 = 1) ∨ (z1 = 1, z2 = 0) ∨ (z1 = 1, z2 = 1)}.

To study TSDR-DPs, we assume that

1. X := {x ∈ {0, 1}p : Ax ≥ b} is non-empty.

2. Kω(x) := {yω : (3b)-(3d) hold} is non-empty and Qω(x) > −∞ for all x ∈ X and ω ∈ Ω

(relatively complete recourse).
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3. Each probability distribution P ∈ P has finite support Ω, i.e. |Ω| is finite.

4. There exists an algorithm that provides a probability distribution P ∈ P, i.e., {pω}ω∈Ω where

pω is the probability of occurrence of scenario ω ∈ Ω, by solving the optimization problem:

Q(x) := max
P∈P

EP [Qω(x)] (5)

for a given x ∈ X.

We refer to the optimization problem (5) as the distribution separation problem corresponding to an

ambiguity set, and the algorithm to solve this problem is referred to as the distribution separation

algorithm.

In the literature, the ambiguity set has been defined in various different ways such as using linear

constraints on the first two moments of the distribution (Bertsimas and Popescu, 2005; Dupacová,

1987; Prékopa, 1995; Scarf, 1958), conic constraints to describe the set of distributions with moments

(Bertsimas et al., 2010; Delage and Ye, 2010), measure bounds and general moment constraints

(Shapiro and Ahmed, 2004), Kantorovich distance or Wasserstein metric (Pflug et al., 2012; Pflug

and Wozabal, 2007; Wozabal, 2012), ζ-structure metrics (Zhao and Guan, 2015), φ-divergences

such as χ2 distance and Kullback-Leibler divergence (Ben-Tal et al., 2012; Calafiore, 2007; Jiang

and Guan, 2015; Love and Bayraksan, 2016; Wang et al., 2016; Yankolu and den Hertog, 2012), and

Prokhorov metrics (Erdogan and Iyengar, 2006). Readers can refer to Hanasusanto et al. (2015);

Shapiro (2018) and references therein for literature review on the origin of the distributionally robust

optimization framework (Scarf, 1958). In this paper, we consider a general class of ambiguity sets in

our decomposition algorithms for solving TSDR-DPs. We show that the developed decomposition

algorithms identify an optimal solution of TSDR-DPs. Additionally, we demonstrate that these

algorithms are finitely convergent if the distribution seperation problem (5) can be solved in finite

iterations. Few examples of such ambiguity sets are: moment matching set (defined using bounds on

moments), Kantorovich set (defined using Wasserstein metric), and total variational set (Rahimian

et al., 2018; Sun and Xu, 2015), defined for a finite sample space Ω. The distribution separation

problem associated with these ambiguity sets are linear programs, which can be solved in finite

iterations. It is important to note that in several cases when the ambiguity set has special structures,

the distribution separation problem (5) has solutions with closed formulation; see Shapiro (2017,

2018) and references therein. Therefore, selecting such a structured ambiguity set will further

benefit our algorithms.

It is important to note that the class of TSDR-DPs subsumes classes of two-stage distributionally

robust programs where the second stage is a non-convex program such as mixed binary programs,

semi-continuous program, nonconvex quadratic programs, separable non-linear programs, reverse

convex programs (DPs with infinitely many terms), etc. Refer to Balas (1974, 1998) for details. To

our knowledge, the TSDR-DP, in its general form, has not been studied before. In this paper, we

develop decomposition algorithms, which utilize linear programming equivalent for deterministic
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disjunctive programs or sequential convexification approach of Balas (1979, 1998) and distribution

separation algorithms within L-shaped method, to solve TSDR-DPs. We present sufficient condi-

tions under which our algorithms are finitely convergent. Furthermore, we showcase the significance

of studying TSDR-DPs by introducing two-stage distributionally robust semi-continuous programs

(TSDR-SCPs). We write a DP equivalent of a semi-continuous program (SCP) which is a linear

program with semi-continuity restrictions on some continuous variables, i.e. a variable belongs to a

set of the form [0, l]∪ [l̄, ū] where 0 ≤ l ≤ l̄ ≤ ū. We use our results for TSDR-DPs to solve general

TSDR-SCPs and TSDR-SCP having semi-continuous inflow set (Angulo et al., 2013) in the second

stage. Note that by setting l = l̄, the semi-continuous variable becomes continuous and by setting

l = 0 and l̄ = ū = 1, the semi-continuous variable becomes binary. Therefore, two-stage distribu-

tionally robust mixed binary programs (TSDR-MBPs) with binary variables in the first stage and

mixed binary programs in the second stage are special cases of TSDR-SCPs or TSDR-DPs.

1.1 Motivation for studying TSDR-DPs

The main motivation to study TSDR-DPs are as follows: (1) their application in formulating var-

ious applied optimization problems using disjunctive constraints with uncertain data-parameters,

and (2) they generalize various well-known optimization modeling frameworks. More specifically,

deterministic DPs have been utilized to solve problems arising in wide range of applications. This

includes power systems (Wood et al., 2013), transportation (Gunluk et al., 2007), synthesis of

chemical process systems (Trkay and Grossmann, 1996; Grossmann et al., 1999), network design

problems (Bertsekas and Gallager, 1992), and many more. Therefore, the results presented for

TSDR-DPs can also solve two-stage stochastic (risk-neutral), robust, or distributionally robust vari-

ants of these applied optimization problems. Furthermore, in addition to two-stage distributionally

robust programs where the second stage is a non-convex program such as mixed binary programs,

semi-continuous program, nonconvex quadratic programs, separable non-linear programs, reverse

convex programs, etc., various special cases of TSDR-DPs include:

1) TSDR-MBP: Recently, Bansal et al. (2018a) introduced TSDR-MBP, a special case of TSDR-

DP, and presented a decomposition algorithm which utilizes distribution separation procedure and

parametric cuts within Benders’ algorithm (Benders, 1962) to solve TSDR-MBPs. The authors

referred to this algorithm as distributionally robust integer (DRI) L-shaped algorithm because it

generalizes the integer L-shaped algorithm (Laporte and Louveaux, 1993) developed for a special

case of TSDR-MBP where P is singleton, i.e. two-stage stochastic mixed binary program. The

algorithms and their finite convergence results presented in this paper for TSDR-DPs generalize

the results of Bansal et al. (2018a) for TSDR-MBPs.

2) TSDR Linear Programs: An extensively studied special case of TSDR-DP is the class of TSDR

linear programs (TSDR-LPs), i.e. TSDR-DP where S and H are empty sets and the first stage has

no binary restrictions (Bertsimas et al., 2010; Hanasusanto and Kuhn, 2016; Love and Bayraksan,

2016). More specifically, Bertsimas et al. (2010) considered TSDR-LP where the ambiguity set is
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defined using multivariate distributions with known first and second moments and risk is incorpo-

rated in the model using a convex nondecreasing piecewise linear function on the second stage costs.

They showed that the corresponding problem has semidefinite programming reformulations. Jiang

and Guan (2015) presented a sample average approximation algorithm to solve a special case of

TSDR-MBP with binary variables only in the first stage where the ambiguity set is defined using the

l1-norm on the space of all (continuous and discrete) probability distributions. Recently, Love and

Bayraksan (2016) developed a decomposition algorithm for solving TSDR-LP where the ambiguity

set is defined using φ-divergence. Hanasusanto and Kuhn (2016) provided a conic programming

reformulations for TSDR-LP where the ambiguity set comprises of a Wasserstein ball centered at

a discrete distribution. Bansal et al. (2018a) also developed a finitely convergent decomposition

algorithm for TSDR-LP where the ambiguity set P is defined by a polytope.

3) Two-Stage Stochastic Mixed Binary Programs: Another well-studied special case of TSDR-

DP is the class of two-stage stochastic mixed binary programs (TSS-MBPs) (Carøe and Tind, 1997),

i.e. TSDR-DP with mixed binary programs in the second stage, only binary variables in the first

stage, and |P| = 1. Various studies (Bansal et al., 2018b; Gade et al., 2014; Laporte and Louveaux,

1993; Ntaimo, 2009; Sen and Higle, 2005; Sherali and Fraticelli, 2002) have utilized globally valid

parametric cuts in (x, yω) space to solve the subproblems. Readers can refer to Kücükyavuz and

Sen (2017) for a comprehensive survey on algorithms for TSS-MBPs.

