

1 Review

2

Yeast models for amyloids and prions: environmental 3 modulation and drug discovery

4 Tatiana A. Chernova ^{1,*}, Yury O. Chernoff ^{2,3} and Keith D. Wilkinson ^{1,*}5 ¹ Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA;
6 tcherno@emory.edu (T.A.C.); genekdw@emory.edu (K.D.W.)7 ² School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
8 yury.chernoff@biology.gatech.edu (Y.O.C.)9 ³ Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, 199034, Russia;
10 yury.chernoff@biology.gatech.edu (Y.O.C.)

11 * Correspondence: tcherno@emory.edu; genekdw@emory.edu; Tel.: +1 404-727-0412

12 Received: date; Accepted: date; Published: date

13 **Abstract:** Amyloids are self-perpetuating protein aggregates causing neurodegenerative diseases
14 in mammals. Prions are transmissible protein isoforms (usually of amyloid nature). Prion features
15 were recently reported for various proteins involved in amyloid and neural inclusion disorders.
16 Heritable yeast prions share molecular properties (and in case of polyglutamines, amino acid
17 composition) with human disease-related amyloids. Fundamental protein quality control pathways,
18 including chaperones, the ubiquitin proteasome system and autophagy are highly conserved
19 between yeast and human cells. Crucial cellular proteins and conditions influencing amyloids and
20 prions were uncovered in the yeast model. The treatments available for neurodegenerative
21 amyloid-associated diseases are few and their efficiency is limited. Yeast models of amyloid-related
22 neurodegenerative diseases have become powerful tools for high throughput screening for chemical
23 compounds and FDA approved drugs that reduce aggregation and toxicity of amyloids. Although
24 some environmental agents have been linked to certain amyloid diseases, the molecular basis of
25 their action remains unclear. Environmental stresses trigger amyloid formation and loss, acting
26 either via influencing intracellular concentrations of the amyloidogenic proteins or via heterologous
27 inducers of prions. Studies of environmental and physiological regulation of yeast prions open new
28 possibilities for pharmacological intervention and/or prophylactic procedures aiming on common
29 cellular systems rather than the properties of specific amyloids.

30 **Keywords:** amyloid; prion; chaperone; ubiquitin; heat shock; environmental factors;
31 neurodegenerative disease; drug discovery

32

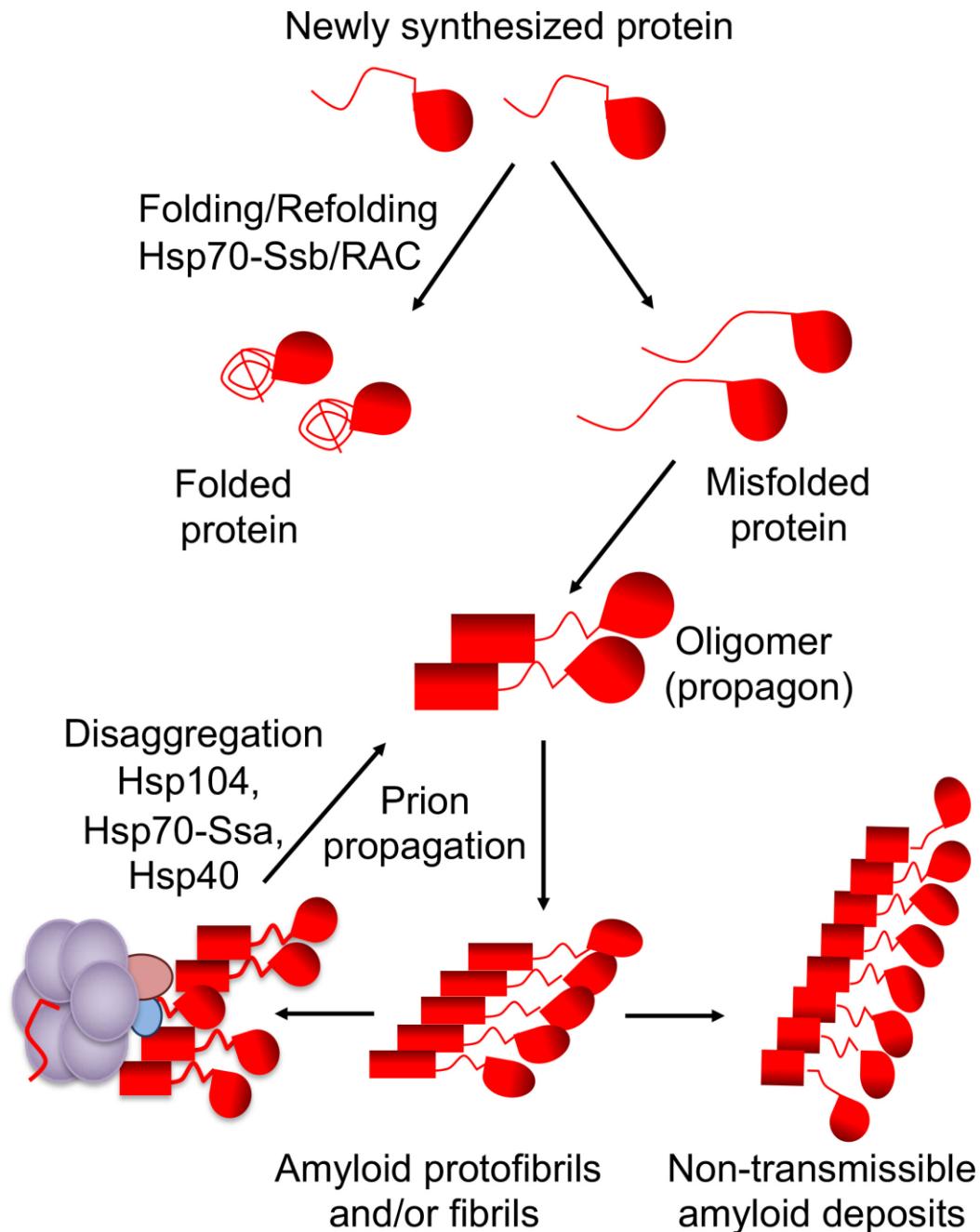
33

1. Protein Misfolding Diseases

34 Amyloids are highly ordered fibrous protein aggregates in a cross- β sheet conformation [1]. The
35 assembly of normally soluble proteins into amyloid fibrils is often associated with devastating
36 neurological disease. To date, approximately 50 human diseases have been linked to the formation of
37 amyloids, including Alzheimer's (AD), Parkinson's (PD) and Huntington's (HD) diseases, and
38 transmissible spongiform encephalopathies (TSEs), or prion diseases [2]. Prions are
39 self-perpetuating protein isoforms, usually of amyloid nature that are transmitted via extracellular
40 infection in mammals. This capacity to seed, or template the conversion of respective soluble protein
41 into an aggregated pathogenic form is the basis of prion infectivity.

42 However, the ability to form self-templating amyloid is not unique to proteins traditionally
43 designated as prions. There is a growing understanding that the more common neurodegenerative
44 diseases, including AD and PD, spread in brains by a mechanism somewhat analogous to prion
45 transmission [3-7]. Several neurodegenerative diseases are associated with the accumulation of
46 self-templating amyloid forms of specific proteins, such as β -amyloid (A β) and tau in AD, α -synuclein
47 in PD, and huntingtin in HD. Typically, amyloidogenesis is a specific self seeding process in which the
48 amyloid form of a protein only converts other copies of the same protein and not proteins with a

49 different primary sequence. However, at rare occasions so-called 'cross-seeding' occurs, when an
50 amyloid form of one protein catalyzes the assembly of another protein into an amyloid. Usually,
51 cross-seeding is not as effective as self-seeding, but it may play an important role in the initiation of
52 fiber assembly from a non-amyloid state. Cross-seeding events might also have an important role in
53 neurodegenerative disorders. For example, pure α -synuclein and tau synergize to promote the
54 fibrillization of each other [8]. Recent evidence of prion-like propagation of several misfolded proteins
55 from cell to cell within the brains, if not from tissue to tissue, raise concerns that various protein
56 misfolding diseases might have spreading, prion-like etiologies that contribute to pathogenesis.


57 Considering high incidence of AD, PD and HD it is crucial to understand if some cases can be
58 initiated by transmission events. Although there is little or no evidence of human-to-human
59 transmission of these diseases, prion properties of respective proteins were uncovered in the cellular
60 or animal models [9, 10], and as protein misfolding within individuals apparently propagate via a
61 prion-like mechanism, it is important to know how it can be altered to change a course of disease. The
62 search for therapeutic treatments against amyloid/prion diseases spans more than 30 years, but has
63 had only limited success [1, 11].

64 **2. Yeast Prions and Protein Quality Control**

65 Regardless of its relative simplicity, yeast harbors a significant number of cellular pathways and
66 factors relevant to human neurodegeneration, including conserved chaperone and protein
67 remodeling, the ubiquitin proteasome system, secretion, vesicular trafficking, and autophagy. The
68 high degree of conservation enables researchers to reliably model disease mechanisms in a highly
69 controllable environment.

70 Yeast prions are endogenous heritable amyloids, most often studied in the yeast
71 *Saccharomyces cerevisiae* [12-15]. The molecular foundation of inheritance for yeast prions and
72 mammalian amyloids is through nucleated polymerization of amyloid fibrils. The phenotypic effects of
73 prion formation are typically manifested as a decrease of protein function in the amyloid state. Due to
74 convenient genetic and phenotypic assays, yeast prions provide a useful model system for studying
75 mechanisms of amyloid formation and propagation that are mostly applicable to mammalian and
76 human diseases [12-15].

77 Cellular defense machineries such as chaperone proteins and the ubiquitin-proteasome system,
78 aimed at protecting the cells from aggregation of stress damaged proteins, also recognize amyloid
79 aggregates and stress-related proteins and serve as major modulators of prion formation and
80 propagation in yeast [16-21]. The same chaperone machinery that is involved in disaggregation of
81 stress-damaged proteins is involved in propagation and inheritance of yeast prions [17, 18]. The
82 connection between chaperones and prions was first established using $[PSI^+]$ prion as a model
83 (Figure 1). The chaperone machinery fragments large fibrils into small oligomers, which initiate a new
84 cycle of prion replication. The first identified component of this machinery is a chaperone protein
85 Hsp104 [22]. The Hsp104 is essential for all amyloid-based cytosolic yeast prions [18, 23]. The
86 machinery also includes members of the Hsp70 family Ssa [24-27] and cochaperones of the Hsp40
87 family, also known as J-proteins [28-30]. In the current model of $[PSI^+]$ prion propagation, the
88 Hsp70/40 complex binds to amyloid fibrils and recruits Hsp104 [31]. While Hsp104 is required for
89 prion propagation, overproduction of Hsp104 destabilizes or "cures" some yeast prions, for example
90 $[PSI^+]$ and $[MOD^+]$, and at high levels, $[URE3]$ [17, 18, 22, 23, 32]. Potentially this anti-prion effect
91 is due to the fact that direct binding of Hsp104 to amyloid fibrils (without Hsp70-Ssa) is not only
92 incapable of fragmenting fibrils, but also antagonizes prion propagation [31]. Proposed (and mutually
93 non-exclusive) models for prion curing by excess Hsp104 include removal of monomers from the
94 termini of fibrils, resulting in eventual destruction of prion polymers [33], and prion mal-partition during
95 cell divisions [13, 34] (see recent experimental evidence [35]).

96 **Figure 1. "Life cycle" of the $[PSI^+]$ prion and the role of chaperone machinery.** Chaperone
 97 Hsp70-Ssb with the cochaperones of the ribosome-associated complex (RAC) assist in normal protein
 98 folding, thus counteracting misfolding. Misfolded proteins assemble into amyloidogenic oligomers,
 99 producing amyloid fibrils. In case of a prion, amyloids are fragmented by chaperone complex
 100 Hsp104/Hsp70-Ssa/Hsp40 into oligomeric "propagons", (transmissible amyloids) continuing the
 101 propagation cycle after cell division. Non-fragmented fibrils generate large non-transmissible amyloid
 102 deposits, which do not re-enter the propagation cycle and/or are malpartitioned in cell divisions.

103 Although most components of the chaperone machinery are evolutionarily conserved, Hsp104
 104 orthologs are not present in the cytosol of multicellular animals, including mammals. At the same time,
 105 it was demonstrated that the chaperone system Hsp70-Hsp40-Hsp110 can promote protein
 106 disaggregation in mammalian cells [36–40]. To date, auxiliary proteins involved in propagation of
 107 mammalian amyloids remain to be identified. Recent data [41] suggest that some Hsp104 functions
 108 could be assumed by its distant mammalian paralogs, RuvbL1 and RuvbL2, whose orthologs are also

109 present in yeast under the names of Rvb1 and Rvb2, respectively. However, the impact of RuvBL1/2
110 on prions still needs to be investigated. At the same time, potentiated variants of Hsp104 have been
111 engineered to disaggregate misfolded proteins of higher eukaryotes, connected with PD (α -synuclein)
112 and amyotrophic lateral sclerosis (ALS) (TDP-43 and FUS) [42, 43]. Using lessons learned from yeast
113 models, similar potentiated human protein disaggregases such as Hsp110/Hsp70/Hsp40 [40] and
114 HtrA1[44] could be engineered. Another approach is identification of small-molecule enhancers of the
115 chaperone activity, that could potentially yield transformative therapeutics for ALS, PD, and AD [43].
116 Potential danger, associated with these approaches is that as we saw in yeast, modulations of
117 chaperone activity may work in both directions, for example increased chaperone activity may in fact
118 promote amyloid propagation through increased fragmentation. Further understanding of the
119 mammalian chaperone machinery, associated with amyloids, is necessary for successful
120 development in this direction.

121 3. Contribution of Environmental Factors to Amyloid Disease

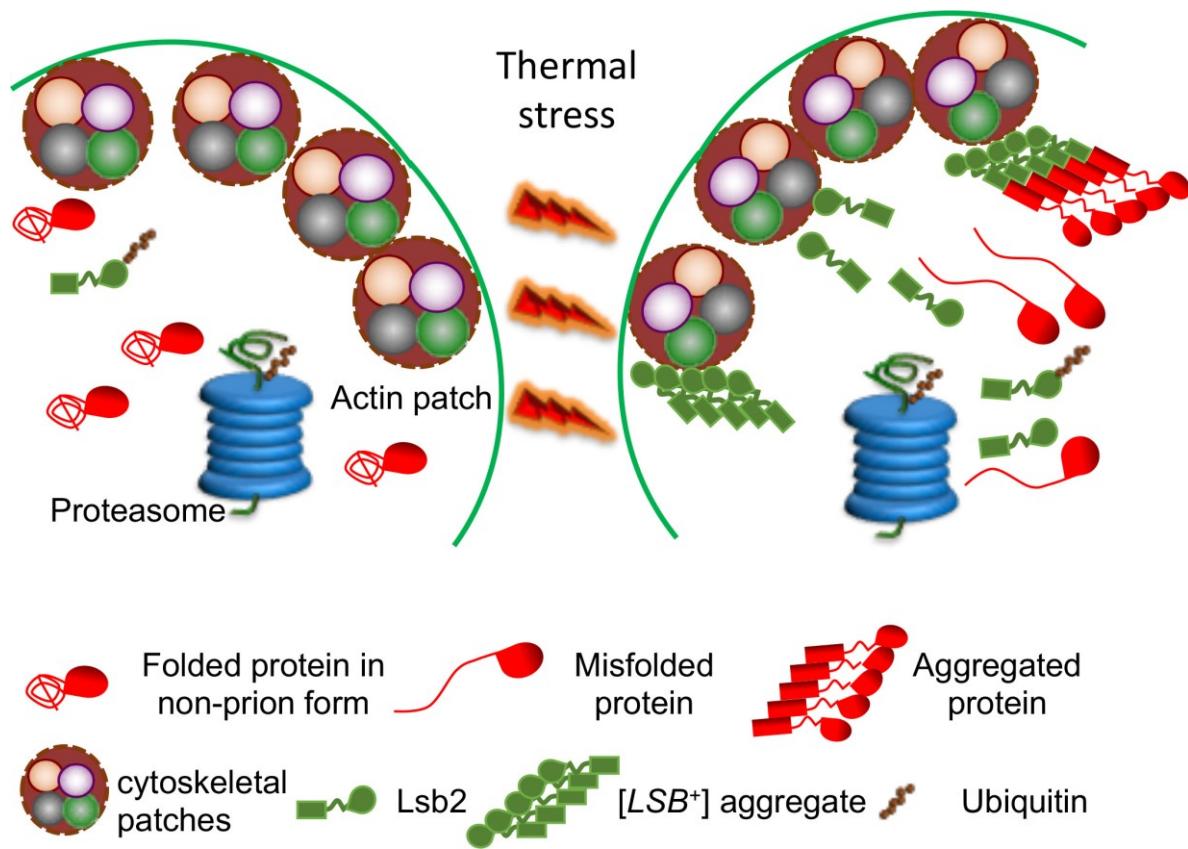
122 It is widely believed that environmental exposures contribute to the vast majority of sporadic
123 Alzheimer's, Parkinson's, Huntington's and prion diseases alone or via interactions with genetic
124 factors [45-49]. Epidemiological studies have associated environmentally persistent organic pollutant
125 exposure to brain disorders [46]. Proven and potential neurotoxic substances include heavy metals,
126 organic solvents, persistent organic pollutants, plastic exudates, pesticides, brominated flame
127 retardants, and polycyclic aromatic hydrocarbons [45, 50-54]. Smoking is implicated in a decreased
128 risk of developing Parkinson's disease [45, 53] and caffeinated coffee consumption is associated with
129 a reduced risk of PD and AD [55], but this association is controversial. According to recent discoveries
130 the PD patients are less likely to establish smoking habits, because of a decreased
131 responsiveness to nicotine and that ease of smoking cessation is an early manifestation of premotor
132 PD related to the loss of nicotinic rewards [56]. This should be noted that effects of environmental risk
133 factors identified thus far are characterized only for specific amyloid diseases, so that it is not clear if
134 any of them have a general pro-amyloid effect.

