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Bias Correction With Jackknife, Bootstrap,
and Taylor Series

Jiantao Jiao , Member, IEEE, and Yanjun Han , Student Member, IEEE

Abstract— We analyze bias correction methods using jackknife,
bootstrap, and Taylor series. We focus on the binomial model,
and consider the problem of bias correction for estimating f(p),
where f ∈ C[0, 1] is arbitrary. We characterize the supremum
norm of the bias of general jackknife and bootstrap estimators
for any continuous functions, and demonstrate the in delete-d
jackknife, different values of d may lead to drastically different
behaviors in jackknife. We show that in the binomial model,
iterating the bootstrap bias correction infinitely many times may
lead to divergence of bias and variance, and demonstrate that
the bias properties of the bootstrap bias corrected estimator after
r − 1 rounds are of the same order as that of the r-jackknife
estimator if a bounded coefficients condition is satisfied.

Index Terms— Bootstrap, jackknife, bias correction, functional
estimation, approximation theory.

I. INTRODUCTION

ONE of the classic problems in statistics is to design
procedures to reduce the bias of estimators. General bias

correction methods such as the bootstrap, the jackknife, and
the Taylor series have been widely employed and well studied
in the literature. See [1]–[14] and the references therein. The
jackknife idea is also closely related to the ensemble method
in estimation [15]–[17].

A close inspection of the literature on those general bias
correction methods show that they usually rely on certain
expansion (differentiability) properties of the expectation of
the estimator one would like to correct the bias for, and the
analysis is pointwise asymptotics [7], [9], [13].

One motivation for this work is that the methods based on
series expansions and differentiability assumptions may not
suffice in the analysis of bootstrap and jackknife even in the
simplest statistical models, and the practical implementations
of bootstrap and jackknife do not require those differentiability
conditions. The Taylor series itself, by definition, is a series
expansion method which we include here for comparison with
bootstrap and jackknife.

To illustrate our point, consider one of the simplest statis-
tical models, the binomial model, where n · p̂n ∼ B(n, p).
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For any function f : [0, 1] �→ R, we would like to correct
the bias of f(p̂n) as an estimator of f(p). Let e1,n(p) =
f(p) − Epf(p̂n) be the bias term. The expectation of the
jackknife bias corrected estimator f̂2 satisfies

E[f̂2] = E [nf(p̂n) − (n − 1)f(p̂n−1)] , (1)

where (n − 1) · p̂n−1 ∼ B(n − 1, p). The textbook argument
of the bias reduction property of the jackknife is the follow-
ing [13]. Suppose that

e1,n(p) =
a(p)
n

+
b(p)
n2

+ Op

(
1
n3

)
, (2)

where a(p), b(p) are unknown functions of p which do no
depend on n, and Op(an) is a sequence that is elementwise
upper bounded by an up to a multiplicative constant for
fixed p. We also have

e1,n−1(p) =
a(p)
n − 1

+
b(p)

(n − 1)2
+ Op

(
1

(n − 1)3

)
. (3)

Hence, the overall bias of f̂2 is:

f(p) − Epf̂2 = ne1,n(p) − (n − 1)e1,n−1(p) (4)

=
b(p)
n

− b(p)
n − 1

+ Op

(
1
n2

)
(5)

= − b(p)
n(n − 1)

+ Op

(
1
n2

)
, (6)

which seems to suggest that the bias has been reduced to order
1

n2 instead of order 1
n . However, if we particularize (2) to

f(p) = p ln(1/p), which relates to the Shannon entropy [18],
we have [19]

e1,n(p) =
1 − p

2n
+

1
12n2

(
1
p
− p

)
+ Op

(
1
n3

)
. (7)

One immediately sees that it may not be reasonable to claim
that the jackknife has reduced the bias upon looking at (7)
and (6). Indeed, the bias of the jackknife estimator is uniformly
upper bounded by O(n), but the right hand side of (7) and (6)
explodes to infinity as p → 0. It shows that one cannot ignore
the dependence on p in the Op(·) notation, but even doing
higher order of Taylor expansion does not help. In fact, it was
shown first in [20] that for f(p) = p ln(1/p), there exist
universal constants C1 > 0, C2 > 0 such that for any n ≥ 1,

sup
p∈[0,1]

|e1,n(p)| ≤ C1

n
(8)

sup
p∈[0,1]

|f(p) − Ep[f̂2]| ≥ C2

n
. (9)
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In other words, the jackknife does not change the bias order at
all. There exist other estimators that achieve a smaller order of
bias. Indeed, the estimators [21]–[24] that achieve the optimal
minimax sample complexity for Shannon entropy estimation
used best approximation polynomials to reduce the bias of of
each symbol from 1

n to 1
n lnn .

In this paper, we connect the jackknife and bootstrap to the
theory of approximation, and provide a systematic treatment
of the problem of correcting the bias for f(p̂n) as an estimator
of f(p) for f ∈ C[0, 1] and n · p̂n ∼ B(n, p). Compared with
existing literature, we choose to simplify the statistical model
to the extreme, but consider arbitrary functions f . We believe
it is an angle worth investigating due to the following reasons.
First of all, it directly leads to analysis of the bias correction
properties of jackknife and bootstrap for important statistical
questions such as the Shannon entropy estimation, which
existing theory proves insufficient of handling. Second, even
in this simplest statistical model the analysis of jackknife and
bootstrap is far non-trivial, and there still exist abundant open
problems as we discuss in this paper. One message we would
like to convey in this work is that the analysis of jackknife and
bootstrap in simple statistical models but general functions
could lead to interesting and deep mathematical phenomena
that remain fertile ground for research. We mention that most
of the results in this paper could be generalized to the case of
natural exponential family of quadratic variance functions [25],
[26], which comprises of six families: Gaussian, Poisson, bino-
mial, negative binomial, gamma, and generalized hyperbolic
secant. Coincidentally, these distribution families were also
identified as special in approximation theory literature, where
they were named operators of the exponential-type [27], [28].

We introduce some notations below. The r-th symmetric
difference of a function f : [0, 1] �→ R is given by

∆r
hf(x) =

r∑
k=0

(−1)k

(
r

k

)
f(x + r(h/2) − kh), (10)

where ∆r
hf(x) = 0 if x + rh/2 or x − rh/2 is not in [0, 1].

We introduce the r-th Ditzian–Totik modulus of smoothness
of a function f : [0, 1] �→ R as

ωr
ϕ(f, t) = sup

0<h≤t

∥∥∥∆r
hϕ(x)f

∥∥∥ , (11)

where ϕ(x) =
√

x(1 − x), and the norm is the supremum
norm.

The ωr
ϕ(f, t) modulus satisfies the following properties.

Lemma 1: [29, Chap. 4] The Ditzian–Totik modulus of
smoothness ωr

ϕ(f, t) in (11) satisfies the following:
1) ωr

ϕ(f, t) is a nondecreasing function of t.
2) There exist universal constants K > 0, t0 > 0 such that

ωr
ϕ(f, λt) ≤ Kλrωr

ϕ(f, t) for λ ≥ 1, and λt ≤ t0.
3) There exist universal constants K > 0, t0 > 0 such that

ωr+1
ϕ (f, t) ≤ Kωr

ϕ(f, t) for 0 < t ≤ t0.
4) There exists a universal constant K > 0 such that

ωr
ϕ(f, t) ≤ K supx∈[0,1] |f (r)(x)|tr .

5) limt→0+
ωr

ϕ(f,t)

tr = 0 ⇒ f is a polynomial with degree
r−1. (f is a polynomial of degree r−1 ⇒ ωr

ϕ(f, t) = 0).

6) ωr
ϕ(f, t) = O(tr) for fixed f, r if and only if f (r−1) ∈

A.C.loc and ‖ϕrf (r)‖ < ∞,

where f (r−1) ∈ A.C.loc means that f is r − 1 times differ-
entiable and f (r−1) is absolutely continuous in every closed
finite interval [c, d] ⊂ (0, 1).

We emphasize that Ditzian–Totik modulus of smoothness
is easy to compute for various functions. For example, for
f(x) = xδ| ln x/2|γ , x ∈ (0, 1). Then for r ≥ 2δ, we
have [29, Section 3.4]:

ωr
ϕ(f, t) �r,δ,γ

{
t2δ| ln t|γ δ /∈ Z, δ ≥ 0, γ ≥ 0
t2δ| ln t|γ−1 δ ∈ Z, δ ≥ 0, γ ≥ 1

. (12)

An intuitive understanding of ωr
ϕ(f, t) is the following.

If the function f is “smoother”, the modulus is smaller.
However, a non-zero ωr

ϕ(f, t) cannot vanish faster than the
order tr for any fixed f .
Notation: All the norms in this paper refer to the supre-

mum norm. Concretely ‖f‖ = supx |f(x)|. For non-negative
sequences aγ , bγ , we use the notation aγ �α bγ to denote
that there exists a universal constant C that only depends on
α such that supγ

aγ

bγ
≤ C, and aγ �α bγ is equivalent to

bγ �α aγ . Notation aγ �α bγ is equivalent to aγ �α bγ

and bγ �α aγ . We write aγ � bγ if the constant is universal
and does not depend on any parameters. Notation aγ 
 bγ

means that lim infγ
aγ

bγ
= ∞, and aγ � bγ is equivalent to

bγ 
 aγ . We write a∧ b = min{a, b} and a∨ b = max{a, b}.
Moreover, polyd

n denotes the set of all d-variate polynomials
of degree of each variable no more than n, and En[f ; I]
denotes the distance of the function f to the space polyd

n in
the uniform norm ‖ ·‖∞,I on I ⊂ R

d. The space poly1n is also
abbreviated as polyn. All logarithms are in the natural base.
The notation Eθ[X ] denotes the mathematical expectation of
the random variable X whose distribution is indexed by the
parameter θ. The s-backward difference of a function defined
over integers Gn is

∆sGn �
s∑

k=0

(−1)k

(
s

k

)
Gn−k. (13)

Remark 1 (Operator View of Bias Reduction): It was
elaborated in [30] that for any statistical model, the quantity
EθF (θ̂) could be viewed as an operator that maps the function
F (·) to another function of θ. The operator is obviously linear
in F , and is also positive in the sense that if F ≥ 0 everywhere
it is also everywhere non-negative. If we view EθF (θ̂) as
an approximation of F (θ), then analyzing the bias of the
estimator F (θ̂) is equivalent to analyzing the approximation
error of EθF (θ̂).

Casting the bias analysis problem as an approximation
problem, a key observation of this work is that the bootstrap
bias correction could be viewed as the iterated Boolean sum
approximation, and the jackknife bias correction could be
viewed as a linear combination approximation, and the Taylor
series bias correction corresponds to the Taylor series approx-
imation. The main tool we use to handle these approximation
theoretic questions is the K-functional, which we introduce in
Appendix A.
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We now summarize our main results for jackknife, boot-
strap, and Taylor series bias correction.

A. Jackknife Bias Correction

The jackknife is a subsampling technique [13] that aims
at making the biases of estimators with different sample sizes
cancel each other. Before we introduce the jackknife estimator,
we recall the definition of U -statistic.

Definition 1 (U -Statistic): Let g : Rr �→ R be a real-valued
function of r variables. For each n ≥ r the associated
U -statistic Un[g] : Rn �→ R is defined as

Un[g](X1, X2, . . . , Xn) =

∑
β g(Xβ1 , Xβ2, . . . , Xβr)(

n
r

) ,

(14)

which is the average over ordered samples (β1, β2, . . . , βr) of
size r of the sample values g(Xβ1 , Xβ2 , . . . , Xβr).

Definition 2 (r-Jackknife Estimator): Fix r ≥ 1, r ∈ Z. Fix
K > 0 such that K does not scale with n. For a given function
f ∈ C[0, 1] and any positive integer m, define function gm :
R

m �→ R as

gm(x1, x2, . . . , xm) � f

(∑m
i=1 xi

m

)
. (15)

For a collection of sample sizes n1 < n2 < n3 < . . . <
nr ≤ Kn1 = n, under the binomial model the general
r-jackknife estimator is defined as

f̂r =
r∑

i=1

CiUn[gm](X1, X2, . . . , Xn), (16)

where X1, X2, . . . , Xn
i.i.d.∼ Bern(p). The coefficients {Ci} are

given by

Ci =
∏
j �=i

ni

ni − nj
, 1 ≤ i ≤ r. (17)

If nr = n, ni − ni−1 = d, then it is called the delete-d
r-jackknife estimator.

Note that the standard jackknife in (1) corresponds to
n1 = n − 1, n2 = n, whose corresponding coefficients are
C1 = −(n − 1), C2 = n. As shown in Lemma 13 in
Appendix B, the coefficients {Ci}1≤i≤r in (17) satisfy the
following:

r∑
i=1

Ci = 1

r∑
i=1

Ci

nρ
i

= 0, 1 ≤ ρ ≤ r − 1, ρ ∈ Z. (18)

The intuition behind this condition is clear: only through
these equations can one completely cancel any bias terms of
order 1/nρ, ρ ≤ r − 1. It is also clear that (18) corresponds
to solving a linear system with the Vandermonde matrix, for
which the solution given in (17) is the unique solution due to
the fact that all the ni’s are distinct. The rationale above also
appeared in [31], and the corresponding coefficients Ci were
given in the form of determinants. Equation (17) shows that
in this special case the coefficients admit a simple expression.

1) Jackknife With the Bounded Coefficients Condition: We
introduce the following condition on {Ci}1≤i≤r which turns
out to be crucial for the bias and variance properties of the
general r-jackknife.