TSDR-DP is an optimization model in which the degree of risk aversion can be chosen by

decision makers. It generalizes: (a) Two-stage stochastic disjunctive program (TSS-DP), which is

TSDR-DP with a singleton P = {P0}; and (b) Two-stage robust disjunctive program (TSR-DP),

i.e. TSDR-DP with a set P that consists of all probability distributions supported on Ω. In the

literature, the TSS-DP and TSR-DP, in their general forms, have not been studied.

Remark 1. Note that the TSDR-DP is at least as hard as the TSS-MBP (a special case of TSDR-

MBP and TSDR-DP) which is an #P-hard problem (Dyer and Stougie, 2006).

Remark 2. In another direction, Bansal and Zhang (2018) introduced two-stage distributionally

robust p-order conic integer programs (TSDR-CMIPs) in which the first stage has only integer

variables and the second-stage problems have p-order conic constraints along with integer variables.

They introduced structured CMIPs in the second stage of TSDR-CMIPs and provided convex pro-

gramming equivalent for them using parametric inequalities.

1.2 An illustrative example of TSDR-DP

In this section, we provide an example of TSDR-DP, defined by (2)-(3), which we will use to

illustrate reformulations and algorithm presented in this paper for TSDR-DP in the disjunctive

normal form.
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Example 1. Consider the following TSDR-DP defined over sample space Ω := {ω1, ω2, ω3}:

Minimize x1 − x2 − x3 + max
{pω}ω∈Ω∈PE

∑
ω∈Ω

pωQω(x) (6a)

subject to (x1 + x2 ≥ 2) ∨ (−x2 − x3 ≥ 0) (6b)

x1, x2, x3 ∈ {0, 1}, (6c)

where PE =

{
(pω1 , pω2 , pω3) ∈ R3

+ :
∑
ω∈Ω

pω = 1, pω1 − pω2 + pω3 ≥ 0.1

}
,

Qω(x) = Minimize 2y1
ω − y2

ω (7a)

subject to − y1
ω − y2

ω ≥ dω + x1 + x2, (7b)(
y1
ω ≥ 1 + x2

)
∨
(
y2
ω ≥ 2− x1 − x3

)
, (7c)

y1
ω, y

2
ω ∈ R+, (7d)

for ω ∈ Ω, dω1 = −5, dω2 = −6, and dω3 = −4. To demonstrate the nonconvexity of the feasible

region of the second stage problem, i.e., {yω ∈ R2
+ : (7b) − (7d)}, we sketch it for three pairs of

(x, ω); see Figure 1. 
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(0, 3) 

(0, 4) 

(0, 5) 

(1, 2) 

(0, 2) 

(0, 3) 

yω1   
yω1   

(0, 2) 

yω2   

(0, 1) 

(1, 0) (2, 0) (3, 0) (4, 0) (0, 0) 

(a) For 𝑥̅𝑥 = (0,0,0) and 𝜔𝜔 = 𝜔𝜔3 

(2, 1) 

(0, 2) 

(0, 1) 

yω2   

(0, 1) 

(1, 0) (2, 0) (3, 0) (0, 0) 

(c) For 𝑥̅𝑥 = (1,1,0) and 𝜔𝜔 = 𝜔𝜔1 

yω1   (1, 0) (2, 0) (0, 0) 

(b) For 𝑥̅𝑥 = (1,1,0) and 𝜔𝜔 = 𝜔𝜔3 

Figure 1: Feasible region of the second stage problem for given (x, ω), denoted by shaded region.
Note that in Fig. 1(b), yω = (2, 0) is also a feasible solution.
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Similar to (1), the first stage feasible region is reformulated using two additional binary variables

and big-M coefficient, i.e.. M = 2, as follows:

Minimize x1 − x2 − x3 + max
{pω}ω∈Ω∈PE

∑
ω∈Ω

pωQω(x) (8a)

subject to x1 + x2 ≥ 2−M (1− χs1) = 2χs1 , (8b)

− x2 − x3 ≥ −M (1− χs2) = −2 + 2χs2 , (8c)

x := (x1, x2, x3, χs1 , χs2) ∈ {0, 1}5. (8d)

Since the coefficients associated with variables χs1 and χs2 in the second stage subproblem (7) are

zero, Qω(x) is same as Qω(x). Additionally, this example satisfies all assumptions made for TSDR-

DPs, i.e., (a) the set of first stage feasible solutions is non-empty; (b) relatively complete recourse;

(c) |Ω| is finite; and (d) there exists an algorithm to solve the distribution separation problem as it

is a linear problem.

Remark 3. For numerical examples of TSDR-MBP (a special case of TSDR-DP in the conjunctive

normal form), please refer to Bansal et al. (2018a).

1.3 Organization of this paper

In Section 2, we briefly review the results developed in Balas (1979, 1998) and Balas et al. (1993)

for the disjunctive programming problems. In Section 3, we provide a decomposition algorithm to

solve general TSDR-DPs using a linear programming equivalent of Balas (1979, 1998) for DPs. We

present an alternative decomposition algorithm, which utilizes the sequential convexification ap-

proach within L-shaped method, to solve TSDR-DPs with facial DPs and sequentially convexifiable

programs in the second stage. We prove that the foregoing algorithms are finitely convergent. In

Section 4, we study TSDR-SCPs and present linear programming equivalent for the second stage of

TSDR-SCPs and a relaxation of a two-stage distributionally robust semi-continuous network flow

problem. Finally, we provide concluding remarks in Section 5.

2. Necessary Background on Disjunctive Programming

In this section, we briefly review the results developed in Balas (1979, 1998) and Balas et al.

(1993) for disjunctive programming problems to provide the necessary background for the results

in the following sections (readers can also refer to Chapter 10 of Jnger et al. (2009) for details). As

mentioned before, a disjunctive program is a linear program with disjunctive constraints, i.e. linear

inequalities connected by ∨ (“or”, disjunction) logical operations. Given non-empty polyhedra

Ri := {z ∈ Rn+ : Eiz ≥ f i}, i ∈ L, the disjunctive normal form representation for the set
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R = ∪i∈LRi =
{
z ∈ Rn+ : ∨i∈L

(
Eiz ≥ f i

)}
, where

Ei =

(
E1

Ei2

)
and f i =

(
f1

f i2

)
, i ∈ L.

Another way to represent a disjunctive set is using conjunctive normal form, where a set of points

satisfies multiple disjunctive constraints and each disjunction contains exactly one inequality, i.e.,

RCN :=

{
z ∈ Rn+ : E1z ≥ f1,

m∧
j=1

∨
i∈Lj

φ̃iz ≥ φ̃i0

}.
Here, φ̃i ∈ Rn, φ̃i0 ∈ R for all i, and |Lj | is finite for all j. Note that as mentioned in the

previous section, since the logical operations ∨ (disjunction) and ∧ (“and” or conjunction) obey

the distributive law, the set R can also be written in the conjunctive normal form where each

disjunction j contains exactly one inequality from the system Ei2z ≥ f i2, i ∈ L, and |Lj | = |L| for

j = 1, . . . ,m.

Definition 1. A linear programming relaxation of R and RCN has no disjunctive constraint and

is given by R0 := {z ∈ Rn+ : E1z ≥ f1}.

Definition 2. The disjunctive set RCN (or conjunctive normal form of R) is called facial if each

inequality φ̃iz ≥ φ̃i0, i ∈ Lj, j = 1, . . . ,m, defines a face of R0.

Definition 3. An extended formulation of R, denoted by REF := {(z, υ) ∈ Rn+×R
n1
+ : Bzz+Bυυ ≥

β0}, is referred to as a tight extended formulation of R if and only if conv(R) = conv (Projz(REF )).

2.1 Convex hull description of disjunctive programs

Balas (1979, 1998) provided a tight extended formulation for R and the convex hull description

of R in the original space. Theorem 1 provides a tight extended formulation for the convex hull of

the points satisfying disjunctive constraints. Theorem 2 provides the convex hull description of the

union of the polyhedra, ∪i∈LRi, in the original z-space.

Theorem 1 (Balas (1979, 1998)). The closure of convex hull of ∪i∈LRi is the projection of the

following extended formulation (9) onto the z-space:

z =
∑
i∈L

ζi, (9a)

Eiζi ≥ f iζi0, i ∈ L, (9b)∑
i∈L

ζi0 = 1, (9c)

(ζi, ζi0) ≥ 0, i ∈ L. (9d)
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Theorem 2 (Balas (1979, 1998)). Let RTEF be defined by {(z, {ζi, ζi0}i∈L) : (9) hold} and Rhull =

conv(∪i∈LRi) be full dimensional (or has non-empty interior). Then, the projection of RTEF onto

the z-space is given by:

Projz(RTEF ) = {z ∈ Rn+ : αz ≥ β for all (α, β) ∈ C0},

where C0 := {(α, β) ∈ Rn+1 : α = σiEi, β = σif i for some σi ≥ 0, i ∈ L}. The cone of all valid

inequalities for Rhull, denoted by R∗hull, is same as the polyhedral cone C0, i.e.