135 With the proliferation of electric devices and wireless communication equipment, the concern
136 was raised about the health effects of extremely low frequency electromagnetic field (ELF-EMF) and
137 radio frequency electromagnetic field (RF-EMF). It was found that exposure to ELF-EMF could
138 increase production of amyloid beta (Abeta), an amyloidogenic protein associated with AD, and
139 elevate the risk of AD [57]. At the same time, exposure to RF-EMF has some beneficial effects in
140 regard to AD pathology in a transgenic model [58, 59], and its beneficial effect was also reported from
141 the epidemiological survey of AD and PD patients [60].

142 Aging is the primary non-genetic risk factor for sporadic AD. The early-life environment was
143 implicated as one of primary factors in defining an individual susceptibility to AD and PD [61-63].
144 Fundamental aging-related processes such as decreased adaptation to stress and accumulation of
145 reactive oxygen species (ROS), as well as a decline in protein homeostasis, may serve as initiators of
146 A β and prion aggregation [64-66]. Current model of AD considers amyloid formation by A β as a
147 triggering factor in AD [67].

148 Various environmental stresses may impact amyloids and prions via different mechanisms,
149 therefore studying the environmental triggers and modifiers of neurodegenerative diseases is
150 critically important. In contrast to genetic factors, environmental factors potentially could be modified,
151 and this may have a dramatic effect on prevention, occurrence and treatment [45]. Yeast model
152 systems described below provide an excellent tool for the investigation of the impact of environment
153 on the formation and propagation of amyloids.

154 4. Effects of Chemical Agents and Environmental Factors on the Formation of Yeast Prions


155 Molecular mechanisms triggering conversion from a normally soluble protein into the
156 amyloid/prion form remain largely unknown. Understanding these mechanisms is central to
157 development of both prophylactic recommendations and effective therapeutic strategies, aimed at
158 amyloid diseases. Yeast models provided important data showing how amyloids and prions arise in
159 vivo. For example, transient overproduction of a prionogenic protein results in prion formation [68-70].
160 Once prion assemblies are generated, they can be propagated even at normal expression levels of a

161 prionogenic protein [18]. This process is greatly facilitated by the presence of other proteins in an
162 aggregated state, suggesting that cross-seeding interactions can nucleate de novo amyloid/prion
163 formation in yeast [71, 72].

164 A variety of environmental stress conditions are known to increase the frequency of prion
165 formation in yeast. This is in an agreement with the fact that conditions favoring protein misfolding
166 may also favor the conversion of a normally soluble protein into an amyloid form [17, 73]. For
167 example, formation of the yeast prion [PSI^+], an aggregated form of the translation termination factor
168 Sup35, is facilitated by prolonged incubation at low temperature [16], heat stress [74], osmotic and
169 oxidative stresses [75, 76], the unfolded protein response and ER stress [34, 73, 77]. Typically, these
170 effects are detected in the strains containing another protein, such as Rnq1, in an amyloid form. Rnq1
171 prion is known to increase [PSI^+] formation, possibly via a cross-seeding mechanism [71, 72, 78].

172 *De novo* generation and propagation of another yeast prion [$URE3$] increased after the exposure
173 to low frequency (ELF-EMF) and radio frequency (RF-EMF) electromagnetic fields [79]. The
174 observation that production of ROS, as well as the activities of superoxide dismutase (SOD) and
175 catalase (CAT), but not the levels of chaperone proteins were elevated in yeast cells in these
176 conditions supports the hypothesis that ROS may play a role in the effects of EMF on protein
177 misfolding and amyloid formation.

178 Active adaptation of yeast cells to environmental stress apparently involves conversion of some
179 normally soluble proteins into an aggregated (and in some cases, amyloid) form. It is possible that
180 amyloid formation may promote survival under stress conditions, for example by assembling the
181 damaged proteins into amyloid deposits. Thus, minimizing their damaging effect to the cell.
182 Reversible assemblies may also help to protect essential proteins from degradation machinery,
183 activated during stress, as proposed in [16]. Our data show that the yeast stress-inducible
184 cytoskeleton-associated protein Lsb2 forms a metastable prion [LSB^+] in response to high
185 temperature stress [80]. This prion has been shown to promote conversion of other cellular proteins
186 into a prion form [80, 81] (Figure 2). These data demonstrate a possible role for Lsb2 as a sensor of
187 stress. Apparently, Lsb2 acts as a transient catalyst of heterologous prion formation due to its ability
188 to form a transient stress-inducible prion state that facilitates the potentially cytoprotective assembly
189 of other aggregation-prone proteins into deposits at specific cytoskeleton associated sites [81]. The
190 metastable stress-inducible Lsb2 prion confers the memory of stress to a subpopulation of yeast
191 cells. If the prion form of Lsb2 is playing an adaptive role, such a stress memory could be adaptive
192 during repetitive stresses, via conferring increased stress “awareness” and therefore, increased
193 stress resistance to the prion-containing cells. Notably, the ability of Lsb2 to form an aggregated state
194 and to promote aggregation of other proteins is confined to a single amino acid substitution which has
195 been acquired in evolution at the same time when *Saccharomyces* yeast adapted to higher growth
196 temperatures. Therefore, it is possible that prion-based stress memory has arisen as a defensive tool
197 intended to minimize the pathogenic effects of the increased accumulation of misfolded proteins, and
198 to prevent degradation of essential proteins under unfavorable conditions [16, 82].

199

200

201 **Figure 2. Lsb2 aggregation and prion formation during thermal stress.** Thermal stress (39°C)
 202 leads to an increased synthesis of the Lsb2 protein, as well as to misfolding of other proteins. When
 203 present at high concentration, Lsb2 forms prion-like aggregates ($[LSB^+]$), which are associated with
 204 peripheral cytoskeletal patches and promote assembly of misfolded proteins into protective (but
 205 potentially amyloidogenic) aggregate deposits. $[LSB^+]$ aggregates are metastable and lost in cell
 206 divisions after stress, while the Lsb2 protein is ubiquitinated and degraded by a proteasome.

207

208 Another environmentally regulated and potentially adaptive yeast prion is $[MOT3^+]$ [83]. It is a
 209 prion form of transcriptional factor Mot3, which regulates genes involved in cell wall and ergosterol
 210 biosynthesis in yeast. Mot3 is also involved in repression of anaerobic genes during aerobic growth,
 211 and reduction in Mot3 levels occurring in hypoxic cells results in the de-repression of the target
 212 anaerobic genes. Formation, elimination and phenotypic manifestation of $[MOT3^+]$ prion are all
 213 modulated by specific environmental conditions. Formation of the $[MOT3^+]$ prion results in the
 214 acquisition of an adhesive phenotype, formation of multicellular chains and generation of a more
 215 elaborate biofilm. Ethanol stress increases the frequency of $[MOT3^+]$ formation, while hypoxia
 216 eliminates $[MOT3^+]$, possibly due to a decrease in Mot3 protein levels. In natural conditions, yeast
 217 cultures frequently undergo transitions from high ethanol stress (caused by utilization of sugars via
 218 brewing) to hypoxia. Thus, formation and loss of $[MOT3^+]$ prion might work as a molecular switch that
 219 occurs sequentially in the natural fermentation/respiration cycles of yeast populations and contribute
 220 to the natural morphological diversity of budding yeast [83].

221

222 Formation of the $[MOD^+]$ prion, by a tRNA modification enzyme Mod5, was observed when
 223 non-prion yeast was grown under selective pressures from antifungal drugs [84]. $[MOD^+]$ cells
 224 accumulate more ergosterol and are resistant to ergosterol synthesis inhibitors such as fluconazole
 225 and ketoconazole, common antifungal drugs. However, it remains uncertain if $[MOD^+]$ is induced by
 226 azoles or simply selected in their presence. Connections to some drugs are also described for other
 227 yeast prions. For instance, the prion form of a chromatin remodeler, Swi1 [85], leads to formation of
 the prion state $[SWI^+]$, which is resistant to microtubule disrupting drugs [86]. Similarly, the antibiotic

228 G418 increases the frequency of [URE3] prion induction [87]. In this case, [URE3] prion does not
229 confer the resistance to an antibiotic, instead the antibiotic treatment increases the rate of
230 translational errors, which apparently results in an increase of the frequency of Ure2 misfolding and
231 prion formation.

232 An interesting example of the environmentally regulated prion is $[GAR^+]$, a
233 membrane-associated heteromeric complex consisting of the plasma membrane proton pump Pma1
234 and the glucose-repressed gene regulator Std1. In contrast to most other yeast prions, it is not proven
235 that $[GAR^+]$ is associated with an amyloid state. Also, it appears that $[GAR^+]$ generation involves
236 some changes in the protein complex assembly. Formation of $[GAR^+]$ occurs with nutrient fluctuations
237 in the environmental niche and reverses glucose-associated repression in *S. cerevisiae* [88, 89].
238 Notably, $[GAR^+]$ is induced across an entire population in response to lactic acid secreted by certain
239 bacterial species [90, 91] and eliminated by desiccation [92]. As $[GAR^+]$ cells produce less ethanol
240 and therefore do not inhibit growth of bacteria, $[GAR^+]$ induction is certainly beneficial to bacterial cells
241 producing the $[GAR^+]$ inducing compounds. It was argued that $[GAR^+]$ could also be beneficial to yeast
242 dues to an increased choice of utilized carbon sources. This could be true in a general sense,
243 although it is not clear if induction of $[GAR^+]$ is beneficial to yeast in the particular situation of the
244 mixed yeast/bacterial community.

245 5. Clearance of Yeast Prions by Chemical Agents and Environmental Factors

246 *In vivo* clearance pathways for misfolded proteins include the ubiquitin–proteasome system
247 (UPS) and the autophagy–lysosome network (ALN) [93, 94]. Some data connect these pathways to
248 clearance of amyloid aggregates, although effects are not straightforward. For example, proteasomes
249 are not likely to be efficient in degrading aggregated proteins, although they may counteract
250 subsequent aggregation by degrading misfolded precursors. One of the approaches to aggregate
251 clearance in proliferating cells is asymmetric segregation in cell divisions [95]. Chaperone proteins
252 participate in all these pathways and make a significant impact on amyloid clearance.

253 Incubation with various chemical agents, such as guanidine hydrochloride (GuHCl),
254 dimethylsulfoxide, ethanol, methanol, glycerol, succinate, glutamate and $MgCl_2$ "cures" yeast cells of
255 some prions [73, 96]. The mechanism behind action of these chemicals is largely unknown, with the
256 exception of GuHCl, which is an inhibitor of Hsp104 [97-100], a major chaperone required for yeast
257 prion propagation (see ref. [22] and above, Fig. 1). Growth of yeast cultures in the presence of
258 millimolar concentrations of GuHCl cures most of yeast prions known to date in a
259 generation-dependent manner, due to defect in fibril fragmentation and production of new seeds, so
260 that pre-existing prion units are diluted and eventually lost upon cell division. This should be noted
261 that some other abovementioned anti-prion agents influence levels of yeast Hsps, thus it is possible
262 that they also act via a modulation of the chaperone machinery.

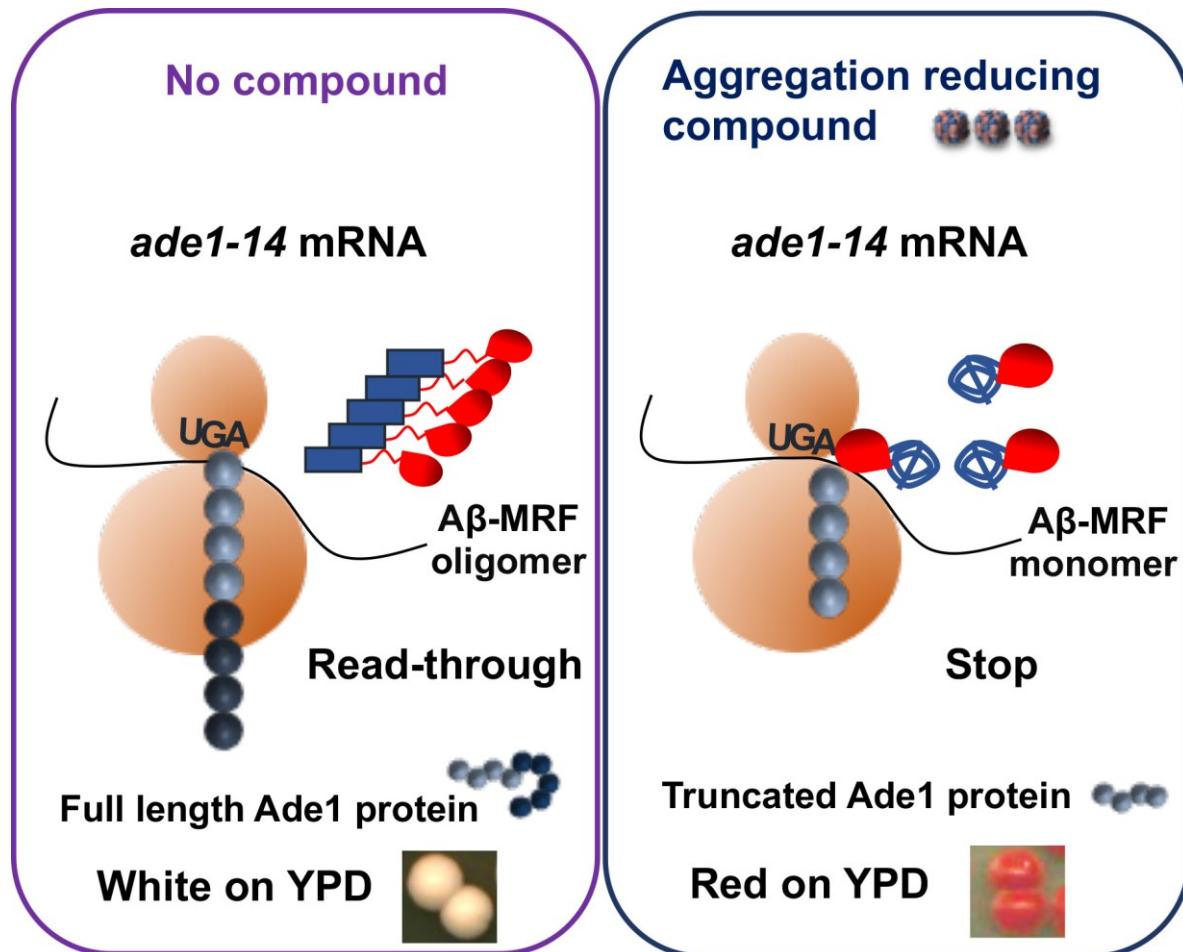
263 Some environmental stresses such as severe heat shock also cause loss of the $[PSI^+]$ prion [96],
264 although mild increase in growth temperature was initially reported to have no effect. However, it was
265 then shown that short-term exposure of exponentially growing yeast culture to mild heat shock (e. g.
266 39°C), followed by immediate resumption of growth, leads to destabilization of the $[PSI^+]$ prion, that is
267 most pronounced in so-called "weak" prion variants [34]. (Variants, or "strains" of prion likely
268 represent amyloid isoforms with different structures of a cross- β core region, see refs.[13, 101]). Most
269 of prion destabilization occurs due to impairment of prion segregation in the divisions following
270 resumption of cell proliferation [34, 102]. Longer incubation at increased temperature results in prion
271 recovery. Remarkably, both prion destabilization and recovery depend on protein synthesis, and
272 maximal prion destabilization coincides with maximal imbalance between Hsp104 and other Hsps
273 such as Hsp70-Ssa [19, 34]. This is consistent with the notion that efficient prion fragmentation and
274 segregation requires a proper balance between Hsp104 and Hsp70-Ssa chaperones. Segregational
275 prion loss after heat shock was attributed to either malpartition of prion aggregates under conditions
276 where their normal proliferation is impaired due to altered Hsp balance [34], or asymmetric
277 distribution of excess Hsp104 in cell divisions following heat shock [103]. These explanations are not
278 mutually exclusive. Recent data [104] show that $[PSI^+]$ destabilization by mild heat shock is
279 significantly decreased in the absence of protein deacetylase Sir2, previously implicated in the control
280 of asymmetric segregation of the aggregated heat-damaged proteins in the cell divisions following

heat shock [105]. Indeed, the RFP tagged Sup35 aggregates colocalize with the GFP tagged Hsp104 (a marker of the deposits of heat-damaged proteins) in heat shocked cells and show a tendency of mother-specific accumulation in the post heat shock cell divisions [104]. Notably, the abovementioned cytoskeleton-associated stress-inducible prionogenic protein Lsb2 and its non-prionogenic paralog Lsb1 partially protect $[PSI^+]$ from destabilization by mild heat shock, consistent with their general “pro-aggregation” effect [81, 102]. Another prion eliminated by growth at mildly elevated temperature is $[SWI^+]$ [27], although the detailed mechanism of curing has not been deciphered in this case.

