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1. Introduction

Let V be a finite dimensional vector space over an algebraically closed field. In this 
paper, we study the structure of certain subgroups of GL(V ) which contain “sufficiently 
many” elements of a relatively simple form. We are motivated by the representation 
theory of the mapping class group of a surface of hyperbolic type.

If S be an orientable surface of genus 2 or more, the mapping class group Mod(S)
is the group of homotopy classes of orientation preserving homeomorphisms of S. The 
group Mod(S) is generated by certain mapping classes known as Dehn twists, which are 
defined for essential simple closed curves of S. Here, an essential simple closed curve is 
a free homotopy class of embedded copies of S1 in S which is homotopically essential, 
in that the homotopy class represents a nontrivial conjugacy class in π1(S) which is not 
the homotopy class of a boundary component or a puncture of S.

If the genus of S is 3 or more, it is unknown whether or not the mapping class group 
Mod(S) admits a faithful finite dimensional representation. One of the main themes of 
the present paper is to prove that if a representation ρ : Mod(S) → GL(V ) maps a Dehn 
twist along a nonseparating simple closed curve to a matrix in the relatively simple 
form, the representation ρ cannot be faithful. In the course of pursuing this thread, 
we prove a general result about 2-generated subgroups of GL(V ) which contain many 
quasi-unipotent elements.

1.1. Main results

The starting point of this paper is the following fact about images of Dehn twists 
under finite dimensional linear representations of mapping class groups. This fact seems 
to be well-known, and appears in many different contexts by several authors and with a 
number of distinct proofs. The reader may consult Corollary 3.5 of [9] (cf. [8]), as well 
as Proposition 2.4 of [1]. We adopt the assumption here and throughout that all vector 
spaces are either over the field of complex numbers C or over an algebraically closed 
field of characteristic p > 0.

Proposition 1.1. Let S be a surface of genus 3 or more, let T ∈ Mod(S) be a Dehn twist 
about an essential simple closed curve on S, and let ρ : Mod(S) → GL(V ) be a finite 
dimensional linear representation of Mod(S). Then ρ(T ) is quasi-unipotent.

Here, an element A ∈ GL(V ) is quasi-unipotent if there exists a k > 0 and n > 0 such 
that the minimal polynomial of Ak is (x −1)n, i.e., all eigenvalues of A are roots of unity. 
The reader will find an extensive discussion of ideas closely related to Proposition 1.1
in [7].

The fact that Dehn twists about nonseparating curves are conjugate to each other 
as group elements in the mapping class group implies that there are many elements of 
Mod(S) which are sent to quasi-unipotent elements under any linear representation of 
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Mod(S). Moreover, Dehn twists satisfy many relations amongst each other, thus imposing 
further constraints on the structure of linear representations of Mod(S).

For example, if S is closed with one marked point (or equivalently from an algebraic 
standpoint, has a single puncture), then the Birman Exact Sequence [12] implies that 
Mod(S) contains a natural copy of a closed surface group π1(S) which is generated 
by products of commuting Dehn twists. That is, homotopy classes of simple loops in 
π1(S) are given by products of two twists about disjoint curves, so that under a finite 
dimensional linear representation ρ of Mod(S), any such element of π1(S) is sent to a 
quasi-unipotent matrix. Thus, if a, b ∈ π1(S) are homotopy classes of simple loops with 
geometric intersection number exactly one, then the elements {abn, anb, bna, ban} are 
homotopy classes of simple loops on S for all n ∈ Z.

Motivated by this discussion of mapping class groups, we have the following general 
result about linear groups which is the main result of this paper.

Theorem 1.2. Let A, B ∈ GL(V ) be quasi-unipotent matrices such that the Jordan 
Canonical Form of B consists of a single block. Suppose that the value of tr((ABn)k) is 
independent of n for all k. Then the matrices A and B have a common eigenvector in V .

Corollary 1.3. Under the hypotheses of Theorem 1.2, there is a basis of V for which the 
subgroup 〈A, B〉 is upper triangular, and is hence solvable.

Corollary 1.3 may be compared with classical results about groups of unipotent ma-
trices in GL(V ). The well-known theorem of Lie–Kolchin [29] from representation theory 
states that if G < GL(V ) for a finite dimensional vector space V , and if each element 
g ∈ G is unipotent, then G is a nilpotent group.

Insofar as consequences of Proposition 1.1 and Theorem 1.2 for mapping class groups 
are concerned, we note the following.

Corollary 1.4. Let ρ : Mod(S) → GL(V ) be a finite dimensional representation and S be 
a surface of genus 3 or more.

(a) If ρ is unitary, then ρ is not faithful.
(b) If the base field of V has positive characteristic, then ρ is not faithful.

In part (a) of Corollary 1.4, we only consider the compact complex unitary groups 
U(n). Part (b) of Corollary 1.4 was first established by Button [8].

Corollary 1.5. Suppose S is a surface with marked point and of genus at least two. If ρ
is a linear representation of Mod(S) and if ρ(T ) has one Jordan block for a Dehn twist 
T about a nonseparating closed curve, then ρ is not faithful.