R∗hull := {(α, β) ∈ Rn+1 : αz ≥ β for all z ∈ Rhull}

= {(α, β) ∈ Rn+1 : α = σiEi, β = σif i for some σi ≥ 0, i ∈ L}.

Moreover, the inequality αz ≥ β defines a facet of Rhull if and only if (α, β) is an extreme ray of

the cone R∗hull.

Letting

W h
ω :=

(
Wω

Dh
ω,1

)
, T hω :=

(
Tω
Dh
ω,2

)
, rhω :=

(
rω
dhω,0

)
,

and Khω(x) := {yω ∈ Rq+ : W h
ω yω ≥ rhω − T hωx} 6= ∅ for (ω, x, h) ∈ (Ω, X,H), we get

Kω(x) =
⋃
h∈H
Khω(x) =

{
yω ∈ Rq+ :

∨
h∈H

(
W h
ω yω ≥ rhω − T hωx

)}
,

where Khω(x), for each (ω, x, h), is a polyhedral set. Also, let XLP := {x ∈ Rp : Ax ≥ b, 0 ≤ xi ≤ 1,

i = 1, . . . , p} andKωLP (x) := {yω ∈ Rq+ : (3b) hold} for (ω, x) ∈ (Ω, X) be the set of feasible solutions

for the linear programming relaxation of the first and second stage problems, respectively. We also

define a deterministic equivalent, also referred to as extensive formulation, of TSDR-DP as follows:

min cTx+ max
P∈P

{
EP
[
gTω yω

]}
(10a)

s.t. Ax ≥ b (10b)∨
h∈H

(
T hωx+W h

ω yω ≥ rhω
)
, ω ∈ Ω (10c)

x ∈ {0, 1}p (10d)

yω ∈ Rq+, ω ∈ Ω. (10e)

Let F := {(x, {yω}ω∈Ω) : (10b) − (10e) hold} be the feasible region of the extensive formulation.
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We define a substructure of F for each ω ∈ Ω:

Fω =

{
(x, yω) ∈ X × Rq+ :

∨
h∈H

(
T hωx+W h

ω yω ≥ rhω
)}

.

Notice that F = ∩ω∈ΩFω.

2.2 Sequential convexification

Balas (1979, 1998) also exhibited a property of disjunctive programs according to which the

convex hull of a set of points satisfying multiple disjunctive constraints, where each disjunction

contains exactly one inequality, can be derived by sequentially generating the convex hull of points

satisfying only one disjunctive constraint. This property is referred to as the sequential convexifica-

tion. A subclass of DPs for which the sequential convexification property holds is called sequentially

convexifiable DPs. Balas (1979, 1998) showed that the so-called facial DPs are sequentially con-

vexifiable (Theorem 3). Interestingly, all pure binary and mixed 0-1 programming problems are

facial DPs, while general mixed (or pure) integer programs are not facial DPs (Balas, 1998; Balas

et al., 1993; Balas and Perregaard, 2002).

Theorem 3 (Balas (1979, 1998)). If RCN is facial then Πm = conv(RCN ), where Π0 := R0 and

Πj = conv

Πj−1 ∩
{
z :

∨
i∈Lj

φ̃iz ≥ φ̃i0
} ,

for j = 1, . . . ,m.

According to Theorem 3, the convex hull of the facial disjunctive set RCN can be obtained in a

sequence of m steps, where at each step the convex hull of points satisfying only one disjunctive

constraints is generated. Later, Balas et al. (1989) extended the sequential convexification property

for a general non-convex set with multiple constraints. They provided the necessary and sufficient

conditions under which reverse convex programs (DPs with infinitely many terms) are sequentially

convexifiable, and present classes of problems, in addition to facial DPs, which always satisfy the

sequential convexification property.

3. Decomposition Algorithms for TSDR-DPs

We present two decomposition algorithms similar to the Benders’ decomposition and L-shaped

method (Van Slyke and Wets, 1969) to solve: (i) General TSDR-DPs (2) by extending the result of

Balas (1979, 1998) for DP (Theorem 1) to get a linear programming equivalent for the second stage

of TSDR-DPs, i.e. Kω(x); and (ii) TSDR-DPs (2) where disjunctive constraints (4c) in the second

stage are sequentially convexifiable. We also provide conditions under which these algorithms are

finitely convergent and illustrate our results for general TSDR-DPs using Example 1.
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3.1 Decomposition algorithm for general TSDR-DPs

In the following theorem, we first extend the result of Theorem 1 (Balas, 1979, 1998) by provid-

ing conditions to get a linear programming equivalent for the second stage disjunctive programs of

the TSDR-DPs, i.e. Kω(x). Thereafter, we utilize this result to develop a decomposition algorithm

for TSDR-DPs.

Theorem 4. For all (x, ω) ∈ (X,Ω), the convex hull of Kω(x) is the projection of Kωtight(x) onto

yω space where

Kωtight(x) :=

{∑
h∈H

ξhω,1 − yω = 0,
∑
h∈H

ξhω,2 = x,

W h
ω ξ

h
ω,1 + T hω ξ

h
ω,2 ≥ rhωξhω,0, h ∈ H,∑

h∈H
ξhω,0 = 1,

yω ∈ Rq+, ξhω,1 ∈ Rq+, ξhω,2 ∈ Rp+, ξhω,0 ∈ R+, h ∈ H
}
.

(11)

Proof. Using Theorem 1, we derive a tight extended formulation for Fω, ω ∈ Ω, which is given by

Fωtight :=

{
yω =

∑
h∈H

ξhω,1, x =
∑
h∈H

ξhω,2,

W h
ω ξ

h
ω,1 + T hω ξ

h
ω,2 ≥ rhωξhω,0, h ∈ H,∑

h∈H
ξhω,0 = 1,

x ∈ X, yω ∈ Rq+, ξhω,1 ∈ Rq+, ξhω,2 ∈ Rp+, ξhω,0 ∈ R+, h ∈ H
}
.

(12)

Therefore, conv(Fω) = conv(Projx,yω(Fωtight)) for ω ∈ Ω. Let x̂ ∈ X and ȳω ∈ Kω(x̂). It is easy

to see that (x̂, ȳω) ∈ Fω. Likewise for ŷω ∈ conv(Kω(x̂)), (x̂, ŷω) ∈ conv(Fω) which implies that

there exists ξ̂ω ∈ R(q+p+1)|H|
+ such that (x̂, ŷω, ξ̂ω) ∈ Fωtight. Since Kωtight(x̂) = Projx=x̂,yω

(
Fωtight

)
,(

ŷω, ξ̂ω

)
∈ Kωtight(x̂). It implies that conv(Kω(x)) ⊆ Projyω(Kωtight(x)) for all x ∈ X.

Next, we consider the case when (ŷω, ξ̂ω) ∈ Kωtight(x̂) for x̂ ∈ X, which also means that

(x̂, ŷω, ξ̂ω) ∈ Fωtight. Since conv(Fω) = Projx,yω(Fωtight), (x̂, ŷω) can be written as a convex com-

bination of extreme points of conv(Fω). More specifically, ŷω =
∑

i λiỹω,i such that 0 ≤ λi ≤ 1,∑
i λi = 1, and (x̂, ỹω,i) is an extreme point of conv(Fω). Now, for each x̂ ∈ X, i.e. x̂ ∈ {0, 1}p,

x = x̂ defines a face of conv(Fω) and because of the relatively complete recourse assumption, each

extreme point of conv(Fω)∩{x = x̂} has yω component belonging to Kω(x̂). Therefore, ỹω,i ∈ Kω(x̂)

or ŷω ∈ conv(Kω(x̂)). Hence, conv(Kω(x)) ⊇ Projyω(Kωtight(x)) for all x ∈ X.
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Example 1 (continued). Let X = {x : (8b)− (8d) hold}, Kω(x) = {yω : (7b)− (7d) hold}, and

Fω =

{
(x, yω) ∈ X × R2

+ : − x1 − x2 − y1
ω − y2

ω ≥ dω,(
−x2 + y1

ω ≥ 1
)
∨
(
x1 + x3 + y2

ω ≥ 2
)}

for ω ∈ Ω. Using Theorems 1 and 4, the convex hull of Kω(x) for all (x,Ω) ∈ (X,Ω) is given by

the projection of Kωtight(x) onto
(
y1
ω, y

2
ω

)
space, where

Kωtight(x) =

{
(y1
ω, y

2
ω, ξ

1
ω,1, ξ

2
ω,1, ξ

1
ω,2, ξ

2
ω,2, ξ

1
ω,0, ξ

2
ω,0) ∈ R+ × R+ × R2

+ × R2
+ × R3

+ × R3
+ × R+ × R+ :

ξ1
ω,1,i + ξ2

ω,1,i − yiω = 0, i = 1, 2, ξ1
ω,2,j + ξ2

ω,2,j = xj , j = 1, 2, 3,

ξ1
ω,1,1 − ξ1

ω,2,2 ≥ ξ1
ω,0, ξ2

ω,1,2 + ξ2
ω,2,1 + ξ2

ω,2,3 ≥ 2ξ2
ω,0, ξ1

ω,0 + ξ2
ω,0 = 1,

− ξhω,1,1 − ξhω,1,2 − ξhω,2,1 − ξhω,2,2 ≥ dωξhω,0, h = 1, 2

}
.