Osmotic stress also causes loss of the $[PSI^+]$ prion [34, 96]. However, in contrast to heat shock, $[PSI^+]$ destabilization by osmotic stressors does not necessarily depend on cell proliferation and/or protein synthesis [34], indicating that different stresses may impact the prion via different mechanisms.

Nutrient deprivation (that is, growth in poor synthetic medium) results in the increased loss of some variants of the $[PSI^+]$ prion [106]. This was attributed to an increased release of chaperone Hsp70-Ssb from the ribosome-associated complex (RAC) into cytosol. Indeed, RAC disruption due to depletion of Hsp40-Zuo1 or Hsp70-Ssz1 (cochaperones, composing the ribosome-associated complex, RAC that links Hsp70-Ssb to translating ribosomes) also has a destabilizing effect on $[PSI^+]$ propagation. An excess of Hsp70-Ssb in the cytosol antagonizes binding of another Hsp70 chaperone, Ssa to prion aggregates, that impairs prion propagation [106, 107]. Release of Hsp70-Ssb from the ribosome is also detected during heat shock, and both single deletions of either of the genes coding for Hsp70-Ssb, *SSB1* or *SSB2*, or double deletion of both genes (*ssb1/2Δ*) decrease destabilization of $[PSI^+]$ by mild heat shock [104]. In contrast, deletion of either gene coding for RAC component, *zuo1Δ* or *ssz1Δ*, increases $[PSI^+]$ destabilization by heat shock. This effect of RAC disruption on $[PSI^+]$ is, in a significant part, mediated by Hsp70-Ssb, as it is ameliorated in the triple *ssb1/2Δ zuo1Δ* strain [104]. These data show that intracellular relocalization of the heat shock non-inducible chaperone, Hsp70-Ssb, modulates propagation of protein aggregates after heat shock. Possibly, Hsp70-Ssb released from the ribosome into cytosol antagonizes Hsp70-Ssa, thus further increasing the imbalance between Hsp104 and Hsp70-ssa proteins, bound to prion aggregates. Both orthologs of RAC components and ribosome-associated Hsp70s that are functionally analogous to Hsp70-Ssb are found in human cells [108]. This makes it likely that RAC-dependent regulation of amyloid aggregation is not restricted only to yeast [107].

Alterations in protein degradation pathways have been linked to both heritable and sporadic aggregation-related neurodegenerative diseases [109]. Protein ubiquitination is a reversible post-translational modification in which the 76 aa polypeptide called ubiquitin (Ub) is covalently linked, via its C-terminal glycine residue to the ε-amino group of lysine residues in target proteins [110]. UPS failure leads to the accumulation and aggregation of misfolded proteins [93, 111], which may result in enhanced nucleation of amyloids. On the other side, accumulation of protein aggregates can sequester Ub and other UPS components, inhibiting the proteasome and exerting pleiotropic effects on cellular metabolism in target proteins. UPS defects have been linked to certain amyloid and neural inclusion diseases in mammals and humans [112]. In yeast, UPS alterations influence formation and propagation of the $[PSI^+]$ prion [20, 21]. De novo $[PSI^+]$ induction by excess Sup35 is more efficient at increased Ub levels, and is reduced by a decrease in the levels of free Ub, for example in the strains lacking the deubiquitinating enzyme Ubp6 [20]. Deletion of *UBC4*, which encodes one of the major yeast ubiquitin conjugating (E2) enzymes, increases both $[PSI^+]$ resistance to “curing” by overexpressed chaperone Hsp104 and de novo $[PSI^+]$ formation [21]. The simplest explanation for the effect of *ubc4Δ* (and possibly, other UPS-deficient deletions) on $[PSI^+]$ would be that a defect in ubiquitination prevents degradation of misfolded Sup35, thereby increasing its abundance and conversion into a prion. However, despite numerous searches, there is no evidence for direct ubiquitination of Sup35. Another (not mutually exclusive) explanation could be that *ubc4Δ* acts via auxillary factors. Indeed, the amount of the Hsp70-Ssa chaperone associated with Sup35 aggregates is increased in the *ubc4Δ* cells [21]. Hsp70-Ssa is known to promote the formation and propagation of $[PSI^+]$ (see above), and is itself ubiquitinated [113]. Yeast cytoskeletal protein Lsb2 that triggers $[PSI^+]$ prion formation and protects $[PSI^+]$ from destabilization during stress ([81, 102], see above) is ubiquitinated and degraded via the proteasome [81]. The metastable nature of the


335 [LSB⁺] prion could be at least partly related to the proteolytic instability of its carrier protein because
336 mutations impairing ubiquitination and subsequent degradation of Lsb2 also increase transmission of
337 [LSB⁺] in cell divisions [80].

338 Autophagy is a non-selective degradation process which destroys the bulk of cytoplasm and/or
339 whole organelles, and recycles macromolecules in response to starvation conditions. Autophagy can
340 serve as a protein quality control mechanism degrading protein aggregates [114]. Spermidine, a
341 polyamine that has been used to induce autophagy, has been reported to “cure” yeast cells of the
342 prion forms of proteins Sup35 ([PSI⁺]) and Rnq1 ([PIN⁺]) [76, 115].

343 6. Yeast Models for Discovery of Anti-Prion Drugs

344 *S. cerevisiae* yeast has been successfully used to model protein aggregation in human disorders
345 including AD, PD, HD and TSEs. The low cost of yeast experiments and the availability of
346 high-throughput techniques makes yeast suitable for large-scale genetic and pharmacological
347 screens. More than 1000 genes involved in human disorders have orthologs in the yeast genome.
348 These genes can be genetically and functionally replaced by their human equivalents. The creation of
349 “humanized” yeast strains with whole pathways modified to resemble human cell biology [116, 117]
350 facilitates the use of yeast in studying human diseases. Yeast has become a widely used tool for
351 discovery of new drugs and their mechanisms of action, and this has been applied to amyloids and
352 prions as well.

353 A red-/white colorimetric assay for identification of antiprion compounds (Figure 3) has been
354 developed on the basis of the yeast prion [PSI⁺]. [PSI⁺] is an aggregated, partially inactive isoform of
355 translation termination factor Sup35. Therefore, readthrough of stop codons occurs in the cells
356 bearing [PSI⁺]. The detection assay employs a specifically designed yeast strain containing a stop
357 codon (nonsense-mutation) in the middle of the coding region of *ADE1* gene [13]. When Sup35 is in
358 an active soluble form it terminates translation at the stop codon. As a result, yeast cells cannot grow
359 on a metabolic medium lacking adenine and accumulate a red pigment generated by an intermediate.
360 When Sup35 is present in its aggregated prion form it fails to terminate translation and the ribosome
361 reads through the nonsense codon. This allows cells to grow on the medium lacking adenine and
362 cells growing on rich medium are white, because accumulation of the red intermediate is prevented.
363 This assay was used for safe and high-throughput screening of anti-prion compounds. To increase
364 sensitivity, an anti-prion compound GuHCl was added to the yeast medium at a low concentration. A
365 chemically diverse library of 2,500 compounds (synthetic and natural products purified from various
366 sources by academic laboratories) was screened for the ability to cure the [PSI⁺] phenotype,
367 detected by the generation of a red halo surrounding a disk of filter paper with a tested compound on
368 a Petri dish [118, 119]. [PSI⁺]-curing compounds were then tested for their activity against another
369 yeast prion, [URE3] followed by the analysis of their effects on the pathogenic mammalian prion
370 protein PrP^{Sc} (associated with TSEs) in a cell-based assay and mouse models [120]. Notably,
371 quinacrine and chlorpromazine, shown to promote mammalian PrP^{Sc} clearance in cell cultures, were
372 also active in the yeast-based method. Imiquimod (IQ), a potent Toll like receptor 7
373 agonist, imiquimod, was identified as new compound with anti-prion activity against yeast prion [PSI⁺]
374 and [URE3] [121]. IQ has also anti-prion activity against mammalian prions and was already in clinical
375 use. Biochemical and genetic studies reveal that IQ and two other compounds identified in yeast
376 assay, 6-aminophenanthridine and guanabenz acetate target ribosomal RNA (rRNA) and specifically
377 inhibit the protein folding activity of the ribosome (PFAR) [122], borne by domain V of the large
378 subunit rRNA. PFAR is evolutionarily conserved and could be a potential therapeutic target for
379 human protein misfolding diseases [123].

380

381

382

Figure 3. Yeast model to screen for inhibitors of A β oligomerization. In the *ade1-14* reporter strain, the stop codon UGA, introduced into the *ADE1* gene, is normally recognized by the translation termination complex, including release factor Sup35. Fusion of A β with functional domain (MRF) of Sup35 leads to its oligomerization. When A β -MRF is in an oligomeric form, translation termination is impaired. This results in synthesis of full-length Ade1 protein due to readthrough of the stop codon, inability of cells to grow on the medium lacking adenine ($-Ade$) and white color on the complete (YPD) medium (Left panel). If cells are treated with a compound able to counteract oligomerization of A β -MRF, translation termination is restored, leading to the production of truncated Ade1 protein, inability of cells to grow on $-Ade$ medium and accumulation of red pigment (a polymerized intermediate of the adenine biosynthetic pathway) on YPD medium (Right panel).

392

393

394

395

396

397

398

399

The same principle was used for an optimized liquid phase micro-culture assay, operating with yeast strains, carrying prions [*PS⁺*] and [*URE*] [124] and applied to identification of natural inhibitors of yeast prions in extracts of marine invertebrates, collected from temperate waters in Australia. As a result, several bromotyrosine derivatives from the extract of *Suberea ianthelliformis* were identified as potent inhibitors of yeast prions. All anti-prion compounds from the sponge extracts contained an ethylaminodibromophenyl (EADP) moiety. This may serve as a useful lead for the future development and design of novel and improved anti-prion therapeutics [124].

400

7. Yeast Models for Identifying Candidate Drugs Against Alzheimer's disease

401

402

403

Yeast models are also playing an increasingly important role in unravelling the fundamental disease aspects of AD [125]. The triggering event in Alzheimer's disease is believed to be the aggregation of the β -amyloid (A β) peptides [67]. The predominant types of A β peptide in human cells

404 are A β 40 and A β 42, of which the latter one is considered to be most aggregation-prone and
405 pathogenic. Extensive evidence suggests that the primary neurotoxic effects are associated with
406 smaller (dimers, trimers, and tetramers) oligomers of A β 42, which seem to appear during the early
407 stages of A β 42 assembly [126]. Various yeast models for studying A β aggregation by screening
408 chemical compounds that reduce A β aggregation or oligomerization were developed [127, 128]. In
409 one model, A β 42 was substituted for the prion domain of yeast translational termination factor Sup35
410 (A β 42-MRF). The functional region of Sup35 was retained as a reporter, allowing for a red/white
411 assay based on the same principle as described above (Fig. 3). The fact that yeast ortholog of the
412 human AD risk factor, phosphatidylinositol binding clathrin assembly protein (PICALM), reduces
413 oligomerization of A β 42-MRF indicates that A β 42-MRF reporter system is suitable for identifying
414 compounds that could be developed into therapies that prevent or arrest AD [129]. This approach was
415 used to screen for agents that reduce abundance of A β 42 oligomers [127, 130]. Two presumptive
416 anti-oligomeric compounds were identified from a sub-library of 12,800 drug-like small molecules
417 [131], and 7 compounds were identified from a screen of 1,200 FDA approved drugs and drug-like
418 small molecules [129]. These include: 3 antipsychotics (bromperidol, haloperidol and azaperone), 2
419 anesthetics (pramoxine-HCl and dyclonine-HCl), tamoxifen citrate, and minocycline-HCl. All 7 drugs
420 caused A β 42 to be less toxic to cultured PC12 human cells. One potential disadvantage of this assay
421 is that chimeric construct oligomerizes instantly in yeast cells, thus it is possible to look for agents
422 counteracting existing oligomers, but may not be as useful for those acting at initial oligomer
423 nucleation.

424 Several labs employed A β 40 or A β 42, fused to fluorescent protein, green (GFP), yellow (YFP)
425 or cyan (CFP), and expressed in yeast. The fusion protein spontaneously misfolds and aggregates.
426 Depending on the type of construct, this either allowed for microscopic detection of A β -based
427 aggregates in yeast [132], or suppressed green fluorescence [128, 133]. Suppression of fluorescence
428 in the GFP-A β constructs was used to screen for compounds that increase fluorescence, with the
429 hope that such compounds would antagonize aggregation and play a protective role against AD.
430 Folinic acid was uncovered from such a screen suggesting folate can assist with preventing
431 A β -misfolding/aggregation [128].

432 Fluorescently detected A β -based aggregates were shown to interact with mammalian PrP
433 protein in yeast cells [132]. This reproduces results previously described for mammalian and human
434 cells [134]. The A β -PrP interaction was shown to play a role in AD pathology [135], although its
435 specific impact is still unclear.

436 The GFP-A β model was also used to test rationally designed compounds with the potential
437 anti-amyloid effect [136]. The hydrophobic core region encompassing residues 11 through 25 is
438 thought to be crucial for A β assembly into fibrils, and peptides representing portions of this region can
439 bind full length A β . Of those, pentapeptides KLVFF or LVFFA were used as recognition units in the
440 design of inhibitors of A β fibrillization. Such peptidomimetics showed moderate to good activity in both
441 inhibition and dissolution of A β aggregates as demonstrated by thioflavin assay, circular dichroism
442 measurements and microscopy. They also ameliorated the toxicity caused by GFP- A β in yeast and
443 were able to clear the GFP-Ab aggregates in vivo in an autophagy dependent manner [136].

444 Another anti-histamine drug Latrepirdine (DimebonTM) which has shown some benefits in trials
445 of Alzheimer disease [137] was demonstrated to reduce levels of GFP-A β 42 aggregates and
446 attenuated A β 42-induced toxicity in yeast [138]. In the yeast AD model that Latrepirdine
447 upregulates yeast vacuolar (lysosomal) activity and promotes transport of the autophagic marker
448 (Atg8) to the vacuole. The mechanism of Latrepirdine action in clearance of A β 42 aggregates via
449 induction of autophagy was later confirmed by mouse AD model [139].

450 In all abovementioned studies, A β was expressed in the cytoplasm of yeast cells. To address
451 recapitulate the A β secretion and endocytosis observed in human brains, a new yeast model was
452 developed that is based on a secreted form of A β [140, 141]. For this purpose, A β 42 was fused to
453 either the endoplasmic reticulum targeting signal (ssA β 42-GFP) [140], or the mating factor α (MF α)
454 signal peptide (MF α - A β 42-GFP) [141], so that multi-compartmental distribution of A β 42 was
455 successfully mimicked in yeast. Expression of ssA β 42-GFP disrupted normal cellular endocytic
456 trafficking (possibly due to accumulation of A β in the space outside of the cell membrane), which
457 results in cytotoxicity [140]. Over 140,000 compounds were screened for reversal of toxicity, and a

458 class of protective metal-binding compounds related to clioquinol (CQ), a compound that alleviates
459 $\text{A}\beta$ toxicity in mouse AD models was identified [140]. These structurally dissimilar compounds
460 strongly synergized at concentrations otherwise not competent to reduce toxicity. They were able to
461 increase $\text{A}\beta$ turnover, restores vesicle trafficking and provide oxidative stress protection. Treatment
462 with clioquinol related compounds inhibited $\text{A}\beta$ accumulation and resulted in a dramatic improvement
463 in learning and memory in mouse transgenic models [142] and human patient cohorts [143]. Notably,
464 drugs identified in the yeast screen for antagonists of oligomerization [129] were also active in the
465 toxicity assay [144]. The major disadvantage of this assay is that is aimed at $\text{A}\beta 42$ accumulation and
466 secretion, rather than at aggregation or oligomerization per se.