Condition 1 (Bounded Coefficients Condition): We say that
the jackknife coefficients Ci in (17) satisfy the bounded coef-
ficients condition with parameter C if there exists a constant
C that only depends on r such that

r∑
i=1

|Ci| ≤ C. (19)

One motivation for Condition 1 is the following. Observe
that

Epf̂r =
r∑

i=1

CiEp[f(p̂ni)]. (20)

Viewing Ep[f(p̂ni)] as an operator that maps f to a poly-
nomial, it is an approximation to f(p), which is the Bernstein
polynomial [32, Chapter 10]. It follows from the Bernstein
theorem [33, Chap. 7] that limn→∞ ‖Epf(p̂n)− f(p)‖∞ = 0
for any continuous function f on [0, 1]. Then, one can view
the r-jackknife as a linear combination of operators. In this
sense, Condition 1 assures that the linear combination as a
new operator has bounded norm that is independent of n.

The following theorem quantifies the performance of the
general r-jackknife under the bounded coefficients condition
in Condition 1.

Theorem 1: Suppose {Ci}1≤i≤r satisfies Condition 1 with
parameter C. Suppose r ≥ 1 is a fixed integer. Let f̂r denote
the general r-jackknife in (16). Then, for any f ∈ C[0, 1],
the following is true.

1)

‖f(p) − Epf̂r‖ �r,C ω2r
ϕ (f, 1/

√
n) + n−r‖f‖ (21)

2) Fixing 0 < α < 2r,

‖f(p) − Epf̂r‖ �α,r,C n−α/2

⇔ ω2r
ϕ (f, t) �α,r,C tα. (22)

3) Suppose there is a constant D < 22r for which

ω2r
ϕ (f, 2t) ≤ Dω2r

ϕ (f, t) for t ≤ t0. (23)

Then,

‖f(p) − Epf̂r‖ �r,C,D ω2r
ϕ (f, 1/

√
n). (24)

4) For r = 1,

‖f(p) − Epf̂r‖ � ω2r
ϕ (f, 1/

√
n). (25)

The following corollary of Theorem 1 is immediate
given (12).

Corollary 1: Under the conditions in Theorem 1, if
f = −p ln p, then

‖f(p) − Epf̂r‖ �r,C
1
n

. (26)
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If f(p) = pα, 0 < α < 1, then,

‖f(p)− Epf̂r‖ �r,C
1

nα
. (27)

Corollary 1 implies that the r-jackknife estimator for fixed
r does not improve the bias of f(p̂n) for f(p) = p ln(1/p),
which makes it incapable of achieving the minimax rates of
Shannon entropy estimation [23], [24].
2) Jackknife Without the Bounded Coefficients Condition:

Theorem 1 has excluded the case that n1 = n − 1, n2 = n.
Clearly, to satisfy the assumptions of Theorem 1, we need to
require |ni−ni−1| � n1, which puts a minimum gap between
the different sample sizes we can use. This begs the question:
is this condition necessary to Theorem 1 to hold? If not, what
bad consequences it will lead to?

From a computational perspective, taking d small in the
delete-d jackknife may reduce the computational burden. How-
ever, as we now show, the usual delete-1 jackknife does not
satisfy Theorem 1 in general and exhibits drastically different
bias and variance properties. 1

We now show that the delete-1 jackknife may have bias and
variance both diverging to infinity in the worst case.

Theorem 2: Let f̂r denote the delete-1 r-jackknife estimator.
There exists a fixed function f ∈ C(0, 1] that satisfies ‖f‖ ≤ 1
such that

‖Epf̂r − f(p)‖ � nr−1. (28)

If we allow the function f to depend on n, then one can have
f ∈ C[0, 1]. 2

Meanwhile, for any n ≥ 4, there exists a function
f ∈ C[0, 1] depending on n such that

‖Varp(f̂2)‖ ≥ n2

e
. (32)

Theorem 2 shows that in the worst case, the delete-1
r-jackknife may have bad performances compared to that sat-
isfying Condition 1. Before we delve into the refined analysis
of delete-1 r-jackknife, we illustrate the connection between
various types of r-jackknife estimators. It turns out that the
jackknife is intimately related to the divided differences of
functions.

1It has been observed in the literature [34] that in jackknife variance esti-
mation, which is a different area of application of the jackknife methodology,
sometimes it is also necessary to take d large to guarantee consistency.

2We emphasize that if we restrict f ∈ C[0, 1], ‖f‖ ≤ 1, and do not allow
f to depend on n, then one cannot achieve the bound (28). Indeed, noting
that
�r

i=1 Ci = 1, the error term can be written as
�����

r�

i=1

CiEpf(p̂n+i−r)− f(p)

����� =
�����

r�

i=1

Ci (Epf(p̂n+i−r)− f(p))

����� (29)

≤
r�

i=1

|Ci|‖Epf(p̂n+i−r)−f(p)‖, (30)

It follows from the Bernstein theorem [33, Chap. 7] that
limn→∞ ‖Epf(p̂n) − f(p)‖ = 0 for any continuous function f on
[0, 1]. Hence, for any f ∈ C[0, 1] one has

‖Epf̂r − f(p)‖ = o(nr−1), (31)

since max1≤i≤r |Ci| � nr−1 for the delete-1 r-jackknife.

Definition 3 (Divided Difference): The divided difference
f [x1, x2, . . . , xn] of a function f over n distinct points
{x1, x2, . . . , xn} is defined as

f [x1, x2, . . . , xn] =
n∑

i=1

f(xi)∏
j �=i(xi − xj)

. (33)

It follows from (20), (17) and Lemma 13 in Appendix B
that the bias of a general r-jackknife estimator f̂r can be
written as

Ep[f̂r] − f(p) =
r∑

i=1

∏
j �=i

ni

ni − nj
(Ep[f(p̂ni)] − f(p)) (34)

=
r∑

i=1

nr−1
i (Ep[f(p̂ni)] − f(p))∏

j �=i(ni − nj)
. (35)

Define Gn,f,p = nr−1 (Ep[f(p̂n)] − f(p)). Then, the bias
of f̂r can be written as the divided difference of
function G·,f,p:

Ep[f̂r] − f(p) = G·,f,p[n1, n2, . . . , nr]. (36)

It follows from the mean value theorem of divided differ-
ences defined over integers in Lemma 11 of Appendix B that
for every p, f ,

|Ep[f̂r] − f(p)|
≤ max

n1≤n≤nr

|G·,f,p[n − r + 1, n − r + 2, . . . , n − 1, n]|,
(37)

and the right hand side of (37) is nothing but the maximum of
the bias of the delete-1 r-jackknife with varying sample sizes.

Equation (37) shows that in terms of the bias, the delete-1
jackknife might be the “worst” among all r-jackknife esti-
mators. However, what is the precise performance of the
delete-1 r-jackknife when the function f is “smooth”? Does
the performance improve compared to Theorem 2? We answer
this question below.

Condition 2 (Condition Ds): A function f : [0, 1] �→ R is
said to satisfy the condition Ds, s ≥ 0, s ∈ Z with parameter
L > 0 if the following is true:

1) s = 0: f is Lebesgue integrable on [0, 1] and
supx∈[0,1] |f(x)| ≤ L.

2) s ≥ 1:

a) f (s−1) is absolutely continuous on [0, 1];
b) supx∈[0,1] |f (i)(x)| ≤ L, 0 ≤ i ≤ s.

Remark 2: We mention that if a function f satisfies
condition Ds, it does not necessarily belong to the space
Cs[0, 1], where Cs[0, 1] denotes the space of functions f
on [0, 1] such that f (s) is continuous. Indeed, the function
f(x) = x2 sin(1/x)�(x ∈ (0, 1]) satisfies condition D1 as
a function mapping from [0, 1] to R, but it does not belong
to C1[0, 1].

The performance of the delete-1 r-jackknife in estimating
f(p) satisfying condition Ds is summarized in the following
theorem.
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Fig. 1. Error exponents of “Good” and “Bad” jackknife estimators. Here
“Good” refers to the r-jackknife satisfying Condition 1, and “Bad” refers to
the delete-1 r-jackknife.

Theorem 3: For any r ≥ 1, s ≥ 0 and f satisfying condition
Ds with parameter L, let f̂r be the delete-1 r-jackknife. Then,

‖Epf̂r − f(p)‖ �r,s,L




nr−s−1 if 0 ≤ s ≤ 2r − 2;
n−(r− 1

2 ) if s = 2r − 1;
n−r if s ≥ 2r.

(38)

Theorem 4: For 1 ≤ s ≤ 2r − 3, there exists some
universal constant c > 0 such that for any n ∈ N, there
exists some function f ∈ Cs[0, 1] such that ‖f‖ ≤ 1, ‖f ′‖ ≤
1, · · · , ‖f (s)‖ ≤ 1, and for delete-1 r-jackknife f̂r:

‖Epf̂r(p̂n) − f(p)‖ ≥ cnr−1−s. (39)

Theorem 5: For integer 2r − 2 ≤ s ≤ 2r − 1, there exists
some function f ∈ Cs[0, 1] such that ‖f‖ ≤ 1, ‖f ′‖∞ ≤
1, · · · , ‖f (s)‖∞ ≤ 1, and for delete-1 r-jackknife f̂r,

lim inf
n→∞

‖Epf̂r(p̂n) − f(p)‖
n−s/2

> 0. (40)

Moreover, if s ≥ 2r, then

‖Epf̂r(p̂n) − f(p)‖∞ � 1
nr

. (41)

Proof: The first part follows from (37) and Theorem 1.
The second part follows from taking f(p) to be a polynomial
of order 2r with leading coefficient one. �

Now we compare the performance of the r-jackknife esti-
mator f̂r with and without Condition 1. Under Condition 1,
we know from Theorem 1 that

|Epf̂r(p̂n) − f(p)| �r,s,L,C n−min{r, s
2} (42)

for f satisfying condition Ds with parameter L 3, where
the exponent is better than that of Theorem 3. A pictorial
illustration is shown in Figure 1.

Remark 3: For general delete-d r-jackknife, the cases of
d � n and d = 1 exhibit drastically different behavior.
It remains fertile ground for research to analyze what is the

3It follows from the proof of Theorem 1 that the first part of Theorem 1
also applies to functions f satisfying condition Ds.

minimum d needed for the delete-d r-jackknife to achieve the
bias performance that is of the same order as those satisfying
Condition 1 for a specific function f .

3) Specific Functions: The last part of results pertaining to
the jackknife investigates some specific functions f(p). Here
we take f(p) = −p ln p or pα, 0 < α < 1. Those functions
even do not belong to D1 under Condition 2. However,
we show that the jackknife applied to these functions exhibits
far better convergence rates than the worst case analysis in
Theorem 4 predicted.

We show that for the r-jackknife when r = 2, no matter
whether Condition 1 is satisfied or not, the bias of the jackknife
estimator can be universally controlled.

Theorem 6: Let f̂2 denote a general 2-jackknife in Defini-
tion 2. Then,

1) if f(p) = −p ln p,

‖Epf̂2 − f(p)‖ � 1
n

. (43)

2) if f(p) = pα, 0 < α < 1,

‖Epf̂2 − f(p)‖ �α
1

nα
. (44)

Meanwhile, let f̂2 be either the delete-1 2-jackknife, or a
2-jackknife that satisfies Condition 1. Then,

1) if f(p) = −p ln p,

‖Epf̂2 − f(p)‖ � 1
n

. (45)

2) if f(p) = pα, 0 < α < 1,

‖Epf̂2 − f(p)‖ �α
1

nα
. (46)

Remark 4: We conjecture that Theorem 6 holds for any
fixed r instead of only r = 2.

B. Bootstrap Bias Correction

The rationale behind bootstrap bias correction is to use
the plug-in rule to estimate the bias and then iterate the
process [9]. Concretely, suppose we would like to estimate
a function f(θ), and we have an estimator for θ, denoted
as θ̂. The estimator θ̂(Xn

1 ) is a function of the observations
(X1, X2, . . . , Xn), and Xi

i.i.d.∼ Pθ . The bias of the plug-in rule
f̂1 = f(θ̂) is defined as

e1(θ) = f(θ) − Eθf(θ̂). (47)

We would like to correct this bias. The additive bootstrap
bias correction does this by using the plug-in rule e1(θ̂) to
estimate e1(θ), and then use f(θ̂) + e1(θ̂) to estimate f(θ),
hoping that this bias corrected estimator has a smaller bias.

It is the place that the Monte Carlo approximation principle
takes effect: it allows us to compute the plug-in estimator e1(θ̂)
without knowing the concrete form of the bias function e1(θ).
Indeed, we have

e1(θ̂) = f(θ̂) − Eθ̂f(θ̂∗), (48)
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where θ̂∗ = θ̂(X∗
1 , X∗

2 , . . . , X∗
n), and the samples X∗

i
i.i.d.∼ Pθ̂.

To compute Eθ̂f(θ̂∗), it suffices to draw the n-tuple sample
(X∗

1 , X∗
2 , . . . , X∗

n) in total B times under Pθ̂ , and use the
empirical average to replace the expectation, hoping that the
law of large number would make the empirical average close
to the expectation Eθ̂f(θ̂∗). This argument also shows that it
takes B rounds of sampling to evaluate e1(·) at one point.

After doing bootstrap bias correction as introduced above
once, we obtain f̂2 = f(θ̂) + e1(θ̂). What about its bias? The
bias of this new estimator, denoted as e2(θ), is

e2(θ) = f(θ) −
(
Eθf(θ̂) + Eθe1(θ̂)

)
(49)

= e1(θ) − Eθe1(θ̂). (50)

Clearly, in order to compute e2(θ̂), we need to evaluate
e1(·) in total B times, which amounts to a total computation
complexity B2.

