Linear Algebra and its Applications 581 (2019) 304-323

Contents lists available at ScienceDirect

and Its

Linear Algebra and its Applications Applications

ELEVIE www.elsevier.com /locate/laa

An effective Lie-Kolchin Theorem for n

quasl-unipotent matrices ki

Thomas Koberda®, Feng Luo”*, Hongbin Sun"

& Department of Mathematics, University of Virginia, Charlottesville,

VA 22904-4137, USA

Y Department of Mathematics, Rutgers University, Hill Center — Busch Campus,
110 Frelinghuysen Road, Piscataway, NJ 08854, USA

ARTICLE INFO ABSTRACT
Article history: We establish an effective version of the classical Lie—Kolchin
Received 27 April 2019 Theorem. Namely, let A, B € GL,,(C) be quasi-unipotent

Accepted 17 July 2019
Available online 23 July 2019
Submitted by V.V. Sergeichuk

matrices such that the Jordan Canonical Form of B consists
of a single block, and suppose that for all £k > 0 the
matrix AB* is also quasi-unipotent. Then A and B have a

MSC- common eigenvector. In particular, (A, B) < GL,,(C) is a

primary 20H20, 20F38 solvable subgroup. We give applications of this result to the

secondary 20F16, 15A15 representation theory of mapping class groups of orientable
surfaces.

Keywords: © 2019 Elsevier Inc. All rights reserved.

Lie—Kolchin theorem
Unipotent matrices
Solvable groups
Mapping class groups

* Corresponding author.

E-mail addresses: thomas.koberda@gmail.com (T. Koberda), fluo@math.rutgers.edu (F. Luo),
hongbin.sun@rutgers.edu (H. Sun).

URLs: http://faculty.virginia.edu/Koberda/ (T. Koberda), http://sites.math.rutgers.edu/~fluo/
(F. Luo), http://sites.math.rutgers.edu/~hs735/ (H. Sun).

https://doi.org/10.1016/j.1aa.2019.07.023
0024-3795/© 2019 Elsevier Inc. All rights reserved.



T. Koberda et al. / Linear Algebra and its Applications 581 (2019) 304—323 305

1. Introduction

Let V be a finite dimensional vector space over an algebraically closed field. In this
paper, we study the structure of certain subgroups of GL(V') which contain “sufficiently
many” elements of a relatively simple form. We are motivated by the representation
theory of the mapping class group of a surface of hyperbolic type.

If S be an orientable surface of genus 2 or more, the mapping class group Mod(S5)
is the group of homotopy classes of orientation preserving homeomorphisms of S. The
group Mod(S) is generated by certain mapping classes known as Dehn twists, which are
defined for essential simple closed curves of S. Here, an essential simple closed curve is
a free homotopy class of embedded copies of S* in S which is homotopically essential,
in that the homotopy class represents a nontrivial conjugacy class in 71 (.S) which is not
the homotopy class of a boundary component or a puncture of S.

If the genus of S is 3 or more, it is unknown whether or not the mapping class group
Mod(S) admits a faithful finite dimensional representation. One of the main themes of
the present paper is to prove that if a representation p: Mod(S) — GL(V') maps a Dehn
twist along a nonseparating simple closed curve to a matrix in the relatively simple
form, the representation p cannot be faithful. In the course of pursuing this thread,
we prove a general result about 2-generated subgroups of GL(V) which contain many
quasi-unipotent elements.

1.1. Main results

The starting point of this paper is the following fact about images of Dehn twists
under finite dimensional linear representations of mapping class groups. This fact seems
to be well-known, and appears in many different contexts by several authors and with a
number of distinct proofs. The reader may consult Corollary 3.5 of [9] (cf. [8]), as well
as Proposition 2.4 of [1]. We adopt the assumption here and throughout that all vector
spaces are either over the field of complex numbers C or over an algebraically closed
field of characteristic p > 0.

Proposition 1.1. Let S be a surface of genus 3 or more, let T' € Mod(S) be a Dehn twist
about an essential simple closed curve on S, and let p: Mod(S) — GL(V') be a finite
dimensional linear representation of Mod(S). Then p(T) is quasi-unipotent.

Here, an element A € GL(V') is quasi-unipotent if there exists a k > 0 and n > 0 such
that the minimal polynomial of A* is (x—1)", i.e., all eigenvalues of A are roots of unity.
The reader will find an extensive discussion of ideas closely related to Proposition 1.1
in [7].