While it is true that Corollary 1.5 follows from Theorem 1.2 and Proposition 1.1, at 
least when the genus of S is sufficiently large, we can give a much more elementary proof 
of this fact. See Proposition 2.7 below.
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Finally, we remark that the ideas of this paper cannot suffice by themselves to establish 
nonlinearity of the mapping class group, and in particular the hypothesis in Theorem 1.2
that the Jordan Canonical Form consists of a single block cannot be dropped. Indeed, 
the work of Hadari [17] shows that non-virtually solvable subgroups of mapping class 
groups admit homological representations with non-virtually solvable image, which in 
particular applies to the copy of π1(S) appearing in the Birman Exact Sequence as 
discussed earlier.

In fact, most of the known families of representations of mapping class groups do 
not fall under the purview of Corollary 1.5. The main families of naturally occurring 
representations which exhaust the whole mapping class group are homological represen-
tations (arising from homology actions on finite covers of the base surface; see [15,14,16,
19,22–24,27,30] for instance), and TQFT representations (arising from certain functorial 
constructions; see [3,28,31,32], for instance).

In the case of homological representations, a Dehn twist is sent to a (virtual) transvec-
tion, powers of which have matrix norm which grows linearly in the power taken. If M is a 
unipotent matrix with a single Jordan block of dimension at least three, then the matrix 
norm of Mn grows as a nonlinear polynomial in n and is therefore not a transvection.

In the case of TQFT representations, Dehn twists are mapped to finite order matrices, 
whence some nonzero power of the twist is sent to the identity. Then, the number of 
Jordan blocks coincides with the dimension of the representation.

1.2. Structure of the paper

The majority of the paper will be spent in establishing Theorem 1.2. First, we will 
reduce the result to a combinatorial statement about the triviality of solutions to certain 
polynomial equations. Then, we will give a proof of the result using the non-negativity 
of certain matrices with binomial coefficients.

Structurally, we will gather relevant results about representation theory of mapping 
class groups first, in Section 2. Next, we reduce the proof of Theorem 1.2 to polynomial 
identities in Section 3, and prove the main result.

1.3. Remarks on motivation

As is suggested by Corollary 1.4, much of the discussion in this paper is motivated by 
the problem of whether mapping class groups are linear. This question has had a long 
history, and has been resolved in several cases. Notably, Bigelow [4] and Krammer [21]
proved that braid groups are linear, and Bigelow–Budney [5] proved mapping class groups 
in genus two are linear. Building on these ideas, Korkmaz [20] proved that the hyper-
elliptic mapping class groups are also linear. Mapping class groups tend to share many 
properties with automorphism groups of free groups, and these latter groups are known 
to be nonlinear for a free group of rank 3 or more by a result of Formanek–Procesi [13]. 
The reason for the nonlinearity of automorphism groups of free groups comes from cer-
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tain toxic subgroups which are known to be absent in mapping class groups by the work 
of Brendle–Hamidi-Tehrani [6].

2. Representations of mapping class groups

Before proving Theorem 1.2, we will detail some of its applications to the groups which 
inspired the present article, namely mapping class groups of surfaces. Throughout this 
section, we set S to be an orientable connected surface of finite type, of genus g � 3. As 
before, we write Mod(S) for the mapping class group of S, which is to say the group of 
homotopy classes of orientation-preserving homeomorphisms of S. The primary purpose 
of this section is to prove the following fact:

Proposition 2.1. Let ρ : Mod(S) → GLn(C) be a representation of the mapping class 
group of a surface of genus 3 or more, and let T ∈ Mod(S) be a Dehn twist. Then ρ(T )
is quasi-unipotent.

2.1. Centralizers and products of commutators

The following lemma applies to general groups. An almost identical argument can be 
found as Lemma 2.5 in [1], in the context of mapping class groups.

Lemma 2.2. Let G be a group and let g ∈ G be an element which is the product of 
commutators

g =
n∏

i=1

[xi, yi]

such that the commutators [xi, g] and [yi, g] are trivial for all i. If

ρ : G → GLn(C)

is an arbitrary representation, then ρ(g) is quasi-unipotent.

Proof. Note that det ρ(g) = 1, since g is a product of commutators. If h ∈ G is another 
element commuting with g, the h preserves each (generalized) eigenspace of ρ(g). Thus, 
if λ is an eigenvalue of ρ(g) with generalized eigenspace W , then W is invariant under 
ρ(xi) and ρ(yi) for each i. Restricting to such an eigenspace W , the fact that

g =
n∏

i=1

[xi, yi]

implies that det(ρ(g)|W ) = 1, and consequently that the corresponding eigenvalue of 
ρ(g) must be a root of unity. Decomposing Cn as a direct sum of generalized eigenspaces 
of g, we conclude that ρ(g) is quasi-unipotent. �
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2.2. Dehn twists

For generalities on mapping class groups used here and in the sequel, we refer the 
reader to [12]. Let S be a surface of genus 3 or more, and let γ ⊂ S be an essential 
simple closed curve. We write T = Tγ for the Dehn twist about γ.

Lemma 2.3. There exist six elements

{x1, x2, x3, y1, y2, y3} ⊂ Mod(S)

such that

T =
3∏

i=1

[xi, yi],

and such that the commutators [T, xi] and [T, yi] are trivial for all i.

Proof. Cut the surface S open along γ to obtain a subsurface X of genus at least two. 
If γ was separating, then γ forms a boundary component of X. If γ was nonseparating, 
then the genus of X is exactly one less than the genus of S, and X acquires two extra 
boundary components from γ.