It motivates the general formula: the bias of the bootstrap
bias corrected estimator after m − 1 rounds of correction is
related to that after m − 2 rounds via

em(θ) = em−1(θ) − Eθem−1(θ̂). (51)

Indeed, denoting the estimator after m − 2 rounds of bias
correction as f̂m−1, by definition we know em−1(θ) = f(θ)−
Eθ f̂m−1. The bias corrected estimator after m − 1 rounds is
f̂m = f̂m−1 + em−1(θ̂), whose bias is

em(θ) = f(θ) − Eθ

(
f̂m−1 + em−1(θ̂)

)
(52)

= em−1(θ) − Eθem−1(θ̂). (53)

The bias corrected estimator after m − 1 rounds of
correction is

f̂m = f(θ̂) +
m−1∑
i=1

ei(θ̂). (54)

It takes Bm−1 order computations to compute f̂m if we
view the computation of f̂2 = f(θ̂) + e1(θ̂) takes computa-
tional time B. We introduce an linear operator An that maps
the function f to the same function space such that

An[f ](θ) = Eθf(θ̂). (55)

With the help of the operator An, one may view the bias of
f̂m in the following succinct way. Indeed, since

em(θ) = em−1(θ) − An[em−1](θ) (56)

= (I − An)[em−1](θ), (57)

we have

Eθ f̂m = An

(
I +

m−1∑
i=1

(I − An)i

)
[f ] (58)

= An

(
m−1∑
i=0

(I − An)i

)
[f ] (59)

= (I − (I − An)m)[f ]. (60)

The operator I−(I−An)m is known as the iterated Boolean
sum in the approximation theory literature [35], [36]. Indeed,
defining the Boolean sum as P ⊕Q = P + Q−PQ, we have

I − (I − An)m = An ⊕ An ⊕ . . . ⊕ An = ⊕mAn, (61)

where there are m terms on the right hand side.
Let the bias of the bootstrap bias corrected estimator after

m − 1 rounds be denoted as em(p), where

em(p) = em−1(p) − Epem−1(p̂n), (62)

and e1(p) = f(p)−Ep[f(p̂n)]. Here f ∈ C[0, 1], and n · p̂n ∼
B(n, p). Our first result on bootstrap bias correction is about
the limiting behavior of em(p) as m → ∞. In other words,
what happens when we conduct the bootstrap bias correction
infinitely many times?

Theorem 7: Denote the unique polynomial of order n that
interpolates the function f(p) at n+1 points {i/n : 0 ≤ i ≤ n}
by Ln[f ]. Then, for any f : [0, 1] �→ R,

lim
m→∞ sup

p∈[0,1]

|em(p) − (f − Ln[f ])| = 0, (63)

where em(p) is defined in (62).

In other words, the bias function converges uniformly to the
approximation error of the Lagrange interpolation polynomial
that interpolates the function f at equidistant points on [0, 1].
This interpolating polynomial is in general known to exhibit
bad approximation properties unless the function is very
smooth. The Bernstein example below shows an extreme case.

Lemma 2: [37, Chap. 2, Sec. 2] [Bernstein’s example]
Suppose f(p) = |p − 1/2|, and Ln[f ] denotes the unique
polynomial that interpolates the function f(p) at n + 1 points
{i/n : 0 ≤ i ≤ n}. Then,

lim inf
n→∞ |Ln[f ](p)| = ∞ (64)

for all p ∈ [0, 1] except for p = 0, 1/2, and 1. 4

For more discussions on the convergence/divergence behav-
ior of Ln[f ], we refer the readers to [39] for more details.
We emphasize that it is a highly challenging question. For
example, it was shown in [40] that for any p ∈ [0, 1], we have

lim
n→∞ |Ln[f ](p) − f(p)| = 0, (65)

where f(p) = −p ln p or pα, α > 0, α /∈ Z, and Ln[f ] is
the Lagrange interpolation polynomial at equi-distant points.
However, to our knowledge it is unknown that whether
supp∈[0,1] |Ln[f ](p) − f(p)| converges to zero as n → ∞
for those specific functions, and if so, what the convergence
rate is.

As Theorem 7 and Lemma 2 show, it may not be a
wise idea to iterate the bootstrap bias correction too many
times. It is both computationally prohibitive, and even may
deteriorate statistically along the process. In practice, one
usually conducts the bootstrap bias correction a few times. The

4This phenomenon has been generalized to other functions such as
|p − 1

2
|α, α > 0 when α is not an even integer. See [38] for more details.
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next theorem provides performance guarantees for the first few
iterations of bootstrap bias correction.

Theorem 8: Fix the number of iterations m ≥ 0, and
0 < α ≤ 2m. Then the following statements are true for
any f ∈ C[0, 1]. Here em(p) is defined in (62).

1)

‖em(p)‖ �m ω2m
ϕ (f, 1/

√
n) + ‖f‖n−m. (66)

2)

‖em(p)‖ �α,m n−α/2 ⇔ ω2m
ϕ (f, t) �α,m tα. (67)

3)

‖em(p)‖ �m n−m ⇔ f is an affine function (68)

4) Suppose there is a constant D < 22m for which

ω2m
ϕ (f, 2t) ≤ Dω2m

ϕ (f, t) for t ≤ t0. (69)

Then,

‖em(p)‖ �m,D ω2m
ϕ (f, 1/

√
n). (70)

5) For m = 1,

‖em(p)‖ � ω2m
ϕ (f, 1/

√
n). (71)

Theorem 8 has several interesting implications. First of all,
it shows that for a few iterations of the bootstrap bias cor-
rection, we have a decent bound on the bias ‖em(p)‖, which
is intimately connected with the 2m-th order Ditzian–Totik
modulus of smoothness evaluated at 1/

√
n. This bound is tight

in various senses. The second statement shows that it captures
the bias ‖em(p)‖ at least up to the granularity of the exponent
in n, and the third statement shows that it is impossible for
the bootstrap bias corrected estimator to achieve bias of order
lower than n−m except for the trivial case of affine functions,
which have bias zero. The fourth statement shows that as long
as the modulus ω2m

ϕ (f, t) is not too close to t2m, the DT
modulus bound is tight. The fifth statement shows that when
we do not do any bias correction, the DT modulus bound is
tight for any function in C[0, 1].

The following corollary is immediate given (12).

Corollary 2: If f(p) = −p ln p, then,

‖em(p)‖ �m
1
n
�m ‖e1(p)‖, (72)

If f(p) = pα, 0 < α < 1, then

‖em(p)‖ �m,α
1

nα
�m,α ‖e1(p)‖, (73)

which means that the bootstrap bias correction for the first few
rounds does not change the order of bias at all.

We have shown that the bias of f̂m converges to the
approximation error of the Lagrange interpolation polynomial
at equi-distant points when m → ∞ (Theorem 7). However,
we also know that for the first few iterations of the bootstrap,
the bias of f̂m can be well controlled (Theorem 8). It begs the
question: how does ‖em(p)‖ evolve as m → ∞?

Fig. 2. The evolution of ‖em(p)‖ as a function of m for 1 ≤ m ≤ 8.5×105.

Fig. 3. The evolution of ‖em(p)‖ as a function of m for 1 ≤ m ≤ 2×104.

We study this problem through the example of f(p) =
|p− 1/2|, with the sample size n = 20. Thanks to the special
structure of the Binomial functions, we are able to numerically
compute ‖em(p)‖ up to m ≈ 8.5 × 105. It follows from
Theorem 7 that

lim
m→∞ ‖em(p)‖ = ‖f−Ln[f ]‖, (74)

and for n = 20, we numerically evaluated ‖f−Ln[f ]‖ to be
47.5945.

Figure 2, 3, and 4 show that the behavior of ‖em(p)‖
could be highly irregular: in fact, for the specific function
f(p) = |p − 1/2|, it continues to decrease until m grows
slightly above 2 × 103, and then keeps on increasing until m
exceeds about 1.2× 104, then it continues to drop until it hits
about 3 × 104, then it keeps on increasing again within the
range of computations we conduct. It is also clear that after
about 8.5 × 105 bootstrap iterations, which is by no means
practical, ‖em(p)‖ is still far from its limit ‖f−Ln[f ]‖, which
is about 47.5945 as shown in Figure 4.

Remark 5 (Connections Between Bootstrap and Jackknife):
The interested reader must have observed that the bias prop-
erties of the bootstrap bias corrected estimator after r − 1
rounds are the same as that of the r-jackknife estimator sat-
isfying Condition 1. Concretely, their biases are both dictated
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Fig. 4. The Lagrange interpolation points and the Lagrange interpolation
polynomial of the function |p − 1/2| with equi-distant n + 1 points, where
n = 20.

by the modulus ω2r
ϕ (f, 1/

√
n). It would be interesting to

compare the rate ω2r
ϕ (f, 1/

√
n) with that of the best polyno-

mial approximation, upon noting that in the binomial model,
the biases of both the jackknife and bootstrap estimators are
polynomial approximation errors of the function f(p) with
degree at most n. It follows [29, Thm. 7.2.1.] that for best
polynomial approximation with degree n, the approximation
error infP∈polyn

supp∈[0,1] |f(p)− P (p)| is upper bounded by
ωk

ϕ(f, 1/n) for any k < n. We first observe that one achieves
a smaller argument (1/n compared to 1/

√
n) in this case,

but more importantly, there is essentially no restriction on the
modulus order when n is large. It indicates the best polynomial
approximation induces a much better approximation (smaller
bias) for estimating f(p), which, unfortunately has been shown
in [20] to fail to achieve the minimax rates in entropy
estimation, since the variance explodes while the bias is very
small. The estimators in [21], [23], [30] only choose to conduct
best polynomial approximation in certain regimes of f , which
reduces the bias by a logarithmic factor without increasing too
much the variance.

C. Taylor Series Bias Correction

The Taylor series can only be applied to functions with
certain global differentiablity conditions, which makes it a less
versatile method compared to the bootstrap and jackknife. The
Taylor series bias correction method exhibits various forms in
the literature, and we discuss two of them in this section.
We call one approach the iterative first order correction, and
the other approach the sample splitting correction. To illustrate
the main ideas behind the methods, we still use the binomial
model n · p̂n ∼ B(n, p).

1) Iterative First Order Correction: As shown in [41,
Chapter 6, Section 1, Pg. 436], suppose for certain f , we have

Epf(p̂n) − f(p) =
Bn(p)

n
+ O

(
1
n2

)
, (75)

where Bn(p) = 1
2f ′′(p)nEp(p̂n − p)2. Then, the Taylor series

bias corrected estimator is defined as

f̂2 = f(p̂n) − Bn(p̂n)
n

. (76)

We can generalize the approach above to conduct bias
correction for multiple rounds [7]. However, the correction for-
mula becomes increasingly more complicated as the correction
order becomes higher. We start with the following lemma.

Lemma 3: Suppose function f : [0, 1] �→ R satisfies
condition Ds with parameter L as in Condition 2, where
s = 2k is a positive even integer. Then, if n · p̂n ∼ B(n, p),
there exist k−1 linear operators denoted as Tj[f ](p), 1 ≤ j ≤
k − 1, independent of n, such that∣∣∣∣∣∣Epf(p̂n) − f(p) −

k−1∑
j=1

1
nj

Tj[f ](p)

∣∣∣∣∣∣ �k,L
1
nk

. (77)

Here supp∈[0,1] |Tj[f ](p)| �k,L 1. Concretely, Tj[f ](p) is a
linear combination of the derivatives of f of order from j + 1
to 2j where the combination coefficients are polynomials of
p with degree no more than 2j.

Now we describe the Taylor series bias correction algorithm
below [7].

Construction 1 (Taylor Series Bias Correction): [7] Define
ti(p) iteratively. Set t0(p) = f(p), and for i ≥ 1 define

ti(p) = −
i∑

j=1

Tj[ti−j ](p). (78)

The final bias corrected estimator is

f̂k =
k−1∑
i=0

1
ni

ti(p̂n). (79)

Construction 1 may be intuitively understood as the iter-
ative generalization of the order one Taylor series bias cor-
rection (76). Indeed, after we conduct the first order bias
correction and obtain

f̂2 = f(p̂n) − T1[f ](p̂)
n

(80)

= t0(p̂n) +
t1(p̂n)

n
, (81)

we apply Lemma 3 to the function t0 + t1
n and obtain the

expansion up to order 1
n2 as

t0(p) +
t1(p)

n
+

T1[t0](p)
n

+
T2[t0](p)

n2
+

T1[t1](p)
n2

= t0(p) +
T2[t0](p)

n2
+

T1[t1](p)
n2

, (82)

where we used the definition of t1 = −T1[t0]. It naturally
leads to the further correction

t2(p) = −T2[t0](p) − T1[t1](p). (83)

One can repeat this process to obtain the formula in
Construction 1.

Now we prove that the estimator f̂k in Construction 1
achieves bias of order O(n−k) if the original function f
satisfies condition Ds with s = 2k. It can be viewed as one
concrete example of [7].
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Theorem 9: Suppose f : [0, 1] �→ R satisfies condition
Ds with parameter L, and s = 2k, k ≥ 1, k ∈ Z. Then,
the estimator in Construction 1 satisfies

‖Ep[f̂k] − f(p)‖ �k,L
1
nk

. (84)

2) Sample Splitting Correction: This method was proposed
in [42]. It aims at solving one disadvantage of Construction 1,
which is that the bias correction formula for higher orders
may not be easy to manipulate since it is defined through a
recursive formula. The sampling splitting correction method
provides an explicit bias correction formula which is easy to
analyze with transparent proofs, but the disadvantage it has is
that it only applies to certain statistical models.

The intuition of the sample splitting correction method is
the following, which is taken from [42]. Suppose f satisfies
condition D2k with parameter L. Instead of doing Taylor
expansion of f(p̂n) near p, we employ Taylor expansion of
f(p) near p̂n:

f(p) ≈
2k−1∑
i=0

f (i)(p̂n)
i!

