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Abstract

We introduce two-stage distributionally robust disjunctive programs (TSDR-DPs) with disjunctive
constraints in both stages and a general ambiguity set for the probability distributions. The TSDR-
DPs subsume various classes of two-stage distributionally robust programs where the second stage
problems are non-convex programs (such as mixed binary programs, semi-continuous program,
nonconvex quadratic programs, separable non-linear programs, etc.). TSDR-DP is an optimiza-
tion model in which the degree of risk aversion can be chosen by decision makers. It generalizes
two-stage stochastic disjunctive program (risk-neutral) and two-stage robust disjunctive program
(most-conservative). To our knowledge, the foregoing special cases of TSDR-DPs have not been
studied until now. In this paper, we develop decomposition algorithms, which utilize Balas’ linear
programming equivalent for deterministic disjunctive programs or his sequential convexification ap-
proach within L-shaped method, to solve TSDR-DPs. We present sufficient conditions under which
our algorithms are finitely convergent. These algorithms generalize the distributionally robust inte-
ger L-shaped algorithm of Bansal et al. (STAM J. on Optimization 28: 2360-2388, 2018) for TSDR
mixed binary programs, a subclass of TSDR-DPs. Furthermore, we formulate a semi-continuous
program (SCP) as a disjunctive program and use our results for TSDR-DPs to solve general two-
stage distributionally robust SCPs (TSDR-SCPs) and TSDR-SCP having semi-continuous inflow

set in the second stage.
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1. Introduction

Disjunctive programming (DP) is a well-known area in optimization where a linear programming
problem has disjunctive constraints, i.e. linear constraints with “or” (V, disjunctive) operations.
More specifically, DP optimizes over a union of polyhedra R; = {z € R} : E'z > f'}, denoted
by R := UiR; = {z € R} : V;(E'z > f')}. In this paper, we introduce two-stage distributionally
robust disjunctive programs (TSDR-DPs) where both the first and second stages have disjunctive
constraints, and the random parameters in the second stage follow the worst-case distribution

belonging to an ambiguity set of probability distributions. We write a TSDR-DP as follows:

inin {CT:E+ paxErQu®)]: \ (AT 2 0.7 0 1}P},

where |S] is finite, a random vector associated to uncertain data parameters is defined by probability
distribution P € P (a set of distributions) with support €2, and for any scenario w € €2 and a finite
set H,

_ . = —h _
Q,(T) := min {ggyw Wy > 1y — TWT, \/ (Dz,lyw > dﬁp — Dwga:) JYw € R‘i_}.
heH

Here, the parameters ¢ € RP, A, € R™>P b, € R™ for s € S, and for each w € Q, g, € RY,
W, € R™2*4 T, € R™*P_and r,, € R™2. Likewise, DZ,l? ﬁzz, and dz,o are real matrices/vectors
of appropriate dimensions. Note that the parameters of the first stage disjunctive constraints are
deterministic, and therefore, we reformulate the first stage feasible region, i.e. {T € {0,1}? : T €

Ves(AsT > by)} using binary variables with linear constraints (Nemhauser and Wolsey, 1988):

AsT > by — M(1 — x5)1, s€S, (1a)
d xs=1, (1b)
seS

7 €{0,1}7, xs € {0,1}, s €S, (1c)

where M is a constant and 1 is a vector of all ones. The constant M is selected such that A,z >
bs — M1 for all T € {0,1}F and s € S. This formulation, defined by (1a)-(1c), has only binary
variables which in a compact form can be written as {x € {0,1}F : Ax > b} where x = (T, {Xs}ses),
A e R™*P and b € R™!. Note that this reformulation has m; = 71 x |S|+1 linear constraints and
p = P + |S| binary variables, in comparison to p binary variables and |S| disjunctive constraints,

each defined by m linear constraints, in the original formulation.

In light of the above reformulation, in the rest of the paper, we utilize the following definition



of the TSDR-DP (without loss of generality):

min {CTIE + r]gla%Ep[Qw(x)] : Az > b,z € {0, l}p}, (2)
€
where

Qu(x) = min gy, (3a)
st. Woyw > 10 — T (3b)
\/ (Dz,ﬂlw > dﬁ,o - Dz,235> (3¢)

heH
Yo € RY, (3d)

forw e Q, c € RP, and T, € R™2*P w € Q. The formulation defined by (3), constraint (3c), the
function 9, (z), and the set of distributions B are referred to as the second-stage subproblem, the
disjunctive constraint in the disjunctive normal form, the recourse function, and the ambiguity set,
respectively. In this paper, we also consider TSDR-DPs where the disjunctive constraint in the

second stage are defined in conjunctive normal form, i.e., for w €

Qu(z) = min gly, (4a)
st. Woyw > 1y — T (4b)
ma
ALV nave =nl0 =1l om (4c)
j=1 \ieH,
Yo € RY, (4d)

where A denotes “and” or conjunction operation, mo and |H;| for all j are finite, and 77}'071 €
R, 7]@70 € R, and an72 € RP. Observe that, since the logical operations V (disjunction) and A
(conjunction) obey the distributive law, i.e., (a1 Aaz) V (by Ab2) = (a1 Vb1) A (a1 Vb2) A (az V by) A
(a2 V by), the disjunctive constraint (3c) can also be written in the conjunctive normal form, i.e.,
(4c), where each disjunction j contains exactly one inequality from each system of inequalities in the
corresponding disjunctive constraint, and |H;| = |H|. Conversely, since (a1 V b1) A (a2 Vb2) = (a1 A
az)V (a1 Ab2)V (b1 Vaz)V (b1 Vbs), the disjunctive constraint (4c) can also be written in the disjunctive
normal form, i.e., (3c). For example, z € {0,1}2 = {(z1,22) : AZ; ((zi = 0) V (z: = 1))} = {(21, 22) :
(21=0,20=0) V(21 =0,22=1) V(21 =1,20=0) V(21 = 1,20 = 1)}.

To study TSDR-DPs, we assume that
1. X :={x €{0,1}F: Az > b} is non-empty.

2. Ky(z) := {yw : (3b)-(3d) hold} is non-empty and Q,(x) > —oo for all z € X and w € Q
(relatively complete recourse).



3. Each probability distribution P € ‘B has finite support €2, i.e. || is finite.

4. There exists an algorithm that provides a probability distribution P € B, i.e., {pw }weq Where

Pw is the probability of occurrence of scenario w € €2, by solving the optimization problem:

Q(x) := maxEp[Q, (7)] (5)

prep

for a given z € X.

We refer to the optimization problem (5) as the distribution separation problem corresponding to an
ambiguity set, and the algorithm to solve this problem is referred to as the distribution separation

algorithm.

In the literature, the ambiguity set has been defined in various different ways such as using linear
constraints on the first two moments of the distribution (Bertsimas and Popescu, 2005; Dupacov4,
1987; Prékopa, 1995; Scarf, 1958), conic constraints to describe the set of distributions with moments
(Bertsimas et al., 2010; Delage and Ye, 2010), measure bounds and general moment constraints
(Shapiro and Ahmed, 2004), Kantorovich distance or Wasserstein metric (Pflug et al., 2012; Pflug
and Wozabal, 2007; Wozabal, 2012), (-structure metrics (Zhao and Guan, 2015), ¢-divergences
such as x? distance and Kullback-Leibler divergence (Ben-Tal et al., 2012; Calafiore, 2007; Jiang
and Guan, 2015; Love and Bayraksan, 2016; Wang et al., 2016; Yankolu and den Hertog, 2012), and
Prokhorov metrics (Erdogan and Iyengar, 2006). Readers can refer to Hanasusanto et al. (2015);
Shapiro (2018) and references therein for literature review on the origin of the distributionally robust
optimization framework (Scarf, 1958). In this paper, we consider a general class of ambiguity sets in
our decomposition algorithms for solving TSDR-DPs. We show that the developed decomposition
algorithms identify an optimal solution of TSDR-DPs. Additionally, we demonstrate that these
algorithms are finitely convergent if the distribution seperation problem (5) can be solved in finite
iterations. Few examples of such ambiguity sets are: moment matching set (defined using bounds on
moments), Kantorovich set (defined using Wasserstein metric), and total variational set (Rahimian
et al., 2018; Sun and Xu, 2015), defined for a finite sample space 2. The distribution separation
problem associated with these ambiguity sets are linear programs, which can be solved in finite
iterations. It is important to note that in several cases when the ambiguity set has special structures,
the distribution separation problem (5) has solutions with closed formulation; see Shapiro (2017,
2018) and references therein. Therefore, selecting such a structured ambiguity set will further

benefit our algorithms.