Since X has genus at least two, one can embed the sphere S0,4 in X such that exactly 
one of the boundary components of X arising from γ (which we will also call γ) is a 
boundary component of S0,4, and where all other three boundary components {γ1, γ2, γ3}
of S0,4 are non-separating simple loops in X.

Applying the lantern relation [11,12], we have

T = T −1
1 B1T −1

2 B2T −1
3 B3

where Ti is the Dehn twist along γi and Bi is the Dehn twist along a certain simple 
closed loop βi which is essential in S0,4 and nonseparating in X. In particular, there 
exist orientation preserving self-homeomorphisms φi of X sending γi to βi and such that 
the restriction φi|∂X is the identity. Extending φi to be a self-homeomorphism of S, 
retaining the notation φi, we may arrange for φi to commute with T . We thus see that

T = [φ1, B1][φ2, B2][φ3, B3]

and the commutators [T, Bi] and [T, φi] are trivial for each i. �
Proposition 2.1 is now immediate. The following is a straightforward corollary of 

Lemma 2.2 and Lemma 2.3:
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Corollary 2.4. Let ρ : Mod(S) → GLn(F ) be a representation, where F is a field. Suppose 
that F has characteristic p, or suppose that F = C and the image of ρ is unitary. Then 
ρ is not faithful.

As remarked in the introduction, Corollary 2.4 in the case of a field with positive 
characteristic was obtained by J. Button [8].

Proof of Corollary 2.4. In the first case, if F has characteristic p then unipotent matrices 
in GLn(F ) have finite order, so that Dehn twists about simple closed curves will not have 
infinite order under ρ. In the second case, compact unitary groups contain no nontrivial 
unipotent elements, so that quasi-unipotent unitary matrices have finite order, so that 
again Dehn twists cannot have infinite order under ρ. �
2.3. The Birman Exact Sequence

Let Mod(S, p) denote the mapping class group of S with a marked point p in the 
interior of S. There is a well-known exact sequence known as the Birman Exact Sequence 
given by

1 → π1(S) → Mod(S, p) → Mod(S) → 1,

where the map Mod(S, p) → Mod(S) is the map which forgets the marked point. The 
subgroup π1(S) < Mod(S, p) is called the point-pushing subgroup.

The group π1(S) is generated by homotopy classes of simple closed curves based at 
p. If γ is a simple closed loop based at p, then the element γ viewed as an element of 
Mod(S, p) is given by a product Tγ1T −1

γ2 of Dehn twists about parallel copies γ1 and 
γ2 of γ, such that γ1 and γ2 cobound an annulus containing the marked point p. We 
obtain the following fact immediately from the observation that Tγ1 and Tγ2 commute 
with each other, and that Mod(S, p) acts transitively on the set of nonseparating simple 
closed curves on S.

Lemma 2.5. Let ρ : Mod(S, p) → GLn(C) be a representation. The image ρ(π1(S)) of 
point-pushing subgroup is generated by quasi-unipotent matrices. Moreover, if a, b ∈
π1(S) are based loops with geometric intersection number exactly one, then for all n

we have that the matrices ρ(anb), ρ(abn), ρ(ban), and ρ(bna) are all quasi-unipotent and 
conjugate in GLn(C).

We finally obtain the following consequence of Theorem 1.2.

Corollary 2.6. Let ρ : Mod(S, p) → GLn(C) be a representation, and suppose that for 
some nonseparating simple closed homotopy class of curves a ∈ π1(S) < Mod(S, p), we 
have that ρ(a) has a single Jordan block. Then ρ is not faithful.
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2.4. Representations sending a Dehn twist to a single Jordan block

In this subsection, suppose that S has genus at least two, so that there exists a 
configuration of nonseparating simple closed curves {a, b, c} such that a is disjoint from 
both b and c and where b and c have nonzero geometric intersection number. We write 
{Ta, Tb, Tc} for the corresponding Dehn twists about these curves.

Proposition 2.7. Let ρ : Mod(S) → GLn(C) be a representation, and suppose that for 
some nonseparating simple closed curve a ⊂ S, we have ρ(Ta) consists of a single Jordan 
block. Then ρ is not faithful.

The reader may compare this fact with Corollary 1.5.

Proof of Proposition 2.7. Let {a, b, c} be nonseparating simple closed curves such that 
a is disjoint from both b and c and where b and c have nonzero geometric intersection 
number. Then Ta commutes with both Tb and Tc. Writing V = Cn, there is a sequence 
of vector spaces

V = Vn ⊂ Vn−1 ⊂ · · · ⊂ V1 ⊂ {0}

such that Vi has dimension exactly i and such that ρ(Ta)(Vi) = Vi. That is, ρ(Ta)
preserves a maximal flag F in V . This flag gives rise to a basis with respect to which 
ρ(Ta) is in Jordan Canonical Form.