(p − p̂n)i. (85)

Now, f (i)(p̂n) is by definition an unbiased estimator for
Ep[f (i)(p̂n)]. However, the unknown p in the right hand side
still prevents us from using this estimator explicitly. Fortu-
nately, this difficulty can be overcome by the standard sample
splitting approach: we split samples to obtain independent p̂

(1)
n

and p̂
(2)
n , both of which follow the same class of distribution

(with possibly different parameters) as p̂n. We remark that
sample splitting can be employed for divisible distributions,
including multinomial, Poisson and Gaussian models [43].
Now our bias-corrected estimator is

f̂k =
2k−1∑
i=0

f (i)(p̂(1)n )
i!

i∑
j=0

(
i

j

)
Sj(p̂(2)n )(−p̂(1)n )i−j (86)

where Sj(p̂
(2)
n ) is an unbiased estimator of pj (which usually

exists when sample splitting is doable). Now it is straightfor-
ward to show that

E[f̂k] − f(p) = Ep

[
2k−1∑
i=0

f (i)(p̂(1)n )
i!

(p − p̂(1)n )i − f(p)

]

(87)

� Ep

∣∣∣∣‖f (2k)‖
(2k)!

(p̂(1)n − p)2k

∣∣∣∣ (88)

�k,L
1
nk

, (89)

where in the last step we used the property of the binomial
distribution in Lemma 15.

The rest of the paper is organized as follows. Section II
discusses the key proof ingredients of the results pertaining to
jackknife bias correction. The proofs of main results on boot-
strap bias correction are provided in Section III. Appendix A
reviews the K-functional approach for bias analysis. Appen-
dix B collects auxiliary lemmas used throughout this paper.
Proofs of the rest of the theorems and lemmas in the main text
are provided in Appendix C, and the proofs of the auxiliary
lemmas are presented in Appendix D.

II. JACKKNIFE BIAS CORRECTION

A. Theorem 3

We first present the proof of Theorem 3. We explain the
roadmap below, and the key lemmas used in roadmap are
proved in Appendix C.

The first step to analyze the general r-jackknife for func-
tions f satisfying the Condition Ds in Condition 2 is to use
Taylor expansions. It is reflected in Lemma 4.

Lemma 4: Suppose f satisfies Condition 2 for fixed s ≥ 1
with parameter L. Then, for the general r-jackknife estimator
with fixed r ≥ 1 in Definition 2,

|Epf̂r − f(p)| �r,s,L n−r

+
∫ 1

p

∣∣∣∣∣
r∑

i=1

CiEp(p̂ni − t)s−1
+

∣∣∣∣∣ dt

+
∫ p

0

∣∣∣∣∣
r∑

i=1

CiEp(p̂ni − t)s−1
−

∣∣∣∣∣ dt. (90)

Here the coefficients {Ci}1≤i≤r are given in Definition 2.

Lemma 4 shows that it suffices to analyze the behavior of
the quantities

∑r
i=1 CiEp(p̂ni − t)s−1

+ and
∑r

i=1 CiEp(p̂ni −
t)s−1

− . These quantities can be viewed as divided differences
(see (36)), and to analyze the worst case we analyze the
following backward difference sequences.

For t ≥ p, u ≥ 0, s ≥ 0, define

An,u(t) = Ep(p̂n − t)u
+ (91)

and consider its s-backward difference defined as

∆sAn,u(t) �
s∑

k=0

(−1)k

(
s

k

)
An−k,u(t). (92)

We have

Lemma 5: For s, u ≥ 0, t ≥ p and n ≥ 2s, if p ≤ 1
n ,

|∆sAn,u(t)| ≤c1 ·
(

n−(u+s−1)p + n−upu∧1(
1√
nt

∧ 1)
)

· exp(−c2nt); (93)

if 1
n < p ≤ 1

2 ,

|∆sAn,u(t)| ≤c1 ·
(

n−(u
2 +s)p

u
2 + n−upu∧1(

1√
nt

∧ 1)
)

· exp(−c2n(t − p)2

t
); (94)

if 1
2 < p ≤ 1 − 1

n ,

|∆sAn,u(t)| ≤c1 ·
(
n−(u

2 +s)(1 − p)
u
2 + n−u(1 − p)u∧1

· ( 1√
n(1 − t)

∧ 1)
)
· exp(−c2n(t − p)2

1 − p
),

(95)

where the universal constants c1, c2 > 0 only depend
on u, s (not on n or p). Moreover, if t > 1 − 1

n , we have

|∆sAn,u(t)| ≤ c1(1 − t)u(1 − p)spn−s. (96)
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Note that in Lemma 5, the case where p > 1 − 1
n has

already been included in the case t > 1− 1
n , for t ≥ p. Hence,

Lemma 5 has completely characterized an upper bound on the
dependence of |∆sAn,u(t)| on all n, p and t. By symmetry,
we have the following corollary regarding

A−
n,u(t) � Ep(p̂n − t)u

−. (97)

Corollary 3: For s, u ≥ 0, t ≤ p and n ≥ 2s, if p ≥ 1− 1
n ,

|∆sA−
n,u(t)| ≤c1 ·

(
n−(u+s−1)(1 − p) + n−u(1 − p)u∧1

· ( 1√
n(1 − t)

∧ 1)

)
· exp(−c2n(1 − t));

(98)

if 1
2 ≤ p ≤ 1 − 1

n ,

|∆sA−
n,u(t)| ≤c1 ·

(
n−(u

2 +s)(1 − p)
u
2 + n−u(1 − p)u∧1

· ( 1√
n(1 − t)

∧ 1)

)
· exp(−c2n(t − p)2

1 − t
);

(99)

if 1
n ≤ p < 1

2 ,

|∆sA−
n,u(t)| ≤c1 ·

(
n−(u

2 +s)p
u
2 + n−upu∧1(

1√
nt

∧ 1)
)

· exp(−c2n(t − p)2

p
);

(100)

where the universal constants c1, c2 > 0 only depend
on u, s (not on n or p). Moreover, if t < 1

n , we have

|∆sAn,u(t)| ≤ c1t
ups(1 − p)n−s. (101)

Furthermore, in most cases we do not need the dependence
on p, and Lemma 5 implies the following corollary.

Corollary 4: For s, u ≥ 0, t ≥ p ≥ t′ and n ≥ 2s, we have

|∆sAn,u(t)| ≤ c1
(
n−(u

2 +s) exp(−c2n(t − p)2)

+ n−(u+ 1
2 ) · 1√

t + n−1
exp(−c2n(t − p)2

t
)
)

(102)

|∆sA−
n,u(t′)| ≤ c1

(
n−(u

2 +s) exp(−c2n(t′ − p)2)

+ n−(u+ 1
2 ) · 1√

1 − t′ + n−1
exp(−c2n(t′ − p)2

1 − t
)
)
(103)

where the universal constants c1, c2 > 0 only depend on u, s
(not on n or p).

Now we can start the proof of Theorem 3. Proof:
[Proof of Theorem 3] We split into three cases. When s = 0,

we use the triangle inequality to conclude that

|Epf̂r(p̂n) − f(p)| =

∣∣∣∣∣
r∑

i=1

CiEpf(p̂ni) − f(p)

∣∣∣∣∣ (104)

≤ (
r∑

i=1

|Ci| + 1)‖f‖ (105)

�L nr−1. (106)

For 1 ≤ s ≤ 2r, it follows from Lemma 4 that

|Epf̂r(p̂n) − f(p)|

�r,s,Ln−r +
∫ 1

p

∣∣∣∣∣
r∑

i=1

CiEp(p̂ni − t)s−1
+

∣∣∣∣∣ dt

+
∫ p

0

∣∣∣∣∣
r∑

i=1

CiEp(p̂ni − t)s−1
−

∣∣∣∣∣ dt. (107)

For t ≥ p, it follows from Corollary 4 that there exist
universal constants c1, c2 depending on r, s only such that

|∆uAn,s−1(t)| ≤ c1(
1√

t + n−1
e−

c2n(t−p)2

t + e−c2n(t−p)2)

·
{

n−( s−1
2 +u) if 0 ≤ u ≤ � s

2�,
n−(s− 1

2 ) if u ≥ � s
2�.

(108)

Now define

Bn,r,s(t) = nr−1An,s(t). (109)

By the product rule of backward difference we obtain

|∆r−1Bn,r,s(t)|
�r,s

∑
0≤i,j≤r−1,i+j≥r−1

|∆inr−1| · |∆jAn,s(t)| (110)

�r,s

∑
0≤i,j≤r−1,i+j≥r−1

nr−1−i · ( 1√
t + n−1

e−
c2n(t−p)2

t

+ e−c2n(t−p)2) · n−min{ s−1
2 +j,s− 1

2} (111)

�r,s(
1√

t + n−1
e−

c2n(t−p)2

t + e−c2n(t−p)2)

· n−min{ s−1
2 ,s−r+ 1

2}. (112)

As a result of Lemma 11,∣∣∣∣∣
r∑

i=1

CiEp(p̂ni − t)s−1
+

∣∣∣∣∣
=

∣∣∣∣∣
r∑

i=1

CiAni,s−1(t)

∣∣∣∣∣ (113)

= |B·,r,s[n1, · · · , nr](t)| (114)

≤ 1
(r − 1)!

max
m∈[n1,nr]

|∆rBm,r,s(t)| (115)

�r,s (
1√

t + n−1
e−

c2n(t−p)2

t + e−c2n(t−p)2)

· n−min{ s−1
2 ,s−r+ 1

2}. (116)
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Using this inequality, finally we arrive at∫ 1

p

∣∣∣∣∣
r∑

i=1

CiEp(p̂ni − t)s−1
+

∣∣∣∣∣ dt

�r,s

∫ 1

p

(
1√

t + n−1
e−

c2n(t−p)2

t + e−c2n(t−p)2)

· n−min{ s−1
2 ,s−r+ 1

2}dt (117)

≤ n−min{ s−1
2 ,s−r+ 1

2}
( ∫ ∞

0

1√
u + p + n−1

· e− c2nu2

u+p du +
∫ ∞

0

e−c2nu2
du
)

(118)

≤ n−min{ s−1
2 ,s−r+ 1

2}
( ∫ p

0

1√
p
e−

c2nu2

2p du

+
∫ ∞

p

√
ne−

c2nu
2 du +

∫ ∞

0

e−c2nu2
du
)

(119)

≤ n−min{ s−1
2 ,s−r+ 1

2}
( 1√

p

∫ ∞

0

e−
c2nu2

2p du

+
√

n

∫ ∞

0

e−
c2nu

2 du +
∫ ∞

0

e−c2nu2
du
)

(120)

�r,s n−min{ s
2 ,s−r+1} (121)

as desired. The remaining part can be dealt with analogously.
When s ≥ 2r, the desired result follows from applying

Lemma 4 with s = 2r. �

B. Theorem 4

We consider the case where s > 0 and s ≤ 2r − 3.
To come up with an example which matches the upper bound
in Theorem 3, we first need to prove a “converse” of Lemma 5.
Recall that for t ≥ p,

An,u(t) = Ep(p̂n − t)u
+. (122)

Lemma 6: For any 0 ≤ u ≤ 2(s − 1), there exists some
p0 > 0 such that for any 0 < p < min{p0, 1

4s} and any
n ≥ 1

p2 , whenever t ∈ [p, p + 1√
n
] satisfies

1) k
n−s+1 < t < k−p

n−s for some k ∈ N if u < s;
2) k

n−s < t < k+p
n−s for some k ∈ N if u ≥ s,

we have

|∆sAn,u(t)| ≥ cn−(u+ 1
2 ) (123)

where c > 0 is a universal constant which only depends on
u, s and p.

Now we start the proof of Theorem 4. The basic idea of the
proof is to construct functions f such that Lemma 4 is nearly
tight. Proof: [Proof of Theorem 4] Pick an arbitrary p > 0
which satisfies Lemma 6, and we define

g(t) = sign

(
r∑

i=1

CiEp(p̂ni − t)s−1
+

)
· �(t ≥ p). (124)

Note that g is not continuous, but we can find some h ∈ C[0, 1]
such that ‖g−h‖1 ≤ n−2r. Now choose any f with f (s) = h
, we know that f ∈ Cs[0, 1], and the norm conditions are
satisfied under proper scaling.

It follows from Lemma 4 that

|Epf̂r(p̂n) − f(p)|

�O(n−r) +
∫ 1

p

h(t)

(
r∑

i=1

CiEp(p̂ni − t)s−1
+

)
dt

+
∫ p

0

h(t)

(
r∑

i=1

CiEp(p̂ni − t)s−1
−

)
dt (125)

=O(n−r) +
∫ 1

0

g(t)

(
r∑

i=1

CiEp(p̂ni − t)s−1
+

)
dt

+ O(‖g − h‖1) ·
r∑

i=1

|Ci| (126)

=O(n−r) +
∫ 1

p

∣∣∣∣∣
r∑

i=1

CiEp(p̂ni − t)s−1
+

∣∣∣∣∣ dt (127)

=o(nr−1−s) +
∫ 1

p

∣∣∣∣∣
r∑

i=1

CiAni,s−1(t)

∣∣∣∣∣ dt (128)

≥o(nr−1−s) +
∫

G

∣∣∣∣∣
r∑

i=1

CiAni,s−1(t)

∣∣∣∣∣ dt (129)

where G ⊂ [p, p+ 1√
n
] is the set of all “good” t’s which satisfy

the condition of Lemma 6. It’s easy to see

m(G) � n− 1
2 (130)

where m(·) denotes the Lebesgue measure. Moreover, by our
choice of delete-1 jackknife, for t ∈ G we have∣∣∣∣∣

r∑
i=1

CiAni,s−1(t)

∣∣∣∣∣
=
∣∣∆r−1(nr−1An,s−1(t))

∣∣ (131)

�nr−1|∆r−1An,s−1(t)|
−

∑
1≤i≤r−1,0≤j≤r−1,i+j≥r−1

|∆inr−1| · |∆jAn,s−1(t)|

(132)

�nr−1−(s− 1
2 ) −

∑
1≤i≤r−1,0≤j≤r−1,

i+j≥r−1

nr−1−i−min{ s−1
2 +j,s− 1

2}

(133)

�nr−s− 1
2 (134)

where we have used Lemma 5, Lemma 6 and the assumption
that 0 ≤ s − 1 ≤ 2(r − 2). As a result, we conclude that

|Epf̂r(p̂n) − f(p)|

�o(nr−1−s) +
∫

G

∣∣∣∣∣
r∑

i=1

CiAni,s−1(t)

∣∣∣∣∣ dt (135)

�o(nr−1−s) + m(G) · nr−s− 1
2 (136)

�nr−s−1 (137)

as desired. �
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C. Theorem 6

The following lemma characterizes the difference
Epf(p̂n) − Epf(p̂n−1) for certain functions.