It is important to note that the class of TSDR-~-DPs subsumes classes of two-stage distributionally
robust programs where the second stage is a non-convex program such as mixed binary programs,
semi-continuous program, nonconvex quadratic programs, separable non-linear programs, reverse
convex programs (DPs with infinitely many terms), etc. Refer to Balas (1974, 1998) for details. To
our knowledge, the TSDR-DP, in its general form, has not been studied before. In this paper, we

develop decomposition algorithms, which utilize linear programming equivalent for deterministic



disjunctive programs or sequential convexification approach of Balas (1979, 1998) and distribution
separation algorithms within L-shaped method, to solve TSDR-DPs. We present sufficient condi-
tions under which our algorithms are finitely convergent. Furthermore, we showcase the significance
of studying TSDR-~DPs by introducing two-stage distributionally robust semi-continuous programs
(TSDR-SCPs). We write a DP equivalent of a semi-continuous program (SCP) which is a linear
program with semi-continuity restrictions on some continuous variables, i.e. a variable belongs to a
set of the form [0, 1] U [l, ] where 0 < I <[ < @. We use our results for TSDR-DPs to solve general
TSDR-SCPs and TSDR-SCP having semi-continuous inflow set (Angulo et al., 2013) in the second
stage. Note that by setting [ = I, the semi-continuous variable becomes continuous and by setting
I =0and [ = @ = 1, the semi-continuous variable becomes binary. Therefore, two-stage distribu-
tionally robust mixed binary programs (TSDR-MBPs) with binary variables in the first stage and
mixed binary programs in the second stage are special cases of TSDR-SCPs or TSDR-DPs.

1.1 Motivation for studying TSDR-DPs

The main motivation to study TSDR-DPs are as follows: (1) their application in formulating var-
ious applied optimization problems using disjunctive constraints with uncertain data-parameters,
and (2) they generalize various well-known optimization modeling frameworks. More specifically,
deterministic DPs have been utilized to solve problems arising in wide range of applications. This
includes power systems (Wood et al., 2013), transportation (Gunluk et al., 2007), synthesis of
chemical process systems (Trkay and Grossmann, 1996; Grossmann et al., 1999), network design
problems (Bertsekas and Gallager, 1992), and many more. Therefore, the results presented for
TSDR-DPs can also solve two-stage stochastic (risk-neutral), robust, or distributionally robust vari-
ants of these applied optimization problems. Furthermore, in addition to two-stage distributionally
robust programs where the second stage is a non-convex program such as mixed binary programs,
semi-continuous program, nonconvex quadratic programs, separable non-linear programs, reverse

convex programs, etc., various special cases of TSDR-DPs include:

1) TSDR-MBP: Recently, Bansal et al. (2018a) introduced TSDR-MBP, a special case of TSDR-
DP, and presented a decomposition algorithm which utilizes distribution separation procedure and
parametric cuts within Benders’ algorithm (Benders, 1962) to solve TSDR-MBPs. The authors
referred to this algorithm as distributionally robust integer (DRI) L-shaped algorithm because it
generalizes the integer L-shaped algorithm (Laporte and Louveaux, 1993) developed for a special
case of TSDR-MBP where P is singleton, i.e. two-stage stochastic mixed binary program. The
algorithms and their finite convergence results presented in this paper for TSDR-DPs generalize
the results of Bansal et al. (2018a) for TSDR-MBPs.

2) TSDR Linear Programs: An extensively studied special case of TSDR-DP is the class of TSDR
linear programs (TSDR-LPs), i.e. TSDR-DP where S and H are empty sets and the first stage has
no binary restrictions (Bertsimas et al., 2010; Hanasusanto and Kuhn, 2016; Love and Bayraksan,
2016). More specifically, Bertsimas et al. (2010) considered TSDR-LP where the ambiguity set is



defined using multivariate distributions with known first and second moments and risk is incorpo-
rated in the model using a convex nondecreasing piecewise linear function on the second stage costs.
They showed that the corresponding problem has semidefinite programming reformulations. Jiang
and Guan (2015) presented a sample average approximation algorithm to solve a special case of
TSDR-MBP with binary variables only in the first stage where the ambiguity set is defined using the
l1-norm on the space of all (continuous and discrete) probability distributions. Recently, Love and
Bayraksan (2016) developed a decomposition algorithm for solving TSDR-LP where the ambiguity
set is defined using ¢-divergence. Hanasusanto and Kuhn (2016) provided a conic programming
reformulations for TSDR-LP where the ambiguity set comprises of a Wasserstein ball centered at
a discrete distribution. Bansal et al. (2018a) also developed a finitely convergent decomposition
algorithm for TSDR-LP where the ambiguity set B is defined by a polytope.

3) Two-Stage Stochastic Mixed Binary Programs: Another well-studied special case of TSDR-
DP is the class of two-stage stochastic mixed binary programs (TSS-MBPs) (Carge and Tind, 1997),
i.e. TSDR-DP with mixed binary programs in the second stage, only binary variables in the first
stage, and || = 1. Various studies (Bansal et al., 2018b; Gade et al., 2014; Laporte and Louveaux,
1993; Ntaimo, 2009; Sen and Higle, 2005; Sherali and Fraticelli, 2002) have utilized globally valid
parametric cuts in (z,y,) space to solve the subproblems. Readers can refer to Kiiciikkyavuz and

Sen (2017) for a comprehensive survey on algorithms for T'SS-MBPs.

TSDR-DP is an optimization model in which the degree of risk aversion can be chosen by
decision makers. It generalizes: (a) Two-stage stochastic disjunctive program (TSS-DP), which is
TSDR-DP with a singleton B = {Fy}; and (b) Two-stage robust disjunctive program (TSR-DP),
i.e. TSDR-DP with a set 3 that consists of all probability distributions supported on €. In the
literature, the TSS-DP and TSR-DP, in their general forms, have not been studied.

Remark 1. Note that the TSDR-DP is at least as hard as the TSS-MBP (a special case of TSDR-
MBP and TSDR-DP) which is an #P-hard problem (Dyer and Stougie, 2006).

Remark 2. In another direction, Bansal and Zhang (2018) introduced two-stage distributionally
robust p-order conic integer programs (TSDR-CMIPs) in which the first stage has only integer
variables and the second-stage problems have p-order conic constraints along with integer variables.
They introduced structured CMIPs in the second stage of TSDR-CMIPs and provided convex pro-

gramming equivalent for them using parametric inequalities.

1.2 An illustrative ezample of TSDR-DP

In this section, we provide an example of TSDR-DP, defined by (2)-(3), which we will use to
illustrate reformulations and algorithm presented in this paper for TSDR-DP in the disjunctive

normal form.



Example 1.

Consider the following TSDR-DP defined over sample space € := {w1, w2, ws}:
Minimize T1 — To — T3 + max P Qu (T
{pw}wegem};% uS0(e)
subject to (Ty + Ty > 2)V (—T2 — T3 > 0)

I17f27§3 S {07 1}7

U)h@?"@ ‘BE == {(pw17pw27pw3) E Ri— : pr - 17pw1 _pw2 +pUJ3 Z 01}7

we
Q.(F) = Minimize 2y} —y? (7a)
subject to  — yulj — yi > dy, + 71 + Ta, (7b)
(yo > 14+T2) vV (v =2 -7 —73), (7c)
Yor Yo € Ry, (7d)
forw e Q, d,, = -5, d,, = —6, and d,, = —4. To demonstrate the nonconvezity of the feasible

region of the second stage problem, i.e., {y., € R%— : (Tb) — (7d)}, we sketch it for three pairs of

(T,w); see Figure 1.