A straightforward calculation shows that if M ∈ GLn(C) commutes with ρ(Ta)
then M is upper triangular with respect to the same basis determined by F . Thus, 
the centralizer of ρ(Ta) is solvable, whence ρ(Tb) and ρ(Tc) generate a solvable sub-
group of GLn(C). Since b and c have nonzero geometric intersection number, the group 
〈Tb, Tc〉 < Mod(S) contains a nonabelian free group. Thus, we conclude that ρ is not 
injective. �
2.5. Irreducibility of representations

In this final subsection, we prove the following general fact about the representation 
theory of mapping class groups. Strictly speaking, it is not necessary for the discussion 
in this paper, though we record it for its independent interest and because its flavor is 
similar to the questions addressed in this article.

Proposition 2.8. Let S be a non-sporadic surface of hyperbolic type, and suppose that 
Z(Mod(S)) is trivial. If Mod(S) admits a faithful finite-dimensional representation, then 
it admits a faithful irreducible representation.

The hypothesis that Z(Mod(S)) is trivial is satisfied by most mapping class groups. 
For closed surfaces of genus two, the hyperelliptic involution is central, though this is in 
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some sense the only example of a mapping class group with nontrivial center. Here, we 
say that S is non-sporadic if S admits two disjoint, non-isotopic, essential, nonperipheral, 
simple closed curves.

We will require the following fact, which is standard (see [25,10,18]).

Lemma 2.9. Let 1 �= N < Mod(S) be a non-central normal subgroup of a non-sporadic 
mapping class group. Then N contains a pair of independent pseudo-Anosov mapping 
classes, and hence a nonabelian free subgroup.

Here, we say that two pseudo-Anosov mapping classes are independent if they do not 
generate a virtually cyclic group.

Proof of Proposition 2.8. Let ρ : Mod(S) → GL(V ) be a faithful representation of 
minimal dimension. We claim that ρ is irreducible. Suppose for a contradiction that 
0 �= W � V is a proper ρ-invariant subspace. One obtains two non-injective represen-
tations of Mod(S), namely ρW : Mod(S) → GL(W ) and ρV/W : Mod(S) → GL(V/W ). 
Write K1 and K2 for the kernels of these two representations.

We first claim that K = K1 ∩ K2 is nontrivial. Indeed, otherwise the product repre-
sentation ρW × ρV/W would be injective, and the subgroup K1K2 would be isomorphic 
to K1 × K2. By Lemma 2.9, both K1 and K2 contain pseudo-Anosov mapping classes, 
whose centralizers are virtually cyclic. Then if K1 and K2 are both nontrivial, we obtain 
that the centralizer of each infinite element ψ ∈ Ki contains a copy of Z × Z, which is a 
contradiction. It follows that either K1 or K2 is trivial, violating the minimality of the 
dimension of V .

We may thus conclude that K is nontrivial, and that ρ restricts to a faithful represen-
tation of K. If 1 �= k ∈ K then we immediately have that v − ρ(k)v ∈ W for all v ∈ V , 
since k ∈ K2. Moreover, if w ∈ W then ρ(k)w = w, since k ∈ K1. It follows that there is 
a basis for V for which ρ(K) acts by unipotent matrices, so that ρ(K) is nilpotent. This 
contradicts Lemma 2.9. �
3. Trace calculations

In this section, let A, B ∈ GLm+1(C) be quasi-unipotent matrices such that B has a 
single Jordan block, and suppose that the value of tr((ABn)k) is independent of the value 
of n for all k. The choice of GLm+1(C) instead of GLm(C) is for notational convenience 
later on.

3.1. An expansion of (ABn)k

Since B is quasi-unipotent, we may replace B by a positive power which is a unipotent 
matrix. We will abuse notation and call this power B as well. In this case, we conjugate 
so that we may write B = I + N , where N is a nilpotent matrix.
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We may therefore write

ABn =
n∑

i=0

(
n

i

)
AN i,

and

(ABn)k =
kn∑

j=0

∑
i1+···ik=j,is�0

(
n

i1

)
· · ·

(
n

ik

)
AN i1 · · · AN ik ,

and the assumptions on A and B imply that the trace of this latter expression is inde-
pendent of n.

Since Nm+1 = 0, we may write the limits of the sum as quantities which are indepen-
dent of n. That is, we have

(ABn)k =
km∑
j=0

∑
i1+···ik=j

(
n

i1

)
· · ·

(
n

ik

)
AN i1 · · · AN ik .

3.2. The index of a matrix

Let A = (Ai,j) ∈ Mm+1(C) be a square matrix.

Definition 3.1. The index of the matrix A is the unique integer k ∈ Z characterized by 
the following two conditions:

(1) If i > j + k then Ai,j = 0.
(2) There exists an i such that Ai,i−k �= 0.

The index of A will be written ind(A).

It is a straightforward consequence of the definition that if ind(A) = k and if Ai,j �= 0
then j � i − k.

The following lemma is straightforward, and we omit a proof.

Lemma 3.2. Let A = (Ai,j) ∈ Mm+1(C). The following conclusions hold:

(1) If Ai,j = 0 whenever i > j + k then ind(A) � k.
(2) We have −m − 1 � ind(A) � m.
(3) The matrix A is upper triangular if and only if ind(A) � 0.
(4) If ind(A) < 0 then tr(A) = 0.

The following is a fundamental property of the index:
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Lemma 3.3. The index is submultiplicative. That is, for square matrices A and B of the 
same dimension, we have

ind(AB) � ind(A) + ind(B).

Proof. We write ind(A) = k and ind(B) = 	. By Lemma 3.2, it suffices to show that if 
i > j + k + 	 then (AB)i,j = 0.