467 **8. A Yeast Model for Discovery of Drugs against Huntington's Disease**

468 The budding yeast *Saccharomyces cerevisiae* has recently emerged as an effective tool to study
469 Huntington's disease (HD) [145]. A hallmark of HD is the accumulation of aggregates of huntingtin
470 protein (Htt) or its N-terminal fragment containing the polyQ repeat [146]. A poly(Q)-length-dependent
471 model of Htt aggregation was established by fusing the first 68 N-terminal amino acids of wild-type
472 HTT exon-1 containing poly(Q) tracts of varying length (25, 42, 72 or 103 glutamines) with a
473 C-terminal GFP (green fluorescent protein) tag [147, 148]. Aggregation of Htt-GFP in yeast depends
474 on the length of the polyQ repeat, so that polyQ expansion promotes aggregation as in humans.
475 PolyQ-dependent aggregation is toxic to yeast cells and can be modified both by genetic and
476 pharmacologic means. Some yeast [149] or mammalian [150] chaperones of the Hsp40 family were
477 shown to counteract aggregation and toxicity of the Htt-based polyQ constructs in the yeast model,
478 agreeing with data obtained in mammalian models [151]. Notably, aggregation and toxicity of the Htt
479 exon-1 based polyQ constructs in yeast cells is promoted by the presence of the endogenous yeast
480 QN-rich prions, such as Rnq1 [148]. In contrast, the presence of the P-rich sequence, which
481 immediately follows the polyQ stretch within exon-1 of Htt, ameliorates cytotoxicity by facilitating the
482 assembly of polyQ aggregates into a protective aggregate deposit, reminiscent to mammalian
483 aggresome [119]. Still, the aggresome becomes toxic in the presence of [PSI^+], prion form of the
484 translation termination factor Sup35 (eRF3), as aggregated form of Sup35 mediates sequestration of
485 another translation termination factor, Sup45(eRF1) by polyQ aggregates [152]. These data show
486 that the composition of endogenous aggregated proteins serves as a major modulator of Htt
487 aggregation and toxicity and least in yeast (and possibly in humans). Therefore, both the prion
488 composition of the reporter yeast [153]Htt-based polyQ constructs in yeast are interpreted.

489 Several types of cellular dysfunction that are observed in HD patients and higher eukaryote HD
490 models are also found in HD yeast models. These include impairment of endocytosis [154, 155],
491 dysfunction of mitochondria [156], increased levels of ROS [157], dysregulation of transcription [158],
492 induction of apoptotic markers [153]. Yeast models of HD have been successfully used to identify new
493 potent compounds with therapeutic potential. A yeast-based approach based on the aggregation and
494 cytotoxicity of Htt-103Q-GFP was used to screen a library of 16,000 small chemical compounds
495 [159]. Effects of the newly identified compounds were further validated in mammalian cell-based
496 models of HD, and in the transgenic mouse model for HD [159, 160]. The screen has yielded several
497 highly potent compounds including C2-8, that was then shown to inhibit polyQ aggregation in
498 cultured mammalian cells and intact neurons, and to rescue polyQ-mediated neurodegeneration in
499 vivo [159]. The fact that several chemical compounds showed anti-aggregation properties in yeast
500 led to successful pre-clinical studies in HD mouse models, demonstrating the value of yeast models
501 for initial screening of toxicity modulators [160, 161].

502 Intracellular antibodies (intrabodies) against Htt bind to huntingtin and prevent its misfolding and
503 toxicity. Thus, intrabodies may be a useful gene-therapy approach to treatment of the disease.
504 Disulfide bond-free single-domain intracellular antibody V_L12.3 was engineered that inhibits
505 aggregation and toxicity in the *S. cerevisiae* and neuronal cell culture models of HD [162]. These
506 effects were later validated in some mouse models of HD [163, 164] and strengthened the concept of
507 using intrabodies as a therapeutic approach against HD.

508 By using a yeast deletion library, a set of gene deletions that suppress toxicity of a mutant
509 Htt-103Q fragment has been discovered [157]. Unfortunately, this screening has not considered that
510 some deletion strains from the collection have lost the Rnq1 prion, [PIN^+], that is required for the

511 Htt103Q cytotoxicity in the given yeast strain [148]. Indeed, it turned out that some deletion
512 derivatives that have lost $[PIN^+]$ were false positives in the screen [165]. However, the most potent
513 suppressor, deletion of a gene that encodes Bna4 (kynurenine 3-monoxygenase, KMO), an enzyme
514 in the kynurenine pathway of tryptophan degradation, was not a result of $[PIN^+]$ loss. This enzyme has
515 been linked directly to the pathophysiology of Huntington's disease in humans [166]. In agreement,
516 treatment with a small molecule inhibitor of KMO, Ro 61-8048, results in a partial amelioration of
517 growth defects in Htt103Q-expressing yeast cells [157]. KMO inhibition leads to an altered product
518 and intermediate profile of tryptophan degradation, reducing cellular stress and cell death [157, 159].
519 The kynurenine pathway is now well-studied and discussed as a drug target for HD [166, 167].
520 Further on, KMO inhibition has been extensively approached pharmacologically and chemically in
521 pre-clinical rodent and *Drosophila* HD models [168, 169].

522 A yeast HD model was also used to screen for the huntingtin aggregation/toxicity modifiers
523 among the natural substances. For example, the polyphenol (−)-epigallocatechin-3-gallate (EGCG), a
524 major bioactive component in green tea, has been identified as a potent suppressor and modulator of
525 Htt aggregation and toxicity in yeast models [170]. This substance has become a promising candidate
526 for healthy aging and promotes lifespan extension in worms, flies, and rodents [159, 171–174].

527 In another high throughput screen of natural products in a yeast HD model, actinomycin D was
528 identified as a potent aggregation inhibitor [175]. It was demonstrated that applying low dose of
529 actinomycin D results in increased levels of certain Hsps (including Hsp104, Hsp70, and Hsp26) and
530 enhanced binding of Hsp70 to the polyQ in yeast. The drug actinomycin D has many approved
531 medical uses and could become an exciting drug lead in HD research.

532 Raspberry (*Rubus idaeus* var. Prestige) extracts were tested on different *S. cerevisiae* strains
533 expressing disease proteins associated with Alzheimer's, Parkinson's, or Huntington's disease [176].
534 Salidroside, a glycosylated phenol, displayed significant bioactivity against Huntington's disease.
535 Next, a metabolic route to salidroside was reconstructed in *S. cerevisiae* generating the yeast strain
536 able to produce salidroside with the same positive effects as salidroside of natural origin [176]. The
537 mechanism by which the *R. idaeus* polyphenol-enriched extract mediates cellular protection is
538 associated with the removal of superoxide anions accumulated by the expression of HTT103Q-GFP.

539 9. Drug Discovery in Yeast Model of Parkinson's Disease

540 Aggregation of alpha-synuclein (α -Syn), a small 140 amino acid protein, is a hallmark of
541 Parkinson's disease [177]. Yeast does not have an ortholog of α -Syn, but several features of PD can
542 be reproduced in yeast expressing human α -Syn. In the first yeast model for PD, human α -Syn was
543 expressed in wild type yeast cells. Expression of α -Syn in yeast cells results in intracellular inclusions
544 of α -Syn, is toxic as reflected by growth inhibition, and can cause cell death [178]. Overexpression of
545 α -Syn inhibited cell growth in α -Syn dose-dependent manner [178]. Pathways that are associated with
546 α -Syn toxicity include vesicular trafficking, endocytosis, ubiquitin-proteasomal system, lipid
547 metabolism, oxidative stress, mitochondria function, autophagy [179].

548 Yeast was used for screens that resulted in the identification of several therapeutic candidates,
549 rescuing α -Syn aggregation and toxicity [180]. Two flavonoids, quercetin and epigallocatechin gallate,
550 were identified as preventing α -Syn toxicity in the presence of iron, reinforcing the role of oxidative
551 stress in α -Syn -initiated cellular degeneration [181]. Small molecules that rescue α -Syn toxicity by
552 stimulating function of the Rab GTPase, associated with PD, and/or increasing Rab1 levels were also
553 obtained [182]. A screen of about 115,000 compounds in the yeast cells, expressing α -Syn in a fusion
554 with yellow fluorescent protein (YFP), identified a class of structurally related
555 1,2,3,4-tetrahydroquinolinones [183]. These compounds were found to reduce the formation of α -Syn
556 inclusions, re-establish ER-to-Golgi trafficking, and ameliorate the mitochondrial dysfunction [183]. It
557 was also shown that the same small molecules are counteracting the toxicity of α -Syn in nematodes
558 and in primary rat neuronal midbrain cultures [183]. Cyclic peptides (CPs), natural product-like
559 chemicals with potent bioactivity were also screened in a yeast PD model. Two related CPs identified
560 as reducing α -Syn toxicity in yeast also prevented dopaminergic neuron loss in the nematode,
561 *Caenorhabditis elegans* [184]. In another screen, a N-aryl benzimidazole (NAB) was found to
562 protect against α -Syn toxicity not only in yeast but also in other models of PD (*C. elegans*, rat primary
563 neuronal cultures and cortical neurons, differentiated from PD patient induced pluripotent stem

564 cells[185]. These screens also revealed the conserved mode of action of this compound, which
565 promotes endosomal transport via the E3 ubiquitin ligase, Rsp5/Nedd4, alleviating the dysfunctional
566 endosomal and ER-to-Golgi vesicle trafficking promoted by α -Syn [185]. Mannosylglycerate, a
567 compatible solute typical of marine microorganisms thriving in hot environments, was found to reduce
568 α -Syn aggregation in a yeast model of PD[186]. Ascorbic acid, a natural antioxidant, was found to
569 promote a significant reduction in the percentage of yeast cells bearing α -Syn inclusions [187].

570 10. General and Specific Patterns of the Yeast Models for Anti-Amyloid Drug Discovery

571 The main feature of yeast models for neurodegenerative disorders, such as PD, HD and AD, is
572 expression of a human disease hallmark protein, forming cross- β amyloid structures, in yeast cells.
573 Aggregation (and in some cases, toxicity) of amyloidogenic proteins appears to show similar patterns
574 in yeast and human cells. The advantage of yeast models includes unicellularity, rapid growth, easy
575 cultivation techniques and a wide range of research tools available. Yeast is a eukaryotic organism
576 with defined cellular compartments and similar system of vesicular trafficking, key component in
577 neurological signaling linked to neurodegenerative disorders. The majority (although not all) of the
578 key chaperone families modulating protein aggregation are conserved between yeast and humans.
579 “Humanized” yeast models are extremely useful for the early steps in the discovery of candidate
580 compounds that can be used for the development of a treatment against the disease. Screens for
581 compounds preventing aggregation and toxicity of disease-specific proteins were performed and
582 revealed potential leads which were then validated in animal models. Even despite the obvious fact
583 that some of the physiological processes involved specifically in the neurobiology of Alzheimer’s,
584 Huntington’s and Parkinson’s diseases cannot be recapped in this simple single cell model, yeast
585 assays have a unique property of efficiently targeting the mechanism of protein
586 oligomerization/aggregation, a triggering factor in these diseases.

587 Conclusions

588 The development of effective therapies and preventive treatments for neurodegenerative
589 diseases such as Alzheimer’s, Huntington’s and Parkinson’ diseases is still a great challenge, mainly
590 because of insufficient knowledge of both molecular mechanisms of diseases, and environmental
591 factors triggering and affecting these diseases. Yeast cells contain endogenous amyloid proteins
592 (yeast prions), that cause easily detectable phenotypes and are efficiently employed for
593 understanding the general mechanisms of amyloid formation and propagation (applying to both yeast
594 and humans), identifying the pro- or anti-prion agents and conditions with a broad spectrum of action,
595 and building the amyloid-specific detection tools. In this way, yeast models contribute to
596 understanding of molecular foundation of the disease, identification of molecular targets and new
597 compounds with therapeutic potentials.

598

599 **Author Contributions:** Conceptualization, T.A.C., Y.O.C., K.D.W.; Writing original draft, T.A.C.; Review and
600 Editing, T.A.C., K.D.W., Y.O.C.

601 **Funding:** T.A.C. and K.D.W. were supported by Department of Biochemistry, Emory University School of
602 Medicine and by grant GM093294 from the National Institutes of Health. Y.O.C. was supported by grant
603 MCB1817976 from National Science Foundation, by a subaward from Emory University on the grant
604 P50AG025688 from National Institutes of Health, and by St. Petersburg State University.

605 **Conflicts of Interest:** The authors declare no conflict of interest.

606

607 References

- 608 1. Wilson CJ, Bommarius AS, Champion JA, Chernoff YO, Lynn DG, Paravastu AK, Liang C, Hsieh MC,
609 Heemstra JM. Biomolecular Assemblies: Moving from Observation to Predictive Design. *Chem Rev.* 2018. Epub
610 2018/10/04. doi: 10.1021/acs.chemrev.8b00038. PubMed PMID: 30281290.

611 2. Hebert LE, Weuve J, Scherr PA, Evans DA. Alzheimer disease in the United States (2010–2050) estimated
612 using the 2010 census. *Neurology*. 2013;80(19):1778–83. Epub 2013/02/08. doi: 10.1212/WNL.0b013e31828726f5.
613 PubMed PMID: 23390181; PMCID: PMC3719424.

614 3. Prusiner SB. Cell biology. A unifying role for prions in neurodegenerative diseases. *Science*.
615 2012;336(6088):1511–3. doi: 10.1126/science.1222951. PubMed PMID: 22723400; PMCID: 3942086.

616 4. Walker LC, Jucker M. Neurodegenerative diseases: expanding the prion concept. *Annu Rev Neurosci*.
617 2015;38:87–103. Epub 2015/04/04. doi: 10.1146/annurev-neuro-071714-033828. PubMed PMID: 25840008; PMCID:
618 PMC4803040.

619 5. Masnata M, Cicchetti F. The Evidence for the Spread and Seeding Capacities of the Mutant Huntington
620 Protein in in Vitro Systems and Their Therapeutic Implications. *Front Neurosci*. 2017;11:647. Epub 2017/12/14.
621 doi: 10.3389/fnins.2017.00647. PubMed PMID: 29234268; PMCID: PMC5712341.

622 6. Walker LC. Prion-like mechanisms in Alzheimer disease. *Handb Clin Neurol*. 2018;153:303–19. Epub
623 2018/06/12. doi: 10.1016/B978-0-444-63945-5.00016-7. PubMed PMID: 29887142.

624 7. Jucker M, Walker LC. Propagation and spread of pathogenic protein assemblies in neurodegenerative
625 diseases. *Nat Neurosci*. 2018;21(10):1341–9. Epub 2018/09/28. doi: 10.1038/s41593-018-0238-6. PubMed PMID:
626 30258241.

627 8. Giasson BI, Lee VM, Trojanowski JQ. Interactions of amyloidogenic proteins. *Neuromolecular Med*.
628 2003;4(1–2):49–58. Epub 2003/10/07. doi: 10.1385/NMM:4:1-2:49. PubMed PMID: 14528052.

629 9. Stohr J, Condello C, Watts JC, Bloch L, Oehler A, Nick M, DeArmond SJ, Giles K, DeGrado WF, Prusiner
630 SB. Distinct synthetic Abeta prion strains producing different amyloid deposits in bigenic mice. *Proceedings of
631 the National Academy of Sciences of the United States of America*. 2014;111(28):10329–34. Epub 2014/07/02. doi:
632 10.1073/pnas.1408968111. PubMed PMID: 24982137; PMCID: PMC4104853.

633 10. Watts JC, Condello C, Stohr J, Oehler A, Lee J, DeArmond SJ, Lannfelt L, Ingelsson M, Giles K, Prusiner SB.
634 Serial propagation of distinct strains of Abeta prions from Alzheimer's disease patients. *Proceedings of the
635 National Academy of Sciences of the United States of America*. 2014;111(28):10323–8. Epub 2014/07/02. doi:
636 10.1073/pnas.1408900111. PubMed PMID: 24982139; PMCID: PMC4104857.