2

v2,
(0,2)¢
(0,1) ¢
y(zuu
*- S—>
©.5)¢ (0,0) (1,0) 2,0 Yo
(b) For ¥ = (1,1,0) and w = w5
(0,4)¢
va
w
<
(0,39 3
0,2) (0,2)®
' (1,2)
(0,1)
(0,1) ¢ (2,1)
. . > > (0,0) (1,0) 2,0) 3,00 Yo
(0,0) (1,0) (2,0) (3,0 (4,00 Yo

(¢) Forx = (1,1,0) and w = w;

(a) For x = (0,0,0) and w = w4

Figure 1: Feasible region of the second stage problem for given (Z,w), denoted by shaded region.
Note that in Fig. 1(b), v, = (2,0) is also a feasible solution.



Similar to (1), the first stage feasible region is reformulated using two additional binary variables
and big-M coefficient, i.e.. M =2, as follows:

Minimize T) — Ty — T3+  max Z PwQu () (8a)
{PutwecacPe e

subject to T1 +T2 >2— M (1 — xs,) = 2Xs, (8b)

— T — T3> —M (1 —xs,) = =2+ 2Xs,, (8c)

r = (T1,T2, T3, Xs1» Xs2) € 10, 1}5' (8d)

Since the coefficients associated with variables xs, and xs, in the second stage subproblem (7) are
zero, Qu(x) is same as Q,(T). Additionally, this example satisfies all assumptions made for TSDR-
DPs, i.e., (a) the set of first stage feasible solutions is non-empty; (b) relatively complete recourse;
(¢) || is finite; and (d) there exists an algorithm to solve the distribution separation problem as it

1 a linear problem. ]

Remark 3. For numerical examples of TSDR-MBP (a special case of TSDR-DP in the conjunctive
normal form), please refer to Bansal et al. (2018a).

1.3 Organization of this paper

In Section 2, we briefly review the results developed in Balas (1979, 1998) and Balas et al. (1993)
for the disjunctive programming problems. In Section 3, we provide a decomposition algorithm to
solve general TSDR-DPs using a linear programming equivalent of Balas (1979, 1998) for DPs. We
present an alternative decomposition algorithm, which utilizes the sequential convexification ap-
proach within L-shaped method, to solve TSDR-~-DPs with facial DPs and sequentially convexifiable
programs in the second stage. We prove that the foregoing algorithms are finitely convergent. In
Section 4, we study TSDR-SCPs and present linear programming equivalent for the second stage of
TSDR-SCPs and a relaxation of a two-stage distributionally robust semi-continuous network flow

problem. Finally, we provide concluding remarks in Section 5.

2. Necessary Background on Disjunctive Programming

In this section, we briefly review the results developed in Balas (1979, 1998) and Balas et al.
(1993) for disjunctive programming problems to provide the necessary background for the results
in the following sections (readers can also refer to Chapter 10 of Jnger et al. (2009) for details). As
mentioned before, a disjunctive program is a linear program with disjunctive constraints, i.e. linear
inequalities connected by V (“or”, disjunction) logical operations. Given non-empty polyhedra

Ri = {z € R? : E'z > f'}, i € L, the disjunctive normal form representation for the set



R =UicLR; = {z € RY : Vier (Eiz > fi)}, where

i (En i (N .
E _<E§> and f _<f2i>’ 1€ L.

Another way to represent a disjunctive set is using conjunctive normal form, where a set of points

satisfies multiple disjunctive constraints and each disjunction contains exactly one inequality, i.e.,

RCN = {Z€R12E1Z2fl,/\ \/ (5122(56 }

j=1 \ieL;

Here, ¢ € R”, g?)f) € R for all 4, and |L;| is finite for all j. Note that as mentioned in the
previous section, since the logical operations V (disjunction) and A (“and” or conjunction) obey
the distributive law, the set R can also be written in the conjunctive normal form where each
disjunction j contains exactly one inequality from the system Ejz > fi, i € L, and |L;| = |L| for

i7=1,....,m.

Definition 1. A linear programming relazation of R and REN has no disjunctive constraint and
is given by Ro :={z € R} : Bz > fi}.

Definition 2. The disjunctive set REN (or conjunctive normal form of R) is called facial if each
inequality Pz > (56, i€ Lj, j=1,...,m, defines a face of Ryo.

Definition 3. An extended formulation of R, denoted by Rer := {(z,v) € R} xR} : B2+ B,v >
Bo}, is referred to as a tight extended formulation of R if and only if conv(R) = conv (Proj,(Rgr)).

2.1 Convex hull description of disjunctive programs

Balas (1979, 1998) provided a tight extended formulation for R and the convex hull description
of R in the original space. Theorem 1 provides a tight extended formulation for the convex hull of
the points satisfying disjunctive constraints. Theorem 2 provides the convex hull description of the

union of the polyhedra, U;c;,R;, in the original z-space.

Theorem 1 (Balas (1979, 1998)). The closure of convex hull of U;erR; is the projection of the

following extended formulation (9) onto the z-space:

2=y ¢, (92)

i€l
E'¢"> f'¢h, i€L, (9b)
> G=1, (9c)
€L
(¢',¢) =0, i€eL. (9d)



Theorem 2 (Balas (1979, 1998)). Let Rrgr be defined by {(z,{¢%, ¢ }ier) = (9) hold} and Ry =
conv(Uje R;) be full dimensional (or has non-empty interior). Then, the projection of Rppr onto

the z-space is given by:
Proj,(Rrer) = {z € R} : az > 8 for all (o, B) € Co},

where Cy = {(a, ) € R : a = ¢'E', 3 = o' ft for some o' > 0,i € L}. The cone of all valid
inequalities for Ryuy, denoted by Ry, ;. is same as the polyhedral cone Co, i.e.

Ry = {(a,8) € R"™ - az > B for all z € Ry}
= {(a, ) eR"™ : = 0'E", 3 = o' f* for some o' > 0,i € L}.

Moreover, the inequality oz > [ defines a facet of Ry if and only if («, 8) is an extreme ray of

W, T T
wh .= v " = v h.— «
? <D2,1> e\, )T )

and K (z) := {y, € R : Why, > rh — Tha} £ 0 for (w, 2, h) € (2, X, H), we get

*
the cone Ry .-

Letting

Kulo) = U Kho) = {ma e R/ (Who > ot - 7o) .

heH heH
where IC"(z), for each (w, z, h), is a polyhedral set. Also, let Xzp :={z € RP: Az >b,0 < z; < 1,
i=1,...,p}and KYp(z) := {y, € RY : (3b) hold} for (w,z) € (£, X) be the set of feasible solutions

for the linear programming relaxation of the first and second stage problems, respectively. We also

define a deterministic equivalent, also referred to as extensive formulation, of TSDR-DP as follows:

min ¢’z + Ilgléi% {Ep [ggyw] } (10a)
st. Arx >0 (10b)
\/ (Tfjm + Why, > rZ) ,w € (10c)

heH
z €{0,1}F (10d)
Yo € R, w e Q. (10e)

Let F := {(x, {yw}weq) : (10b) — (10e) hold} be the feasible region of the extensive formulation.

10



We define a substructure of F for each w € Q:

Fo= o) e X xR\ (Tho+ why, > ot) |
heH

Notice that F = NyecqFu.