The fact that Dehn twists about nonseparating curves are conjugate to each other
as group elements in the mapping class group implies that there are many elements of
Mod(SS) which are sent to quasi-unipotent elements under any linear representation of
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Mod(S). Moreover, Dehn twists satisfy many relations amongst each other, thus imposing
further constraints on the structure of linear representations of Mod(.S).

For example, if S is closed with one marked point (or equivalently from an algebraic
standpoint, has a single puncture), then the Birman Exact Sequence [12] implies that
Mod(S) contains a natural copy of a closed surface group 71(S) which is generated
by products of commuting Dehn twists. That is, homotopy classes of simple loops in
m1(S) are given by products of two twists about disjoint curves, so that under a finite
dimensional linear representation p of Mod(S), any such element of m1(S) is sent to a
quasi-unipotent matrix. Thus, if a,b € 7 (S) are homotopy classes of simple loops with
geometric intersection number exactly one, then the elements {ab™,a"b,b"a,ba™} are
homotopy classes of simple loops on S for all n € Z.

Motivated by this discussion of mapping class groups, we have the following general
result about linear groups which is the main result of this paper.

Theorem 1.2. Let A,B € GL(V) be quasi-unipotent matrices such that the Jordan
Canonical Form of B consists of a single block. Suppose that the value of tr((AB™)¥) is
independent of n for all k. Then the matrices A and B have a common eigenvector in 'V .

Corollary 1.3. Under the hypotheses of Theorem 1.2, there is a basis of V' for which the
subgroup (A, B) is upper triangular, and is hence solvable.

Corollary 1.3 may be compared with classical results about groups of unipotent ma-
trices in GL(V'). The well-known theorem of Lie-Kolchin [29] from representation theory
states that if G < GL(V) for a finite dimensional vector space V, and if each element
g € GG is unipotent, then G is a nilpotent group.

Insofar as consequences of Proposition 1.1 and Theorem 1.2 for mapping class groups
are concerned, we note the following.

Corollary 1.4. Let p: Mod(S) — GL(V) be a finite dimensional representation and S be
a surface of genus 3 or more.

(a) If p is unitary, then p is not faithful.

(b) If the base field of V' has positive characteristic, then p is not faithful.

In part (a) of Corollary 1.4, we only consider the compact complex unitary groups
U(n). Part (b) of Corollary 1.4 was first established by Button [8].

Corollary 1.5. Suppose S is a surface with marked point and of genus at least two. If p
is a linear representation of Mod(S) and if p(T) has one Jordan block for a Dehn twist
T about a nonseparating closed curve, then p is not faithful.

While it is true that Corollary 1.5 follows from Theorem 1.2 and Proposition 1.1, at
least when the genus of S is sufficiently large, we can give a much more elementary proof
of this fact. See Proposition 2.7 below.
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Finally, we remark that the ideas of this paper cannot suffice by themselves to establish
nonlinearity of the mapping class group, and in particular the hypothesis in Theorem 1.2
that the Jordan Canonical Form consists of a single block cannot be dropped. Indeed,
the work of Hadari [17] shows that non-virtually solvable subgroups of mapping class
groups admit homological representations with non-virtually solvable image, which in
particular applies to the copy of m(S) appearing in the Birman Exact Sequence as
discussed earlier.

In fact, most of the known families of representations of mapping class groups do
not fall under the purview of Corollary 1.5. The main families of naturally occurring
representations which exhaust the whole mapping class group are homological represen-
tations (arising from homology actions on finite covers of the base surface; see [15,14,16,
19,22-24,27,30] for instance), and TQFT representations (arising from certain functorial
constructions; see [3,28,31,32], for instance).

In the case of homological representations, a Dehn twist is sent to a (virtual) transvec-
tion, powers of which have matrix norm which grows linearly in the power taken. If M is a
unipotent matrix with a single Jordan block of dimension at least three, then the matrix
norm of M™ grows as a nonlinear polynomial in n and is therefore not a transvection.

In the case of TQFT representations, Dehn twists are mapped to finite order matrices,
whence some nonzero power of the twist is sent to the identity. Then, the number of
Jordan blocks coincides with the dimension of the representation.

1.2. Structure of the paper

The majority of the paper will be spent in establishing Theorem 1.2. First, we will
reduce the result to a combinatorial statement about the triviality of solutions to certain
polynomial equations. Then, we will give a proof of the result using the non-negativity
of certain matrices with binomial coefficients.