637 11. Giles K, Olson SH, Prusiner SB. Developing Therapeutics for PrP Prion Diseases. *Cold Spring Harb
638 Perspect Med*. 2017;7(4). Epub 2017/01/18. doi: 10.1101/cshperspect.a023747. PubMed PMID: 28096242; PMCID:
639 PMC5378016.

640 12. Wickner RB. Yeast and Fungal Prions. *Cold Spring Harbor perspectives in biology*. 2016;8(9). Epub
641 2016/08/03. doi: 10.1101/cshperspect.a023531. PubMed PMID: 27481532; PMCID: PMC5008071.

642 13. Liebman SW, Chernoff YO. Prions in yeast. *Genetics*. 2012;191(4):1041–72. doi: 10.1534/genetics.111.137760.
643 PubMed PMID: 22879407; PMCID: 3415993.

644 14. Kryndushkin D, Edskes HK, Shewmaker FP, Wickner RB. Prions. *Cold Spring Harb Protoc*. 2017;2017(2).
645 Epub 2017/02/06. doi: 10.1101/pdb.top077586. PubMed PMID: 28148884.

646 15. Tenreiro S, Munder MC, Alberti S, Outeiro TF. Harnessing the power of yeast to unravel the molecular
647 basis of neurodegeneration. *Journal of neurochemistry*. 2013;127(4):438–52. Epub 2013/04/23. doi:
648 10.1111/jnc.12271. PubMed PMID: 23600759.

649 16. Chernoff YO. Stress and prions: lessons from the yeast model. *FEBS letters*. 2007;581(19):3695–701. Epub
650 2007/05/19. doi: S0014-5793(07)00474-7 [pii]
651 10.1016/j.febslet.2007.04.075. PubMed PMID: 17509571.

652 17. Chernova TA, Wilkinson KD, Chernoff YO. Physiological and environmental control of yeast prions.
653 FEMS microbiology reviews. 2014;38(2):326-44. doi: 10.1111/1574-6976.12053. PubMed PMID: 24236638;
654 PMCID: 3951574.

655 18. Chernova TA, Wilkinson KD, Chernoff YO. Prions, Chaperones, and Proteostasis in Yeast. Cold Spring
656 Harbor perspectives in biology. 2017;9(2). doi: 10.1101/cshperspect.a023663. PubMed PMID: 27815300.

657 19. Allen KD, Wegrzyn RD, Chernova TA, Muller S, Newnam GP, Winslett PA, Wittich KB, Wilkinson KD,
658 Chernoff YO. Hsp70 chaperones as modulators of prion life cycle: novel effects of Ssa and Ssb on the
659 *Saccharomyces cerevisiae* prion [PSI $^+$]. Genetics. 2005;169(3):1227-42. Epub 2004/11/17. doi: genetics.104.037168
660 [pii].
661 10.1534/genetics.104.037168. PubMed PMID: 15545639; PMCID: 1449557.

662 20. Chernova TA, Allen KD, Wesoloski LM, Shanks JR, Chernoff YO, Wilkinson KD. Pleiotropic effects of
663 Ubp6 loss on drug sensitivities and yeast prion are due to depletion of the free ubiquitin pool. The Journal of
664 biological chemistry. 2003;278(52):52102-15. Epub 2003/10/16. doi: 10.1074/jbc.M310283200
665 M310283200 [pii]. PubMed PMID: 14559899.

666 21. Allen KD, Chernova TA, Tennant EP, Wilkinson KD, Chernoff YO. Effects of ubiquitin system alterations
667 on the formation and loss of a yeast prion. The Journal of biological chemistry. 2007;282(5):3004-13. Epub
668 2006/12/05. doi: M609597200 [pii].
669 10.1074/jbc.M609597200. PubMed PMID: 17142456.

670 22. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW. Role of the chaperone protein
671 Hsp104 in propagation of the yeast prion-like factor [psi $^+$]. Science. 1995;268(5212):880-4. Epub 1995/05/12.
672 PubMed PMID: 7754373.

673 23. Matveenko AG, Barbitoff YA, Jay-Garcia LM, Chernoff YO, Zhouravleva GA. Differential effects of
674 chaperones on yeast prions: CURrent view. Current genetics. 2018;64(2):317-25. Epub 2017/09/22. doi:
675 10.1007/s00294-017-0750-3. PubMed PMID: 28932898.

676 24. Newnam GP, Wegrzyn RD, Lindquist SL, Chernoff YO. Antagonistic interactions between yeast
677 chaperones Hsp104 and Hsp70 in prion curing. Molecular and cellular biology. 1999;19(2):1325-33. Epub
678 1999/01/16. PubMed PMID: 9891066; PMCID: 116061.

679 25. Jung G, Jones G, Wegrzyn RD, Masison DC. A role for cytosolic hsp70 in yeast [PSI $^+$] prion propagation
680 and [PSI $^+$] as a cellular stress. Genetics. 2000;156(2):559-70. PubMed PMID: 11014806; PMCID: 1461277.

681 26. Jones G, Song Y, Chung S, Masison DC. Propagation of *Saccharomyces cerevisiae* [PSI $^+$] prion is impaired
682 by factors that regulate Hsp70 substrate binding. Molecular and cellular biology. 2004;24(9):3928-37. PubMed
683 PMID: 15082786; PMCID: 387751.

684 27. Hines JK, Li X, Du Z, Higurashi T, Li L, Craig EA. [SWI], the prion formed by the chromatin remodeling
685 factor Swi1, is highly sensitive to alterations in Hsp70 chaperone system activity. PLoS genetics.
686 2011;7(2):e1001309. doi: 10.1371/journal.pgen.1001309. PubMed PMID: 21379326; PMCID: 3040656.

687 28. Sporn ZA, Hines JK. Hsp40 function in yeast prion propagation: Amyloid diversity necessitates chaperone
688 functional complexity. Prion. 2015;9(2):80-9. doi: 10.1080/19336896.2015.1020268. PubMed PMID: 25738774.

689 29. Astor MT, Kamiya E, Sporn ZA, Berger SE, Hines JK. Variant-specific and reciprocal Hsp40 functions in
690 Hsp104-mediated prion elimination. Molecular microbiology. 2018. Epub 2018/04/11. doi: 10.1111/mmi.13966.
691 PubMed PMID: 29633387; PMCID: PMC6099457.

692 30. Berger SE, Nolte AM, Kamiya E, Hines JK. Three J-proteins impact Hsp104-mediated variant-specific
693 prion elimination: a new critical role for a low-complexity domain. Current genetics. 2019. Epub 2019/06/24. doi:
694 10.1007/s00294-019-01006-5. PubMed PMID: 31230108.

695 31. Winkler J, Tyedmers J, Bukau B, Mogk A. Hsp70 targets Hsp100 chaperones to substrates for protein
696 disaggregation and prion fragmentation. *The Journal of cell biology*. 2012;198(3):387-404. doi:
697 10.1083/jcb.201201074. PubMed PMID: 22869599; PMCID: 3413357.

698 32. Kryndushkin DS, Engel A, Edskes H, Wickner RB. Molecular chaperone Hsp104 can promote yeast prion
699 generation. *Genetics*. 2011;188(2):339-48. doi: 10.1534/genetics.111.127779. PubMed PMID: 21467567; PMCID:
700 3122315.

701 33. Park YN, Zhao X, Yim YI, Todor H, Ellerbrock R, Reidy M, Eisenberg E, Masison DC, Greene LE. Hsp104
702 overexpression cures *Saccharomyces cerevisiae* [PSI+] by causing dissolution of the prion seeds. *Eukaryotic cell*.
703 2014;13(5):635-47. doi: 10.1128/EC.00300-13. PubMed PMID: 24632242; PMCID: 4060481.

704 34. Newnam GP, Birchmore JL, Chernoff YO. Destabilization and recovery of a yeast prion after mild heat
705 shock. *Journal of molecular biology*. 2011;408(3):432-48. doi: 10.1016/j.jmb.2011.02.034. PubMed PMID:
706 21392508; PMCID: 3095851.

707 35. Ness F, Cox BS, Wongwigkarn J, Naeimi WR, Tuite MF. Over-expression of the molecular chaperone
708 Hsp104 in *Saccharomyces cerevisiae* results in the malpartition of [PSI+] propagons. *Molecular microbiology*.
709 2017. doi: 10.1111/mmi.13617. PubMed PMID: 28073182.

710 36. Bukau B, Weissman J, Horwich A. Molecular chaperones and protein quality control. *Cell*.
711 2006;125(3):443-51. Epub 2006/05/09. doi: 10.1016/j.cell.2006.04.014. PubMed PMID: 16678092.

712 37. Winkler J, Tyedmers J, Bukau B, Mogk A. Chaperone networks in protein disaggregation and prion
713 propagation. *Journal of structural biology*. 2012;179(2):152-60. doi: 10.1016/j.jsb.2012.05.002. PubMed PMID:
714 22580344.

715 38. Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI, Bukau B. Metazoan Hsp70
716 machines use Hsp110 to power protein disaggregation. *The EMBO journal*. 2012;31(21):4221-35. Epub
717 2012/09/20. doi: 10.1038/emboj.2012.264. PubMed PMID: 22990239; PMCID: PMC3492728.

718 39. Mattoo RUH, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded
719 and alternatively folded proteins. *Cell Mol Life Sci*. 2014;71(17):3311-25. doi: 10.1007/s00018-014-1627-y.
720 PubMed PMID: WOS:000340554300009.

721 40. Torrente MP, Shorter J. The metazoan protein disaggregase and amyloid depolymerase system: Hsp110,
722 Hsp70, Hsp40, and small heat shock proteins. *Prion*. 2013;7(6):457-63. PubMed PMID: 24401655.

723 41. Zaarur N, Xu X, Lestienne P, Meriin AB, McComb M, Costello CE, Newnam GP, Ganti R, Romanova NV,
724 Shanmugasundaram M, Silva ST, Bandeiras TM, Matias PM, Lobachev KS, Lednev IK, Chernoff YO, Sherman
725 MY. RuvbL1 and RuvbL2 enhance aggresome formation and disaggregate amyloid fibrils. *The EMBO journal*.
726 2015;34(18):2363-82. doi: 10.15252/embj.201591245. PubMed PMID: 26303906; PMCID: 4570522.

727 42. Vashist S, Cushman M, Shorter J. Applying Hsp104 to protein-misfolding disorders. *Biochem Cell Biol*.
728 2010;88(1):1-13. Epub 2010/02/05. doi: 10.1139/o09-121. PubMed PMID: 20130674; PMCID: PMC2933416.

729 43. Shorter J. Engineering therapeutic protein disaggregases. *Molecular biology of the cell*.
730 2016;27(10):1556-60. Epub 2016/06/04. doi: 10.1091/mcb.E15-10-0693. PubMed PMID: 27255695; PMCID:
731 PMC4865313.

732 44. Poepsel S, Sprengel A, Saccà B, Kaschani F, Kaiser M, Gatsogiannis C, Raunser S, Clausen T, Ehrmann M.
733 Determinants of amyloid fibril degradation by the PDZ protease HTRA1. *Nature chemical biology*.
734 2015;11(11):862-9. Epub 2015/10/06. doi: 10.1038/nchembio.1931. PubMed PMID: 26436840.

735 45. Chen H, Ritz B. The Search for Environmental Causes of Parkinson's Disease: Moving Forward. *J*
736 *Parkinsons Dis*. 2018;8(s1):S9-S17. Epub 2018/12/26. doi: 10.3233/JPD-181493. PubMed PMID: 30584168; PMCID:
737 PMC6311360.

738 46. Reitz C, Mayeux R. Alzheimer disease: epidemiology, diagnostic criteria, risk factors and biomarkers.
739 Biochem Pharmacol. 2014;88(4):640-51. Epub 2014/01/09. doi: 10.1016/j.bcp.2013.12.024. PubMed PMID:
740 24398425; PMCID: PMC3992261.

741 47. Prusiner SB. Biology and genetics of prions causing neurodegeneration. Annual review of genetics.
742 2013;47:601-23. doi: 10.1146/annurev-genet-110711-155524. PubMed PMID: 24274755; PMCID: 4010318.

743 48. Novati A, Henrich T, Wassouf Z, Weber JJ, Yu-Taeger L, Deglon N, Nguyen HP, Schulze-Henrich JM.
744 Environment-dependent striatal gene expression in the BACHD rat model for Huntington disease. Scientific
745 reports. 2018;8(1):5803. Epub 2018/04/13. doi: 10.1038/s41598-018-24243-z. PubMed PMID: 29643462; PMCID:
746 PMC5895842.

747 49. Mo C, Hannan AJ, Renoir T. Environmental factors as modulators of neurodegeneration: insights from
748 gene-environment interactions in Huntington's disease. Neurosci Biobehav Rev. 2015;52:178-92. Epub
749 2015/03/15. doi: 10.1016/j.neubiorev.2015.03.003. PubMed PMID: 25770041.

750 50. Ascherio A, Chen H, Weisskopf MG, O'Reilly E, McCullough ML, Calle EE, Schwarzschild MA, Thun MJ.
751 Pesticide exposure and risk for Parkinson's disease. Annals of neurology. 2006;60(2):197-203. Epub 2006/06/28.
752 doi: 10.1002/ana.20904. PubMed PMID: 16802290.

753 51. Tanner CM, Kamel F, Ross GW, Hoppin JA, Goldman SM, Korell M, Marras C, Bhudhikanok GS, Kasten
754 M, Chade AR, Comyns K, Richards MB, Meng C, Priestley B, Fernandez HH, Cambi F, Umbach DM, Blair A,
755 Sandler DP, Langston JW. Rotenone, paraquat, and Parkinson's disease. Environ Health Perspect.
756 2011;119(6):866-72. Epub 2011/01/29. doi: 10.1289/ehp.1002839. PubMed PMID: 21269927; PMCID: PMC3114824.

757 52. Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG. Paraquat induces epigenetic changes by
758 promoting histone acetylation in cell culture models of dopaminergic degeneration. Neurotoxicology.
759 2011;32(5):586-95. doi: 10.1016/j.neuro.2011.05.018. PubMed PMID: 21777615; PMCID: 3407036.

760 53. Abbas MM, Xu Z, Tan LCS. Epidemiology of Parkinson's Disease-East Versus West. Mov Disord Clin
761 Pract. 2018;5(1):14-28. Epub 2018/10/27. doi: 10.1002/mdc3.12568. PubMed PMID: 30363342; PMCID:
762 PMC6174379.

763 54. Bihaqi SW. Early life exposure to lead (Pb) and changes in DNA methylation: relevance to Alzheimer's
764 disease. Rev Environ Health. 2019. Epub 2019/02/03. doi: 10.1515/reveh-2018-0076. PubMed PMID: 30710487.

765 55. Larsson SC, Orsini N. Coffee Consumption and Risk of Dementia and Alzheimer's Disease: A
766 Dose-Response Meta-Analysis of Prospective Studies. Nutrients. 2018;10(10). Epub 2018/10/17. doi:
767 10.3390/nu10101501. PubMed PMID: 30322179; PMCID: PMC6213481.

768 56. Ritz B, Lee PC, Lassen CF, Arah OA. Parkinson disease and smoking revisited: ease of quitting is an early
769 sign of the disease. Neurology. 2014;83(16):1396-402. Epub 2014/09/14. doi: 10.1212/WNL.0000000000000879.
770 PubMed PMID: 25217056; PMCID: PMC4206154.

771 57. Davanipour Z, Sobel E. Long-term exposure to magnetic fields and the risks of Alzheimer's disease and
772 breast cancer: Further biological research. Pathophysiology. 2009;16(2-3):149-56. Epub 2009/03/13. doi:
773 10.1016/j.pathophys.2009.01.005. PubMed PMID: 19278839.

774 58. Arendash GW, Mori T, Dorsey M, Gonzalez R, Tajiri N, Borlongan C. Electromagnetic treatment to old
775 Alzheimer's mice reverses beta-amyloid deposition, modifies cerebral blood flow, and provides selected
776 cognitive benefit. PloS one. 2012;7(4):e35751. Epub 2012/05/05. doi: 10.1371/journal.pone.0035751. PubMed
777 PMID: 22558216; PMCID: PMC3338462.

778 59. Banaceur S, Banasr S, Sakly M, Abdelmelek H. Whole body exposure to 2.4 GHz WIFI signals: effects on
779 cognitive impairment in adult triple transgenic mouse models of Alzheimer's disease (3xTg-AD). Behav Brain
780 Res. 2013;240:197-201. Epub 2012/12/01. doi: 10.1016/j.bbr.2012.11.021. PubMed PMID: 23195115.