Lemma 7: [44] Suppose f(p) = −p ln p, p ∈ [0, 1]. Then,

0 ≤ Epf(p̂n) − Epf(p̂n−1) ≤ 1−pn − (1 − p)n

n(n − 1)
. (138)

Suppose f(p) = pα, p ∈ [0, 1], 0 < α < 1. Then,

0 ≤Epf(p̂n) − Epf(p̂n−1)

≤(1 − α)(1 − pn − (1 − p)n)
n(n − 1)α

. (139)

The next lemma characterizes the lower bound for the bias
of the jackknife estimate f̂2.

Lemma 8: Suppose f̂2 is the delete-1 2-jackknife. Then,

1) for f(p) = −p ln p,

‖Epf̂2 − f(p)‖ � 1
n

. (140)

2) for f(p) = pα, 0 < α < 1,

‖Epf̂2 − f(p)‖ � 1
nα

. (141)

Suppose f̂2 is a 2-jackknife that satisfies Condition 1. Then,

1) for f(p) = −p ln p,

‖Epf̂2 − f(p)‖ � 1
n

. (142)

2) for f(p) = pα, 0 < α < 1,

‖Epf̂2 − f(p)‖ � 1
nα

. (143)

Now we can start the proof of Theorem 6. Proof:
[Proof of Theorem 6] The lower bounds follow from Lemma 8.
Now we prove the upper bounds.

For a general 2-jackknife and general function f , we have

Ep[f̂2] − f(p) =
n1

n1 − n2
(Ep[f(p̂n1)] − f(p))

+
n2

n2 − n1
(Ep[f(p̂n2)] − f(p)) . (144)

Define Hn = Ep[f(p̂n)] − f(p). Then,

Ep[f̂2] − f(p) =
n2Hn2 − n1Hn1

n2 − n1
(145)

= Hn2 +
n1

n2 − n1
(Hn2 − Hn1) . (146)

For any f ∈ C[0, 1], we have limn→∞ Hn = 0, which
implies

Hn2 = Hn2 − H∞ (147)

=
∞∑

j=n2

(Hj − Hj+1) (148)

and

Hn2 − Hn1 =
n2∑

j=n1+1

(Hj − Hj−1) (149)

It follows from Lemma 8 that for f(p) = −p ln p, 0 ≤ Hj −
Hj−1 � 1

j2 . Hence,

‖Ep[f̂2] − f(p)‖ �
∞∑

j=n2

1
j2

+
n1

n2 − n1
·

 n2∑

j=n1+1

1
j2



(150)

� 1
n2

+
n1

n2 − n1

(
1
n1

− 1
n2

)
(151)

� 1
n2

(152)

� 1
n

, (153)

where in the last step we used Definition 2.
The case of f(p) = pα, 0 < α < 1 can be proved

analogously.
�

III. BOOTSTRAP BIAS CORRECTION

A. Theorem 7

Define the Bernstein operator Bn : C[0, 1] �→ C[0, 1] as

Bn[f ](p) =
n∑

i=0

f

(
i

n

)(
n

i

)
pi(1 − p)n−i. (154)

Theorem 7 can be proved using the eigenstructure of the
Bernstein operator [45]. We give a concrete proof as follows.

It was shown in [46] that the Bernstein operator Bn[f ]
admits a clean eigenstructure. Concretely, it has n+1 linearly
independent eigenfunctions p

(n)
k , 0 ≤ k ≤ n, which are

polynomials with order k, with k simple zeros on [0, 1].
The corresponding eigenvalues are λ

(n)
k = 1

nk
n!

(n−k)! . The
Bernstein operator is also degree reducing in the sense that
it maps a k-degree polynomial to another polynomial with
degree no more than k.

Decomposing f(p) as f(p) = Ln[f ](p) + g(p). It follows
the definition of Ln[f ] that g(i/n) = 0, 0 ≤ i ≤ n. Hence,
Bn[g] ≡ 0.

Since Ln[f ](p) is a polynomial with degree no more than n,
it admits a unique expansion

Ln[f ](p) =
n∑

k=0

akp
(n)
k . (155)

Applying I − Bn on the decomposition of f , we have

(I − Bn)[f ] = f − Bn[f ] (156)

=
n∑

k=0

akp
(n)
k + g −

n∑
k=0

akλ
(n)
k p

(n)
k (157)

=
n∑

k=0

ak(1 − λ
(n)
k )p(n)k + g (158)

It follows by induction that

em(p) =
n∑

k=0

ak(1 − λ
(n)
k )mp

(n)
k + g (159)
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We have

sup
p

|em(p) − g| ≤
n∑

k=0

(1 − λ
(n)
k )m|ak| sup

p
|p(n)k | (160)

→ 0 as m → ∞. (161)

Note that λ
(n)
k = 1 · (1 − 1

n

)
. . .

(
1 − k−1

n

)
, k ≥ 2, and

λ
(n)
k = 1 when k = 0, 1. Hence, the smallest λ

(n)
k , which is

the slowest to vanish corresponds to k = n. Since

λ(n)
n =

n!
nn

≈
√

2πn

en
, (162)

it takes m � en√
n

rounds of iteration to make (1 − λ
(n)
n )m

vanish, which is a prohibitively large number in practice.

APPENDIX A
THE K -FUNCTIONAL APPROACH TO BIAS ANALYSIS

We introduce the r-th modulus of smoothness of a function
f : [0, 1] �→ R as

ωr(f, t) = sup
0<h≤t

‖∆r
hf‖, (163)

where ∆r
hf is defined in (10). The r-th Ditzian–Totik modulus

of smoothness of a function f : [0, 1] �→ R is defined in (11).
Intuitively, the smoother the function is, the smaller is

its moduli of smoothness. For f ∈ C[0, 1], we define the
K-functional Kr(f, tr) as follows:

Kr(f, tr) = inf
g
{‖f − g‖ + tr‖g(r)‖ :

g(r−1) ∈ A.C.loc}, (164)

and the K-functional Kr,ϕ(f, tr) as

Kr,ϕ(f, tr) = inf
g
{‖f − g‖ + tr‖ϕrg(r)‖ :

g(r−1) ∈ A.C.loc}, (165)

where g(r−1) ∈ A.C.loc means that g is r − 1 times differ-
entiable and g(r−1) is absolutely continuous in every closed
finite interval [c, d] ⊂ (0, 1).

The remarkable fact is, the K-functionals are equivalent
to the corresponding moduli of smoothness for any function
f ∈ C[0, 1]. Concretely, we have the following lemma:

Lemma 9: [32, Chap. 6, Thm. 2.4, Thm. 6.2] [29, Thm.
2.1.1.] There exist constants c1 > 0, c2 > 0 which depend
only on r such that for all f ∈ C[0, 1],

c1ω
r(f, t) ≤ Kr(f, tr) ≤ c2ω

r(f, t) for all t > 0 (166)

c1ω
r
ϕ(f, t) ≤ Kr,ϕ(f, tr) ≤ c2ω

r
ϕ(f, t) for all t ≤ t0,

(167)

where t0 > 0 is a constant that only depends on r.

We emphasize that the K-functionals and moduli of smooth-
ness introduced here are tailored for the interval [0, 1] and
the supremum norm, which can be generalized to general
finite intervals and infinite intervals, and Lp norms. The
corresponding equivalence results also hold in those settings.
We refer the interested readers to [32, Chap. 6] and [29,
Chap. 2] for details. For other use of K-functionals in statistics

and machine learning, we refer the readers to the theory of
Besov spaces as interpolation spaces [48] and distribution
testing [49].

Now we illustrate the K-functional approach to bias analy-
sis, which is well known in the approximation theory litera-
ture, see, e.g. [50]. Suppose X is a random variable taking
values in [0, 1], and we would like to bound the quantity
|E[f(X)]− f(E[X ])| for any f ∈ C[0, 1]. Clearly, f may not
be differentiable, so we introduce another function g ∈ C[0, 1]
such that g(1) ∈ A.C.loc. We proceed as follows:

|E[f(X)] − f(E[X ])|
=|E[f(X) − g(X) + g(X) − g(EX)

+ g(EX) − f(EX)
]| (168)

≤2‖f − g‖ + |E[g(X) − g(EX)]| (169)

≤2‖f − g‖ +
1
2
‖g′′‖Var(X) (170)

=2
(‖f − g‖ + t2‖g′′‖) , (171)

where t2 = Var(X)
4 . Since g(1) ∈ A.C.loc is arbitrary, we know

|E[f(X)] − f(E[X ])| ≤ 2 inf
g

{‖f − g‖ + t2‖g′′‖} (172)

= 2 K2(f, t2) (173)

= 2 K2

(
f,

Var(X)
4

)
(174)

≤ 2c2ω
2

(
f,

√
Var(X)

2

)
, (175)

where the constant c2 is introduced in Lemma 9.
It was shown in [32, Chap. 2, Sec. 9, Example 1] that if

f(x) = x ln x, x ∈ [0, 1], then ω2(f, t) ≤ 2(ln 2)t. Hence,
we have shown that for any random variable X ∈ [0, 1],

|E[X ln X ] − E[X ] ln(E[X ])| �
√

Var(X). (176)

Specializing to the case where X = p̂n, where n · p̂n ∼
B(n, p), we have proved that for f(p) = −p ln p, we have

|E[f(p̂n)] − p ln p| �
√

p(1 − p)
n

. (177)

The upper bound
√

p(1−p)
n is a pointwise bound that

becomes smaller when p is close to 0 or 1. When p lies in
the middle of the interval [0, 1], say p ≈ 1

2 , the bound is of
scale 1√

n
. We now show that using the K-functional Kr,ϕ

instead of Kr results in a better uniform bound in this case,
which is of order 1

n . 5

5One remarkable fact is that, the K-functional approach with Kr,ϕ in bias
analysis provides the tight norm bound for any f ∈ C[0, 1] under the binomial
model [51].
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For any f ∈ C[0, 1], n · p̂n ∼ B(n, p), and any g ∈ C[0, 1]
such that g(1) ∈ A.C.loc, we have

|Ep[f(p̂n)] − f(p)|
≤|Ep[f(p̂n) − g(p̂n) + g(p̂n) − g(p) + g(p) − f(p)| (178)

=2‖f − g‖ + |Epg(p̂n) − g(p)| (179)

=2‖f − g‖ +

∣∣∣∣∣Ep

[
g′(p)(p̂n − p)

+
∫ p̂n

p

(p̂n − t)g′′(t)dt
]∣∣∣∣∣ (180)

=2‖f − g‖ +

∣∣∣∣∣Ep

[∫ p̂n

p

(p̂n − t)g′′(t)dt

]∣∣∣∣∣ (181)

≤2‖f − g‖ + Ep

∣∣∣∣∣
∫ p̂n

p

∣∣∣∣ p̂n − t

t(1 − t)

∣∣∣∣ · |t(1 − t)g′′(t)| dt

∣∣∣∣∣
(182)

=2‖f − g‖ + Ep

∣∣∣∣∣
∫ p̂n

p

|p̂n − p|
p(1 − p)

|t(1 − t)g′′(t)|dt

∣∣∣∣∣ (183)

≤2‖f − g‖ + ‖ϕ2 g′′‖Ep

∣∣∣∣(p̂n − p)2

p(1 − p)

∣∣∣∣ (184)

≤2‖f − g‖ + ‖ϕ2g′′‖ 1
n

, (185)

where ϕ(t) =
√

t(1 − t), and we used the elementary inequal-
ity that |p̂n−t|

t(1−t) ≤ |p̂n−p|
p(1−p) for any t between p and p̂n. Taking

the infimum over all g, we have

|Ep[f(p̂n)] − f(p)| ≤ 2Kr,ϕ(f,
1
2n

) (186)

� ω2
ϕ(f,

1√
2n

). (187)

It follows from [30] that for f(p) = −p ln p, ω2
ϕ(f, t) � t2,

which implies that

|Ep[p̂n ln p̂n] − p ln p| � 1
n

. (188)

The functional Ent(X) � E[X ln X ] − E[X ] ln(E[X ]),
which is also called entropy, plays a crucial role in the theory
of concentration inequalities. Concretely, the Herbst argu-
ment [52] shows that if Ent(eλf(X)) ≤ λ2

2 E[eλf(X)], we have
sub-Gaussian type concentration P (f(X) − E[f(X)] ≥ t) ≤
e−t2/2. Due to the significance of the functional Ent(X),
we now present a theorem providing upper and lower bounds
of Ent(X). The key idea in the following proof is to relate
the Ent(X) functional to the KL divergence, whose functional
inequalities have been well studied in the literature. Conceiv-
ably, they are stronger bounds than those obtained using the
general K-functional approach (Lemma 17 in Appendix B).