Suppose the contrary. Then for some such choice of indices i and j such that i >

j + k + 	, we have

0 �= (AB)i,j =
∑

s

Ai,sBs,j .

We choose an index s such that Ai,sBs,j �= 0. Since the index of A is equal to k, we see 
that s � i − k, and similarly j � s − 	. Combining these equalities, we see that

j � s − 	 � i − k − 	,

which violates the requirement that i > j + k + 	. �
The following properties of the index now follow:

Corollary 3.4. Let {A1, . . . , As} ⊂ Mm+1(C), and write ind(Ai) = ni. Let

K =
s∑

i=1

ni

and let A = A1 · · · As.

(1) If K � 0 then A is upper triangular.
(2) If K < 0 then tr(A) = 0.
(3) If K = 0 then

tr(A) =
m+1∑
k=1

(A1)k,k−n1(A2)k−n1,k−n1−n2 · · · (As)k−n1−···−ns−1,k.

By convention, (Ai)j,k = 0 if one of j and k is nonpositive.

Proof of Corollary 3.4. We establish the conclusions in order. The first and second 
conclusions follow immediately from Lemma 3.3, by induction on s.

For the third conclusion, we note the general formula

tr(A) =
∑

i1,...,is

(A1)i1,i2(A2)i2,i3 · · · (As)is,i1 ,
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where the indices {i1, . . . , is} range between 1 and m + 1. Now, if (Ak)ik,ik+1 �= 0 then 
ik+1 � ik −nk, as follows from the definition of the index. Here, we adopt the convention 
that is+1 = i1. The only terms in the expression for tr(A) which are nonzero are ones 
for which ik+1 � ik − nk for each index k. From the fact that K = 0, the conclusion of 
the lemma follows. �
3.3. A combinatorial reformulation of Theorem 1.2

Let A ∈ Mm+1(C) have index r. We will write xi = Ai,i−r for r + 1 � i � m + 1. 
Our goal is to show that xi = 0 using the conditions that tr((ABn)k) are independent 
of n, for a fixed k. By applying this argument inductively on the index of A, it shows 
that A is upper-triangular. Therefore the group generated by A, B is solvable. We write 
N for the nilpotent matrix obtained from a single (m + 1) × (m + 1) Jordan block, with 
Nm+1 = 0 holds. That is, if B ∈ Mm+1(C) is a matrix with ones down the diagonal and 
the upper off-diagonal, then N = B − I.

Note that by Lemma 3.3, we have

ind(AN i1 · · · AN ik ) � r · k −
k∑

�=1

i�.

We consider the trace of the expansion of (ABn)k in terms of N , which is to say

km∑
j=0

∑
i1+···ik=j

(
n

i1

)
· · ·

(
n

ik

)
tr(AN i1 · · · AN ik ).

Here, the ik’s are non-negative integers.
By Lemma 3.2, we have that if

j =
k∑

�=1

i� > r · k

then the corresponding summand contributes zero. Thus, the largest value of j for which 
the trace of AN i1 · · · AN ik is nonzero is when j = r · k, and we will focus on this term. 
Thus, viewing this sum of traces as a function of n, the first powers of n with nonzero 
coefficient come from terms in which

k∑
�=1

i� = r · k.

It is easy to see that we obtain a polynomial function of n, that this polynomial has 
degree at most r · k, and that the highest degree terms come from the summands for 
which
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k∑
�=1

i� = r · k.

We can also consider the product of binomial coefficients(
n

i1

)
· · ·

(
n

ik

)
as a function of n. This function is again a polynomial, and the coefficient of the highest 
degree term in n is given by

1
i1! · · · ik!

.

Now, if we consider the sth power Ns of N , we have that (Ns)i,i+s = 1 and (Ns)i,t = 0
otherwise. Applying Corollary 3.4, we can easily compute

tr(AN i1 · · · AN ik ) =
m+1∑
s=1

xsxs−r+i1 · · · xs−(k−1)r+i1+···+ik−1 .

Here, we adopt the convention that if i � r or i � m + 2, then xi = 0.
Thus, the contribution of the traces for which

k∑
�=1

i� = r · k

is a polynomial of n, whose highest degree term is given by

∑
i1+···+ik=r·k

(
m+1∑
s=1

1
i1! · · · ik!

xsxs−r+i+1 · · · xs−(k−1)r+i1+···+ik−1

)
.

Thus, if

km∑
j=0

∑
i1+···ik=j

(
n

i1

)
· · ·

(
n

ik

)
tr(AN i1 · · · AN ik ),

independently of n, then we obtain

∑
i1+···+ik=r·k

(
m+1∑
s=1

1
i1! · · · ik!

xsxs−r+i1 · · · xs−(k−1)r+i1+···+ik−1

)
= 0,

independently of n.
To simplify these expressions a little, we substitute js = is − r. This way, we obtain 

the following lemma.
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Lemma 3.5. Theorem 1.2 is equivalent to the statement that if

∑
j1+···+jk=0, jt�−r

(
m+1∑
s=1

1
(j1 + r)! · · · (jk + r)!

xsxs+j1 · · · xs+j1+···+jk−1

)
= 0

for all positive integers k, then x1 = · · · = xm+1 = 0.