Structurally, we will gather relevant results about representation theory of mapping
class groups first, in Section 2. Next, we reduce the proof of Theorem 1.2 to polynomial
identities in Section 3, and prove the main result.

1.8. Remarks on motivation

As is suggested by Corollary 1.4, much of the discussion in this paper is motivated by
the problem of whether mapping class groups are linear. This question has had a long
history, and has been resolved in several cases. Notably, Bigelow [4] and Krammer [21]
proved that braid groups are linear, and Bigelow—Budney [5] proved mapping class groups
in genus two are linear. Building on these ideas, Korkmaz [20] proved that the hyper-
elliptic mapping class groups are also linear. Mapping class groups tend to share many
properties with automorphism groups of free groups, and these latter groups are known
to be nonlinear for a free group of rank 3 or more by a result of Formanek—Procesi [13].
The reason for the nonlinearity of automorphism groups of free groups comes from cer-



308 T. Koberda et al. / Linear Algebra and its Applications 581 (2019) 304—323

tain toxic subgroups which are known to be absent in mapping class groups by the work
of Brendle-Hamidi-Tehrani [6].

2. Representations of mapping class groups

Before proving Theorem 1.2, we will detail some of its applications to the groups which
inspired the present article, namely mapping class groups of surfaces. Throughout this
section, we set S to be an orientable connected surface of finite type, of genus g > 3. As
before, we write Mod(.S) for the mapping class group of S, which is to say the group of
homotopy classes of orientation-preserving homeomorphisms of S. The primary purpose
of this section is to prove the following fact:

Proposition 2.1. Let p: Mod(S) — GL,,(C) be a representation of the mapping class
group of a surface of genus 3 or more, and let T € Mod(S) be a Dehn twist. Then p(T')
18 quasi-unipotent.

2.1. Centralizers and products of commutators

The following lemma applies to general groups. An almost identical argument can be
found as Lemma 2.5 in [1], in the context of mapping class groups.

Lemma 2.2. Let G be a group and let g € G be an element which is the product of
commutators

n

9= H[xiayi]

=1

such that the commutators [z;,g] and [y;, g] are trivial for all i. If
p: G — GL,(C)
is an arbitrary representation, then p(g) is quasi-unipotent.

Proof. Note that det p(g) = 1, since g is a product of commutators. If h € G is another
element commuting with g, the h preserves each (generalized) eigenspace of p(g). Thus,
if A is an eigenvalue of p(g) with generalized eigenspace W, then W is invariant under
p(x;) and p(y;) for each i. Restricting to such an eigenspace W, the fact that

n

9= H[l’z’,yi]

=1

implies that det(p(g)|w) = 1, and consequently that the corresponding eigenvalue of
p(g) must be a root of unity. Decomposing C™ as a direct sum of generalized eigenspaces
of g, we conclude that p(g) is quasi-unipotent. 0O
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2.2. Dehn twists

For generalities on mapping class groups used here and in the sequel, we refer the
reader to [12]. Let S be a surface of genus 3 or more, and let v C S be an essential
simple closed curve. We write 1" = T’, for the Dehn twist about .

Lemma 2.3. There exist six elements

{21, 22, 23,91, y2,y3} C Mod(S)

such that

T= H[ﬂfi,yz‘];

=1

and such that the commutators [T, xz;] and [T, y;] are trivial for all i.

Proof. Cut the surface S open along ~ to obtain a subsurface X of genus at least two.
If v was separating, then ~ forms a boundary component of X. If v was nonseparating,
then the genus of X is exactly one less than the genus of S, and X acquires two extra
boundary components from ~.

Since X has genus at least two, one can embed the sphere Sy 4 in X such that exactly
one of the boundary components of X arising from ~ (which we will also call 7) is a
boundary component of Sy 4, and where all other three boundary components {1, 72,73}
of Sp 4 are non-separating simple loops in X.

Applying the lantern relation [11,12], we have

T =T 'B,T, ' ByT; ' B3
where T; is the Dehn twist along v; and B; is the Dehn twist along a certain simple
closed loop f3; which is essential in Sp4 and nonseparating in X. In particular, there
exist orientation preserving self-homeomorphisms ¢; of X sending ~; to 3; and such that

the restriction ¢;|px is the identity. Extending ¢; to be a self-homeomorphism of 5,
retaining the notation ¢;, we may arrange for ¢; to commute with 7. We thus see that

T = [¢1, B1][¢2, B2][¢3, Bs]
and the commutators [T, B;] and [T, ¢;] are trivial for each i. O

Proposition 2.1 is now immediate. The following is a straightforward corollary of
Lemma 2.2 and Lemma 2.3:
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Corollary 2.4. Let p: Mod(S) — GL,,(F') be a representation, where F is a field. Suppose
that F' has characteristic p, or suppose that FF' = C and the image of p is unitary. Then
p is not faithful.