Decomposition algorithm for TSDR-DPs. The pseudocode of our algorithm which utilizes

Theorem 4 to solve general TSDR-DPs (2) is given by Algorithm 1. Let LB and UB be the lower

and upper bound, respectively, on the optimal solution value of a given TSDR-DP. We denote

the following linear programming equivalent of the second stage disjunctive program (3a)-(3d) by

SLP(ω, x) for (ω, x) ∈ (Ω, X):

Qωtight(x) := min
{
gTω yω : yω ∈ Projyω(Kωtight(x))

}
, (13)

where Kωtight(x) is defined by (11). Also, let π∗ω(x) be the optimal dual multipliers obtained by

solving the linear program SLP(ω, x) for a given (ω, x) ∈ (Ω, X), and Kωtight(x), defined by (11), be

written in a compact form as{
Nω,2yω +

∑
h∈H

(
Nh
ω,3ξ

h
ω,1 +Nh

ω,4ξ
h
ω,2 +Nh

ω,5ξ
h
ω,0

)
≥ ∆ω −Nω,1x

yω ∈ Rq+, ξhω,1 ∈ Rq+, ξhω,2 ∈ Rp+, ξhω,0 ∈ R+, h ∈ H
}
,

where Nω,1, Nω,2, Nh
ω,3, Nh

ω,4, and Nh
ω,5 are matrices/vectors associated with x, yω, ξhω,1, ξhω,2,

and ξhω,0, respectively, in the system of (in)equalities (11), and ∆ω = [0, 0, . . . , 0, 1]T . Then, the

corresponding optimality cut, OCS(π∗ω,0(x), {pω}ω∈Ω), is

∑
ω∈Ω

pω

{
π∗ω,0(x)T (∆ω −Nω,1x)

}
≤ θ, (14)

where {pω}ω∈Ω is obtained by solving the distribution separation problem associated to the am-

biguity set P, i.e. maxP∈P
{
EP [Qω(x)] = maxP∈P EP [Qωtight(x)]

}
. These cuts help in deriving a
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lower bounding approximation of the first stage problem (2), i.e.

min cTx+ θ

s.t. x ∈ X∑
ω∈Ω

pkω

(
π∗ω,0(xk)T (∆ω −Nω,1x)

)
≤ θ, for k = 1, . . . , l,

(15)

where xk ∈ X for k = 1 . . . , l and {pkω}ω∈Ω = arg maxP∈P EP [Qωtight(xk)]. We denote problem (15)

by Ml for l ∈ Z+ and refer to it as the master problem at iteration l. Note that M0 is the master

problem without any optimality cut.

Algorithm 1 Decomposition Algorithm for TSDR-DPs in the Disjunctive Normal Form (2)

1: Initialization: l← 1, LB ← −∞, UB ←∞. Assume x1 ∈ X.
2: while UB − LB > ε do . ε is a pre-specified tolerance

3: for ω ∈ Ω do
4: Solve linear program SLP(ω, xl) and store the following:
5: y∗ω(xl)← optimal solution; Qωtight(xl)← optimal solution value;

6: π∗ω(xl)← optimal dual multipliers;
7: end for
8: Solve distribution separation problem using Qωtight(xl), ω ∈ Ω, to get {plω}ω∈Ω;

9: if UB > cTxl +
∑

ω∈Ω p
l
ωQωtight(xl) then

10: UB ← cTxl +
∑

ω∈Ω p
l
ωQωtight(xl);

11: if UB ≤ LB + ε then
12: Go to Line 21;
13: end if
14: end if
15: Derive optimality cut OCS(π∗ω,0(xl), {plω}ω∈Ω) using (14);

16: Add OCS(π∗ω,0(xl), {plω}ω∈Ω) to Ml−1 to get Ml;
17: Solve master problemMl (a mixed binary program) using specialized lift-and-project algo-

rithm of Balas et al. (1993);
18: (xl+1, θl+1)← optimal solution of Ml; LB ← optimal solution value of Ml;
19: l← l + 1;
20: end while
21: return (xl, {y∗ω(xl)}ω∈Ω),UB

We initialize Algorithm 1 by setting LB to negative infinity, UB to positive infinity, iteration

counter l to 1, and selecting a first stage feasible solution x1 ∈ X (Line 1). For each xl and ω ∈ Ω,

we solve linear program SLP(ω, xl) to get optimal solution y∗ω(xl), the optimal objective value

Qωtight(xl) := gTω y
∗
ω(xl), and the optimal dual multipliers π∗ω(xl) (Lines 3-7). In Line 8, we solve

distribution separation problem for x = xl to get {plω}ω∈Ω. This provides us a feasible solution

(xl, y∗ω1
(xl), . . . , y∗ω|Ω|(x

l)) for the original problem as y∗ω(xl) ∈ Kω(xl) for all ω ∈ Ω, and a better

upper bound UB if the solution value corresponding to this solution is smaller than the existing

best known upper bound (Lines 9-13). In Lines 15-16, we then augment the master problemMl−1

to get Ml by adding optimality cut OCS(π∗ω,0(xl), {plω}ω∈Ω), i.e. (14), to Ml−1.
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Notice that Ml is a mixed binary program where θ ∈ R is the continuous variable. We utilize

specialized lift-and-project algorithm of Balas et al. (1993) to solve Ml which terminates after

a finite number of iterations (see Page 227 of Conforti et al. (2014)). Additionally, since it is a

lower bounding approximation of (2), we use the optimal solution value associated with Ml to

update LB . Observe that Ml−1 is a relaxation of Ml for each l ≥ 1 which means that after every

iteration UB − LB either decreases or remains same as in previous iteration. This is because UB

and LB are non-increasing and non-decreasing, respectively, with respect to the iterations. Hence,

whenever this difference becomes zero or reaches a pre-specified tolerance ε (Line 2 or Lines 10-12),

we terminate the algorithm after returning the optimal solution (xl, {y∗ω(xl)}ω∈Ω) and the optimal

objective value UB .

Theorem 5 (Optimality Result). Algorithm 1 provides an optimal solution for the TSDR-DP (2).

Proof. Let (x∗, {y∗ω(x∗)}ω∈Ω) be an optimal solution of a given TSDR-DP (2) instance, (xl,

{y∗ω(xl)}ω∈Ω) ∈ F be a feasible solution utilized in iteration l of Algorithm 1, and (xl+1, θl+1) be

the solution obtained after solving master problem Ml in the iteration l. Observe that the upper

bound UB ≤ cTxl +
∑

ω∈Ω p
l
ωg

T
ω y
∗
ω(xl) as (xl, {y∗ω(xl)}ω∈Ω) ∈ F . Now, there are two possibilities:

(i) xl+1 = xl or (ii) xl+1 6= xl. In the first case, i.e., xl+1 = xl, we obtain θl+1 ≥
∑

ω∈Ω p
l
ωg

T
ω y
∗
ω(xl)

by substituting x = xl in the optimality cut OCS(π∗ω,0(xl), {plω}ω∈Ω), i.e. Inequality (14). Since

θl+1 is a lower bound approximation of the recourse function,

θl+1 ≤ max
P∈P

{
EP
[
Qω(xl)

]}
= plωg

T
ω y
∗
ω(xl)

as {plω}ω∈Ω is the optimal solution of the distribution separation problem associated with P and

first stage feasible solution xl. This implies θl+1 = plωg
T
ω y
∗
ω(xl) and LB = cTxl+θl+1 is equal to UB.