2.2 Sequential convezification

Balas (1979, 1998) also exhibited a property of disjunctive programs according to which the
convex hull of a set of points satisfying multiple disjunctive constraints, where each disjunction
contains exactly one inequality, can be derived by sequentially generating the convex hull of points
satisfying only one disjunctive constraint. This property is referred to as the sequential convexifica-
tion. A subclass of DPs for which the sequential convexification property holds is called sequentially
convexifiable DPs. Balas (1979, 1998) showed that the so-called facial DPs are sequentially con-
vexifiable (Theorem 3). Interestingly, all pure binary and mixed 0-1 programming problems are
facial DPs, while general mixed (or pure) integer programs are not facial DPs (Balas, 1998; Balas
et al., 1993; Balas and Perregaard, 2002).

Theorem 3 (Balas (1979, 1998)). If RN is facial then I, = conv(RYN), where Iy := Ry and

IT; = conv | 11,1 N {Z : \/ Qgiz > J%} )

i€l

forg=1,...,m.

REN can be obtained in a

According to Theorem 3, the convex hull of the facial disjunctive set
sequence of m steps, where at each step the convex hull of points satisfying only one disjunctive
constraints is generated. Later, Balas et al. (1989) extended the sequential convexification property
for a general non-convex set with multiple constraints. They provided the necessary and sufficient
conditions under which reverse convex programs (DPs with infinitely many terms) are sequentially
convexifiable, and present classes of problems, in addition to facial DPs, which always satisfy the

sequential convexification property.

3. Decomposition Algorithms for TSDR-DPs

We present two decomposition algorithms similar to the Benders’ decomposition and L-shaped
method (Van Slyke and Wets, 1969) to solve: (i) General TSDR-DPs (2) by extending the result of
Balas (1979, 1998) for DP (Theorem 1) to get a linear programming equivalent for the second stage
of TSDR-DPs, i.e. Ky(z); and (i7) TSDR-DPs (2) where disjunctive constraints (4c) in the second
stage are sequentially convexifiable. We also provide conditions under which these algorithms are

finitely convergent and illustrate our results for general TSDR-DPs using Example 1.

11



3.1  Decomposition algorithm for general TSDR-DPs

In the following theorem, we first extend the result of Theorem 1 (Balas, 1979, 1998) by provid-
ing conditions to get a linear programming equivalent for the second stage disjunctive programs of
the TSDR-DPs, i.e. K, (z). Thereafter, we utilize this result to develop a decomposition algorithm
for TSDR-DPs.

Theorem 4. For all (z,w) € (X, (), the convex hull of K,(x) is the projection of Ky, (z) onto

Yo Space where

4 () = { S =03,

heH heH
heh heh h¢h
Whel |\ + Theh , > rleh o, he H,

Z 52,0 =1, (1)

heH

Yo ERL L eRY ¢, eRE ¢ geR M e H}

Proof. Using Theorem 1, we derive a tight extended formulation for F,, w € €, which is given by

— — h _ h
= = ¥ o= S el

heH heH
h¢h h¢h h ¢h
ngw,l + waw,2 > rwfw,07 h e H7

Z 52,0 =1 12)

heH

TE Xayw € Riafﬁﬂ € Ri?&Z,Q € Rﬁa&f},ﬂ € RJr:h € H}

Therefore, conv(Fy,) = conv(Proj, , (Fii ;) for w € Q. Let & € X and g, € Ky(2). It is easy

tight
to see that (Z,y,) € F,. Likewise for g, € conv(Ky(2)), (Z,9,) € conv(F,) which implies that

there exists &, € RSprJrl)'Hl such that (&,4,,8&,) € Fiignt- Since Ki oy (&) = Proj,_z (f;’gght),

<g)w,éw> € Kiigni(2). It implies that conv(Ky(x)) € Proj, (Ky p,(2)) for all z € X.

Next, we consider the case when (jju,&,) € Kiigni(2) for & € X, which also means that
(2, Gus &) € Fiigns- Since conv(Fy) = Proj,, (Fiion): (2,9w) can be written as a convex com-
bination of extreme points of conv(F,). More specifically, g, = >, A\iflw; such that 0 < \; < 1,
> ;A =1, and (Z,%,;) is an extreme point of conv(F,). Now, for each € X, i.e. & € {0,1}7,
x = & defines a face of conv(F,) and because of the relatively complete recourse assumption, each
extreme point of conv(F,)N{x = &} has y,, component belonging to K,,(Z). Therefore, g, ; € Ko ()
or g, € conv(Ky(2)). Hence, conv(Ky(z)) 2 Proj,, (Kij, () for all z € X. O
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Example 1 (continued). Let X = {x : (8b) — (8d) hold}, K, () = {yw : (Tb) — (7d) hold}, and
Fuo = {(ﬂc,yw) EXXRY: —Ty — Ty —yp, — ¥ > du,
(—Tatys > )V (T +T3+y2 > 2) }

for w € Q. Using Theorems 1 and 4, the convex hull of K, (x) for all (x,Q) € (X,Q) is given by

the projection of K;;ght(m) onto (yi,yg) space, where

1 2 ¢1 2 1 2 1 2 2 2 3 3
;f}ight(x) = {(ywvyw’Sw,lﬂéw,lvgw,Zagw,Q’fw,Oﬂgw,O) € Ry xRy X R+ X R+ X ]RJr x ]RJr xRy xRy

folJ,l,i + fo%,l,z’ —yL,=0,i=1,2, &+ 531,2,3' =75 j=1,2,3,

1 1 1 2 2 2 2 1 2
Cui1 —8w22 = &0 o2t 8021 8023 = 2800, SwotT8&o=1

- 52,1,1 - 5271,2 - 52,2,1 - 53,2,2 > dwfﬁ,ov h=1, 2}- O

Decomposition algorithm for TSDR-DPs. The pseudocode of our algorithm which utilizes
Theorem 4 to solve general TSDR-DPs (2) is given by Algorithm 1. Let LB and UB be the lower
and upper bound, respectively, on the optimal solution value of a given TSDR-DP. We denote
the following linear programming equivalent of the second stage disjunctive program (3a)-(3d) by
SLP(w, z) for (w,z) € (Q, X):

bt (©) = min {9y © Yo € Projy, (K8 g (2)) (13)
where K, (2) is defined by (11). Also, let 77 (z) be the optimal dual multipliers obtained by
solving the linear program SLP(w, z) for a given (w, z) € (€2, X), and Kf; (), defined by (11), be

written in a compact form as

(Moot 3 (WMol + Nl + Natlio) = Ay~ N
heH

yo €RL, L eRY L, eRE L eRy e H}

where N, 1, N2, NI's, NP, and N are matrices/vectors associated with z, y,, &, &,

and 5270, respectively, in the system of (in)equalities (11), and A, = [0,0,...,0,1]7. Then, the
corresponding optimality cut, OCS(7;, (), {Pw fwen), is

> nd mo@ (8o - Nowo) } <0, (14)
we
where {p, }uecq is obtained by solving the distribution separation problem associated to the am-

biguity set 9B, i.e. maxpeyp {Ep[Qu(z)] = maxpey Ep[inght(x)]}. These cuts help in deriving a
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lower bounding approximation of the first stage problem (2), i.e.

min ¢’z + 0

Z palf) (W:J,O(xk)T(Aw - Nw,1$)> < 6) for k = 17 R} la
we

where 2% € X for k =1...,1 and {pF}oeq = argmaxpegy Ep[inght(xk)]. We denote problem (15)
by M; for | € Z, and refer to it as the master problem at iteration [. Note that My is the master

problem without any optimality cut.