As remarked in the introduction, Corollary 2.4 in the case of a field with positive
characteristic was obtained by J. Button [8].

Proof of Corollary 2.4. In the first case, if F' has characteristic p then unipotent matrices
in GL,,(F") have finite order, so that Dehn twists about simple closed curves will not have
infinite order under p. In the second case, compact unitary groups contain no nontrivial
unipotent elements, so that quasi-unipotent unitary matrices have finite order, so that
again Dehn twists cannot have infinite order under p. O

2.3. The Birman Ezxact Sequence

Let Mod(S,p) denote the mapping class group of S with a marked point p in the
interior of S. There is a well-known exact sequence known as the Birman Exact Sequence
given by

1 — 71 (S) — Mod(S,p) — Mod(S) — 1,

where the map Mod(S,p) — Mod(S) is the map which forgets the marked point. The
subgroup m1(S) < Mod(S, p) is called the point-pushing subgroup.

The group 71(S) is generated by homotopy classes of simple closed curves based at
p. If v is a simple closed loop based at p, then the element ~ viewed as an element of
Mod(S, p) is given by a product T, T, 1 of Dehn twists about parallel copies 7; and
~vo of v, such that v; and 75 cobound an annulus containing the marked point p. We
obtain the following fact immediately from the observation that 7T’,, and T’,, commute
with each other, and that Mod(S, p) acts transitively on the set of nonseparating simple

closed curves on S.

Lemma 2.5. Let p: Mod(S,p) — GL,(C) be a representation. The image p(m1(S)) of
point-pushing subgroup is generated by quasi-unipotent matrices. Moreover, if a,b €
m1(S) are based loops with geometric intersection number exactly one, then for all n
we have that the matrices p(a™b), p(ab™), p(ba™), and p(b™a) are all quasi-unipotent and
conjugate in GL, (C).

We finally obtain the following consequence of Theorem 1.2.
Corollary 2.6. Let p: Mod(S,p) — GL,(C) be a representation, and suppose that for

some nonseparating simple closed homotopy class of curves a € w1(S) < Mod(S,p), we
have that p(a) has a single Jordan block. Then p is not faithful.
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2.4. Representations sending a Dehn twist to a single Jordan block

In this subsection, suppose that S has genus at least two, so that there exists a
configuration of nonseparating simple closed curves {a, b, ¢} such that a is disjoint from
both b and ¢ and where b and ¢ have nonzero geometric intersection number. We write
{To, Ty, T.} for the corresponding Dehn twists about these curves.

Proposition 2.7. Let p: Mod(S) — GL,(C) be a representation, and suppose that for
some nonseparating simple closed curve a C S, we have p(T,) consists of a single Jordan
block. Then p is not faithful.

The reader may compare this fact with Corollary 1.5.

Proof of Proposition 2.7. Let {a,b,c} be nonseparating simple closed curves such that
a is disjoint from both b and ¢ and where b and ¢ have nonzero geometric intersection
number. Then T, commutes with both T; and T,.. Writing V' = C™, there is a sequence
of vector spaces

V=V,CcV,.yC---CVy C{0}

such that V; has dimension exactly i and such that p(7,)(V;) = V;. That is, p(T,)
preserves a maximal flag % in V. This flag gives rise to a basis with respect to which
p(Ty) is in Jordan Canonical Form.

A straightforward calculation shows that if M € GL,(C) commutes with p(T,)
then M is upper triangular with respect to the same basis determined by .%#. Thus,
the centralizer of p(7T,) is solvable, whence p(T}) and p(T.) generate a solvable sub-
group of GL,,(C). Since b and ¢ have nonzero geometric intersection number, the group
(Ty,T.) < Mod(S) contains a nonabelian free group. Thus, we conclude that p is not
injective. 0O

2.5. Irreducibility of representations

In this final subsection, we prove the following general fact about the representation
theory of mapping class groups. Strictly speaking, it is not necessary for the discussion
in this paper, though we record it for its independent interest and because its flavor is
similar to the questions addressed in this article.

Proposition 2.8. Let S be a non-sporadic surface of hyperbolic type, and suppose that
Z(Mod(S)) is trivial. If Mod(S) admits a faithful finite-dimensional representation, then
it admits a faithful irreducible representation.