Since the termination condition, UB − LB = 0, has been satisfied, the algorithm will terminate

at this iteration after returning the optimal solution (xl, {y∗ω(xl)}ω∈Ω). In the second case, i.e.

xl+1 6= xl, another iteration of “while” loop is performed and these iterations are repeated at most

|X| times (which is finite), until (x∗, {y∗ω(x∗)}ω∈Ω) = (xk, {y∗ω(xk)}ω∈Ω) for some k ≥ l + 1.

Theorem 6 (Convergence Result). Algorithm 1 converges in finitely many iterations if the distri-

bution separation algorithm associated to the ambiguity set P for solving (5) is finitely convergent.

Proof. We first prove that the number of iterations, l, is bounded from above by a finite number. In

Algorithm 1, at the end of each iteration l, either xl+1 6= xl, or xl+1 = xl. Since |X| is finite because

all the variables in the first stage of TSDR-DP are binary, the case xl+1 6= xl can happen only finite

number of times. On the other hand, in case xl+1 = xl, we obtain θl+1 ≥
∑

ω∈Ω p
l
ωg

T
ω y
∗
ω(xl) by

substituting x = xl in the optimality cut OCS(π∗ω,0(xl), {plω}ω∈Ω), i.e. (14). Since θl+1 is a lower

bound approximation of the recourse function, θl+1 ≤ maxP∈P
{
EP
[
Qω(xl)

]}
= plωg

T
ω y
∗
ω(xl) as

{plω}ω∈Ω is the optimal solution of the distribution separation problem associated with P and first
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stage feasible solution xl. This implies θl+1 = plωg
T
ω y
∗
ω(xl) and LB = cTxl + θl+1 is equal to UB.

Since termination condition, UB−LB = 0, has been satisfied, the algorithm will terminate at this

iteration after returning the optimal solution (xl, {y∗ω(xl)}ω∈Ω). In a nutshell, we get l ≤ |X| + 1

which means the “while” loop, i.e. Lines 2-20, is repeated finite number of times.

Next, we ensure that Lines 3-19 in Algorithm 1 are performed in finite iterations. In these lines,

for a given xl ∈ X, we solve |Ω| number of linear programs, i.e. SLP(ω, xl) for all ω ∈ Ω, distribution

separation problem associated with the ambiguity set P, and a master problem Ml. Since |X| is

finite,Ml is a mixed binary program (which can be solved in finite iterations using specialized lift-

and-project algorithm of Balas et al. (1993)), and the distribution separation algorithm is finitely

convergent (because of our assumption), it is clear that Lines 3-19 are performed in finite iterations.

This implies that the overall algorithm also terminates in finitely many iterations. This completes

the proof.

Example 1 (continued). We illustrate an iteration of Algorithm 1 to solve this example. We

initialize the algorithm by solving a binary program,

min x1 − x2 − x3

s.t. x1 + x2 − 2χs1 ≥ 0,

− x2 − x3 − 2χs2 ≥ −2,

x1, x2, x3, χs1 , χs2 ∈ {0, 1},

to get x1 = (x1, x2, x3, χs1 , χs2) = (1, 1, 1, 1, 0), and by setting UB =∞ and LB = −∞. Then, we

solve the second stage problems for x = x1 and ω ∈ Ω, and store

y∗ω1
(x1) = (0, 3), ξ2

ω1,1,2 = 3, ξ2
ω1,2,j = 1, j = 1, 2, 3, ξ2

ω1,0 = 1, Qω1(x1) = Qω1
tight(x

1) = −3,

y∗ω2
(x1) = (0, 4), ξ2

ω2,1,2 = 4, ξ2
ω2,2,j = 1, j = 1, 2, 3, ξ2

ω2,0 = 1, Qω2(x1) = Qω2
tight(x

1) = −4,

y∗ω3
(x1) = (0, 2), ξ2

ω3,1,2 = 2, ξ2
ω3,2,j = 1, j = 1, 2, 3, ξ2

ω3,0 = 1, Qω3(x1) = Qω3
tight(x

1) = −2,

and ξ1
ω,1,i = ξ2

ω,1,1 = ξ1
ω,2,j = ξ1

ω,0 = 0 for i ∈ {1, 2}, j ∈ {1, 2, 3}, and ω ∈ Ω. Using Qω(x1), ω ∈ Ω,

we also solve distribution separation problem,

max
{
− 3pω1 − 4pω2 − 2pω3 : (pω1 , pω2 , pω3) ∈ PE

}
,

and get optimal solution, i.e., p1
ω1

= p1
ω2

= 0 and p1
ω3

= 1. This also leads to an improved upper

bound UB = (1− 1− 1 + (−2)) = −3.

Next, we derive an optimality cut OCS(π∗ω,0(x1), {p1
ω}ω∈Ω) as follows. After solving the second

stage problems for x = x1, we store optimal dual multipliers π∗ω,0(x1), ω ∈ Ω and utilize them to
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derive the optimality cut (14),

x1 + x2 − 4 ≤ θ.

This cut is then added to M0 to get M1, i.e.,

min
{
x1 − x2 − x3 + θ : x1 + x2 − 2χs1 ≥ 0, −x2 − x3 − 2χs2 ≥ −2,

x1 + x2 − 4 ≤ θ, x1, x2, x3, χs1 , χs2 ∈ {0, 1}
}
.

We solve M1 and update LB to -4. We repeat these iterations until the termination condition

(LB = UB) is satisfied. Note that the optimal solution of this example is (x1, x2, x3) = (0, 0, 0) and

optimal solution value is -4.

3.2 Decomposition algorithm for TSDR-DP with sequentially convexifiable DPs in the second stage

We present a decomposition algorithm to solve TSDR-DPs with sequentially convexifiable DPs

in the second stage, which we denote by TSDR-SC-DPs, by harnessing the benefits of sequential

convexification property within L-shaped method. As mentioned before, Balas (1979, 1998) intro-

duced this property for a subclass of DPs, referred to as sequentially convexifiable DPs, according

to which the convex hull of a set of points satisfying multiple disjunctive constraints, where each

disjunction contains exactly one inequality, can be derived by sequentially generating the convex

hull of points satisfying only one disjunctive constraint. Balas (1979, 1998) showed that the facial

DPs are sequentially convexifiable and later, Balas et al. (1989) extended the sequential convexifi-

cation property for a general non-convex set with multiple constraints. They provide the necessary

and sufficient conditions under which reverse convex programs (DPs with infinitely many terms)

are sequentially convexifiable and present classes of problems, in addition to the facial DPs, which

always satisfy the sequential convexification property. In light of this discussion, it is clear that our

algorithm for TSDR-SC-DPs will also solve various subclasses of TSDR-DPs.

The pseudocode of our decomposition algorithm for TSDR-SC-DP is presented in Algorithm 2. It

is important to note that Algorithm 2 is similar in structure to the distributionally robust integer L-

shaped algorithm of Bansal et al. (2018a) for TSDR-MBP (a special case of TSDR-SC-DP), except

how parametric cuts are developed to solve the subproblems to optimality (discussed in Section

3.2.1). However for the sake of completeness of this paper, we explain all steps of Algorithm 2:

Let the lower bound and upper bound on the optimal objective value of a given TSDR-SC-DP

instances be denoted by LB and UB , respectively. We define subproblem Sω(x) for (ω, x) ∈ (Ω, X)
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as follows:

Qs
ω(x) := min gTω yω (16a)

s.t. Wωyω ≥ rω − Tωx (16b)

αtωyω ≥ βtω − ψtωx, t = 1, . . . , τω (16c)

yω ∈ Rq+, (16d)

where αtω ∈ Qq, ψtω ∈ Qp, and βtω ∈ Q are the coefficients associated with the parametric inequali-

ties. We will discuss how these parametric inequalities, referred to as the parametric lift-and-project

cuts, are developed in succession using sequential convexification approach of Balas (1979, 1998) in

Section 3.2.1. Let π∗ω(x) = (π∗ω,0(x), π∗ω,1(x), . . . , π∗ω,τω(x))T be the optimal dual multipliers obtained

by solving Sω(x) for a given x ∈ X and ω ∈ Ω. Here, π∗ω,0(x) ∈ Rm2 corresponds to constraints

(16b) and π∗ω,t(x) ∈ R corresponds to constraint (16c) for t = 1, . . . , τ(ω).