Lemma 3.5 can be refined further.

Lemma 3.6. Let {x1, . . . , xm+1} be complex numbers such that

∑
j1+···+jk=0, jt�−r

(
m+1∑
s=1

1
(j1 + r)! · · · (jk + r)!

xsxs+j1 · · · xs+j1+···+jk−1

)
= 0

for all positive integers k. Then the numbers {x1, . . . , xm+1} satisfy the equation

m+1∑
i1,...,ik=1

xi1 · · · xik

(i2 − i1 + r)!(i3 − i2 + r)! · · · (ik − ik−1 + r)!(i1 − ik + r)!
= 0,

where the indices of {i1, . . . , ik} lie in {1, . . . , m + 1}, and where if t < 0 we adopt the 
convention 1/t! = 0.

Proof. Let s be as in Lemma 3.5. We set

i1 = s, i2 = s + j1, . . . , ik = s + j1 + · · · + jk−1.

We thus get jn = in+1 − in for n ∈ {1, . . . , k − 1} and

jk = i1 − ik = −(j1 + j2 + · · · + jk−1).

The claim of this lemma follows immediately from these substitutions. �
3.4. Totally nonnegative matrices

For notational convenience, we write

pk =
m+1∑

i1,...,ik=1

xi1 · · · xik

(i2 − i1 + r)!(i3 − i2 + r)! · · · (ik − ik−1 + r)!(i1 − ik + r)!
,

where again by convention we set

1
n!

= 0
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whenever n < 0. In this section, we prove the following result which implies, by Lem-
mas 3.5 and 3.6, that Theorem 1.2 holds.

Theorem 3.7. Suppose pk(x1, . . . , xm+1) = 0 for all k. Then xi = 0 for 1 � i � m + 1.

Theorem 3.7 admits a quick reduction to a statement about matrices with combina-
torial quantities as entries, which we carry out here before completing the proof.

First, we perform a change of variables, setting xi = y2
i . Then the statement 

pk(x1, . . . , xm+1) = 0 becomes

m+1∑
i1,...,ik=1

(yi1yi2)(yi2yi3) · · · (yik
yi1)

(i2 − i1 + r)!(i3 − i2 + r)! · · · (ik − ik−1 + r)!(i1 − ik + r)!
= 0.

We let

ai,j =
yiyj

(i − j + r)!
,

and set A = (ai,j). Then the equation pk = 0 for all k is merely the equation trAk = 0
for all k. In particular, the matrix A is nilpotent. It follows that Am+1 = 0, and so that 
in particular we have detA = 0.

We now set

bi,j =
1

(i − j + r)!

and set B = (bi,j). Note that

A = diag(y1, . . . , ym+1) · B · diag(y1, . . . , ym+1),

where diag(y1, . . . , ym+1) denotes a diagonal matrix with the corresponding entries. It 
follows that

detA = detB ·
m+1∏
i=1

xi.

Note that if detB �= 0 then xi = 0 for some i. Thus, a straightforward induction on m
shows that the following result implies Theorem 3.7: First of all, detA = 0 implies that 
yi = 0 for at least one index i. By plugging yi = 0 into A, we get that the ith row and 
ith column of A consist of only zeros. Once we delete the ith row and ith column of A, 
we get an m × m matrix

D = diag(y1, . . . , ŷi, . . . , ym+1) · C · diag(y1, . . . , ŷi, . . . , ym+1),
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where C is the ith principal minor of B of size m. Then the fact that A is nilpotent 
implies that D is nilpotent. So if the principal minors of B are all nonsingular, we obtain 
that one of

{y1, . . . , ŷi, . . . , ym+1}

equals 0, and the induction process can proceed.
We therefore need only establish the following result.

Theorem 3.8. The determinants of all principal minors of B are nonzero.

Note that if M is a matrix whose principal minors are all nonsingular, then if we 
multiply M by a nonsingular diagonal matrix (on the left or on the right), the principal 
minors of the resulting matrix remain nonsingular. Thus, we may modify B by multi-
plying by nonsingular diagonal matrices in order to convert it into a more advantageous 
form, without affecting the statement of Theorem 3.8. With this in mind, we multiply 
on the left by

diag((r + 1)!, (r + 2)!, . . . , (r + m + 1)!),

and on the right by

diag(1/1!, 1/2!, . . . , 1/(m + 1)!).

The resulting matrix will be denoted M(r, m) = (fi,j), where we have

fi,j =
(

i + r

j

)
=

(i + r)!
j!(i − j + r)!

.

Thus, it suffices to prove the following result:

Theorem 3.9. The determinants of all principal minors of M are nonzero.

We will prove Theorem 3.9 by establishing the following fact.

Lemma 3.10. Let

0 < q1 < · · · < qm

and r � 0 be integers, and let pk = qk + r. Let M be a matrix whose entries are given by

fi,j =
(

pi − 1
qj − 1

)
.

Then the determinant of M is positive.
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We retain a standing convention that if p < q then(
p

q

)
= 0.

It is clear that Lemma 3.10 implies Theorem 3.9.
A matrix is called totally nonnegative if all of its minors have nonnegative determinant. 

For a square n × n matrix A, we set I = {i1, . . . , im} and J = {j1, . . . , jm} to be subsets 
of [n] = {1, . . . , n} which have the same size. We write AI,J for the minor of A whose 
row indices lie in I and whose column indices lie in J .