Theorem 10: Suppose X is a non-negative random variable.
Denote Ent(X) = E[X ln X ] − E[X ] ln(E[X ]). Then,

Ent(X) ≤ E[X ] ln
(

1 +
Var(X)
(E[X ])2

)
≤
√
Var(X) (189)

Ent(X) ≥ 2
(
E[X ] −

√
E[X ]E[

√
X ]

)
≥ Var(

√
X) (190)

Ent(X) ≥ 1
2
E[X ]

(
E

∣∣∣∣ X

E[X ]
− 1

∣∣∣∣
)2

. (191)

Remark 6: It was shown in [53] that Ent(X) ≥ Var(
√

X).
Theorem 10 strengthens [53].

Proof: Without loss of generality we assume E[X ] > 0.
Then, we have

Ent(X) = E

[
X ln

X

E[X ]

]
(192)

= E[X ] · E
[

X

E[X ]
ln

X

E[X ]

]
(193)

(194)

Denote the distribution of X as Q, and introduce a new
probability measure P via the Radon–Nikodym derivative

dP

dQ
=

X

E[X ]
, (195)

we have

Ent(X) = EQ[X ]EQ

[
dP

dQ
ln

dP

dQ

]
(196)

= EQ[X ] · D(P, Q), (197)

where D(P, Q) is the KL divergence between P and Q.
Applying Lemma 18 in Appendix B, we have

Ent(X) ≤ EQ[X ] · ln
(
EQ

(
X

EQ[X ]

)2
)

(198)

= E[X ] · ln
(

1 +
Var(X)
(E[X ])2

)
, (199)

where in the last step we used the fact that Var(X) = E[X2]−
(E[X ])2. Using the fact that supx≥0

ln(1+x)√
x

< 1, we have

Ent(X) ≤
√

Var(X). (200)

Now we prove the lower bounds. Applying the Hellinger
distance part of Lemma 18 in Appendix B, we have

Ent(X) ≥ EQ[X ] · H2(P, Q) (201)

= EQ[X ] · EQ

(√
X

EQ[X ]
− 1

)2

(202)

≥ 2
(
EQ[X ] −

√
EQ[X ]EQ[

√
X]

)
(203)

≥ EQ[X ] − (EQ[
√

X ])2 (204)

= Var(
√

X). (205)

Here in the last inequality we used the fact that E[X ] +
(E[

√
X])2 − 2

√
E[X ]E[

√
X] ≥ 0.

Applying the total variation distance part of Lemma 18 in
Appendix B, we have

Ent(X) ≥ EQ[X ] · 2V 2(P, Q) (206)

=
1
2
EQ[X ] ·

(
EQ

∣∣∣∣ X

EQ[X ]
− 1

∣∣∣∣
)2

. (207)

�
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APPENDIX B
AUXILIARY LEMMAS

Lemma 10 (Mean Value Theorem for Divided Difference):
Suppose the function f is n − 1 times differentiable in the
interval determined by the smallest and the largest of the xi’s,
we have

f [x1, x2, . . . , xn] =
f (n−1)(ξ)
(n − 1)!

, (208)

where ξ is in the open interval (mini xi, maxi xi), and
f [x1, x2, . . . , xn] is the divided difference in Definition 3.

The following lemma which is closely related to the mean
value theorem for divided differences in the continuous case.

Lemma 11: For integers x0 < x1 < · · · < xr and any
function f defined on Z, the following holds:

|f [x0, · · · , xr]| ≤ 1
r!

max
x∈[x0,xr]

|∆rf(x)|. (209)

Here ∆rf(x) denotes the r-th order backward difference of f ,
which is defined as

∆rf(x) �
r∑

k=0

(−1)k

(
r

k

)
f(x − k). (210)

Lemma 12: Suppose one observes X ∼ B(n, p). Then,
the r-jackknife estimator with n1 = n − 1, n2 = n, r = 2
in estimating f(p) in (16) can be represented as

f̂2 = nf

(
X

n

)
− n − 1

n

(
(n − X)f

(
X

n − 1

)

+ Xf

(
X − 1
n − 1

))
, (211)

where one conveniently sets f(x) = 0 if x < 0.

Lemma 13: Let r ≥ 2. Then, for the coefficients given
in (17), we have the following.

1) If ρ = 0, then
r∑

i=1

Ci

nρ
i

= 1. (212)

2) If 1 ≤ ρ ≤ r − 1, then
r∑

i=1

Ci

nρ
i

= 0. (213)

3) If ρ ≥ r, then∣∣∣∣∣
r∑

i=1

Ci

nρ
i

∣∣∣∣∣ ≤
∣∣∣∣∣
r−2∏
s=0

(r − 1 − ρ − s)

∣∣∣∣∣ 1
(r − 1)!

1
nρ
1

(214)

≤ (ρ − 1)r−1

(r − 1)!
1
nρ
1

. (215)

Define Tn,s(p) = ns
Ep(p̂n−p)s, n = 1, 2, . . . , s = 0, 1, . . ..

We have Tn,0 = 1, Tn,1 = 0. Upon observing the recurrence
relation

Tn,s+1(x) = x(1 − x)
(
T ′

n,s(x) + nsTn,s−1(x)
)
, (216)

one obtains the following result.

Lemma 14: [32, Chapter 10, Theorem 1.1.] For a fixed
s = 0, 1, . . ., Tn,s(p) is a polynomial in p of degree ≤ s, and
in n of degree �s/2�. Moreover, for ϕ2 = p(1 − p), we have

Tn,2s(p) =
s∑

j=1

aj,s(ϕ2)njϕ2j (217)

Tn,2s+1(p) = (1 − 2p)
s∑

j=1

bj,s(ϕ2)njϕ2j , (218)

where aj,s, bj,s are polynomials of degree ≤ s − j, with
coefficients independent of n.

Lemma 15: The central moments of p̂n where n · p̂n ∼
B(n, p) satisfy the following:

ns
Ep(p̂n − p)s =

�s/2
∑
j=1

hj,s(p)nj , (219)

where

‖hj,s(p)‖ ≤ (4es)s

j!
. (220)

Lemma 16 (Chernoff Bound): [54] Let X1, X2, . . . , Xn

be independent {0, 1} valued random variables with P(Xi =
1) = pi. Denote X =

∑n
i=1 Xi, µ = E[X ]. Then,

P(X ≤ (1 − β)µ) ≤ e−β2µ/2 0 < β ≤ 1 (221)

P(X ≥ (1 + β)µ) ≤

e−

β2µ
2+β ≤ e−

βµ
3 β > 1

e−
β2µ
3 0 < β ≤ 1

(222)

Lemma 17: [44] For any continuous function f : R �→ R

and any random variable X taking values in R, we have

|E[f(X)] − f(E[X ])| ≤ 3 · ω2

(
f,

√
Var(X)

2

)
. (223)

If f is only defined on an interval [a, b] that is a strict
subset of R, the result holds with the constant 3 replaced
by 15. Here ωr(f, t) � sup0<h≤t ‖∆r

hf‖, where ∆r
hf(x) =∑r

k=0(−1)k
(

r
k

)
f(x + r(h/2) − kh), and ∆r

hf(x) = 0 if
x + rh/2 or x − rh/2 is not inside the domain of f .

Lemma 18: [55, Section 2.4] Suppose P, Q are both
probability measures, and P � Q. Introduce the following
divergence functionals:

1) Total variation distance:

V (P, Q) =
1
2
EQ

∣∣∣∣dP

dQ
− 1

∣∣∣∣ ; (224)

2) Hellinger distance:

H(P, Q) =


EQ

(√
dP

dQ
− 1

)2



1/2

; (225)

3) Kullback–Leibler (KL) divergence:

D(P, Q) = EQ

(
dP

dQ
ln

dP

dQ

)
; (226)
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4) χ2 divergence:

χ2(P, Q) = EQ

(
dP

dQ
− 1

)2

(227)

= EQ

(
dP

dQ

)2

− 1. (228)

Then, we have the following upper and lower bounds on the
KL divergence:

D(P, Q) ≤ ln
(
1 + χ2(P, Q)

)
(229)

D(P, Q) ≥ 2V 2(P, Q) (230)

D(P, Q) ≥ H2(P, Q). (231)

APPENDIX C
PROOFS OF MAIN THEOREMS AND LEMMAS

A. Proof of Theorem 1

Recognizing Epf̂r as linear combination of operators,
the first and second parts of Theorem 1 follow from [29, The-
orem 9.3.2.], the third part follows from [29, Corollary 9.3.8.],
and the last part follows from [51].

B. Proof of Theorem 2

Define f ∈ C(0, 1] to be the piecewise linear interpola-

tion function at nodes
{(

m−1, 1+(−1)m

2

)
, m ∈ N+

}
. Clearly

f(m−1) = 1 when m is even, f(m−1) = 0 when m is odd,
and ‖f‖ ≤ 1. We set f(0) = 0.

We have

|Epf̂r − f(p)|

=

∣∣∣∣∣
r∑

i=1

CiEpf(p̂n+i−r) − f(p)

∣∣∣∣∣ (232)

≥
∣∣∣∣∣

∑
n+i−r is even

CiEpf(p̂n+i−r)

∣∣∣∣∣
−
∣∣∣∣∣

∑
n+i−r is odd

CiEpf(p̂n+i−r)

∣∣∣∣∣− |f(p)| (233)

≥
∑

n+i−r is even

|Ci|Epf(p̂n+i−r)

−
∑

n+i−r is odd

|Ci|Epf(p̂n+i−r) − 1 (234)

where in the last step we have used the fact that C1, · · · , Cr

have alternating signs, and f ≥ 0.
When n + i − r is even and p = n−1,

Epf(p̂n+i−r) ≥ f

(
1

n + i − r

)
· P(B(n + i − r, p) = 1)

(235)

= (n + i − r)p (1 − p)n+i−r−1 (236)

≥ 1
e
(1 − o(1)). (237)

When n + i − r is odd and p = n−1, noting that f(0) =
f
(

1
n+i−r

)
= 0, we have

Epf(p̂n+i−r) ≤ ‖f‖ · P(B(n + i − r, p) ≥ 2) (238)

≤
(

1 − 2
e

)
(1 + o(1)). (239)

Since
∑r

i=1 Ci = 1, we have
∑

n+i−r is odd |Ci| = (1 +
o(1))

∑
n+i−r is even |Ci| � nr−1. Combining these together,

we arrive at

|Epf̂r − f(p)| �
∑

n+i−r is even

|Ci|
(

1
e
−
(

1 − 2
e

)
− o(1)

)
(240)

� nr−1. (241)

which completes the proof of the first claim.
As for the second claim, it suffices to replace the function f

on interval [0, 1/n] by the linear interpolation function interpo-
lating f(0) = 0 and f(1/n) = 1+(−1)n

2 and keep other parts
of the function intact. Consequently, after this modification
f ∈ C[0, 1].

Now we prove the variance part.
Construct f ∈ C[0, 1] to be a piecewise linear interpo-

lation function at the following nodes: f(0) = 0, f
(
1
n

)
=

f
(

2
n−1

)
= 1, f

(
1

n−1

)
= f

(
2
n

)
= −1, f(1) = 0.

It follows from straightforward algebra and Lemma 12 that

f̂2 =




0 X = 0
2n − 2 + n−1 X = 1
−2n + 5 − 4

n X = 2
. (242)

It follows from the definition of variance that

Varp(f̂2) = Ep

(
f̂2 − Epf̂2

)2

(243)

= inf
a
Ep

(
f̂2 − a

)2

(244)

≥ inf
a

(
P(B(n, p) = 1)(2n − 2 + n−1 − a)2

+ P(B(n, p) = 2)(−2n + 5 − 4/n− a)2
)

(245)

= inf
a

(
np(1 − p)n−1(2n − 2 + n−1 − a)2

+
n(n − 1)

2
p2(1 − p)n−2(−2n+5− 4/n−a)2

)
(246)

Setting p = 1/n, we have

Varp(f̂2) ≥ 1
2

(
1 − 1

n

)n−1

inf
a

(
(2n − 2 + n−1 − a)2

+(−2n + 5 − 4/n− a)2
)
. (247)

The infimum is achieved when

a =
(2n − 2 + n−1) + (−2n + 5 − 4/n)

2
(248)

=
3
2

(
1 − 1

n

)
. (249)
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Hence,

‖Varp(f̂2)‖ ≥ 1
2

(
1 − 1

n

)n−1

· 2

·
(

2n − 2 +
1
n
− 3

2

(
1 − 1

n

))2

(250)

≥
(

1 − 1
n

)n−1

n2 (251)

≥ n2

e
. (252)

where we have used n ≥ 4 and
(
1 − 1

n

)n−1 ≥ e−1.

C. Proof of Lemma 4

Since f satisfies condition Ds, it admits the Taylor
expansion:

f(x) = f(p) +
s−1∑
u=1

f (u)(p)
u!

(x − p)u + Rs(x; p) (253)

Applying the r-jackknife estimator on it, we have

Epf̂r = f(p) +
s−1∑
u=1

f (u)(p)
u!

r∑
i=1

CiEp(p̂ni − p)u

+
r∑

i=1

CiEpRs(p̂ni ; p) (254)

= f(p) +
s−1∑

u=r+1

f (u)(p)
u!

r∑
i=1

CiEp(p̂ni − p)u

+
r∑

i=1

CiEpRs(p̂ni ; p), (255)

where in the last step we have used Lemma 13 and Lemma 14.
By convention

∑b
a = 0 if a > b.

Denote Eu =
∑r

i=1 CiEp(p̂ni − p)u, u ≥ r + 1, it follows
from Lemma 15 that

Eu =
r∑

i=1

Ci

�u/2
∑
j=1

hj,u(p)
1

nu−j
i

=
�u/2
∑
j=1

hj,u(p)
r∑

i=1

Ci

nu−j
i

.