Algorithm 2 Decomposition Algorithm for TSDR-SC-DPs using Parametric Lift-and-Project Cuts

1: Initialization: l← 1, LB ← −∞, UB ←∞, τω ← 0 for all ω ∈ Ω. Assume x1 ∈ X.
2: while UB − LB > ε do . ε is a pre-specified tolerance

3: for ω ∈ Ω do
4: Solve linear program Sω(xl);
5: y∗ω(xl)← optimal solution; Qs

ω(xl)← optimal solution value;
6: end for
7: if y∗ω(xl) /∈ Kω(xl) for some ω ∈ Ω then
8: for ω ∈ Ω where y∗ω(xl) /∈ Kω(xl) do . Add parametric inequalities

9: Add a parametric cut to Sω(x) as explained in Section 3.2.1;
10: Set τω ← τω + 1 and solve linear program Sω(xl);
11: y∗ω(xl)← optimal solution; Qs

ω(xl)← optimal solution value;
12: end for
13: end if
14: Solve distribution separation problem using Qs

ω(xl), ω ∈ Ω, to get {plω}ω∈Ω;
15: if y∗ω(xl) ∈ Kω(xl) for all ω ∈ Ω and UB > cTxl +

∑
ω∈Ω p

l
ωQs

ω(xl) then
16: UB ← cTxl +

∑
ω∈Ω p

l
ωQs

ω(xl);
17: if UB ≤ LB + ε then
18: Go to Line 28;
19: end if
20: end if
21: π∗ω(xl)← optimal dual multipliers obtained by solving Sω(xl) for all ω ∈ Ω;
22: Derive optimality cut OC(π∗ω(xl), {plω}ω∈Ω) using (17);
23: Add OC(π∗ω(xl), {plω}ω∈Ω) to Ml−1 to get Ml;
24: Solve master problemMl using specialized lift-and-project algorithm of Balas et al. (1993);
25: (xl+1, θl+1)← optimal solution of Ml; LB ← optimal solution value of Ml;
26: Set l← l + 1;
27: end while
28: return (xl, {y∗ω(xl)}ω∈Ω),UB

We derive a lower bounding approximation of the first stage problem (2) using the following
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optimality cut, OC(π∗ω(x), {pω}ω∈Ω):

∑
ω∈Ω

pω

{
π∗ω,0(x)T (rω − Tωx) +

τω∑
t=1

π∗ω,t(x)
(
βtω − ψtωx

)}
≤ θ, (17)

where {pω}ω∈Ω is obtained by solving the distribution separation problem associated to the am-

biguity set P. More specifically, the lower bound approximation of the first stage problem (2),

referred as the master problem Ml for l ∈ Z+, is given by:

min
{
cTx+ θ : x ∈ X and OC(π∗ω(xk), {pkω}ω∈Ω) holds, for k = 1, . . . , l

}
(18)

where xk ∈ X for k = 1 . . . , l and {pkω}ω∈Ω = arg maxP∈P EP [Qsω(xk)]. Note thatM0 is the master

problem without any optimality cut and the optimality cut OC(π∗ω(x), {pω}ω∈Ω) is valid because

maxP∈P EP [Qsω(x)] ≤ maxP∈P EP [Qω(x)] ≤ θ as Qsω(x) ≤ Qω(x) for all ω ∈ Ω and x ∈ X.

Now, we initialize Algorithm 2 by setting lower bound LB to negative infinity, upper bound UB

to positive infinity, iteration counter l to 1, number of parametric inequalities τω for all ω ∈ Ω

to zero, and by selecting a first stage feasible solution x1 ∈ X (Line 1). For each xl and ω ∈ Ω,

we solve linear programs Sω(xl) to get optimal solution y∗ω(xl) and the optimal solution value

Qs
ω(xl) := gTω y

∗
ω(xl) (Lines 3-6). In case y∗ω(xl) /∈ Kω(xl) for any ω ∈ Ω, in Lines 8-12, we develop

parametric lift-and-project cut for sequentially convexifiable DPs (explained in Section 3.2.1), add

it to Sω(x), resolve the updated subproblem Sω(x) by fixing x = xl, and obtain its optimal solution

y∗ω(xl) along with the optimal solution value. Then, in Line 14, we solve the distribution separation

problem associated to the ambiguity set P using Qsω(xl) and obtain the optimal solution, i.e.

{plω}ω∈Ω. Whereas, in case y∗ω(xl) ∈ Kω(xl) for all ω ∈ Ω, then (xl, y∗ω1
(xl), . . . , y∗ω|Ω|(x

l)) is a

feasible solution for the original problem. Moreover, if the solution value corresponding to thus

obtained feasible solution is smaller than the existing upper bound, we update UB in Lines 15-

16. In Lines 22-23, we augment the master problem Ml−1 to get Ml by adding optimality cut

OC(π∗ω(xl), {plω}ω∈Ω), i.e. (17), to Ml−1.

Notice that Ml is a mixed binary program where θ ∈ R is the continuous variable. We utilize

specialized lift-and-project algorithm of Balas et al. (1993) to solve Ml which terminates after

a finite number of iterations (see Page 227 of Conforti et al. (2014)). Additionally, since it is a

lower bounding approximation of (2), we use the optimal value associated withMl to update LB .

Observe thatMl−1 is a relaxation ofMl for each l ≥ 1. It means that after every iteration UB−LB

either decreases or remains same as in previous iteration. This is because UB and LB are non-

increasing and non-decreasing, respectively, with respect to the iterations. Hence, whenever this

difference becomes zero or reaches a pre-specified tolerance ε (Line 2 or Lines 17-19), we terminate

the algorithm after returning the optimal solution (xl, {yω(xl)}ω∈Ω) and the optimal objective value

UB (Line 28).

In the following section, we discuss how to solve subproblems for a given x ∈ X, i.e. Sω(x),
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for all ω ∈ Ω. Also in Section 3.2.2, we investigate the conditions under which Algorithm 2 solves

TSDR-SC-DPs in finitely many iterations.

3.2.1 Solving subproblems using parametric cuts

Here we present how a parametric lift-and-project cut of the form αtωyω ≥ βtω−ψtωx where t = τω+

1, is generated in Algorithm 2 (Line 9). Given a first stage feasible solution xl at iteration l, assume

that there exists an ω̄ ∈ Ω such that the optimal solution of Sω̄(xl), i.e. y∗ω̄(xl), does not belong

to Kω̄(xl). This implies that there exists a disjunctive constraint,
∨
i∈Hj

(
ηiω̄,1yω̄ ≥ ηiω̄,0 − ηiω̄,2x

)
,

j ∈ {1, . . . , m̄2}, which is not satisfied by the point (xl, {y∗ω(xl)}ω∈Ω). In order to generate an

inequality which cuts this point, we first use Theorem 1 to get a tight extended formulation for the

closed convex hull of

Wω̄yω̄ + Tω̄x ≥ rω̄ (19)

αtω̄yω̄ + ψtω̄x ≥ βtω̄, t = 1, . . . , τω̄ (20)∨
i∈Hj

(
ηiω̄,1yω̄ + ηiω̄,2x ≥ ηiω̄,0

)
(21)

x ∈ XLP , yω̄ ∈ Rq+ (22)

where |Hj | = |H|. Then, we project this tight extended formulation in the lifted space to the

(x, yω̄) space using Theorem 2. Let F jω̄ = {(x, yω̄) ∈ XLP × Rq+ : (19) − (21) hold} and its linear

programming equivalent in the lifted space be given by

F ω̄,jtight :=

{ ∑
i∈Hj

ξiω̄,1 − yω̄ = 0,
∑
i∈Hj

ξiω̄,2 − x = 0

Wω̄ξ
i
ω̄,1 + Tω̄ξ

i
ω̄,2 ≥ rω̄ξiω̄,0, i ∈ Hj

αtω̄ξ
i
ω̄,1 + ψtω̄ξ

i
ω̄,2 ≥ βtω̄ξiω̄,0, i ∈ Hj , t = 1, . . . , τω̄

ηiω̄,1ξ
i
ω̄,1 + ηiω̄,2ξ

i
ω̄,2 ≥ ηiω̄,0ξiω̄,0, i ∈ Hj∑

i∈Hj

ξiω̄,0 = 1

x ∈ XLP , yω̄ ∈ Rq+, ξiω̄,1 ∈ Rq+, ξiω̄,2 ∈ Rp+, ξiω̄,0 ∈ R+, i ∈ Hj

}
.

Let Ŵω̄, T̂ω̄, and r̂ω̄ denote the constraint matrix associated with yω̄ variables, constraint matrix

associated with x variables, and right-hand side vector, respectively, in the following system of
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inequalities:

Wω̄yω̄+Tω̄x ≥ rω̄,

Ax ≥ b,

xi ≥ 0, i = 1, . . . , p,

−xi ≥ −1, i = 1, . . . , p,

Iyω̄ ≥ 0.