781 60. Schuz J, Waldemar G, Olsen JH, Johansen C. Risks for central nervous system diseases among mobile
782 phone subscribers: a Danish retrospective cohort study. *PLoS one.* 2009;4(2):e4389. Epub 2009/02/06. doi:
783 10.1371/journal.pone.0004389. PubMed PMID: 19194493; PMCID: PMC2632742.

784 61. Grova N, Schroeder H, Olivier JL, Turner JD. Epigenetic and Neurological Impairments Associated with
785 Early Life Exposure to Persistent Organic Pollutants. *Int J Genomics.* 2019;2019:2085496. Epub 2019/02/09. doi:
786 10.1155/2019/2085496. PubMed PMID: 30733955; PMCID: PMC6348822.

787 62. Borenstein AR, Copenhaver CI, Mortimer JA. Early-life risk factors for Alzheimer disease. *Alzheimer Dis
788 Assoc Disord.* 2006;20(1):63-72. Epub 2006/02/24. doi: 10.1097/01.wad.0000201854.62116.d7. PubMed PMID:
789 16493239.

790 63. Miller DB, O'Callaghan JP. Do early-life insults contribute to the late-life development of Parkinson and
791 Alzheimer diseases? *Metabolism.* 2008;57 Suppl 2:S44-9. Epub 2008/09/23. doi: 10.1016/j.metabol.2008.07.011.
792 PubMed PMID: 18803966.

793 64. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto
794 RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F. Geroscience: linking aging to
795 chronic disease. *Cell.* 2014;159(4):709-13. Epub 2014/11/25. doi: 10.1016/j.cell.2014.10.039. PubMed PMID:
796 25417146; PMCID: PMC4852871.

797 65. Zhang X, Fu Z, Meng L, He M, Zhang Z. The Early Events That Initiate beta-Amyloid Aggregation in
798 Alzheimer's Disease. *Front Aging Neurosci.* 2018;10:359. Epub 2018/12/14. doi: 10.3389/fnagi.2018.00359.
799 PubMed PMID: 30542277; PMCID: PMC6277872.

800 66. Prasad KN, Bondy SC. Oxidative and Inflammatory Events in Prion Diseases: Can They Be Therapeutic
801 Targets? *Curr Aging Sci.* 2019. Epub 2019/01/15. doi: 10.2174/1874609812666190111100205. PubMed PMID:
802 30636622.

803 67. Walker LC, Lynn DG, Chernoff YO. A standard model of Alzheimer's disease? *Prion.* 2018;12(5-6):261-5.
804 Epub 2018/09/18. doi: 10.1080/19336896.2018.1525256. PubMed PMID: 30220236; PMCID: PMC6277193.

805 68. Chernoff YO, Derkatch IL, Inge-Vechtomov SG. Multicopy SUP35 gene induces de-novo appearance of
806 psi-like factors in the yeast *Saccharomyces cerevisiae*. *Current genetics.* 1993;24(3):268-70. Epub 1993/09/01.
807 PubMed PMID: 8221937.

808 69. Masison DC, Wickner RB. Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in
809 prion-containing cells. *Science.* 1995;270(5233):93-5. Epub 1995/10/06. PubMed PMID: 7569955.

810 70. Derkatch IL, Chernoff YO, Kushnirov VV, Inge-Vechtomov SG, Liebman SW. Genesis and variability of
811 [PSI] prion factors in *Saccharomyces cerevisiae*. *Genetics.* 1996;144(4):1375-86. Epub 1996/12/01. PubMed PMID:
812 8978027; PMCID: 1207691.

813 71. Derkatch IL, Bradley ME, Hong JY, Liebman SW. Prions affect the appearance of other prions: the story of
814 [PIN(+)]. *Cell.* 2001;106(2):171-82. Epub 2001/08/21. doi: S0092-8674(01)00427-5 [pii]. PubMed PMID: 11511345.

815 72. Osherovich LZ, Weissman JS. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of
816 the yeast [PSI(+)] prion. *Cell.* 2001;106(2):183-94. Epub 2001/08/21. doi: S0092-8674(01)00440-8 [pii]. PubMed
817 PMID: 11511346.

818 73. Tyedmers J, Madariaga ML, Lindquist S. Prion switching in response to environmental stress. *PLoS
819 biology.* 2008;6(11):e294. Epub 2008/12/11. doi: 08-PLBI-RA-2987 [pii]
820 10.1371/journal.pbio.0060294. PubMed PMID: 19067491; PMCID: 2586387.

821 74. Morano KA, Grant CM, Moye-Rowley WS. The response to heat shock and oxidative stress in
822 *Saccharomyces cerevisiae*. *Genetics.* 2012;190(4):1157-95. Epub 2012/01/03. doi: 10.1534/genetics.111.128033.
823 PubMed PMID: 22209905; PMCID: PMC3316637.

824 75. Grant CM. Sup35 methionine oxidation is a trigger for de novo [PSI+] prion formation. *Prion*.
825 2015;9(4):257-65. doi: 10.1080/19336896.2015.1065372. PubMed PMID: WOS:000359713000003.

826 76. Doronina VA, Staniforth GL, Speldewinde SH, Tuite MF, Grant CM. Oxidative stress conditions increase
827 the frequency of de novo formation of the yeast [PSI+] prion. *Molecular microbiology*. 2015;96(1):163-74. Epub
828 2015/01/21. doi: 10.1111/mmi.12930. PubMed PMID: 25601439; PMCID: PMC4407919.

829 77. Hamdan N, Kritsiligkou P, Grant CM. ER stress causes widespread protein aggregation and prion
830 formation. *The Journal of cell biology*. 2017;216(8):2295-304. Epub 2017/06/21. doi: 10.1083/jcb.201612165.
831 PubMed PMID: 28630146; PMCID: PMC5551711.

832 78. Derkatch IL, Bradley ME, Zhou P, Chernoff YO, Liebman SW. Genetic and environmental factors affecting
833 the de novo appearance of the [PSI+] prion in *Saccharomyces cerevisiae*. *Genetics*. 1997;147(2):507-19. Epub
834 1997/10/23. PubMed PMID: 9335589; PMCID: 1208174.

835 79. Lian HY, Lin KW, Yang C, Cai P. Generation and propagation of yeast prion [URE3] are elevated under
836 electromagnetic field. *Cell stress & chaperones*. 2018;23(4):581-94. Epub 2017/12/08. doi:
837 10.1007/s12192-017-0867-9. PubMed PMID: 29214607; PMCID: PMC6045541.

838 80. Chernova TA, Kiktev DA, Romanyuk AV, Shanks JR, Laur O, Ali M, Ghosh A, Kim D, Yang Z, Mang M,
839 Chernoff YO, Wilkinson KD. Yeast Short-Lived Actin-Associated Protein Forms a Metastable Prion in Response
840 to Thermal Stress. *Cell reports*. 2017;18(3):751-61. doi: 10.1016/j.celrep.2016.12.082. PubMed PMID: 28099852;
841 PMCID: 5267347.

842 81. Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Moffatt N, Howie RL, O'Dell A, McNally JG,
843 Liebman SW, Chernoff YO, Wilkinson KD. Prion induction by the short-lived, stress-induced protein Lsb2 is
844 regulated by ubiquitination and association with the actin cytoskeleton. *Molecular cell*. 2011;43(2):242-52. doi:
845 10.1016/j.molcel.2011.07.001. PubMed PMID: 21777813; PMCID: 3151368.

846 82. Chernova TA, Chernoff YO, Wilkinson KD. Prion-based memory of heat stress in yeast. *Prion*.
847 2017;11(3):151-61. Epub 2017/05/20. doi: 10.1080/19336896.2017.1328342. PubMed PMID: 28521568; PMCID:
848 PMC5480388.

849 83. Holmes DL, Lancaster AK, Lindquist S, Halfmann R. Heritable remodeling of yeast multicellularity by an
850 environmentally responsive prion. *Cell*. 2013;153(1):153-65. doi: 10.1016/j.cell.2013.02.026. PubMed PMID:
851 23540696; PMCID: 23540696.

852 84. Suzuki G, Shimazu N, Tanaka M. A yeast prion, Mod5, promotes acquired drug resistance and cell
853 survival under environmental stress. *Science*. 2012;336(6079):355-9. doi: 10.1126/science.1219491. PubMed
854 PMID: 22517861.

855 85. Du Z, Park KW, Yu H, Fan Q, Li L. Newly identified prion linked to the chromatin-remodeling factor Swi1
856 in *Saccharomyces cerevisiae*. *Nature genetics*. 2008;40(4):460-5. Epub 2008/03/26. doi: ng.112 [pii]
857 10.1038/ng.112. PubMed PMID: 18362884; PMCID: 2633598.

858 86. Alberti S, Halfmann R, King O, Kapila A, Lindquist S. A systematic survey identifies prions and
859 illuminates sequence features of prionogenic proteins. *Cell*. 2009;137(1):146-58. Epub 2009/04/07. doi:
860 S0092-8674(09)00266-9 [pii]
861 10.1016/j.cell.2009.02.044. PubMed PMID: 19345193; PMCID: 2683788.

862 87. Hatin I, Bidou L, Cullin C, Rousset JP. Translational errors as an early event in prion conversion. *Cell Mol
863 Biol* (Noisy-le-grand). 2001;47 Online Pub:OL23-8. Epub 2002/04/09. PubMed PMID: 11936870.

864 88. Brown JC, Lindquist S. A heritable switch in carbon source utilization driven by an unusual yeast prion.
865 *Genes & development*. 2009;23(19):2320-32. Epub 2009/10/03. doi: 23/19/2320 [pii]
866 10.1101/gad.1839109. PubMed PMID: 19797769; PMCID: 2758746.

867 89. Jarosz DF, Lancaster AK, Brown JC, Lindquist S. An evolutionarily conserved prion-like element converts
868 wild fungi from metabolic specialists to generalists. *Cell.* 2014;158(5):1072-82. doi: 10.1016/j.cell.2014.07.024.
869 PubMed PMID: 25171408; PMCID: 25171408.

870 90. Jarosz DF, Brown JCS, Walker GA, Datta MS, Ung WL, Lancaster AK, Rotem A, Chang A, Newby GA,
871 Weitz DA, Bisson LF, Lindquist S. Cross-kingdom chemical communication drives a heritable, mutually
872 beneficial prion-based transformation of metabolism. *Cell.* 2014;158(5):1083-93. Epub 2014/08/30. doi:
873 10.1016/j.cell.2014.07.025. PubMed PMID: 25171409; PMCID: PMC4424051.

874 91. Garcia DM, Dietrich D, Clardy J, Jarosz DF. A common bacterial metabolite elicits prion-based bypass of
875 glucose repression. *eLife.* 2016;5. Epub 2016/12/03. doi: 10.7554/eLife.17978. PubMed PMID: 27906649; PMCID:
876 PMC5132342.

877 92. Tapia H, Koshland DE. Trehalose is a versatile and long-lived chaperone for desiccation tolerance. *Current
878 biology : CB.* 2014;24(23):2758-66. Epub 2014/12/03. doi: 10.1016/j.cub.2014.10.005. PubMed PMID: 25456447.

879 93. Ciechanover A, Brundin P. The ubiquitin proteasome system in neurodegenerative diseases: sometimes
880 the chicken, sometimes the egg. *Neuron.* 2003;40(2):427-46. Epub 2003/10/15. doi: S0896627303006068 [pii].
881 PubMed PMID: 14556719.

882 94. Ohsumi Y. Historical landmarks of autophagy research. *Cell Res.* 2014;24(1):9-23. Epub 2013/12/25. doi:
883 10.1038/cr.2013.169. PubMed PMID: 24366340; PMCID: PMC3879711.

884 95. Nystrom T, Liu B. The mystery of aging and rejuvenation-a budding topic. *Current opinion in
885 microbiology.* 2014;18C:61-7. doi: 10.1016/j.mib.2014.02.003. PubMed PMID: 24631930.

886 96. Tuite MF, Mundy CR, Cox BS. Agents that cause a high frequency of genetic change from [psi+] to [psi-] in
887 *Saccharomyces cerevisiae*. *Genetics.* 1981;98(4):691-711. PubMed PMID: 7037537; PMCID: 1214469.

888 97. Ferreira PC, Ness F, Edwards SR, Cox BS, Tuite MF. The elimination of the yeast [PSI+] prion by guanidine
889 hydrochloride is the result of Hsp104 inactivation. *Molecular microbiology.* 2001;40(6):1357-69. PubMed PMID:
890 11442834.

891 98. Ness F, Ferreira P, Cox BS, Tuite MF. Guanidine hydrochloride inhibits the generation of prion "seeds" but
892 not prion protein aggregation in yeast. *Molecular and cellular biology.* 2002;22(15):5593-605. PubMed PMID:
893 12101251; PMCID: 133959.

894 99. Jung G, Jones G, Masison DC. Amino acid residue 184 of yeast Hsp104 chaperone is critical for
895 prion-curing by guanidine, prion propagation, and thermotolerance. *Proceedings of the National Academy of
896 Sciences of the United States of America.* 2002;99(15):9936-41. doi: 10.1073/pnas.152333299. PubMed PMID:
897 12105276; PMCID: 126603.

898 100. Grimminger V, Richter K, Imhof A, Buchner J, Walter S. The prion curing agent guanidinium chloride
899 specifically inhibits ATP hydrolysis by Hsp104. *The Journal of biological chemistry.* 2004;279(9):7378-83. Epub
900 2003/12/12. doi: 10.1074/jbc.M312403200. PubMed PMID: 14668331.

901 101. Toyama BH, Kelly MJ, Gross JD, Weissman JS. The structural basis of yeast prion strain variants. *Nature.*
902 2007;449(7159):233-7. Epub 2007/09/04. doi: 10.1038/nature06108. PubMed PMID: 17767153.

903 102. Ali M, Chernova TA, Newnam GP, Yin L, Shanks J, Karpova TS, Lee A, Laur O, Subramanian S, Kim D,
904 McNally JG, Seyfried NT, Chernoff YO, Wilkinson KD. Stress-dependent proteolytic processing of the actin
905 assembly protein Lsb1 modulates a yeast prion. *The Journal of biological chemistry.* 2014;289(40):27625-39. doi:
906 10.1074/jbc.M114.582429. PubMed PMID: 25143386; PMCID: 4183801.

907 103. Klaips CL, Hochstrasser ML, Langlois CR, Serio TR. Spatial quality control bypasses cell-based limitations
908 on proteostasis to promote prion curing. *eLife.* 2014;3. doi: 10.7554/eLife.04288. PubMed PMID: 25490068;
909 PMCID: 4270096.

910 104. Howie RL, Jay-Garcia LM, Kiktev DA, Faber QL, Murphy M, Rees KA, Sachwani N, Chernoff YO. Role of
911 the Cell Asymmetry Apparatus and Ribosome-Associated Chaperones in the Destabilization of a
912 Saccharomyces cerevisiae Prion by Heat Shock. *Genetics*. 2019;212(3):757-71. Epub 2019/05/31. doi:
913 10.1534/genetics.119.302237. PubMed PMID: 31142614.

914 105. Liu B, Larsson L, Caballero A, Hao X, Oling D, Grantham J, Nystrom T. The polarisome is required for
915 segregation and retrograde transport of protein aggregates. *Cell*. 2010;140(2):257-67. doi:
916 10.1016/j.cell.2009.12.031. PubMed PMID: 20141839.

917 106. Kiktev DA, Melomed MM, Lu CD, Newnam GP, Chernoff YO. Feedback control of prion formation and
918 propagation by the ribosome-associated chaperone complex. *Molecular microbiology*. 2015;96(3):621-32. Epub
919 2015/02/05. doi: 10.1111/mmi.12960. PubMed PMID: 25649498; PMCID: PMC4452204.

920 107. Chernoff YO, Kiktev DA. Dual role of ribosome-associated chaperones in prion formation and
921 propagation. *Current genetics*. 2016;62(4):677-85. Epub 2016/03/13. doi: 10.1007/s00294-016-0586-2. PubMed
922 PMID: 26968706.

923 108. Jaiswal H, Conz C, Otto H, Wolfe T, Fitzke E, Mayer MP, Rospert S. The chaperone network connected to
924 human ribosome-associated complex. *Molecular and cellular biology*. 2011;31(6):1160-73. doi:
925 10.1128/MCB.00986-10. PubMed PMID: 21245388; PMCID: 3067906.