The determinant of a minor of a product of two matrices can be expanded from minors 
of the two factor matrices. Specifically, we have the following fact, classically known as 
the Binet–Cauchy formula [26].

Lemma 3.11. Let A and B be n ×n matrices, and let I, J ⊂ [n] have cardinality m. Then

det((AB)I,J ) =
∑

K⊂[n], |K|=m

det(AI,K) det(BK,J ).

An immediate consequence of the Cauchy–Binet formula is that the product of two 
totally nonnegative matrices is again totally nonnegative. We define the lower triangular 
Pascal matrix Ln (see [2]) to be the n × n matrix whose entries are given by

(Ln)i,j =
(

i − 1
j − 1

)
.

With our convention, it becomes clear that if i < j then the corresponding entry of Ln

is zero, so that Ln is indeed lower triangular. Observe that if n > pm then the matrix 
M as defined in Lemma 3.10 is a minor of Ln.

Lemma 3.12. For n � 1, the matrix Ln is totally nonnegative.

Proof. Let Ei,j be a matrix whose unique nonzero entry is in the (i, j) entry. A direct 
inductive computation (cf. Lemma 1 of [2]) yields

Ln = (In + En,n−1)(In + En,n−1 + En−1,n−2)) · · · (In + En,n−1 + En−1,n−2 + · · · + E2,1).

We can further expand the factors in this product as

In + En,n−1 + En−1,n−2 + · · · + Ei,i−1 = (In + Ei,i−1)(In + Ei+1,i) · · · (In + En,n−1).

Thus to establish the lemma, it suffices to show that each matrix of the form

In + Ei,i−1
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is totally nonnegative. To do this, we compute the determinant of

(In + Ei,i−1)I,J .

If i /∈ I then the only possibility for J for which (In +Ei,i−1)I,J has nonzero determinant 
is for I = J , wherein the determinant is 1. If i ∈ I, then (In + Ei,i−1)I,J has nonzero 
determinant only if I = J or if

J = (I \ {i}) ∪ {i − 1}

and i − 1 /∈ J . It is straightforward to see then that the determinant is 1 in both these 
cases. The conclusion of the lemma follows. �

It follows then that M is totally nonnegative, so that det M � 0.

Proof of Lemma 3.10. It suffices to show that det M > 0. Let P = {p1, . . . , pm} and 
let Q = {q1, . . . , qm} with pk = qk + r. It suffices to show that det((Ln)P,Q) > 0. This 
determinant can be computed from the Cauchy–Binet formula. Indeed, we may expand 
det((Ln)P,Q) as∑

R2,...,Rn−1⊂[n], |Ri|=m

det((In + En,n−1)P,Rn−1) · · · det((In + En,n−1 + · · · + E2,1)R2,Q).

Note that each term in this sum is nonnegative, so that we need only find suitable 
{R2, . . . , Rn−1} so that each of the corresponding minors is positive. We will adopt the 
notation P = Rn and Q = R1.

We observe that

det((In + En,n−1 + · · · + Ek,k−1)Rk,Rk−1) = 1

if and only if there is a (possibly empty) subset

{a1, a2, . . . , aj} ⊂ Rk ∩ {k, . . . , n}

satisfying

Rk−1 = (Rk \ {a1, . . . , aj}) ∪ {a1 − 1, . . . , aj − 1},

such that they have the same cardinality. A proof of this fact can be given by an argument 
identical to that given in the proof of Lemma 3.12.

For the matrix M under consideration, we have

Rn = {p1, . . . , pm} = {q1 + r, . . . , qm + r},
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and R1 = {q1, . . . , qm}. We set

Rn = Rn−1 = · · · = Rq1+r = {q1 + r, · · · , qm + r},

then write

Rq1+r−j = {q1 + r − j, q2 + r − j, . . . , qm + r − j}

for 1 � j � r, and finally write

Rq1−1 = · · · = R1 = {q1, q2, . . . , qm}.

This exhibits a suitable choice of {R1, . . . , Rn} and hence proves that det M > 0. �
Declaration of Competing Interest

We have no competing interest.

Acknowledgements

The first author is partially supported by an Alfred P. Sloan Foundation Research Fel-
lowship and by NSF Grant DMS-1711488. The second author is partially supported by 
NSF Grants DMS-1760527, DMS-1737876 and DMS-1811878. The third author is par-
tially supported by NSF Grant DMS-1840696. The authors are grateful to A. Hadari for 
helpful discussions and to the anonymous referee for several comments which improved 
the paper.

References

[1] J. Aramayona, J. Souto, Rigidity phenomena in the mapping class group, in: Handbook of Teich-
müller theory, vol. VI, in: IRMA Lect. Math. Theor. Phys., vol. 27, Eur. Math. Soc., Zürich, 2016, 
pp. 131–165.

[2] P. Alonso, J. Delgado, R. Gallego, J. Pena, Conditioning and accurate computations with Pascal 
matrices, J. Comput. Appl. Math. 252 (2013) 21–26.

[3] C. Blanchet, N. Habegger, G. Masbaum, P. Vogel, Topological quantum field theories derived from 
the Kauffman bracket, Topology 34 (4) (1992) 883–927.