(256)

Note that
r∑

i=1

Ci

nu−j
i

�= 0 (257)

if and only if u − j ≥ r, and when that is the case, we have∣∣∣∣∣
r∑

i=1

Ci

nu−j

∣∣∣∣∣ ≤ (u − j − 1)r−1 1
nu−j
1

≤ ur−1

nu−j
1

≤ ur−1

nr
1

(258)

Since r is fixed, it follows from (258), Lemma 15 and
condition Ds with parameter L that∣∣∣∣∣

s−1∑
u=r+1

f (u)(p)
u!

Eu

∣∣∣∣∣ �r,s,L
1
nr

. (259)

It follows from the integral form of Taylor remainder that

Rs(x; p) =
1

(s − 1)!

∫ x

p

(x − t)s−1f (s)(t)dt (260)

Thus we know that when s is even, we have

Rs(x; p) =
1

(s − 1)!

∫ 1

0

|x − t|s−1f (s)(t)

· �t∈[min{x,p},max{x,p}]dt. (261)

When s is odd, we have

Rs(x; p) =
1

(s − 1)!

∫ 1

0

|x − t|s−1f (s)(t)

· �t∈[min{x,p},max{x,p}](−1)�x<pdt. (262)

When s is even, we further have

Ep|p̂ni − t|s−1
�t∈[min{p̂ni

,p},max{p̂ni
,p}]

=

{
Ep(p̂ni − t)s−1

+ t ≥ p

Ep(p̂ni − t)s−1
− t < p

(263)

where (x)+ = max{x, 0}, (x)− = max{−x, 0}.
When s is odd,

Ep|p̂ni − t|s−1
�t∈[min{p̂ni

,p},max{p̂ni
,p}](−1)�p̂ni

<p

=

{
Ep(p̂ni − t)s−1

+ t ≥ p

−Ep(p̂ni − t)s−1
− t < p

(264)

Hence,

r∑
i=1

CiEpRs(p̂ni ; p)

=
1

(s − 1)!

(∫ p

0

f (s)(t)

(
r∑

i=1

CiEp(p̂ni − t)s−1
−

· (−1)s

)
dt

+
∫ 1

p

f (s)(t)

(
r∑

i=1

CiEp(p̂ni − t)s−1
+

)
dt

)
(265)

�r,s,L

∫ p

0

∣∣∣∣∣
r∑

i=1

CiEp(p̂ni − t)s−1
−

∣∣∣∣∣ dt

+
∫ 1

p

∣∣∣∣∣
r∑

i=1

CiEp(p̂ni − t)s−1
+

∣∣∣∣∣ dt, (266)

where we have used the assumption that ‖f (s)‖ ≤ L.

D. Proof of Lemma 5

First we recall the following additive Chernoff bound: for
np̂n ∼ B(n, p) and t ≥ p, we have

P(p̂n > t) ≤ exp(−nD(t‖p)) (267)
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where D(t‖p) denotes the KL divergence between the binary
distributions (t, 1 − t) and (p, 1 − p). Note that

D(t‖p) ≥ 1
2

min
ξ∈[p,t]

d2D(u‖p)
du2

∣∣∣∣
u=ξ

· (t − p)2 (268)

= min
ξ∈[p,t]

(t − p)2

2ξ(1 − ξ)
(269)

≥ min
ξ∈[p,t]

(t − p)2

2ξ
(270)

=
(t − p)2

2t
(271)

we arrive at the following inequality:

P(p̂n > t) ≤ exp(−nD(t‖p)) ≤ exp(−n(t − p)2

2t
). (272)

Now we prove the lemma. Let X1, · · · , Xn be i.i.d
Bern(p) random variables, and consider the following coupling
between p̂n−s, · · · , p̂n: for k = 0, · · · , s, define

p̂n−k =
1

n − k

n−k∑
i=1

Xi. (273)

In other words, we have

p̂n−k = p̂n−s +
1

n − k

s−1∑
i=k

(Xn−i − p̂n−s). (274)

Now define gu,t(x) = (x − t)u
+, by Taylor expansion we

have

∆sAn,u(t)

= Ep

s∑
k=0

(−1)k

(
s

k

)
gu,t(p̂n−k) (275)

= Ep

s∑
k=0

(−1)k

(
s

k

)
u−1∑

j=0

g
(j)
u,t(p̂n−s)

j!
(p̂n−k − p̂n−s)j

+
g
(u)
u,t (ξk)

u!
(p̂n−k − p̂n−s)u

)
(276)

= Ep

s∑
k=0

(−1)k

(
s

k

)
 u∑

j=0

g
(j)
u,t(p̂n−s)

j!
(p̂n−k − p̂n−s)j

+
g
(u)
u,t (ξk) − g

(u)
u,t (p̂n−s)

u!
(p̂n−k − p̂n−s)u

)
(277)

= Ep

u∑
j=0

g
(j)
u,t(p̂n−s)

j!

s∑
k=0

(−1)k

(
s

k

)

· Ep[(
1

n − k

s−1∑
i=k

(Xn−i − p̂n−s))j |Xn−s]

+ Ep

s∑
k=0

(−1)k

(
s

k

)
g
(u)
u,t (ξk) − g

(u)
u,t (p̂n−s)

u!

· (p̂n−k − p̂n−s)u (278)

≡ Ep

u∑
j=0

g
(j)
u,t(p̂n−s)

j!
Aj + EpBu. (279)

Note that gu,t(x) is in fact not u-times differentiable at x = t,
but with the convention that g

(u)
u,t (t) can stand for any number

in [0, u!], the previous formula remains valid.
1) Non-Remainder Term Aj: Further define

aj(t) � Ep(Xn − t)j = p(1 − t)j + (1 − p)(−t)j (280)

we have a0(t) = 1, a1(t) = p − t, and

Aj =
s−1∑
k=0

(−1)k

(
s

k

)
1

(n − k)j

·
∑

i1+···+is−k=j

(
j

i1 · · · is−k

) s−k∏
l=1

ail
(p̂n−s). (281)

Denote by Ij the set of all multi-indices i = (i1, · · · , it(i))
with t(i) ≤ s,

∑t(i)
l=1 il = j and il ≥ 1, then for any i ∈ Ij ,

the coefficient of
∏t(i)

l=1 ail
(p̂n−s) in Aj is

bi =
(

j

i1 · · · it(i)

) s−1∑
k=0

(−1)k

(
s

k

)
1

(n − k)j

·
(

s − k

d1 · · · dt′ s − k −∑t′
l′=1 dl′

)
(282)

=
(

j

i1 · · · it(i)

)(
t(i)

d1 · · · dt′

) s−1∑
k=0

(−1)k

(
s

k

)

· 1
(n − k)j

(
s − k

t(i)

)
(283)

=
(

j

i1 · · · it(i)

)(
t(i)

d1 · · · dt′

)(
s

t(i)

) s−t(i)∑
k=0

(−1)k

·
(

s − t(i)
k

)
1

(n − k)j
(284)

=
(

j

i1 · · · it(i)

)(
t(i)

d1 · · · dt′

)(
s

t(i)

)
· ∆s−t(i)n−j

(285)

where d1, · · · , dt′ is the nonzero histograms of i =
(i1, · · · , it(i)) with

∑t′

l′=1 dl′ = t(i). By the mean value
theorem of backward differences, we have

|∆s−t(i)n−j | ≤ max
x∈[n−s+t(i),n]

∣∣∣∣ ds−t(i)

dxs−t(i)
(x−j)

∣∣∣∣
�s n−(j+s−t(i)) (286)

and thus

|bi| ≤ c(i)n−(j+s−t(i)) (287)

where the constant c(i) does not depend on n or p.
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Now for any j = 0, 1, · · · , u, we have∣∣∣∣∣Ep

g
(j)
u,t(p̂n−s)

j!
Aj

∣∣∣∣∣
�
∣∣∣∣∣∣Ep


(p̂n−s − t)u−j

+ ·
∑
i∈Ij

bi

t(i)∏
l=1

ail
(p̂n−s)



∣∣∣∣∣∣ (288)

≤
∑
i∈Ij

c(i)n−(j+s−t(i))

· Ep


(p̂n−s − t)u−j

+

t(i)∏
l=1

|ail
(p̂n−s)|


 . (289)

For any i ∈ Ij , denote by v(i) the number of ones in i =
(i1, · · · , it), using a1(t) = p − t and |aj(t)| ≤ p + t yields

Ep


(p̂n−s − t)u−j

+

t(i)∏
l=1

|ail
(p̂n−s)|




≤Ep

[
(p̂n−s − t)u−j

+ |p̂n−s − p|v(i)|p̂n−s + p|t(i)−v(i)
]
.

(290)

We distinguish into two cases. If np ≥ 1, by Holder’s
inequality E[XY Z]3 ≤ E[|X |3]E[|Y |3]E[|Z|3] we obtain

Ep


(p̂n−s − t)u−j

+

t(i)∏
l=1

|ail
(p̂n−s)|




≤ Ep

[
(p̂n−s − t)u−j

+ |p̂n−s − p|v(i)|p̂n−s + p|t(i)−v(i)
]

(291)

≤ Ep

[
|p̂n−s − p|u−j+v(i)

�(p̂n−s ≥ t)

· |p̂n−s + p|t(i)−v(i)
]

(292)

≤
(
Ep|p̂n−s − p|3(u−j+v(i))

) 1
3

·
(
Ep|p̂n−s + p|3(t(i)−v(i))

) 1
3 · 3

√
P(p̂n−s > t) (293)

�u,s (
p

n
)

u−j+v(i)
2 · pt(i)−v(i) · exp(−c2n(t − p)2

t
) (294)

= n−u−j+v(i)
2 p

u−j+2t(i)−v(i)
2 · exp(−c2n(t − p)2

t
) (295)

where in the last step we have used (272), and the fact that
when np ≥ 1, we have [42]

Ep|p̂n − p|k �k (
p

n
)

k
2 (296)

Ep|p̂n + p|k �k pk. (297)

As a result, in this case we conclude that∣∣∣∣∣Ep

g
(j)
u,t(p̂n−s)

j!
Aj

∣∣∣∣∣
�u,s

∑
i∈Ij

c(i)n−(j+s−t(i)) · n−u−j+v(i)
2

· pu−j+2t(i)−v(i)
2 exp(−c2n(t − p)2

t
) (298)

=
∑
i∈Ij

c(i)n−(u
2 +s)p

u
2 · (np)−

j+v(i)−2t(i)
2

· exp(−c2n(t − p)2

t
). (299)

Note that j =
∑t(i)

k=1 ik ≥ v(i) + 2(t(i) − v(i)), we have
j + v(i) ≥ 2t(i), and thus by np ≥ 1,

∣∣∣∣∣Ep

g
(j)
u,t(p̂n−s)

j!
Aj

∣∣∣∣∣
�u,s

∑
i∈Ij

c(i)n−(u
2 +s)p

u
2 · exp(−c2n(t − p)2

t
) (300)

�u,s n−(u
2 +s)p

u
2 · exp(−c2n(t − p)2

t
) (301)

where we have used that both |Ij | and c(i) do not depend on
n or p in the last step.

If np < 1, we first show that

Ep[p̂k
n�(p̂n > t)] �k

p

nk−1
exp(−c2n(t − p)2

t
). (302)

In fact, the MGF of p̂n gives

Ep[eλp̂n ] = (pe
λ
n + 1 − p)n. (303)

Differentiating w.r.t λ for k times, for λ > 0 we arrive at

Ep[p̂k
neλp̂n ]

=
dk

dλk

[
(pe

λ
n + 1 − p)n

]
(304)

≤ Ck

k∑
j=1

(pe
λ
n )jnj−k(pe

λ
n + 1 − p)n−j (305)

�k
pe

λ
n (pe

λ
n + 1 − p)n−1

nk−1

·

1 +

(
npe

λ
n

pe
λ
n + 1 − p

)k−1

 (306)

�k
pe

kλ
n (pe

λ
n + 1 − p)n

nk−1
, (307)

where Ck is a universal constant depending on k only, and in
the last step we have used np < 1. As a result, by Markov’s
inequality we have for any λ > 0,

Ep[p̂k
n�(p̂n > t)] ≤ Ep[p̂k

neλ(p̂n−t)]

�k e−λt · pe
kλ
n (pe

λ
n + 1 − p)n

nk−1
.