926 109. Ciechanover A. Intracellular protein degradation: From a vague idea thru the lysosome and the
927 ubiquitin-proteasome system and onto human diseases and drug targeting. *Best Pract Res Clin Haematol*.
928 2017;30(4):341-55. Epub 2017/11/21. doi: 10.1016/j.beha.2017.09.001. PubMed PMID: 29156207.

929 110. Hershko A, Ciechanover A. The ubiquitin system. *Annual review of biochemistry*. 1998;67:425-79. Epub
930 1998/10/06. doi: 10.1146/annurev.biochem.67.1.425. PubMed PMID: 9759494.

931 111. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. *Nature*.
932 2003;426(6968):895-9. Epub 2003/12/20. doi: 10.1038/nature02263
933 nature02263 [pii]. PubMed PMID: 14685250.

934 112. Dennissen FJ, Kholod N, van Leeuwen FW. The ubiquitin proteasome system in neurodegenerative
935 diseases: culprit, accomplice or victim? *Progress in neurobiology*. 2012;96(2):190-207. doi:
936 10.1016/j.pneurobio.2012.01.003. PubMed PMID: 22270043.

937 113. Peng J, Schwartz D, Elias JE, Thoreen CC, Cheng D, Marsischky G, Roelofs J, Finley D, Gygi SP. A
938 proteomics approach to understanding protein ubiquitination. *Nat Biotechnol*. 2003;21(8):921-6. Epub
939 2003/07/23. doi: 10.1038/nbt849
940 nbt849 [pii]. PubMed PMID: 12872131.

941 114. Thellung S, Corsaro A, Nizzari M, Barbieri F, Florio T. Autophagy Activator Drugs: A New Opportunity
942 in Neuroprotection from Misfolded Protein Toxicity. *International journal of molecular sciences*. 2019;20(4).
943 Epub 2019/02/23. doi: 10.3390/ijms20040901. PubMed PMID: 30791416.

944 115. Speldewinde SH, Grant CM. Spermidine cures yeast of prions. *Microb Cell*. 2015;3(1):46-8. Epub
945 2015/12/25. doi: 10.15698/mic2016.01.474. PubMed PMID: 28357314; PMCID: PMC5354589.

946 116. Kachroo AH, Laurent JM, Yellman CM, Meyer AG, Wilke CO, Marcotte EM. Evolution. Systematic
947 humanization of yeast genes reveals conserved functions and genetic modularity. *Science*. 2015;348(6237):921-5.
948 Epub 2015/05/23. doi: 10.1126/science.aaa0769. PubMed PMID: 25999509; PMCID: PMC4718922.

949 117. Truong DM, Boeke JD. Resetting the Yeast Epigenome with Human Nucleosomes. *Cell*.
950 2017;171(7):1508-19 e13. Epub 2017/12/05. doi: 10.1016/j.cell.2017.10.043. PubMed PMID: 29198523; PMCID:
951 PMC5732057.

952 118. Bach S, Talarek N, Andrieu T, Vierfond JM, Mettey Y, Galons H, Dormont D, Meijer L, Cullin C, Blondel
953 M. Isolation of drugs active against mammalian prions using a yeast-based screening assay. *Nat Biotechnol.*
954 2003;21(9):1075-81. Epub 2003/08/12. doi: 10.1038/nbt855. PubMed PMID: 12910243.

955 119. Bach S, Tribouillard D, Talarek N, Desban N, Gug F, Galons H, Blondel M. A yeast-based assay to isolate
956 drugs active against mammalian prions. *Methods.* 2006;39(1):72-7. Epub 2006/06/06. doi:
957 10.1016/j.ymeth.2006.04.005. PubMed PMID: 16750390.

958 120. Voisset C, Saupe SJ, Galons H, Blondel M. Procedure for identification and characterization of drugs
959 efficient against mammalian prion: from a yeast-based antiprion drug screening assay to in vivo mouse models.
960 *Infect Disord Drug Targets.* 2009;9(1):31-9. Epub 2009/02/10. PubMed PMID: 19200013.

961 121. Oumata N, Nguyen PH, Beringue V, Soubigou F, Pang Y, Desban N, Massacrier C, Morel Y, Paturel C,
962 Contesse MA, Bouaziz S, Sanyal S, Galons H, Blondel M, Voisset C. The toll-like receptor agonist imiquimod is
963 active against prions. *PLoS one.* 2013;8(8):e72112. Epub 2013/08/27. doi: 10.1371/journal.pone.0072112. PubMed
964 PMID: 23977222; PMCID: PMC3745460.

965 122. Banerjee D, Sanyal S. Protein folding activity of the ribosome (PFAR) -- a target for antiprion compounds.
966 *Viruses.* 2014;6(10):3907-24. Epub 2014/10/25. doi: 10.3390/v6103907. PubMed PMID: 25341659; PMCID:
967 PMC4213570.

968 123. Blondel M, Soubigou F, Evrard J, Nguyen PH, Hasin N, Chedin S, Gillet R, Contesse MA, Friocourt G,
969 Stahl G, Jones GW, Voisset C. Protein Folding Activity of the Ribosome is involved in Yeast Prion Propagation.
970 *Scientific reports.* 2016;6:32117. Epub 2016/09/17. doi: 10.1038/srep32117. PubMed PMID: 27633137; PMCID:
971 PMC5025663.

972 124. Jennings LK, Ahmed I, Munn AL, Carroll AR. Yeast-based screening of natural product extracts results in
973 the identification of prion inhibitors from a marine sponge. *Prion.* 2018;12(3-4):234-44. Epub 2018/09/01. doi:
974 10.1080/19336896.2018.1513315. PubMed PMID: 30165789; PMCID: PMC6277187.

975 125. Seynnaeve D, Vecchio MD, Fruhmann G, Verelst J, Cools M, Beckers J, Mulvihill DP, Winderickx J,
976 Franssens V. Recent Insights on Alzheimer's Disease Originating from Yeast Models. *International journal of
977 molecular sciences.* 2018;19(7). Epub 2018/07/05. doi: 10.3390/ijms19071947. PubMed PMID: 29970827; PMCID:
978 PMC6073265.

979 126. Klein WL, Stine WB, Jr., Teplow DB. Small assemblies of unmodified amyloid beta-protein are the
980 proximate neurotoxin in Alzheimer's disease. *Neurobiol Aging.* 2004;25(5):569-80. Epub 2004/06/03. doi:
981 10.1016/j.neurobiolaging.2004.02.010. PubMed PMID: 15172732.

982 127. Bagriantsev S, Liebman S. Modulation of Abeta42 low-n oligomerization using a novel yeast reporter
983 system. *BMC biology.* 2006;4:32. Epub 2006/09/28. doi: 10.1186/1741-7007-4-32. PubMed PMID: 17002801;
984 PMCID: PMC1594584.

985 128. Macreadie I, Lotfi-Miri M, Mohotti S, Shapira D, Bennett L, Varghese J. Validation of folate in a convenient
986 yeast assay suited for identification of inhibitors of Alzheimer's amyloid-beta aggregation. *J Alzheimers Dis.*
987 2008;15(3):391-6. Epub 2008/11/11. PubMed PMID: 18997292.

988 129. Park SK, Ratia K, Ba M, Valencik M, Liebman SW. Inhibition of Abeta42 oligomerization in yeast by a
989 PICALM ortholog and certain FDA approved drugs. *Microb Cell.* 2016;3(2):53-64. Epub 2016/01/20. doi:
990 10.15698/mic2016.02.476. PubMed PMID: 28357335; PMCID: PMC5349104.

991 130. von der Haar T, Josse L, Wright P, Zentron J, Tuite MF. Development of a novel yeast cell-based system
992 for studying the aggregation of Alzheimer's disease-associated Abeta peptides in vivo. *Neurodegener Dis.*
993 2007;4(2-3):136-47. Epub 2007/06/29. doi: 10.1159/000101838. PubMed PMID: 17596708.

994 131. Park SK, Pegan SD, Mesecar AD, Jungbauer LM, LaDu MJ, Liebman SW. Development and validation of a
995 yeast high-throughput screen for inhibitors of Abeta(4)(2) oligomerization. *Dis Model Mech.* 2011;4(6):822-31.
996 Epub 2011/08/04. doi: 10.1242/dmm.007963. PubMed PMID: 21810907; PMCID: PMC3209651.

997 132. Rubel AA, Ryzhova TA, Antonets KS, Chernoff YO, Galkin A. Identification of PrP sequences essential for
998 the interaction between the PrP polymers and Abeta peptide in a yeast-based assay. *Prion.* 2013;7(6):469-76.
999 PubMed PMID: 24152606; PMCID: 24152606.

1000 133. Caine J, Sankovich S, Antony H, Waddington L, Macreadie P, Varghese J, Macreadie I. Alzheimer's Abeta
1001 fused to green fluorescent protein induces growth stress and a heat shock response. *FEMS yeast research.*
1002 2007;7(8):1230-6. Epub 2007/07/31. doi: 10.1111/j.1567-1364.2007.00285.x. PubMed PMID: 17662055.

1003 134. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM. Cellular prion protein mediates
1004 impairment of synaptic plasticity by amyloid-beta oligomers. *Nature.* 2009;457(7233):1128-32. Epub 2009/02/27.
1005 doi: 10.1038/nature07761. PubMed PMID: 19242475; PMCID: PMC2748841.

1006 135. Salazar SV, Gallardo C, Kaufman AC, Herber CS, Haas LT, Robinson S, Manson JC, Lee MK, Strittmatter
1007 SM. Conditional Deletion of Prnp Rescues Behavioral and Synaptic Deficits after Disease Onset in Transgenic
1008 Alzheimer's Disease. *J Neurosci.* 2017;37(38):9207-21. Epub 2017/08/27. doi: 10.1523/JNEUROSCI.0722-17.2017.
1009 PubMed PMID: 28842420; PMCID: PMC5607466.

1010 136. Rajasekhar K, Suresh SN, Manjithaya R, Govindaraju T. Rationally designed peptidomimetic modulators
1011 of abeta toxicity in Alzheimer's disease. *Scientific reports.* 2015;5:8139. Epub 2015/01/31. doi: 10.1038/srep08139.
1012 PubMed PMID: 25633824; PMCID: PMC4311240.

1013 137. Doody RS, Gavrilova SI, Sano M, Thomas RG, Aisen PS, Bachurin SO, Seely L, Hung D, dimebon i. Effect
1014 of dimebon on cognition, activities of daily living, behaviour, and global function in patients with
1015 mild-to-moderate Alzheimer's disease: a randomised, double-blind, placebo-controlled study. *Lancet.*
1016 2008;372(9634):207-15. Epub 2008/07/22. doi: 10.1016/S0140-6736(08)61074-0. PubMed PMID: 18640457.

1017 138. Bharadwaj PR, Verdile G, Barr RK, Gupta V, Steele JW, Lachenmayer ML, Yue Z, Ehrlich ME, Petsko G, Ju
1018 S, Ringe D, Sankovich SE, Caine JM, Macreadie IG, Gandy S, Martins RN. Latrepirdine (dimebon) enhances
1019 autophagy and reduces intracellular GFP-Abeta42 levels in yeast. *J Alzheimers Dis.* 2012;32(4):949-67. Epub
1020 2012/08/21. doi: 10.3233/JAD-2012-120178. PubMed PMID: 22903131; PMCID: PMC3529125.

1021 139. Steele JW, Lachenmayer ML, Ju S, Stock A, Liken J, Kim SH, Delgado LM, Alfaro IE, Bernales S, Verdile G,
1022 Bharadwaj P, Gupta V, Barr R, Friss A, Dolios G, Wang R, Ringe D, Fraser P, Westaway D, St George-Hyslop
1023 PH, Szabo P, Relkin NR, Buxbaum JD, Glabe CG, Protter AA, Martins RN, Ehrlich ME, Petsko GA, Yue Z,
1024 Gandy S. Latrepirdine improves cognition and arrests progression of neuropathology in an Alzheimer's mouse
1025 model. *Mol Psychiatry.* 2013;18(8):889-97. Epub 2012/08/02. doi: 10.1038/mp.2012.106. PubMed PMID: 22850627;
1026 PMCID: PMC3625697.

1027 140. Matlack KE, Tardiff DF, Narayan P, Hamamichi S, Caldwell KA, Caldwell GA, Lindquist S. Clioquinol
1028 promotes the degradation of metal-dependent amyloid-beta (Abeta) oligomers to restore endocytosis and
1029 ameliorate Abeta toxicity. *Proceedings of the National Academy of Sciences of the United States of America.*
1030 2014;111(11):4013-8. Epub 2014/03/05. doi: 10.1073/pnas.1402228111. PubMed PMID: 24591589; PMCID:
1031 PMC3964050.

1032 141. D'Angelo F, Vignaud H, Di Martino J, Salin B, Devin A, Cullin C, Marchal C. A yeast model for
1033 amyloid-beta aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity. *Dis Model
1034 Mech.* 2013;6(1):206-16. Epub 2012/08/14. doi: 10.1242/dmm.010108. PubMed PMID: 22888099; PMCID:
1035 PMC3529352.

1036 142. Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser
1037 FW, Kim Y, Huang X, Goldstein LE, Moir RD, Lim JT, Beyreuther K, Zheng H, Tanzi RE, Masters CL, Bush AI.
1038 Treatment with a copper-zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in
1039 Alzheimer's disease transgenic mice. *Neuron*. 2001;30(3):665-76. Epub 2001/06/30. PubMed PMID: 11430801.

1040 143. Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI,
1041 Murdoch R, Wilson J, Ritchie CW, group PEs. Safety, efficacy, and biomarker findings of PBT2 in targeting
1042 Abeta as a modifying therapy for Alzheimer's disease: a phase IIa, double-blind, randomised,
1043 placebo-controlled trial. *Lancet Neurol*. 2008;7(9):779-86. Epub 2008/08/02. doi: 10.1016/S1474-4422(08)70167-4.
1044 PubMed PMID: 18672400.

1045 144. Treusch S, Hamamichi S, Goodman JL, Matlack KE, Chung CY, Baru V, Shulman JM, Parrado A, Bevis BJ,
1046 Valastyan JS, Han H, Lindhagen-Persson M, Reiman EM, Evans DA, Bennett DA, Olofsson A, DeJager PL,
1047 Tanzi RE, Caldwell KA, Caldwell GA, Lindquist S. Functional links between Abeta toxicity, endocytic
1048 trafficking, and Alzheimer's disease risk factors in yeast. *Science*. 2011;334(6060):1241-5. Epub 2011/10/29. doi:
1049 10.1126/science.1213210. PubMed PMID: 22033521; PMCID: PMC3281757.

1050 145. Hofer S, Kainz K, Zimmermann A, Bauer MA, Pendl T, Poglitsch M, Madeo F, Carmona-Gutierrez D.
1051 Studying Huntington's Disease in Yeast: From Mechanisms to Pharmacological Approaches. *Front Mol
1052 Neurosci*. 2018;11:318. Epub 2018/09/21. doi: 10.3389/fnmol.2018.00318. PubMed PMID: 30233317; PMCID:
1053 PMC6131589.

1054 146. Ross CA, Aylward EH, Wild EJ, Langbehn DR, Long JD, Warner JH, Scahill RI, Leavitt BR, Stout JC,
1055 Paulsen JS, Reilmann R, Unschuld PG, Wexler A, Margolis RL, Tabrizi SJ. Huntington disease: natural history,
1056 biomarkers and prospects for therapeutics. *Nat Rev Neurol*. 2014;10(4):204-16. Epub 2014/03/13. doi:
1057 10.1038/nrneurol.2014.24. PubMed PMID: 24614516.

1058 147. Krobitsch S, Lindquist S. Aggregation of huntingtin in yeast varies with the length of the polyglutamine
1059 expansion and the expression of chaperone proteins. *Proceedings of the National Academy of Sciences of the
1060 United States of America*. 2000;97(4):1589-94. Epub 2000/03/04. PubMed PMID: 10677504; PMCID: PMC26479.

1061 148. Meriin AB, Zhang X, He X, Newnam GP, Chernoff YO, Sherman MY. Huntington toxicity in yeast model
1062 depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. *The Journal of cell biology*.
1063 2002;157(6):997-1004. doi: 10.1083/jcb.200112104. PubMed PMID: 12058016; PMCID: 2174031.

1064 149. Gokhale KC, Newnam GP, Sherman MY, Chernoff YO. Modulation of prion-dependent polyglutamine
1065 aggregation and toxicity by chaperone proteins in the yeast model. *The Journal of biological chemistry*.
1066 2005;280(24):22809-18. doi: 10.1074/jbc.M500390200. PubMed PMID: 15824100.