The hypothesis that Z(Mod(S5)) is trivial is satisfied by most mapping class groups.
For closed surfaces of genus two, the hyperelliptic involution is central, though this is in
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some sense the only example of a mapping class group with nontrivial center. Here, we
say that S is non-sporadic if S admits two disjoint, non-isotopic, essential, nonperipheral,
simple closed curves.

We will require the following fact, which is standard (see [25,10,18]).

Lemma 2.9. Let 1 # N < Mod(S) be a non-central normal subgroup of a non-sporadic
mapping class group. Then N contains a pair of independent pseudo-Anosov mapping
classes, and hence a nonabelian free subgroup.

Here, we say that two pseudo-Anosov mapping classes are independent if they do not
generate a virtually cyclic group.

Proof of Proposition 2.8. Let p: Mod(S) — GL(V) be a faithful representation of
minimal dimension. We claim that p is irreducible. Suppose for a contradiction that
0 # W C V is a proper p-invariant subspace. One obtains two non-injective represen-
tations of Mod(S), namely py : Mod(S) — GL(W) and py,/w : Mod(S) — GL(V/W).
Write K7 and K5 for the kernels of these two representations.

We first claim that K = K; N K5 is nontrivial. Indeed, otherwise the product repre-
sentation py X py/w would be injective, and the subgroup K K2 would be isomorphic
to K1 x Ky. By Lemma 2.9, both K; and K5 contain pseudo-Anosov mapping classes,
whose centralizers are virtually cyclic. Then if K; and K5 are both nontrivial, we obtain
that the centralizer of each infinite element 1) € K; contains a copy of Z x Z, which is a
contradiction. It follows that either K; or K5 is trivial, violating the minimality of the
dimension of V.

We may thus conclude that K is nontrivial, and that p restricts to a faithful represen-
tation of K. If 1 # k € K then we immediately have that v — p(k)v € W for all v € V,
since k € Ko. Moreover, if w € W then p(k)w = w, since k € K;. It follows that there is
a basis for V' for which p(K) acts by unipotent matrices, so that p(K) is nilpotent. This
contradicts Lemma 2.9. O

3. Trace calculations

In this section, let A, B € GL,,+1(C) be quasi-unipotent matrices such that B has a
single Jordan block, and suppose that the value of tr((AB™)*) is independent of the value
of n for all k. The choice of GL,,+1(C) instead of GL,,(C) is for notational convenience
later on.

3.1. An expansion of (AB™)*

Since B is quasi-unipotent, we may replace B by a positive power which is a unipotent
matrix. We will abuse notation and call this power B as well. In this case, we conjugate
so that we may write B = I + N, where N is a nilpotent matrix.
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We may therefore write

and
kn n n
TL k D— . .. Zl DY ik
(AB™)F = Z | Z | (21> (Z,k)AN AN,
J=0d1+-ip=7,is =0

and the assumptions on A and B imply that the trace of this latter expression is inde-
pendent of n.

Since N™*! = 0, we may write the limits of the sum as quantities which are indepen-
dent of n. That is, we have

km
nyk _ R i ik
(AB")* =% > (Zl) (ik>AN AN,
J=0d1+-ip=3
3.2. The index of a matriz
Let A= (A;;) € M;,1+1(C) be a square matrix.

Definition 3.1. The index of the matrix A is the unique integer k& € Z characterized by
the following two conditions:

(1) Ifl > ] -+ k then Ai,j = 0
(2) There exists an ¢ such that A; ;_ # 0.

The index of A will be written ind(A).

It is a straightforward consequence of the definition that if ind(A) = k and if 4; ; # 0
then j > 11— k.

The following lemma is straightforward, and we omit a proof.

Lemma 3.2. Let A = (A; ;) € M,,,+1(C). The following conclusions hold:

(1) If A; j = 0 whenever i > j + k then ind(A) < k.

(2) We have —m — 1 < ind(A) < m.

(3) The matriz A is upper triangular if and only if ind(A) < 0.
(4) If ind(A) < O then tr(A) = 0.

The following is a fundamental property of the index:
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Lemma 3.3. The index is submultiplicative. That is, for square matrices A and B of the
same dimension, we have

ind(AB) < ind(A) 4 ind(B).

Proof. We write ind(A) = k and ind(B) = ¢. By Lemma 3.2, it suffices to show that if
i>j+k+{then (AB);; = 0.