Algorithm 1 Decomposition Algorithm for TSDR-DPs in the Disjunctive Normal Form (2)

1: Initialization: [ + 1, LB + —o0, UB < co. Assume z! € X.
2: while UB — LB > € do > € is a pre-specified tolerance
3: for w € 2 do

4: Solve linear program SLP(w, z!) and store the following:

5: y (x') < optimal solution; Q‘fight(xl) <+ optimal solution value;

6: 7% (2!) < optimal dual multipliers;

7: end for

8: Solve distribution separation problem using Q;Jight(xl), w € Q, to get {pLYweq;
9. if UB > "ol + 30 ol Q% (2!) then

10: UB + cTal + 3 cqpl, ;”ight(xl);

11: if UB < LB + ¢ then

12 Go to Line 21;

13: end if

14: end if
15: Derive optimality cut OCS(W:)’O(.%'Z), {pL,}weq) using (14);
16: Add OCS(T[':)’O(.Z'I), {p!,}weq) to Mi_1 to get M;;

17: Solve master problem M; (a mixed binary program) using specialized lift-and-project algo-
rithm of Balas et al. (1993);
18: (z!*1,6"+1) « optimal solution of M;; LB < optimal solution value of M;;

19: [+ 1+1;
20: end while
21: return (2!, {y} (z")}ueq), UB

We initialize Algorithm 1 by setting LB to negative infinity, UB to positive infinity, iteration
counter [ to 1, and selecting a first stage feasible solution #! € X (Line 1). For each 2! and w € Q,
we solve linear program SLP(w,z!) to get optimal solution y?(x'), the optimal objective value

‘;;ght(:cl) = gLy (2'), and the optimal dual multipliers 7 (2!) (Lines 3-7). In Line 8, we solve
distribution separation problem for z = z! to get {pi}weg. This provides us a feasible solution
(!, 5, (2h), ... ,yzml(xl)) for the original problem as y(z') € K, (2!) for all w € Q, and a better
upper bound UB if the solution value corresponding to this solution is smaller than the existing
best known upper bound (Lines 9-13). In Lines 15-16, we then augment the master problem M;_;

to get M; by adding optimality cut OCS(WZ’O(xl), (P wea), ie. (14), to M;_y.
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Notice that M; is a mixed binary program where 6 € R is the continuous variable. We utilize
specialized lift-and-project algorithm of Balas et al. (1993) to solve M; which terminates after
a finite number of iterations (see Page 227 of Conforti et al. (2014)). Additionally, since it is a
lower bounding approximation of (2), we use the optimal solution value associated with M; to
update LB. Observe that M;_ is a relaxation of M; for each [ > 1 which means that after every
iteration UB — LB either decreases or remains same as in previous iteration. This is because UB
and LB are non-increasing and non-decreasing, respectively, with respect to the iterations. Hence,
whenever this difference becomes zero or reaches a pre-specified tolerance e (Line 2 or Lines 10-12),
we terminate the algorithm after returning the optimal solution (!, {y} (2')},ecq) and the optimal

objective value UB.
Theorem 5 (Optimality Result). Algorithm 1 provides an optimal solution for the TSDR-DP (2).

Proof. Let (x*,{y*(z*)}ueq) be an optimal solution of a given TSDR-DP (2) instance, (!,
{y*(2")}weq) € F be a feasible solution utilized in iteration I of Algorithm 1, and (z!*+1,6/*1) be
the solution obtained after solving master problem M; in the iteration [. Observe that the upper
bound UB < ¢! + ¥ o phglyi(2!) as (2!, {y}(2") }weq) € F. Now, there are two possibilities:
(i) ' = 2l or (i) 2! # 2. In the first case, ie., 271 = 2!, we obtain 6'F1 > Y~ o pl gLy (2h)
by substituting z = 2! in the optimality cut OCS(Wao(xl), {pL,}weq), ie. Inequality (14). Since
6'*1 is a lower bound approximation of the recourse function,
0" < max {Ep | Qu(e)| } = plalul(e')

as {pfu}weg is the optimal solution of the distribution separation problem associated with 9 and
first stage feasible solution 2!. This implies 81 = p! gZ'y* (2') and LB = cT'z! +6"+! is equal to U B.
Since the termination condition, UB — LB = 0, has been satisfied, the algorithm will terminate
at this iteration after returning the optimal solution (!, {3 (2")},ecq). In the second case, i.e.

it £ 2l another iteration of “while” loop is performed and these iterations are repeated at most
| X| times (which is finite), until (z*, {y} (%) }uea) = (z¥, {y*(2*) }oeq) for some k > 1+ 1. O

Theorem 6 (Convergence Result). Algorithm 1 converges in finitely many iterations if the distri-

bution separation algorithm associated to the ambiguity set P for solving (5) is finitely convergent.

Proof. We first prove that the number of iterations, [, is bounded from above by a finite number. In

I+1

Algorithm 1, at the end of each iteration [, either '+ # 2!, or /1 = z!. Since | X| is finite because

all the variables in the first stage of TSDR-DP are binary, the case z/t1 # z! can happen only finite

H1 = 2l we obtain 9 > S o phgTyr () by

number of times. On the other hand, in case =
substituting = = 2! in the optimality cut OCS(T['Z),O(IZ), {p,}weq), ie. (14). Since 8+ is a lower
bound approximation of the recourse function, 8/t < maxpeg {Ep [Qw(xl)]} = pLglyr (2!) as

{pL }weq is the optimal solution of the distribution separation problem associated with 3 and first
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stage feasible solution x!. This implies 81 = p! g2y (2!) and LB = ¢! + 0+ is equal to UB.
Since termination condition, UB — LB = 0, has been satisfied, the algorithm will terminate at this
iteration after returning the optimal solution (2!, {y (2!)}weq). In a nutshell, we get [ < |X|+ 1

which means the “while” loop, i.e. Lines 2-20, is repeated finite number of times.

Next, we ensure that Lines 3-19 in Algorithm 1 are performed in finite iterations. In these lines,
for a given 2! € X, we solve |©2| number of linear programs, i.e. SLP(w, z!) for all w € Q, distribution
separation problem associated with the ambiguity set 8, and a master problem M;. Since |X| is
finite, M; is a mixed binary program (which can be solved in finite iterations using specialized lift-
and-project algorithm of Balas et al. (1993)), and the distribution separation algorithm is finitely
convergent (because of our assumption), it is clear that Lines 3-19 are performed in finite iterations.
This implies that the overall algorithm also terminates in finitely many iterations. This completes
the proof. O

Example 1 (continued). We illustrate an iteration of Algorithm 1 to solve this example. We

inatialize the algorithm by solving a binary program,

min T — To — T3
s.t. Ty + 7T — 2X51 >0,
— T2 — f?) - 2X82 Z _27

flaj%f&XSNXSQ € {07 1}a

to get x' = (1, T2, T3, Xs1> Xso) = (1,1,1,1,0), and by setting UB = oo and LB = —oco. Then, we

solve the second stage problems for x = x' and w € Q, and store

8
—
~—
Il
w

Yo, (#1) = (0,3), €5,10=3, &,0; =17 =123, &, 0= 1, Qu,(z') = Qb
b, (@') =(0,4), &, 10=4, &,5;,=1,7=1,23, &, =1, Qu(a') = tight(
y:)3($1) = (072), 63)3,1,2 = 27 63)3,2,j = 17.] = 17273’ 53)3,0 = ]-7 Qws(xl) = ;i;ht(

8 8
— —
SN— N—
I
\ |
N

and & | . = &2 L= 3)70 =0 foric{1,2},7€{1,2,3}, andw € Q. Using Q,(z'), w € Q,

w,1, w11 ™ Sw2,j —

we also solve distribution separation problem,

maX{ - 3pw1 - 4]%2 - 2pw3 : (pwlapwzapw:;) € mE}a
and get optimal solution, i.e., pold1 = pi& =0 and p}m = 1. This also leads to an improved upper
bound UB = (1—-1—-1+(-2)) = —3.