Using Theorem 2, we derive the projection of F ω̄,jtight onto the (x, yω̄) space, i.e. Projx,yω̄(F ω̄,jtight).

This projection is given by

{(x, yω̄) ∈ Rp × Rq : αyω̄ + ψx ≥ β for all (α,ψ, β) ∈ Cjω} (23)

where

Cjω :=

{
(α,ψ, β) ∈ Rp × Rq × R :

α = σi



Ŵω̄

ηiω̄,1
α1
ω̄
...

ατω̄ω̄


, ψ = σi



T̂ω̄

ηiω̄,2
ψ1
ω̄
...

ψτω̄ω̄


, β = σi



r̂ω̄

ηiω̄,0
β1
ω̄
...

βτω̄ω̄ ,


for some σi =

(
σi,0σi,1c , . . . , σi,τω̄c

)
∈ Rm1+m2+2p+1

+ × Rτω̄+ , i ∈ Hj

}
.

Next, we solve the following cut-generating linear program (CGLP) to find the most violated

parametric lift-and-project cut among the defining inequalities of (23) for (xl, y∗ω(xl)):

max{β − αy∗ω(xl)− ψxl : (α,ψ, β) ∈ Cjω̄ ∩Nω̄}, (24)

where Nω̄ is a normalization set (defined by one or more constraints) which truncates the cone Cjω̄.

Let (α∗, ψ∗, β∗) be the optimal solution for (24). Then, for t = τω̄ + 1, we set αtω̄ = α∗, ψtω̄ = ψ∗,

and βtω̄ = β∗ to get the required parametric lift-and-project cut in Line 9 of Algorithm 2.

3.2.2 Optimality and finite convergence

We prove that Algorithm 2 solves TSDR-SC-DP to optimality and also present conditions under

which it converges in finitely many iterations.

Theorem 7 (Optimality Result). Algorithm 2 provides an optimal solution for TSDR-SC-DPs.

Proof. Let xl and xl+1 be the first stage feasible solution obtained in iteration l − 1 and l, re-

spectively, of Algorithm 2, and y∗ω(xl) be the solution obtained by solving subproblem Sω(xl) for
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ω ∈ Ω. At the end of iteration l, there are three possibilities: (i) xl+1 = xl and y∗ω(xl) ∈ Kω(xl)

for all ω ∈ Ω, (ii) xl+1 = xl and y∗ω(xl) /∈ Kω(xl) for some ω ∈ Ω, or (iii) xl+1 6= xl. In

Case (i), (xl, {y∗ω(xl)}ω∈Ω) ∈ F and therefore, the upper bound UB ≤ cTxl +
∑

ω∈Ω p
l
ωg

T
ω y
∗
ω(xl).

Moreover, by substituting x = xl in the optimality cut OCS(π∗ω,0(xl), {plω}ω∈Ω), i.e. Inequality

(17), we get θl+1 ≥
∑

ω∈Ω p
l
ωg

T
ω y
∗
ω(xl). Since θl+1 is a lower bound approximation of the recourse

function, θl+1 ≤ maxP∈P
{
EξP

[
Qω(xl)

]}
= plωg

T
ω y
∗
ω(xl) as {plω}ω∈Ω is the optimal solution of the

distribution separation problem associated with P and first stage feasible solution xl. This im-

plies θl+1 = plωg
T
ω y
∗
ω(xl) and LB = cTxl + θl, which is equal to UB. Since termination condition,

UB −LB = 0, has been satisfied, the algorithm will terminate at this iteration after returning the

optimal solution (xl, {y∗ω(xl)}ω∈Ω).

In Case (ii), we add lift-and-project cuts (Line 9) to the subproblems and resolve them in the

subsequent iterations. Clearly, x = xl defines a face of conv(Fω) as xl ∈ {0, 1}p and since we

assume relatively complete recourse, each extreme point of conv(Fω) ∩ {x = xl} has yω ∈ Kω(xl)

for all ω ∈ Ω. Therefore, by repeating the “while” loop, i.e. adding globally valid parametric lift-

and-projects cuts to the subproblems (with sequentially convexifiable DPs), we reach an iteration

k ≥ l+1 such that y∗ω(xk) ∈ Kω(xk) for all ω ∈ Ω where xk = xl. This happens because the class of

parametric lift-and-project is sufficient to describe the convex hull of Fω for TSDR-SC-DPs (Balas,

1998; Balas et al., 1989). Finally in Case (iii), i.e. xl+1 6= xl, another iteration of “while” loop is

performed and these iterations are repeated until xk = xk+1 for some k ≥ l + 1.

Theorem 8 (Convergence Result). Algorithm 2 solves TSDR-SC-DP with facial DPs in the second

stage in finitely many iterations if the distribution separation algorithm associated to the ambiguity

set P for solving (5) is finitely convergent.

Proof. The arguments for this proof are similar to the finite convergence proof for distributionally

robust integer L-shaped algorithm of Bansal et al. (2018a) for TSDR-MBP (a special case of TSDR-

SC-DP), except the last paragraph of this proof. However for the sake of completeness, we provide

all arguments. Since all the variables in the first stage of TSDR-SC-DP are binary, the number of

first stage feasible solutions |X| is finite. In Algorithm 2, for a given xl ∈ X, we solve |Ω| number

of linear programs, i.e. Sω(xl) for all ω ∈ Ω, the distribution separation problem associated with

the ambiguity set P, and a master problem Ml (after adding an optimality cut which requires a

linear program to be solved). Notice that the master problem is a mixed binary program and can

be solved using a finite number of cutting planes by specialized lift-and-project algorithm of Balas

et al. (1993). Therefore, Lines 3-26 in Algorithm 2 are performed in finite iterations because we

assume that the distribution separation algorithm is finitely convergent.

Now we have to ensure that the “while” loop in Line 2 terminates after finite iterations and

provides the optimal solution. Notice that at the end of iteration l, either of the following two

cases can happen: (i) xl+1 6= xl, or (ii) xl+1 = xl. In the first case where (xl+1, θl+1) 6= (xl, θl),

(xl, θl) will not be visited again in future iterations because the optimality cut generated in Line 22
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cuts-off the point (xl, θl) and this case can happen only a finite number of times because |X|
is finite. The second case can further be divided into two subcases: In the first subcase, let

y∗ω(xl) ∈ Kω(xl) for all ω ∈ Ω. From the extensive formulation of TSDR-SC-DP, i.e. (10a)-

(10e) where constraint (10c) is written in conjunctive normal form using (4b) and (4c), it is clear

that (xl, {y∗ω(xl)}w∈Ω) ∈ F and hence, UB = cTxl+
∑

ω∈Ω p
l
ωg

T
ω y
∗
ω(xl) where {plω}ω∈Ω is an optimal

solution of the distribution separation problem associated with P and first stage feasible solution xl.

Since (xl+1, θl+1) is an optimal solution ofMl, θ
l+1 ≥ maxP∈P

{
EP
[
Qω(xl)

]}
=
∑

ω∈Ω p
l
ωg

T
ω y
∗
ω(xl)

and LB = cTxl+1 + θl+1 ≥ cTxl +
∑

ω∈Ω p
l
ωg

T
ω y
∗
ω(xl) = UB . This implies that UB = LB and

(xl, {y∗ω(xl)}ω∈Ω) is the optimal solution, and we get (xl+1, θl+1) = (xl, θl). Hence, in this subcase

the algorithm terminates after returning the optimal solution and optimal objective value UB .

In the second subcase, let y∗ω̄(xl) /∈ Kω̄(xl) for some ω̄ ∈ Ω. For this subcase, we derive a lift-and-

project cut (Line 9) in (x, yω̄) subspace to cut-off the point (xl, y∗ω̄(xl)), project this cutting plane

to yω̄ space, add this (globally valid) parametric cut to Sω(x), and resolve the linear program for

x = xl. Since we assume relatively complete recourse, for each ω ∈ Ω, Kω(xl) and its relaxations

are nonempty. Notice that xl ∈ ver(X) where ver(X) is the set of vertices of conv(X) because X

is defined by binary variables only. Hence, x = xl defines a face of conv(Fω̄) and since we assume

relatively complete recourse, each extreme point of conv(Fω̄)∩{x = xl} has yω̄ ∈ Kω̄(xl). Therefore,

according to the results of Jeroslow (1980), we can obtain y∗ω̄(xl) ∈ Kω̄(xl), by adding a finite number

of parametric lift-and-projects cuts to Sω(x). This step can be repeated until y∗ω(xl) ∈ Kω(xl) for

all ω ∈ Ω. As explained above, under such conditions, our algorithm terminates and returns the

optimal solution after a finite number of iterations as |Ω| is finite. This completes the proof.