Suppose the contrary. Then for some such choice of indices ¢ and j such that i >
J+ k+ 1, we have

0# (AB)i; = Y AisBs.

We choose an index s such that A; ;B ; # 0. Since the index of A is equal to k, we see
that s > i — k, and similarly j > s — . Combining these equalities, we see that

jzs—t0>21—k—{,
which violates the requirement that ¢ > j+k+¢. O
The following properties of the index now follow:

Corollary 3.4. Let {Ay,...,As} C My, 11(C), and write ind(A;) = n;. Let

i=1
and let A = A;---A,.

(1) If K <0 then A is upper triangular.
(2) If K <0 then tr(A) = 0.
(3) If K =0 then

m—+1

tI‘(A) - Z (Al)k,k—nl (AQ)k—nl,k—nl—ng c (As)k—nl—m—ns_l,k-
k=1

By convention, (A4;); % = 0 if one of j and k is nonpositive.

Proof of Corollary 3.4. We establish the conclusions in order. The first and second
conclusions follow immediately from Lemma 3.3, by induction on s.
For the third conclusion, we note the general formula

r(A) = D (A1) ia (A2)inis - (As)ivins

11s00yls
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where the indices {i,...,45} range between 1 and m + 1. Now, if (Ax)i, ., 7 O then
Ik+1 = 1k — Nk, as follows from the definition of the index. Here, we adopt the convention
that isy1 = i1. The only terms in the expression for tr(A) which are nonzero are ones
for which ix41 > i — ny for each index k. From the fact that K = 0, the conclusion of

the lemma follows. O
3.3. A combinatorial reformulation of Theorem 1.2

Let A € M,;,+1(C) have index r. We will write ; = A;;_, for r+1 < i <m+ 1.
Our goal is to show that z; = 0 using the conditions that tr((AB")*) are independent
of n, for a fixed k. By applying this argument inductively on the index of A, it shows
that A is upper-triangular. Therefore the group generated by A, B is solvable. We write
N for the nilpotent matrix obtained from a single (m + 1) x (m + 1) Jordan block, with
N™+L = 0 holds. That is, if B € M,,,1(C) is a matrix with ones down the diagonal and
the upper off-diagonal, then N = B — I.

Note that by Lemma 3.3, we have

k
ind(AN™ - AN"™) <r k=Y iy
/=1

We consider the trace of the expansion of (AB™)* in terms of N, which is to say

% T (”)

— =\
J=0 i ip=j 1

(.") tr(AN™ - AN).
1k

Here, the ix’s are non-negative integers.
By Lemma 3.2, we have that if

k
j=> ig>r-k
/=1

then the corresponding summand contributes zero. Thus, the largest value of j for which
the trace of AN ... AN is nonzero is when j = r - k, and we will focus on this term.
Thus, viewing this sum of traces as a function of n, the first powers of n with nonzero
coefficient come from terms in which

k
E ig:T-k.
=1

It is easy to see that we obtain a polynomial function of n, that this polynomial has

degree at most r - k, and that the highest degree terms come from the summands for
which
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k
E ig:T-k.
(=1

We can also consider the product of binomial coefficients

() ()

as a function of n. This function is again a polynomial, and the coefficient of the highest
degree term in n is given by

il gl

Now, if we consider the sth power N*® of N, we have that (N*); ;45 = 1 and (N®);; =0
otherwise. Applying Corollary 3.4, we can easily compute

m—+1
tr(AN® ..« AN ) = Z TsTs—rtiy " Ts—(k—1)r+is++ip_1-

s=1

Here, we adopt the convention that if ¢ < r or i > m + 2, then z; = 0.
Thus, the contribution of the traces for which

k
Z ig =r-k
{=1
is a polynomial of n, whose highest degree term is given by
m—+1 1
. Z Z Zl' ce ik!xsxs_r—i_i_'_l s (k—1)rdig e ig_1 |
i1+-+ig=r-k \s=1
Thus, if
km n n
> ( ) ( ) tr(AN" ... AN,
=0 it eie=j N1 tk
independently of n, then we obtain
m-+1 1
Z <Z ﬁxsxs—r—‘rh e xs—(k—l)T‘—I—’il—l-'-'—l—ikl) = 07
‘ . 1! ag!
i1+ Fip=r-k s=1

independently of n.
To simplify these expressions a little, we substitute js = iy — r. This way, we obtain
the following lemma.
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Lemma 3.5. Theorem 1.2 is equivalent to the statement that if

m—+1
Z (Z (1 +7)! (.]k +r)! xs$s+j1"'$s+j1+-~-+jk1) =0

Jit+ie=0,je2—r

for all positive integers k, then x1 = -+ = x4 = 0.
Lemma 3.5 can be refined further.