Nezxt, we derive an optimality cut OCS(W;O(xl), {pL}oeq) as follows. After solving the second

1

stage problems for x = x*, we store optimal dual multipliers 71':70(3:1), w € Q and utilize them to
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derive the optimality cut (14),
T1+To—4<80.
This cut is then added to My to get My, i.e.,

min {T) — Ty — T3 + 0 : T1 + Ty — 2xs;, = 0, —Ta — Ty — 2xs, > —2,
T +52_4 < 97 f17527f37X817X52 € {071}}

We solve My and update LB to -4. We repeat these iterations until the termination condition
(LB = UB) is satisfied. Note that the optimal solution of this example is (Z1,%2,Z3) = (0,0,0) and

optimal solution value is -4. ]

8.2 Decomposition algorithm for TSDR-DP with sequentially convezifiable DPs in the second stage

We present a decomposition algorithm to solve TSDR-DPs with sequentially convexifiable DPs
in the second stage, which we denote by TSDR-SC-DPs, by harnessing the benefits of sequential
convexification property within L-shaped method. As mentioned before, Balas (1979, 1998) intro-
duced this property for a subclass of DPs, referred to as sequentially convexifiable DPs, according
to which the convex hull of a set of points satisfying multiple disjunctive constraints, where each
disjunction contains exactly one inequality, can be derived by sequentially generating the convex
hull of points satisfying only one disjunctive constraint. Balas (1979, 1998) showed that the facial
DPs are sequentially convexifiable and later, Balas et al. (1989) extended the sequential convexifi-
cation property for a general non-convex set with multiple constraints. They provide the necessary
and sufficient conditions under which reverse convex programs (DPs with infinitely many terms)
are sequentially convexifiable and present classes of problems, in addition to the facial DPs, which
always satisfy the sequential convexification property. In light of this discussion, it is clear that our
algorithm for TSDR-SC-DPs will also solve various subclasses of TSDR-DPs.

The pseudocode of our decomposition algorithm for TSDR-SC-DP is presented in Algorithm 2. It
is important to note that Algorithm 2 is similar in structure to the distributionally robust integer L-
shaped algorithm of Bansal et al. (2018a) for TSDR-MBP (a special case of TSDR-SC-DP), except
how parametric cuts are developed to solve the subproblems to optimality (discussed in Section
3.2.1). However for the sake of completeness of this paper, we explain all steps of Algorithm 2:
Let the lower bound and upper bound on the optimal objective value of a given TSDR-SC-DP
instances be denoted by LB and UB, respectively. We define subproblem S, (z) for (w,z) € (2, X)
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as follows:

Q; () := min gy, (16a)
s.it. Woyw > 1, — Tox (16b)

by, > B —Yle, t=1,...,7, (16¢)

Yo € Ri, (16d)

where of, € Q4, !, € QP, and !, € Q are the coefficients associated with the parametric inequali-
ties. We will discuss how these parametric inequalities, referred to as the parametric lift-and-project
cuts, are developed in succession using sequential convexification approach of Balas (1979, 1998) in
Section 3.2.1. Let mj(z) = (7}, o(2), 75 1 (), -+ o 75 1) (2))T be the optimal dual multipliers obtained

by solving S, () for a given € X and w € 2. Here, 7, 5(z) € R™? corresponds to constraints
(16b) and 7} ;(z) € R corresponds to constraint (16¢c) for t =1,...,7(w).

Algorithm 2 Decomposition Algorithm for TSDR-SC-DPs using Parametric Lift-and-Project Cuts

1: Initialization: [ + 1, LB + —o0, UB < 00, 7, + 0 for all w € Q. Assume 2! € X.
2: while UB — LB > ¢ do > € is a pre-specified tolerance
3: for w € 2 do

4: Solve linear program S, (z!);
5: y (2') < optimal solution; Q2 (x!) + optimal solution value;
6: end for
7: if o (z!) ¢ K, (2!) for some w € © then
8: for w € Q where y(2!) ¢ K, (2!) do > Add parametric inequalities
9: Add a parametric cut to S, (x) as explained in Section 3.2.1;
10: Set 7, + 7, + 1 and solve linear program S (z');
11: i (2') < optimal solution; Q¢ (x!) + optimal solution value;
12: end for
13: end if
14: Solve distribution separation problem using Q¢ (z!), w € , to get {p}, }oec;
15: if v (2!) € Ky(a!) for all w € Q and UB > Tzl + Y . pl, Q% (2!) then
16: UB + Tzl + 3 copl, Q5 (ah);
17: if UB < LB + ¢ then
18: Go to Line 28;
19: end if
20: end if
21: 7 (2') + optimal dual multipliers obtained by solving S, (') for all w € ;

22: Derive optimality cut OC(m(2), {p}, }eq) using (17);

23: Add OC(7% (z!), {p!, }weq) to M;_; to get M;

24: Solve master problem M; using specialized lift-and-project algorithm of Balas et al. (1993);
25: (z+1,0+1) < optimal solution of M;; LB ¢ optimal solution value of M;;

26: Set [ «+ [+ 1;

27: end while

28: return (2!, {y}(2")}weq), UB

We derive a lower bounding approximation of the first stage problem (2) using the following
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optimality cut, OC( (), {pu }uee):

3 pw{vrz:,o(x)T (ro — Tuz) + 3 (o) (B — ) } <0, an)
t=1

we

where {p, }weq is obtained by solving the distribution separation problem associated to the am-
biguity set 8. More specifically, the lower bound approximation of the first stage problem (2),
referred as the master problem M, for [ € Z,, is given by:

min {cTac +60:x € X and OC(ﬂ:(xk), {pﬁ}weg) holds, for k =1,.. .,l} (18)

where 7¥ € X for k= 1...,l and {pF},cq = arg maxpcy Ep[QF,(2%)]. Note that M is the master
problem without any optimality cut and the optimality cut OC(7}(z), {pw}weq) is valid because
maxpep Ep[Q7 (7)) < maxpep Ep[Qu(x)] <0 as Q) (v) < Qu(x) for allw € Q and = € X.

Now, we initialize Algorithm 2 by setting lower bound LB to negative infinity, upper bound UB
to positive infinity, iteration counter [ to 1, number of parametric inequalities 7, for all w € 2
to zero, and by selecting a first stage feasible solution z' € X (Line 1). For each 2! and w € ,
we solve linear programs S, (z!) to get optimal solution g% (') and the optimal solution value
Qs (2! := gLy (2") (Lines 3-6). In case y(x') ¢ K, (2!) for any w € Q, in Lines 8-12, we develop
parametric lift-and-project cut for sequentially convexifiable DPs (explained in Section 3.2.1), add
it to S, (), resolve the updated subproblem S, (x) by fixing z = 2!, and obtain its optimal solution
yi‘,(xl) along with the optimal solution value. Then, in Line 14, we solve the distribution separation
problem associated to the ambiguity set B using Qf (2!) and obtain the optimal solution, i.e.
{pL,}weq. Whereas, in case y’(2!) € K,(z!) for all w € Q, then (xl,yzl(xl),...,y:j‘m(:nl)) is a
feasible solution for the original problem. Moreover, if the solution value corresponding to thus
obtained feasible solution is smaller than the existing upper bound, we update UB in Lines 15-
16. In Lines 22-23, we augment the master problem M;_; to get M; by adding optimality cut
OC(7 (24, {pL Yweq), i-e. (17), to M;_y.

Notice that M; is a mixed binary program where 6 € R is the continuous variable. We utilize
specialized lift-and-project algorithm of Balas et al. (1993) to solve M; which terminates after
a finite number of iterations (see Page 227 of Conforti et al. (2014)). Additionally, since it is a
lower bounding approximation of (2), we use the optimal value associated with M; to update LB.
Observe that M;_; is a relaxation of M; for each [ > 1. It means that after every iteration UB— LB
either decreases or remains same as in previous iteration. This is because UB and LB are non-
increasing and non-decreasing, respectively, with respect to the iterations. Hence, whenever this
difference becomes zero or reaches a pre-specified tolerance € (Line 2 or Lines 17-19), we terminate
the algorithm after returning the optimal solution (z, {y,(z')},cq) and the optimal objective value
UB (Line 28).

In the following section, we discuss how to solve subproblems for a given z € X, i.e. S,(z),
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for all w € €. Also in Section 3.2.2, we investigate the conditions under which Algorithm 2 solves
TSDR-SC-DPs in finitely many iterations.