4. Two-stage distributionally robust semi-continuous programs

In this section, we showcase the significance of studying TSDR-DPs by introducing two-stage

distributionally robust semi-continuous programs (TSDR-SCPs) where the first stage has binary

variables and the second stage problems have semi-continuous variables. Specifically, TSDR-SCP

is defined by (2), where

Qω(x) := min gTω yω (25a)

s.t. Wωyω ≥ rω − Tωx, (25b)

yiω ∈ [0, liω] ∪ [l̄iω, u
i
ω], i = 1, . . . , q1, (25c)

yiω ≥ 0, i = q1 + 1, . . . , q, (25d)

such that 0 ≤ liω < l̄iω ≤ uiω for i = 1, . . . , q1 and ω ∈ Ω. Note that by setting liω = l̄iω for all i and

ω, the semi-continuous variables become continuous, and by setting liω = 0 and l̄iω = uiω = 1, the

semi-continuous variables become binary. Therefore, the two-stage distributionally robust problems

with mixed 0-1 programs in the second stage, i.e., TSDR-MBPs, (Bansal et al., 2018a) are special

cases of the TSDR-SCPs. In the following sections, we provide linear programming equivalent for
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the second stage: (i) TSDR-SCPs using DPs (Section 4.1), and (ii) TSDR semi-continuous network

flow problem (Section 4.2).

4.1 Linear programming equivalent for the second stage of TSDR-SCPs

We re-write the semi-continuity constraints (25c) as disjunctive constraints,

q1∧
i=1

{(
0 ≤ yiω ≤ liω

)
∨
(
l̄iω ≤ yiω ≤ ūiω

)}
, (26)

thereby, showing that the class of TSDR-DPs subsumes the TSDR-SCPs. Next, in order to convex-

ify Kω(x), (ω, x) ∈ Ω×X, for the TSDR-SCP, we assume that q1 = 2 (for the sake of convenience)

and hence, the constraints (25c) or (26) in the disjunctive normal form is given by:(
0 ≤ y1

ω ≤ l1ω
0 ≤ y2

ω ≤ l2ω

)∨(
0 ≤ y1

ω ≤ l1ω
l̄2ω ≤ y2

ω ≤ ū2
ω

)∨(
l̄1ω ≤ y1

ω ≤ ū1
ω

0 ≤ y2
ω ≤ l2ω

)∨(
l̄1ω ≤ y1

ω ≤ ū1
ω

l̄2ω ≤ y2
ω ≤ ū2

ω

)
. (27)

Corollary 1. Assuming q = q1 = 2, a tight extended formulation for Kω(x) := {yω : (25b)−(25d)},
(ω, x) ∈ (Ω, X), is given by

Kωtight(x) :=

{∑
h∈H

ξh1,1,ω − y1
ω = 0,

∑
h∈H

ξh1,2,ω − y2
ω = 0,∑

h∈H
ξhω,2 = x,

Wω(ξh1,1,ω, ξ
h
1,2,ω)T ≥ rωξhω,0 − Tωξhω,2, h ∈ H,

Dh
1,1ξ

h
1,1,ω +Dh

1,2ξ
h
1,2,ω ≤ dhω,0ξhω,0, h ∈ H,∑

h∈H
ξhω,0 = 1, yω ∈ R2

+, ξ
h
1,1,ω ∈ R+, ξ

h
1,2,ω ∈ R+, ξ

h
ω,2 ∈ R, ξhω,0 ∈ R+, h ∈ H

}

where H := {1, 2, 3, 4}, Dh
1,1 = [−1 1 0 0]T , Dh

1,2 = [0 0 −1 1]T for all h ∈ H, and

d1
ω,0 =


0

l1ω

0

l2ω

 , d2
ω,0 =


0

l1ω

−l̄2ω
ū2
ω

 , d3
ω,0 =


−l̄1ω
ū1
ω

0

l2ω

 , d4
ω,0 =


−l̄1ω
ū1
ω

−l̄2ω
ū2
ω

 .
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4.2 Two-stage distributionally robust semi-continuous network flow problem

Angulo et al. (2013) studied the so-called semi-continuous inflow set, defined by

S(t, h) :=
{

(θ, η) ∈ Rn × Rn :∑
i∈N

θi ≥ β,

ti + ηi ≥ θi, i ∈ N,

θi ∈ {0} ∪ [hi,∞), i ∈ N,

ηi ∈ {0} ∪ [li,∞), i ∈ N
}
,

where N := {1, . . . , n} and provided a tight and compact extended formulation for S(0, h) which

is given as follows:

Stight :=
{

(θ, η, γ) ∈ Rn × Rn × R|L| :∑
i∈N\L

θi
max {β, hi}

+
∑
i∈L

γi ≥ 1,

ηi
li
≥ γi, i ∈ L,

θi
max {β, hi}

≥ γi, i ∈ L,

θi ≥ 0, i ∈ N,

ηi ≥ θi, i ∈ N
}
,

where L := {i ∈ N : max {β, hi} < li}. They showed that S(t, h) arises as substructure in

general semi-continuous network flow problem and semi-continuous transportation problem. Here,

we consider the following TSDR-SCP with semi-continuous inflow set in the second stage, defined

by (2) where

Qω(x) := min gω,1yω + gω,2zω (28)

s.t.
∑
i∈N

yiω ≥ dω, (29)

yiω − ziω ≤ 0, i ∈ N, (30)

xi ≤ dω, i ∈ N, (31)

yiω ∈ {0} ∪ [xi,∞), i ∈ N, (32)

ziω ∈ {0} ∪ [liω,∞), i ∈ N. (33)

Here, gω,1 ∈ Rn, gω,2 ∈ Rn, and lω ∈ Rn+. Let Kω(x) := {(yω, zω) : (29)− (33)}.
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Proposition 1. For each (x, ω) ∈ (X,Ω),

Kωtight(x) :=
{

(yω, zω, uω) ∈ Rn × Rn × R|Lω | :

ziω
liω
≥ uiω, i ∈ Lω,

yiω
dω
≥ uiω, i ∈ Lω,

xi ≤ dω, i ∈ N,

yiω ≥ 0, i ∈ N,

ziω ≥ yiω, i ∈ N,∑
i∈N\Lω

yiω
dω

+
∑
i∈Lω

uiω ≥ 1
}
,

where Lω := {i ∈ N : dω < liω}, is a tight extended formulation of Kω(x), i.e. conv(Kω(x)) =

Projyω ,zω(Kωtight(x)).

Proof. For each ω ∈ Ω, we substitute yiω, ziω, xi, and dω in Kω(x) by θi, ηi, hi, and β, respectively,

to get S(0, h) where β ≥ hi for all i ∈ N . Now, by applying the compact extended formulation for

S(0, h) we get a tight extended formulation for Kω(x), i.e. Kωtight(x) for all x ∈ X. This completes

the proof.

5. Conclusion and Future Work

We introduced two-stage distributionally robust disjunctive programs (TSDR-DPs) with general

ambiguity set. We extended the results of Balas (1979, 1998) developed for deterministic disjunc-

tive programs to TSDR-DPs. More specifically, we provided linear programming equivalent for

the second stage of TSDR-DPs and utilized it within a decomposition algorithm to solve general

TSDR-DPs. Additionally, by utilizing the sequential convexification approach of Balas (1979),

we developed another decomposition algorithm to solve TSDR-DPs where second stage programs

are facial DPs (in finite iterations), and sequentially convexifiable DPs (which include some non-

convex programs such as nonconvex quadratic programs, separable non-linear programs, reverse

convex programs, etc.). Furthermore, we showcased the significance of studying TSDR-DPs by

reformulating TSDR semi-continuous programs (TSDR-SCPs) as TSDR-DPs and then deriving

linear programming equivalent for the second stage SCPs. We also provide linear programming

equivalent for TSDR-SCP with semi-continuous inflow set in the second stage.

A potential future extension can be to perform computational study on the performance of the

algorithms presented in this paper for solving TSDR-DPs and various applied optimization prob-

lems which can be formulated as TSDR-DPs. It would involve consideration of various strategies

to generate parametric lift-and-project inequalities for different classes of TSDR-SC-DPs and in
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addition, there is a scope to further strengthen these inequalities using various cut-generating pro-

cedures such as mixed integer rounding (MIR) (Nemhauser and Wolsey, 1990), mixing (Günlük

and Pochet, 2001), continuous multi-mixing (Bansal and Kianfar, 2015), mingled n-step cycling

(Bansal and Kianfar, 2017), and many more.
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