Lemma 3.6. Let {x1,..., %11} be complex numbers such that

m—+1
2 (Z EDlERieT 5%“1”'%“1*”'”’“‘1):0

i Hin=0, je 2 —r

for all positive integers k. Then the numbers {x1,...,Tms1} Satisfy the equation
m+1
Z x’Ll “e xzk _ O
i1 ir=1 <Z2_21+T)'<Z3_22+T>'(Zk—lk,l—{—r)'(zl —Zk+r)| ’

where the indices of {i1,...,ix} lie in {1,...,m + 1}, and where if t < 0 we adopt the
convention 1/t! = 0.

Proof. Let s be as in Lemma 3.5. We set
11 =802 =8+ J1,...,0 =S+ J1+ -+ Jp_1.
We thus get j, = ip41 — i, forn € {1,...,k — 1} and
gk =i1—ip = —(J1 +Jj2+ -+ Jr-1)
The claim of this lemma follows immediately from these substitutions. O
3.4. Totally nonnegative matrices

For notational convenience, we write
m-+1

. - (ZQ—Zl—i-T)'(Zg—ZQ—i-T’)'(Zk—Zk,1+T)'(Z1—Zk+T’)'7

01yt =1

where again by convention we set
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whenever n < 0. In this section, we prove the following result which implies, by Lem-
mas 3.5 and 3.6, that Theorem 1.2 holds.

Theorem 3.7. Suppose p(z1,...,xm+1) =0 for all k. Then x; =0 for 1 <i<m+ 1.

Theorem 3.7 admits a quick reduction to a statement about matrices with combina-
torial quantities as entries, which we carry out here before completing the proof.

First, we perform a change of variables, setting x; = y?. Then the statement
pi(z1, ..., Tms1) = 0 becomes
m+1

Z (yi1yi2)<yi2yi3) T (yikyil)
(ig — 41 + T)!(ig — 19 + 7“)! to (’Lk —ig—1 + T)!(il — i, + 7”)!

11,000 =1

=0.

We let

P YiYj
Y (=g )

and set 2 = (a; ;). Then the equation p, = 0 for all k is merely the equation tr A =0
for all k. In particular, the matrix 2 is nilpotent. It follows that A™+! = 0, and so that
in particular we have det 2 = 0.

We now set

b = ———
T (i—j4r)!

and set B = (b; ;). Note that

A =diag(yr, ..., Ym+1) - B - diag(y, - - -, Ym+1),

where diag(yi,...,ym+1) denotes a diagonal matrix with the corresponding entries. It
follows that

m—+1
det 2 = det B - H ;.

=1

Note that if det B # 0 then x; = 0 for some i. Thus, a straightforward induction on m
shows that the following result implies Theorem 3.7: First of all, det 2 = 0 implies that
y; = 0 for at least one index . By plugging y; = 0 into 2, we get that the ith row and
tth column of 2 consist of only zeros. Once we delete the ¢th row and ith column of 2,

we get an m X m matrix

@:dia’g(yla"'7g\i7"'7ym+1)'Q'diag(ylw"7@7"'7ym+1>7
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where € is the ¢th principal minor of 8 of size m. Then the fact that 2l is nilpotent
implies that ® is nilpotent. So if the principal minors of B are all nonsingular, we obtain
that one of

{y17"'7@i7"'7ym+1}

equals 0, and the induction process can proceed.
We therefore need only establish the following result.

Theorem 3.8. The determinants of all principal minors of B are nonzero.

Note that if M is a matrix whose principal minors are all nonsingular, then if we
multiply M by a nonsingular diagonal matrix (on the left or on the right), the principal
minors of the resulting matrix remain nonsingular. Thus, we may modify 8 by multi-
plying by nonsingular diagonal matrices in order to convert it into a more advantageous
form, without affecting the statement of Theorem 3.8. With this in mind, we multiply
on the left by

diag((r+ DL (r+2)!,...,(r+m+ 1)),
and on the right by
diag(1/11,1/2!,...,1/(m + 1)!).