3.2.1 Solving subproblems using parametric cuts

Here we present how a parametric lift-and-project cut of the form oy, > %, —! x where t = 7,+
1, is generated in Algorithm 2 (Line 9). Given a first stage feasible solution ! at iteration [, assume
that there exists an @ € 2 such that the optimal solution of S;(z!), i.e. y% ('), does not belong
to Kg(z!). This implies that there exists a disjunctive constraint, Vien, (15 19e = 1bo — 15 0),
j € {1,...,ms}, which is not satisfied by the point (2!, {y}(2')}weq). In order to generate an
inequality which cuts this point, we first use Theorem 1 to get a tight extended formulation for the

closed convex hull of

Ways +1or > 15 (19)

abys +Ytr >pL t=1,...,7 (20)
\/ (7733,1.% + 7]33,25” > 7723,0) (21)
1€H;

€ Xrp, Yo ERi (22)

where |H;| = |H|. Then, we project this tight extended formulation in the lifted space to the
(z,ys) space using Theorem 2. Let F2 = {(z,ys) € Xrp X RY @ (19) — (21) hold} and its linear

programming equivalent in the lifted space be given by

tzght {wal Yo = 0,25372—90—

icH, i€H,;

Wbl + Tollo > 10l i€ Hj

afaffv,l + wfjffa,z > @taffv,o? i€ Hj,t=1,...,7
7733,1&;,1 + 7723,2535,2 > 7723,053,07 i € Hj

Z fiv,o =1

1€H;

MRS XLP)chJ € Riagé},l € RY 7&%,2 € R 755?,0 € ]R'f"/i € ‘HJ}

Let /V[Z;,, f@, and 75 denote the constraint matrix associated with y; variables, constraint matrix

associated with x variables, and right-hand side vector, respectively, in the following system of
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inequalities:

Using Theorem 2, we derive the projection of fﬁ(’fﬁt onto the (z,yz) space, i.e. Projg .. (]-"ggjht)

This projection is given by

{(2,52) € R? X RY: ays + o > B for all (a1, 8) € G} (23)
where

Cl = {(04,1/),6) eRP xRIxR:

Wg TS o
N1 N&,2 w,0
; 1 ; 1 ; 1
a=0d oy |, v=0"|Ys |, B=0"]| Bs
a;@ ;LZJ IB;—)LD
. o . 2p+1 5
for some o' = (al’oaé’l, o0 € RTl+m2+ Pl R, i€ Hj}.

Next, we solve the following cut-generating linear program (CGLP) to find the most violated

parametric lift-and-project cut among the defining inequalities of (23) for (2!, (2)):
max{8 — ay}(a') — va' : (o, ¢, B) € CLN NG}, (24)

where N is a normalization set (defined by one or more constraints) which truncates the cone Cg,.
Let (a*,9*, 3*) be the optimal solution for (24). Then, for t = 7; + 1, we set o, = o, YL = ¢*,
and 8L = 8* to get the required parametric lift-and-project cut in Line 9 of Algorithm 2.

3.2.2  Optimality and finite convergence

We prove that Algorithm 2 solves TSDR-SC-DP to optimality and also present conditions under

which it converges in finitely many iterations.
Theorem 7 (Optimality Result). Algorithm 2 provides an optimal solution for TSDR-SC-DPs.

Proof. Let 2! and z!*! be the first stage feasible solution obtained in iteration ! — 1 and [, re-

spectively, of Algorithm 2, and y*(z!) be the solution obtained by solving subproblem S, (z!) for
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w € Q. At the end of iteration [, there are three possibilities: (i) z!T! = 2! and y(2!) € K, (z!)
for all w € Q, (i) 271 = 2! and yi(2!) ¢ Ko(2!) for some w € Q, or (iii) 2+ # 2. In
Case (i), (2!, {y5(2")}weq) € F and therefore, the upper bound UB < Tzl + Y Lol v (2h).
Moreover, by substituting z = 2! in the optimality cut OCS(W:)’O(JJ),{])({J}MGQ), i.e. Inequality
(17), we get 71 >3 plalyz(2!). Since 67! is a lower bound approximation of the recourse
function, §t1 < maxpep {Egp [Qw(ml)]} = plgly: (2!) as {pl,}weq is the optimal solution of the
distribution separation problem associated with 98 and first stage feasible solution x!. This im-
plies 9+ = pfugz:yz () and LB = cTz! + ', which is equal to UB. Since termination condition,
UB — LB = 0, has been satisfied, the algorithm will terminate at this iteration after returning the
optimal solution (2!, {y* (') }weq)-

In Case (ii), we add lift-and-project cuts (Line 9) to the subproblems and resolve them in the
subsequent iterations. Clearly, x = x! defines a face of conv(F,) as 2! € {0,1}” and since we
assume relatively complete recourse, each extreme point of conv(F,) N {r = 2'} has y, € K, (2}
for all w € 2. Therefore, by repeating the “while” loop, i.e. adding globally valid parametric lift-
and-projects cuts to the subproblems (with sequentially convexifiable DPs), we reach an iteration
k > 141 such that y (2*) € K (2F) for all w € Q where 2% = z!. This happens because the class of
parametric lift-and-project is sufficient to describe the convex hull of F,, for TSDR-SC-DPs (Balas,
1998; Balas et al., 1989). Finally in Case (iii), i.e. /1 # 2!, another iteration of “while” loop is

performed and these iterations are repeated until 2% = z**1 for some k > 1 + 1. O

Theorem 8 (Convergence Result). Algorithm 2 solves TSDR-SC-DP with facial DPs in the second
stage in finitely many iterations if the distribution separation algorithm associated to the ambiguity

set P for solving (5) is finitely convergent.

Proof. The arguments for this proof are similar to the finite convergence proof for distributionally
robust integer L-shaped algorithm of Bansal et al. (2018a) for TSDR-MBP (a special case of TSDR-
SC-DP), except the last paragraph of this proof. However for the sake of completeness, we provide
all arguments. Since all the variables in the first stage of TSDR-SC-DP are binary, the number of
first stage feasible solutions | X| is finite. In Algorithm 2, for a given z! € X, we solve |Q| number
of linear programs, i.e. S, (z!) for all w € €, the distribution separation problem associated with
the ambiguity set 3, and a master problem M; (after adding an optimality cut which requires a
linear program to be solved). Notice that the master problem is a mixed binary program and can
be solved using a finite number of cutting planes by specialized lift-and-project algorithm of Balas
et al. (1993). Therefore, Lines 3-26 in Algorithm 2 are performed in finite iterations because we

assume that the distribution separation algorithm is finitely convergent.

Now we have to ensure that the “while” loop in Line 2 terminates after finite iterations and
provides the optimal solution. Notice that at the end of iteration [, either of the following two
cases can happen: (i) z'*1 # 2!, or (i) 21 = 2!. In the first case where (21, 0!*1) £ (2!, 6%,

(2!, 6") will not be visited again in future iterations because the optimality cut generated in Line 22
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cuts-off the point (z!,6') and this case can happen only a finite number of times because |X|
is finite. The second case can further be divided into two subcases: In the first subcase, let
yi(r!) € Ky(ah) for all w € Q. From the extensive formulation of TSDR-SC-DP, i.e. (10a)-
(10e) where constraint (10c) is written in conjunctive normal form using (4b) and (4c), it is clear
that (2!, {5 (2') }wea) € F and hence, UB = cTa!+3" gLy (2!) where {p!, },cq is an optimal
solution of the distribution separation problem associated with 93 and first stage feasible solution z'.
Since (2!, 611 is an optimal solution of My, ™1 > maxpeq {Ep [Qu(2!)]} = 3 cq PLolyh (2!)
and LB = a1 4+ 01 > Tl + 3 o plglys(2') = UB. This implies that UB = LB and
(2!, {y7 (2" }eq) is the optimal solution, and we get (z!*1,0/+1) = (2!, 0"). Hence, in this subcase

the algorithm terminates after returning the optimal solution and optimal objective value UB.