1067 150. Hageman J, Rujano MA, van Waarde MA, Kakkar V, Dirks RP, Govorukhina N, Oosterveld-Hut HM,
1068 Lubsen NH, Kampinga HH. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic
1069 protein aggregation. *Molecular cell*. 2010;37(3):355-69. Epub 2010/02/18. doi: 10.1016/j.molcel.2010.01.001.
1070 PubMed PMID: 20159555.

1071 151. Kakkar V, Mansson C, de Mattos EP, Bergink S, van der Zwaag M, van Waarde M, Kloosterhuis NJ, Melki
1072 R, van Cruchten RTP, Al-Karadaghi S, Arosio P, Dobson CM, Knowles TPJ, Bates GP, van Deursen JM, Linse S,
1073 van de Sluis B, Emanuelsson C, Kampinga HH. The S/T-Rich Motif in the DNAJB6 Chaperone Delays
1074 Polyglutamine Aggregation and the Onset of Disease in a Mouse Model. *Molecular cell*. 2016;62(2):272-83. Epub
1075 2016/05/07. doi: 10.1016/j.molcel.2016.03.017. PubMed PMID: 27151442.

1076 152. Gong H, Romanova NV, Allen KD, Chandramowlishwaran P, Gokhale K, Newnam GP, Mieczkowski P,
1077 Sherman MY, Chernoff YO. Polyglutamine toxicity is controlled by prion composition and gene dosage in

1078 yeast. *PLoS genetics*. 2012;8(4):e1002634. doi: 10.1371/journal.pgen.1002634. PubMed PMID: 22536159; PMCID: 3334884.

1079

1080 153. Vis JC, Schipper E, de Boer-van Huizen RT, Verbeek MM, de Waal RM, Wesseling P, ten Donkelaar HJ, Kremer B. Expression pattern of apoptosis-related markers in Huntington's disease. *Acta Neuropathol*. 2005;109(3):321-8. Epub 2005/01/26. doi: 10.1007/s00401-004-0957-5. PubMed PMID: 15668790.

1081

1082 154. Meriin AB, Zhang X, Miliaras NB, Kazantsev A, Chernoff YO, McCaffery JM, Wendland B, Sherman MY. Aggregation of expanded polyglutamine domain in yeast leads to defects in endocytosis. *Molecular and cellular biology*. 2003;23(21):7554-65. PubMed PMID: 14560003; PMCID: 207640.

1083

1084 155. Meriin AB, Zhang X, Alexandrov IM, Salnikova AB, Ter-Avanesian MD, Chernoff YO, Sherman MY. Endocytosis machinery is involved in aggregation of proteins with expanded polyglutamine domains. *FASEB journal* : official publication of the Federation of American Societies for Experimental Biology. 2007;21(8):1915-25. doi: 10.1096/fj.06-6878com. PubMed PMID: 17341688.

1085

1086 156. Solans A, Zambrano A, Rodriguez M, Barrientos A. Cytotoxicity of a mutant huntingtin fragment in yeast involves early alterations in mitochondrial OXPHOS complexes II and III. *Human molecular genetics*. 2006;15(20):3063-81. Epub 2006/09/14. doi: 10.1093/hmg/ddl248. PubMed PMID: 16968735.

1087

1088 157. Giorgini F, Guidetti P, Nguyen Q, Bennett SC, Muchowski PJ. A genomic screen in yeast implicates kynurenine 3-monooxygenase as a therapeutic target for Huntington disease. *Nature genetics*. 2005;37(5):526-31. Epub 2005/04/05. doi: 10.1038/ng1542. PubMed PMID: 15806102; PMCID: PMC1449881.

1089

1090 158. Hughes RE, Lo RS, Davis C, Strand AD, Neal CL, Olson JM, Fields S. Altered transcription in yeast expressing expanded polyglutamine. *Proceedings of the National Academy of Sciences of the United States of America*. 2001;98(23):13201-6. Epub 2001/11/01. doi: 10.1073/pnas.191498198. PubMed PMID: 11687606; PMCID: PMC60848.

1091

1092 159. Zhang X, Smith DL, Meriin AB, Engemann S, Russel DE, Roark M, Washington SL, Maxwell MM, Marsh JL, Thompson LM, Wanker EE, Young AB, Housman DE, Bates GP, Sherman MY, Kazantsev AG. A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo. *Proceedings of the National Academy of Sciences of the United States of America*. 2005;102(3):892-7. Epub 2005/01/12. doi: 10.1073/pnas.0408936102. PubMed PMID: 15642944; PMCID: PMC545525.

1093

1094 160. Chopra V, Fox JH, Lieberman G, Dorsey K, Matson W, Waldmeier P, Housman DE, Kazantsev A, Young AB, Hersch S. A small-molecule therapeutic lead for Huntington's disease: preclinical pharmacology and efficacy of C2-8 in the R6/2 transgenic mouse. *Proceedings of the National Academy of Sciences of the United States of America*. 2007;104(42):16685-9. Epub 2007/10/11. doi: 10.1073/pnas.0707842104. PubMed PMID: 17925440; PMCID: PMC2034257.

1095

1096 161. Wang N, Lu XH, Sandoval SV, Yang XW. An independent study of the preclinical efficacy of C2-8 in the R6/2 transgenic mouse model of Huntington's disease. *J Huntingtons Dis*. 2013;2(4):443-51. Epub 2013/01/01. doi: 10.3233/JHD-130074. PubMed PMID: 25062731; PMCID: PMC4124458.

1097

1098 162. Colby DW, Chu Y, Cassady JP, Duennwald M, Zazulak H, Webster JM, Messer A, Lindquist S, Ingram VM, Wittrup KD. Potent inhibition of huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. *Proceedings of the National Academy of Sciences of the United States of America*. 2004;101(51):17616-21. Epub 2004/12/16. doi: 10.1073/pnas.0408134101. PubMed PMID: 15598740; PMCID: PMC539732.

1099

1100 163. Southwell AL, Ko J, Patterson PH. Intrabody gene therapy ameliorates motor, cognitive, and neuropathological symptoms in multiple mouse models of Huntington's disease. *J Neurosci*.

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121 2009;29(43):13589-602. Epub 2009/10/30. doi: 10.1523/JNEUROSCI.4286-09.2009. PubMed PMID: 19864571;
1122 PMCID: PMC2822643.

1123 164. Southwell AL, Khoshnani A, Dunn DE, Bugg CW, Lo DC, Patterson PH. Intrabodies binding the
1124 proline-rich domains of mutant huntingtin increase its turnover and reduce neurotoxicity. *J Neurosci.*
1125 2008;28(36):9013-20. Epub 2008/09/05. doi: 10.1523/JNEUROSCI.2747-08.2008. PubMed PMID: 18768695;
1126 PMCID: PMC2633448.

1127 165. Manogaran AL, Fajardo VM, Reid RJ, Rothstein R, Liebman SW. Most, but not all, yeast strains in the
1128 deletion library contain the [PIN(+)] prion. *Yeast.* 2010;27(3):159-66. Epub 2009/12/17. doi: 10.1002/yea.1740.
1129 PubMed PMID: 20014044; PMCID: PMC3717406.

1130 166. Jacobs KR, Castellano-Gonzalez G, Guillemin GJ, Lovejoy DB. Major Developments in the Design of
1131 Inhibitors along the Kynurenine Pathway. *Curr Med Chem.* 2017;24(23):2471-95. Epub 2017/05/04. doi:
1132 10.2174/0929867324666170502123114. PubMed PMID: 28464785; PMCID: PMC5748880.

1133 167. Wild EJ, Tabrizi SJ. Targets for future clinical trials in Huntington's disease: what's in the pipeline? *Mov*
1134 *Disord.* 2014;29(11):1434-45. Epub 2014/08/27. doi: 10.1002/mds.26007. PubMed PMID: 25155142; PMCID:
1135 PMC4265300.

1136 168. Campesan S, Green EW, Breda C, Sathyasaikumar KV, Muchowski PJ, Schwarcz R, Kyriacou CP, Giorgini
1137 F. The kynurenine pathway modulates neurodegeneration in a Drosophila model of Huntington's disease.
1138 *Current biology : CB.* 2011;21(11):961-6. Epub 2011/06/04. doi: 10.1016/j.cub.2011.04.028. PubMed PMID:
1139 21636279; PMCID: PMC3929356.

1140 169. Zwilling D, Huang SY, Sathyasaikumar KV, Notarangelo FM, Guidetti P, Wu HQ, Lee J, Truong J,
1141 Andrews-Zwilling Y, Hsieh EW, Louie JY, Wu T, Scearce-Levie K, Patrick C, Adame A, Giorgini F, Moussaoui
1142 S, Laue G, Rassoulpour A, Flik G, Huang Y, Muchowski JM, Masliah E, Schwarcz R, Muchowski PJ. Kynurenine
1143 3-monooxygenase inhibition in blood ameliorates neurodegeneration. *Cell.* 2011;145(6):863-74. Epub 2011/06/07.
1144 doi: 10.1016/j.cell.2011.05.020. PubMed PMID: 21640374; PMCID: PMC3118409.

1145 170. Ehrnhoefer DE, Duennwald M, Markovic P, Wacker JL, Engemann S, Roark M, Legleiter J, Marsh JL,
1146 Thompson LM, Lindquist S, Muchowski PJ, Wanker EE. Green tea (-)-epigallocatechin-gallate modulates early
1147 events in huntingtin misfolding and reduces toxicity in Huntington's disease models. *Human molecular*
1148 *genetics.* 2006;15(18):2743-51. Epub 2006/08/09. doi: 10.1093/hmg/ddl210. PubMed PMID: 16893904.

1149 171. Niu Y, Na L, Feng R, Gong L, Zhao Y, Li Q, Li Y, Sun C. The phytochemical, EGCG, extends lifespan by
1150 reducing liver and kidney function damage and improving age-associated inflammation and oxidative stress in
1151 healthy rats. *Aging Cell.* 2013;12(6):1041-9. Epub 2013/07/10. doi: 10.1111/acel.12133. PubMed PMID: 23834676.

1152 172. Wagner AE, Piegholdt S, Rabe D, Baenas N, Schloesser A, Eggersdorfer M, Stocker A, Rimbach G.
1153 Epigallocatechin gallate affects glucose metabolism and increases fitness and lifespan in *Drosophila*
1154 *melanogaster.* *Oncotarget.* 2015;6(31):30568-78. Epub 2015/09/17. doi: 10.18632/oncotarget.5215. PubMed PMID:
1155 26375250; PMCID: PMC4741552.

1156 173. Chu C, Deng J, Man Y, Qu Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments.
1157 *BioMed research international.* 2017;2017:5615647. Epub 2017/09/09. doi: 10.1155/2017/5615647. PubMed PMID:
1158 28884125; PMCID: PMC5572593.

1159 174. Pallauf K, Duckstein N, Rimbach G. A literature review of flavonoids and lifespan in model organisms.
1160 *Proc Nutr Soc.* 2017;76(2):145-62. Epub 2016/09/10. doi: 10.1017/S0029665116000720. PubMed PMID: 27609098.

1161 175. Walter GM, Raveh A, Mok SA, McQuade TJ, Arevang CJ, Schultz PJ, Smith MC, Asare S, Cruz PG, Wisen
1162 S, Matainaho T, Sherman DH, Gestwicki JE. High-throughput screen of natural product extracts in a yeast

1163 model of polyglutamine proteotoxicity. *Chem Biol Drug Des.* 2014;83(4):440-9. Epub 2014/03/19. doi:
1164 10.1111/cbdd.12259. PubMed PMID: 24636344; PMCID: PMC4068144.

1165 176. Kallscheuer N, Menezes R, Foito A, Henriques da Silva MD, Braga A, Dekker W, Mendez Sevillano D,
1166 Rosado-Ramos R, Jardim C, Oliveira J, Ferreira P, Rocha I, Silva AR, Sousa M, Allwood JW, Bott M, Faria N,
1167 Stewart D, Ottens M, Naesby M, Santos CND, Marienhagen J. Identification and microbial production of the
1168 raspberry phenol salidroside that is active against Huntington's disease. *Plant Physiol.* 2018. Epub 2018/11/07.
1169 doi: 10.1104/pp.18.01074. PubMed PMID: 30397021.

1170 177. Uversky VN. Looking at the recent advances in understanding alpha-synuclein and its aggregation
1171 through the proteoform prism. *F1000Res.* 2017;6:525. Epub 2017/05/12. doi: 10.12688/f1000research.10536.1.
1172 PubMed PMID: 28491292; PMCID: PMC5399969.

1173 178. Outeiro TF, Lindquist S. Yeast cells provide insight into alpha-synuclein biology and pathobiology.
1174 *Science.* 2003;302(5651):1772-5. Epub 2003/12/06. doi: 10.1126/science.1090439. PubMed PMID: 14657500;
1175 PMCID: PMC1780172.

1176 179. Tenreiro S, Franssens V, Winderickx J, Outeiro TF. Yeast models of Parkinson's disease-associated
1177 molecular pathologies. *Curr Opin Genet Dev.* 2017;44:74-83. Epub 2017/02/25. doi: 10.1016/j.gde.2017.01.013.
1178 PubMed PMID: 28232272.

1179 180. Tardiff DF, Lindquist S. Phenotypic screens for compounds that target the cellular pathologies underlying
1180 Parkinson's disease. *Drug Discov Today Technol.* 2013;10(1):e121-8. Epub 2013/09/21. doi:
1181 10.1016/j.ddtec.2012.02.003. PubMed PMID: 24050240; PMCID: PMC3641658.

1182 181. Griffioen G, Duhamel H, Van Damme N, Pellens K, Zabrocki P, Pannecouque C, van Leuven F,
1183 Winderickx J, Wera S. A yeast-based model of alpha-synucleinopathy identifies compounds with therapeutic
1184 potential. *Biochimica et biophysica acta.* 2006;1762(3):312-8. Epub 2006/01/18. doi: 10.1016/j.bbadi.2005.11.009.
1185 PubMed PMID: 16413174.

1186 182. Fleming J, Outeiro TF, Slack M, Lindquist SL, Bulawa CE. Detection of compounds that rescue
1187 Rab1-synuclein toxicity. *Methods Enzymol.* 2008;439:339-51. Epub 2008/04/01. doi:
1188 10.1016/S0076-6879(07)00425-9. PubMed PMID: 18374176.

1189 183. Su LJ, Auluck PK, Outeiro TF, Yeger-Lotem E, Kritzer JA, Tardiff DF, Strathearn KE, Liu F, Cao S,
1190 Hamamichi S, Hill KJ, Caldwell KA, Bell GW, Fraenkel E, Cooper AA, Caldwell GA, McCaffery JM, Rochet JC,
1191 Lindquist S. Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and
1192 mitochondrial dysfunction in Parkinson's disease models. *Dis Model Mech.* 2010;3(3-4):194-208. Epub
1193 2009/12/30. doi: 10.1242/dmm.004267. PubMed PMID: 20038714; PMCID: PMC2869493.

1194 184. Kritzer JA, Hamamichi S, McCaffery JM, Santagata S, Naumann TA, Caldwell KA, Caldwell GA,
1195 Lindquist S. Rapid selection of cyclic peptides that reduce alpha-synuclein toxicity in yeast and animal models.
1196 *Nature chemical biology.* 2009;5(9):655-63. Epub 2009/07/15. doi: 10.1038/nchembio.193. PubMed PMID:
1197 19597508; PMCID: PMC2729362.

1198 185. Tardiff DF, Jui NT, Khurana V, Tambe MA, Thompson ML, Chung CY, Kamadurai HB, Kim HT, Lancaster
1199 AK, Caldwell KA, Caldwell GA, Rochet JC, Buchwald SL, Lindquist S. Yeast reveal a "druggable" Rsp5/Nedd4
1200 network that ameliorates alpha-synuclein toxicity in neurons. *Science.* 2013;342(6161):979-83. Epub 2013/10/26.
1201 doi: 10.1126/science.1245321. PubMed PMID: 24158909; PMCID: PMC3993916.

1202 186. Faria C, Jorge CD, Borges N, Tenreiro S, Outeiro TF, Santos H. Inhibition of formation of alpha-synuclein
1203 inclusions by mannosylglycerate in a yeast model of Parkinson's disease. *Biochimica et biophysica acta.*
1204 2013;1830(8):4065-72. Epub 2013/04/24. doi: 10.1016/j.bbagen.2013.04.015. PubMed PMID: 23608058.

1205 187. Fernandes JT, Tenreiro S, Gameiro A, Chu V, Outeiro TF, Conde JP. Modulation of alpha-synuclein
1206 toxicity in yeast using a novel microfluidic-based gradient generator. *Lab Chip.* 2014;14(20):3949-57. Epub
1207 2014/08/29. doi: 10.1039/c4lc00756e. PubMed PMID: 25167219.

1208