[4] S.J. Bigelow, Braid groups are linear, J. Amer. Math. Soc. 14 (2001) 471–486.
[5] S.J. Bigelow, R.D. Budney, The mapping class group of a genus two surface is linear, Algebr. Geom. 

Topol. 1 (2001) 699–708.
[6] T. Brendle, H. Hamidi-Tehrani, On the linearity problem for mapping class groups, Algebr. Geom. 

Topol. 1 (2001) 445–468.
[7] M. Bridson, Semisimple actions of mapping class groups on CAT(0) spaces, in: Geometry of Riemann 

Surfaces, in: London Math. Soc. Lecture Note Ser., vol. 368, Cambridge Univ. Press, Cambridge, 
2010, pp. 1–14.

[8] J.O. Button, Mapping class groups are not linear in positive characteristic, https://arxiv .org /pdf /
1610 .08464 .pdf, 2016.

[9] J.O. Button, Aspects of non positive curvature for linear groups with no infinite order unipotents, 
Groups Geom. Dyn. 13 (2019) 277–292.



T. Koberda et al. / Linear Algebra and its Applications 581 (2019) 304–323 323

[10] F. Dahmani, V. Guirardel, D. Osin, Hyperbolically embedded subgroups and rotating families in 
groups acting on hyperbolic spaces, Mem. Amer. Math. Soc. 245 (1156) (2017), v+152 pp., ISBNs: 
978-1-4704-2194-6, 978-1-4704-3601-8.

[11] M. Dehn, Papers on Group Theory and Topology, Springer-Verlag, New York, ISBN 0-387-96416-9, 
1987, viii+396 pp., translated from the German and with introductions and an appendix by John 
Stillwell, with an appendix by Otto Schreier.

[12] B. Farb, D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series, vol. 49, 
Princeton University Press, Princeton, NJ, 2012.

[13] E. Formanek, C. Procesi, The automorphism group of a free group is not linear, J. Algebra 149 
(1992) 494–499.

[14] F. Grunewald, M. Larsen, A. Lubotzky, J. Malestein, Arithmetic quotients of the mapping class 
group, Geom. Funct. Anal. 25 (5) (2015) 1493–1542.

[15] F. Grunewald, A. Lubotzky, Linear representations of the automorphism group of a free group, 
Geom. Funct. Anal. 18 (5) (2009) 1564–1608.

[16] A. Hadari, Homological eigenvalues of lifts of pseudo-Anosov mapping classes to finite covers, 
preprint, arxiv .org /abs /1712 .01416.

[17] A. Hadari, Non virtually solvable subgroups of mapping class groups have non virtually solvable 
representations, Groups Geom. Dyn. (2019), in press.

[18] N.V. Ivanov, Subgroups of Teichmüller Modular Groups, Translations of Mathematical Monographs, 
vol. 115, American Mathematical Society, Providence, RI, 1992, translated from the Russian by 
E.J.F. Primrose and revised by the author.

[19] T. Koberda, Asymptotic linearity of the mapping class group and a homological version of the 
Nielsen-Thurston classification, Geom. Dedicata 156 (2012) 13–30.

[20] M. Korkmaz, On the linearity of certain mapping class groups, Turkish J. Math. 24 (2000) 367–371.
[21] D. Krammer, Braid groups are linear, Ann. of Math. 155 (2002) 131–156.
[22] Y. Liu, Virtual homological spectral radii for automorphisms of surfaces, preprint, arxiv .org /abs /

1710 .05039.
[23] E. Looijenga, Prym representations of mapping class groups, Geom. Dedicata 64 (1) (1997) 69–83.
[24] C. McMullen, Entropy on Riemann surfaces and the Jacobians of finite covers, Comment. Math. 

Helv. 88 (4) (2013) 953–964.
[25] J. McCarthy, A. Papadopoulos, Dynamics on Thurston’s sphere of projective measured foliations, 

Comment. Math. Helv. 64 (1) (1989) 133–166.
[26] V.V. Prasolov, Problems and Theorems in Linear Algebra, Translations of Mathematical Mono-

graphs, vol. 134, American Mathematical Society, Providence, RI, ISBN 0-8218-0236-4, 1994, 
xviii+225 pp., translated from the Russian manuscript by D.A. Leites.

[27] A. Putman, B. Wieland, Abelian quotients of subgroups of the mappings class group and higher 
Prym representations, J. Lond. Math. Soc. (2) 88 (1) (2013) 79–96.

[28] N. Reshetikhin, V.G. Turaev, Invariants of 3-manifolds via link polynomials and quantum groups, 
Invent. Math. 103 (3) (1991) 547–597.

[29] R. Steinberg, On theorems of Lie–Kolchin, Borel, and Lang, in: Contributions to Algebra (Collection 
of Papers Dedicated to Ellis Kolchin), Academic Press, New York, 1977, pp. 349–354.

[30] H. Sun, Virtual homological spectral radius and mapping torus of pseudo-Anosov maps, Proc. Amer. 
Math. Soc. 145 (10) (2017) 4551–4560.

[31] V.G. Turaev, Quantum Invariants of Knots and 3-Manifolds, de Gruyter Studies in Mathematics, 
vol. 18, Walter de Gruyter and Co., Berlin, 2010.

[32] E. Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351–399.