In the second subcase, let y%(2!) ¢ Kz (2!) for some @ € Q. For this subcase, we derive a lift-and-
project cut (Line 9) in (2, ;) subspace to cut-off the point (z!,%(z!)), project this cutting plane
to yg space, add this (globally valid) parametric cut to Sy, (x), and resolve the linear program for
x = z!. Since we assume relatively complete recourse, for each w € Q, K (z!) and its relaxations
are nonempty. Notice that 2! € ver(X) where ver(X) is the set of vertices of conv(X) because X
is defined by binary variables only. Hence, 2 = z! defines a face of conv(Fz) and since we assume
relatively complete recourse, each extreme point of conv(Fy)N{z = 2!} hasy_ € K_(«!). Therefore,
according to the results of Jeroslow (1980), we can obtain y (z!) € Ky (2!), by adding a finite number
of parametric lift-and-projects cuts to S, (z). This step can be repeated until y7(z!) € K, (z!) for
all w € Q. As explained above, under such conditions, our algorithm terminates and returns the

optimal solution after a finite number of iterations as || is finite. This completes the proof. [

4. Two-stage distributionally robust semi-continuous programs

In this section, we showcase the significance of studying TSDR-DPs by introducing two-stage
distributionally robust semi-continuous programs (TSDR-SCPs) where the first stage has binary
variables and the second stage problems have semi-continuous variables. Specifically, TSDR-SCP
is defined by (2), where

Q. (x) = min gLy, (
s.t. Woyw > 1o — T, (25b
yZJG [O,%]U[[&,ul], izlv"'anv (250

w

yZuZOv i=q+1,...,q (25d

such that 0 <1° < [!, <w! fori=1,...,q; and w € Q. Note that by setting I, = I’ for all i and
w, the semi-continuous variables become continuous, and by setting I’ = 0 and I}, = u}, = 1, the
semi-continuous variables become binary. Therefore, the two-stage distributionally robust problems
with mixed 0-1 programs in the second stage, i.e., TSDR-MBPs, (Bansal et al., 2018a) are special

cases of the TSDR-SCPs. In the following sections, we provide linear programming equivalent for
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the second stage: (i) TSDR-SCPs using DPs (Section 4.1), and (ii) TSDR semi-continuous network
flow problem (Section 4.2).

4.1 Linear programming equivalent for the second stage of TSDR-SCPs

We re-write the semi-continuity constraints (25c) as disjunctive constraints,

a
A{(OSyLSE;)V(‘LSyZ;SaL)}, (26)
i=1

thereby, showing that the class of TSDR-DPs subsumes the TSDR-SCPs. Next, in order to convex-
ify Ky (), (w,x) € Q@ x X, for the TSDR-SCP, we assume that ¢; = 2 (for the sake of convenience)

and hence, the constraints (25¢) or (26) in the disjunctive normal form is given by:

0< 1<l1 <l<l l_1< l<—l _1<1<—1
_yw—q‘; \/ 0 Yo l \/ = w—UQw \/ l_w—yw—flfw . (27)
0<y? <[ 2 <yl <ul 0<y2<I 12 <y? <u?

Corollary 1. Assuming ¢ = 1 = 2, a tight extended formulation for K, (z) := {y. : (25b)—(25d)},
(w,z) € (Q,X), is given by

tzght { Z gl,l,w yw - 0 Z &1 2,w yw - 7

heH heH

h
> &a=m

heH
(5?1 w7€?2 w)T > wazo -1 53,27 h e H,
1511w+D 2§1zw§dho§woa h e H,

Z 553,0 =1y, € Riafiﬁ,w € R+?§?,2,w € R+,§£,2 €R, 53,0 €eRy, he H}
heH

where H :={1,2,3,4}, D}, =[-1 1 0 0%, D, =[0 0 -1 1" forallhe H, and

0 0 —l —l3
d10: L{) ,d 0~ Ej 7d 0= ai 7d 0= ai
w, 0 w, —l_i w 0 w _ZZ
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4.2 Two-stage distributionally robust semi-continuous network flow problem

Angulo et al. (2013) studied the so-called semi-continuous inflow set, defined by

S(t,h) = {(0,n) € R" x R" :

ieN
ti +mn; > 0;, 1€ N,
0; € {0} U [hs,00), 1€ N,
€ {0yUlli,00), i€ N},

where N := {1,...,n} and provided a tight and compact extended formulation for S(0, ) which

is given as follows:
Siight = {(6,m,7) € R" x R* x R/ ;
0;
Z max{ﬁ,hi} +Z% =

iEN\L il
o>y, ieL,
l;

9.
m > Yis teL,
0; > 0, 1€ N,
n; > 05, i€ N},

where L := {i € N : max{8,h;} < l;}. They showed that S(¢,h) arises as substructure in
general semi-continuous network flow problem and semi-continuous transportation problem. Here,
we consider the following TSDR-SCP with semi-continuous inflow set in the second stage, defined

by (2) where

Qu(z) :==min gy 1Yw + guw,2%w (28)
st Yyl > dy, (29)
iEN
Yl — 2L <0, i€ N, (30)
z; < du, i€ N, (31)
y., € {0} U [z, 00), i€ N, (32)
2t € {0} U[lE, 00), i€ N. (33)

Here, g,,,1 € R", gu2 € R, and [, € R"}. Let Ky (2) := {(Yw 20) : (29) — (33)}.
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Proposition 1. For each (z,w) € (X,Q),

tight (T) = { (o, 20, 1) € R™ x R RIE]

2t 4

ZTWZU‘Z‘” 1 € Ly,

w

T

d—wZuZﬂ 1€ Ly,

w

z; < dy, 1€ N,

yfj_ , 1€ N,

2 >yl i €N,
Y, i

OIS SEEHS

i€N\Ly, *  i€Ly

where Ly, := {i € N :d, < .}, is a tight extended formulation of K, (z), i.e. conv(Ky(x)) =
Projy, -, (Icfight(x))-

Proof. For each w € Q, we substitute ', 25, z;, and d,, in K, (x) by 6;, n;, h;, and 3, respectively,
to get S(0,h) where 3 > h; for all i € N. Now, by applying the compact extended formulation for
S(0,h) we get a tight extended formulation for Ky, (), i.e. Kf 4, (2) for all 2 € X. This completes
the proof. O

5. Conclusion and Future Work

We introduced two-stage distributionally robust disjunctive programs (TSDR-DPs) with general
ambiguity set. We extended the results of Balas (1979, 1998) developed for deterministic disjunc-
tive programs to TSDR-DPs. More specifically, we provided linear programming equivalent for
the second stage of TSDR-DPs and utilized it within a decomposition algorithm to solve general
TSDR-DPs. Additionally, by utilizing the sequential convexification approach of Balas (1979),
we developed another decomposition algorithm to solve TSDR-DPs where second stage programs
are facial DPs (in finite iterations), and sequentially convexifiable DPs (which include some non-
convex programs such as nonconvex quadratic programs, separable non-linear programs, reverse
convex programs, etc.). Furthermore, we showcased the significance of studying TSDR-DPs by
reformulating TSDR semi-continuous programs (TSDR-SCPs) as TSDR-DPs and then deriving
linear programming equivalent for the second stage SCPs. We also provide linear programming

equivalent for TSDR-SCP with semi-continuous inflow set in the second stage.

A potential future extension can be to perform computational study on the performance of the
algorithms presented in this paper for solving TSDR-DPs and various applied optimization prob-
lems which can be formulated as TSDR-DPs. It would involve consideration of various strategies

to generate parametric lift-and-project inequalities for different classes of TSDR-SC-DPs and in
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addition, there is a scope to further strengthen these inequalities using various cut-generating pro-
cedures such as mixed integer rounding (MIR) (Nemhauser and Wolsey, 1990), mixing (Giinlik
and Pochet, 2001), continuous multi-mixing (Bansal and Kianfar, 2015), mingled n-step cycling

(Bansal and Kianfar, 2017), and many more.
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