The resulting matrix will be denoted M (r,m) = (fi ;), where we have

[ (iﬁ) (i)

i) Mi—j+n)t
Thus, it suffices to prove the following result:
Theorem 3.9. The determinants of all principal minors of M are nonzero.
We will prove Theorem 3.9 by establishing the following fact.
Lemma 3.10. Let
0<q < <gm

and r > 0 be integers, and let p = qi +1r. Let M be a matrix whose entries are given by

_(pi—1
fa= (0 )

Then the determinant of M is positive.
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We retain a standing convention that if p < g then

()

It is clear that Lemma 3.10 implies Theorem 3.9.

A matrix is called totally nonnegative if all of its minors have nonnegative determinant.
For a square n x n matrix A, we set I = {iy,...,i,,} and J = {j1,...,Jm} to be subsets
of [n] = {1,...,n} which have the same size. We write A; ; for the minor of A whose
row indices lie in I and whose column indices lie in J.

The determinant of a minor of a product of two matrices can be expanded from minors
of the two factor matrices. Specifically, we have the following fact, classically known as
the Binet—Cauchy formula [26].

Lemma 3.11. Let A and B be n x n matrices, and let I, J C [n] have cardinality m. Then

det((AB)rs)= Y det(A;k)det(Bk.s).

KCln], |K[=m

An immediate consequence of the Cauchy—Binet formula is that the product of two
totally nonnegative matrices is again totally nonnegative. We define the lower triangular
Pascal matrix Ly, (see [2]) to be the n x n matrix whose entries are given by

= (1)

With our convention, it becomes clear that if ¢ < j then the corresponding entry of L,
is zero, so that L,, is indeed lower triangular. Observe that if n > p,, then the matrix
M as defined in Lemma 3.10 is a minor of L,,.

Lemma 3.12. For n > 1, the matrix L, is totally nonnegative.

Proof. Let E; ; be a matrix whose unique nonzero entry is in the (4, j) entry. A direct
inductive computation (cf. Lemma 1 of [2]) yields

Ly,=Up+Epn1)In+Ewn-1+En1n-2)Un+Epn1+Es_1n-o+-+E21).
We can further expand the factors in this product as

I.+E,n1+E,1no+t - +E i1=Us+FEii-1)In+FEiz1:) - In+ Enn-1).
Thus to establish the lemma, it suffices to show that each matrix of the form

I, +Ei; 1
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is totally nonnegative. To do this, we compute the determinant of
(In + Eii—1)1.J-

If i ¢ I then the only possibility for J for which (I,, + E; ;—1)r,; has nonzero determinant
is for I = J, wherein the determinant is 1. If ¢ € I, then (I,, + E;;—1)r,; has nonzero
determinant only if I = J or if

J=(I\{i})ufi—1}

and i — 1 ¢ J. It is straightforward to see then that the determinant is 1 in both these
cases. The conclusion of the lemma follows. O

It follows then that M is totally nonnegative, so that det M > 0.

Proof of Lemma 3.10. It suffices to show that det M > 0. Let P = {p1,...,pm} and
let Q@ ={q1,...,qm} with py = gi + r. It suffices to show that det((L,)p,g) > 0. This
determinant can be computed from the Cauchy—Binet formula. Indeed, we may expand

det((Lyn)p,q) as

> det(([n + Enn—1)pPR,—y) -+ det((In + Epn—1+ -+ + E21)R,,Q)-
RQ,...,Rn_lc[n], |RZ|:’ITL

Note that each term in this sum is nonnegative, so that we need only find suitable
{Rs2,...,R,_1} so that each of the corresponding minors is positive. We will adopt the
notation P = R,, and Q = R;.

We observe that

det((In + Epn—1+ -+ Erk—1)Ro.Re,) =1
if and only if there is a (possibly empty) subset
{a1,a9,...,a;} C RyN{k,...,n}
satisfying
Ri_1 = (Rp\{a1,...,a;})U{a1 —1,...,a; — 1},
such that they have the same cardinality. A proof of this fact can be given by an argument

identical to that given in the proof of Lemma 3.12.
For the matrix M under consideration, we have

Rn:{p17"'7pm}:{q1+ru"'7qm+r}7
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and Ry = {q1,...,qm}. We set
Rn:Rnfl:"':Rq1+T:{Q1+T7"' >qm+r}7

then write

Rqﬁ-r—j:{(11+7”_ja92+7”_ja---a(1m+7”_j}

for 1 < j < r, and finally write

Rq1—1 ::Rl :{Q1;Q2a-~~7Qm}-

This exhibits a suitable choice of {Ry,..., R,} and hence proves that det M > 0. O
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