(308)
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Specifically, when t > 2k
n , choosing λ = n ln (1−p)t

(2−t)p yields

Ep[p̂k
n�(p̂n > t)] �k

p

nk−1

(
(2 − t)p
(1 − p)t

)nt−k

·
(

1 − p

1 − t
2

)n

(309)

≤ p

nk−1

(
(2 − t)p
(1 − p)t

)nt
2

·
(

1 − p

1 − t
2

)n

(310)

≤ p

nk−1
exp(−nD(

t

2
‖p)) (311)

≤ p

nk−1
exp(−c2n(t − p)2

t
) (312)

as desired. When p < t ≤ 2k
n , we have c2n(t−p)2

t = O(1),
and (302) follows from

Ep[p̂k
n�(p̂n < t)] ≤ Epp̂

k
n �k

p

nk−1
. (313)

Now based on (302), we have

Ep


(p̂n−s − t)u−j

+

t(i)∏
l=1

|ail
(p̂n−s)|




≤ Ep

[
(p̂n−s − t)u−j

+ |p̂n−s − p|v(i)

· |p̂n−s + p|t(i)−v(i)
]

(314)

≤ Ep

[
|p̂n−s − p|u−j+v(i)

�(p̂n−s ≥ t)

· |p̂n−s + p|t(i)−v(i)
]

(315)

�u,s Ep

[
(p̂u−j+t(i)

n−s + pu−j+t(i))�(p̂n > t)
]

(316)

�u,s

( p

nu−j+t(i)−1
+ pu−j+t(i)

)
· exp(−c2n(t − p)2

t
) (317)

�u,s
p

nu−j+t(i)−1
exp(−c2n(t − p)2

t
). (318)

As a result, in this case we have∣∣∣∣∣Ep

g
(j)
u,t(p̂n−s)

j!
Aj

∣∣∣∣∣
�u,s

∑
i∈Ij

c(i)n−(j+s−t(i)) · p

nu−j+t(i)−1

· exp(−c2n(t − p)2

t
) (319)

=
∑
i∈Ij

c(i)n−(u+s−1)p · exp(−c2n(t − p)2

t
) (320)

�u,s n−(u+s−1)p · exp(−c2n(t − p)2

t
). (321)

Moreover, when 1
2 < p ≤ 1 − 1

n , we can use the symmetry
n(1− p̂n) ∼ B(n, 1− p) and |aj(t)| ≤ (1− p) + (1 − t), and

then adapt the proof of the first case to conclude that∣∣∣∣∣Ep

g
(j)
u,t(p̂n−s)

j!
Aj

∣∣∣∣∣
�u,sn

−(u
2 +s)(1 − p)

u
2 · exp(−c2n(t − p)2

1 − p
). (322)

In summary, for the non-remainder terms, if p < 1
n ,∣∣∣∣∣Ep

g
(j)
u,t(p̂n−s)

j!
Aj

∣∣∣∣∣ �u,sn
−(u+s−1)p · exp(−c2n(t − p)2

t
);

(323)

if 1
n ≤ p ≤ 1

2 ,∣∣∣∣∣Ep

g
(j)
u,t(p̂n−s)

j!
Aj

∣∣∣∣∣ �u,sn
−(u

2 +s)p
u
2

· exp(−c2n(t − p)2

t
); (324)

if 1
2 < p ≤ 1 − 1

n ,∣∣∣∣∣Ep

g
(j)
u,t(p̂n−s)

j!
Aj

∣∣∣∣∣ �u,sn
−(u

2 +s)(1 − p)
u
2

· exp(−c2n(t − p)2

1 − p
); (325)

2) The Remainder Term Bu: By our convention on g
(u)
u,t (·)

we observe that g
(u)
u,t (ξk) − g

(u)
u,t (p̂n−s) is non-zero only if

(ξk − t)(p̂n−s − t) ≤ 0. (326)

However, since min{p̂n−k, p̂n−s} ≤ ξk ≤ max{p̂n−k, p̂n−s},
the previous inequality implies that the “path” consisting of
p̂n−s, · · · , p̂n under our coupling “walks across” t. Let’s call
it “good path". Moreover, note that

|p̂n−k − p̂n−s| ≤ s

n − s
, k = 0, · · · , s (327)

under our coupling, for a good path we must have

|p̂n−s − t| ≤ s

n − s
. (328)

Since p̂n−s must be an integral multiple of 1
n−s , we con-

clude that the number of good paths is O(1). Let’s call
p̂n−k → p̂n−k+1 a “right step” if p̂n−k < p̂n−k+1 or
p̂n−k = p̂n−k+1 = 1, and a “left step” if p̂n−k > p̂n−k+1

or p̂n−k = p̂n−k+1 = 0.
First we consider the case where p ≤ 1

2 , and consider any
good path L. The idea is that, each good path L gives rise
to a realization of Bu, and EpBu is the expectation averages
over all good paths. Hence, to evaluate EpBu, it suffices to
compute the value of Bu given L, and the probability of the
path L. Denote by r, l the number of right and left steps in L,
and by q the starting point of L, it is easy to see that the
probability of this path is

P(L) = pr(1 − p)l · P(B(n − s, p) = (n − s)q). (329)

We first take a look at the quantity P(B(n, p) = nq) for any
q with |q − t| = O(n−1). By Stirling’s approximation

n! =
√

2πn
(n

e

)n

(1 + o(1)), (330)
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we have

P(B(n, p) = nq)

=
(

n

nq

)
pnq(1 − p)n−nq (331)

�
√

2πn(n
e )n

√
2πnq(nq

e )nq ·√2π(n − nq)(n−nq
e )n−nq

· pnq(1 − p)n−nq (332)

� 1√
nq(1 − q)

· e−nD(q‖p) (333)

≤ 1√
nq(1 − q)

· exp(−n(q − p)2+
2q

) (334)

where the last step is given by (272). Moreover, for
q > 1 − 1

n , (272) gives a better bound

P(B(n, p) = nq) ≤ exp(−n(q − p)2

2q
). (335)

Combining them together, we conclude that

P(B(n, p) = nq) � 1√
nq

exp(−n(q − p)2+
4q

) (336)

Now we show that if q = t + O(n−1), we can replace q
by t without loss in the previous inequality. In fact, if nq ≥ 1,
it is easy to verify that

P(B(n, p) = nq) � 1√
nq

exp(−n(q − p)2+
4q

) (337)

� (
1√
nt

∧ 1) exp(−n(t − p)2

4t
) (338)

and if nq < 1, we use the trivial bound

P(B(n, p) = nq) ≤ 1 � (
1√
nt

∧ 1) exp(−n(t − p)2

4t
).

(339)

As a result, for all good paths with starting point q we conclude
that

P(B(n, p) = nq) � (
1√
nt

∧ 1) exp(−n(t − p)2

4t
) (340)

Now we evaluate the quantity Bu(L) given L. In fact, it is
easy to see

|Bu(L)| �u

{
n−u if r > 0
( p

n )u if r = 0.
(341)

As a result,

|Bu(L)| · P(L)

�u

(
n−u · p + (

p

n
)u
)
· P(B(n, p) = nq) (342)

�u n−upu∧1 · ( 1√
nt

∧ 1) exp(−c2n(t − p)2

t
) (343)

Finally, there are only O(1) good paths, and for p ≤ 1
2 we

arrive at

|EpBu|
≤
∑
L

|Bu(L)| · P(L)

�u n−upu∧1 · ( 1√
nt

∧ 1) exp(−c2n(t − p)2

t
). (344)

The previous approach can also be applied to the case where
1
2 < p ≤ 1 − 1

n , and we conclude that if p ≤ 1
2 ,

|EpBu| �u n−upu∧1 · ( 1√
nt

∧ 1) exp(−c2n(t − p)2

t
);

(345)

if 1
2 < p ≤ 1 − 1

n ,

|EpBu| �un−u(1 − p)u∧1 · ( 1√
n(1 − t)

∧ 1)

· exp(−c2n(t − p)2

1 − p
) (346)

Finally, when t > 1 − 1
n , it’s easy to see

An,u(t) = (1 − t)u · P(p̂n = 1) = (1 − t)upn (347)

and

|∆sAn,u(t)| = (1 − t)u|∆spn|
�u,s (1 − t)upn−s(1 − p)s. (348)

Now the combination of (323), (345) and (348) completes the
proof of Lemma 5.

E. Proof of Lemma 6

First note that by assumption we have

k + 1
n − j

− t =
1 + O(p)

n − j
(349)

for any j = 0, · · · , s in both cases, and when u < s we have

k

n − s
− t � p

n
. (350)

Adopt the same coupling as in the proof of Lemma 5, and
write

|∆sAn,u(t)|
= |Ep∆s(p̂n − t)u

+(�(p̂n−s ∈ A) + �(p̂n−s /∈ A)| (351)

≥ |Ep∆s(p̂n − t)u
+�(p̂n−s ∈ A)|

− |Ep∆s(p̂n − t)u
+�(p̂n−s /∈ A)|. (352)

where

A �
[

k − s

n − s
,

k

n − s

]
. (353)

By the proof of Lemma 5, the non-remainder terms in the
Taylor expansion is at most O(n−( u

2 +s)) = o(n−(u+ 1
2 )),

and by our coupling the remainder term is non-zero only if
p̂n−s ∈ A, we conclude that

|Ep∆s(p̂n − t)u
+�(p̂n−s /∈ A)| = o(n−(u+ 1

2 )). (354)
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Now we deal with the first term. It’s easy to verify that for
any x ∈ A, we have

|x − p| = |t − p| + O(
1
n

) ≤ 1√
n

+ O(
1
n

). (355)

As a result, by the Stirling approximation formula in the proof
of Lemma 5, we conclude that for any m

n−s ∈ A with m ∈ N,

q � P(p̂n−s =
k

n − s
)

= (1 + o(1)) · P(p̂n−s =
m

n − s
) � 1√

n
. (356)

In other words, p̂n−s is almost uniformly distributed restricted
to A with mass at least Θ( 1√

n
) on each point. Moreover, for

j = 0, 1, · · · , s and i = 1, · · · , s − j, it follows from the
coupling that

P(p̂n−j =
k + i

n − j
, p̂n−s ∈ A)

=
s∑

m=0

P(p̂n−j =
k + i

n − j
|p̂n−s =

k − m

n − s
)

· P(p̂n−s =
k − m

n − s
) (357)

=
s∑

m=0

(
s − j

m + i

)
pm+i(1 − p)s−j−m−i · q(1 + o(1)) (358)

As a result, when u < s, we have

|Ep∆s(p̂n − t)u
+�(p̂n−s ∈ A)|

=

∣∣∣∣∣∣Ep

s∑
j=0

(−1)j

(
s

j

)
(p̂n−j − t)u

+�(p̂n−s ∈ A)

∣∣∣∣∣∣ (359)

=

∣∣∣∣∣(−1)s(
p

n
)u +

s−j∑
i=1

s∑
j=0

(−1)j

(
s

j

)
(
k + i

n − j
− t)u

+

· P(p̂n−j =
k + i

n − j
, p̂n−s ∈ A)

∣∣∣∣∣ (360)

=q(1 + o(1))
∣∣∣(−1)s(

p

n
)u +

s−j∑
i=1

s∑
j=0

s−i−j∑
m=0

(−1)j

·
(

s

j

)(
s − j

m + i

)
pm+i(1 − p)s−j−m−i(

k + i

n − j
− t)u

∣∣∣
(361)

=q(1 + o(1))

∣∣∣∣∣(−1)s(
p

n
)u +

s∑
i=1

s−i∑
m=0

(
s

m + i

)
pm+i

·
s−i−m∑

j=0

(−1)j

(
s − m − i

j

)
(1 − p)s−m−i−j

·( k + i

n − j
− t)u

∣∣∣∣ (362)

=q(1 + o(1))

∣∣∣∣∣(−1)s(
p

n
)u +

s∑
i=1

s−i∑
m=0

(
s

m + i

)

· pm+i(i + O(p))u
s−i−m∑

j=0

(−1)j

(
s − m − i

j

)

·(1 − p)s−m−i−j(
1

n − j
)u

∣∣∣∣ (363)

=q(1 + o(1))

∣∣∣∣∣(−1)s(
p

n
)u +

s∑
i=1

s−i∑
m=0

(
s

m + i

)

·pm+i(i + O(p))u∆s−i−m (1 − p)s−m−i−x

(n − x)u

∣∣∣∣ . (364)

By the product rule of differentiation we know that

∆s−i−m (1 − p)s−m−i−x

(n − x)u

=
(−p)s−i−m(1 + O(p))

nu
· (1 + o(1)). (365)

Plugging into the previous expression, we arrive at

|Ep∆s(p̂n − t)u
+�(p̂n−s ∈ A)|

=
q(1 + o(1))(1 + O(p))

nu

∣∣∣(−1)sΘ(pu)

+
s∑

i=1

s−i∑
m=0

(
s

m + i

)
pm+iiu(−p)s−i−m

∣∣∣ (366)

=
q(1 + o(1))(1 + O(p))

nu

∣∣∣(−1)sΘ(pu)

+ ps
s∑

i=1

s−i∑
m=0

(
s

m + i

)
(−1)m+iiu

∣∣∣ (367)

� q

nu
· pu(1 + O(p)) (368)

�n−(u+ 1
2 ) · pu(1 + O(p)) (369)

where we have used u < s. Hence, in this case by choosing
p0 small enough we arrive at the desired result.

When u ≥ s, similarly we have

|Ep∆s(p̂n − t)u
+�(p̂n−s ∈ A)|

=
q(1 + o(1))(1 + O(p))

nu

∣∣∣ps
s∑

i=1

s−i∑
m=0

(
s

m + i

)

· (−1)m+iiu
∣∣∣ (370)

�ps(1 + O(p))
nu+ 1

2
·
∣∣∣∣∣

s∑
r=0

(−1)r

(
s

r

) r∑
i=1

iu

∣∣∣∣∣ (371)

=
ps(1 + O(p))

nu+ 1
2

·
∣∣∣∣∣∆s

r∑
i=1

iu

∣∣∣∣∣ . (372)

Since
∑r

i=1 iu is a polynomial of r with degree u+1 > s, its
s-backward difference is not zero, and thus the desired result
also follows by choosing p0 small enough.

F. Proof of Lemma 8

We first prove the lower bound for the delete-1 jackknife.
It suffices to fix p = c

n , where c > 0 is a positive constant,
and prove

lim
n→∞n

(
Epf̂2 − f(p)

)
�= 0 (373)

when f(p) = −p ln p, and

lim
n→∞nα

(
Epf̂2 − f(p)

)
�= 0 (374)

for f(p) = pα, 0 < α < 1.
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It follows from Lemma 12 that it suffices to analyze the
expectation of the following quantity:

gn(X) =nf

(
X

n

)
− n − 1

n

(
(n − X)f

(
X

n − 1

)

+ Xf

(
X − 1
n − 1

))
− f

( c

n

)
. (375)

As n → ∞, the measure µn = B(n, p) converges weakly to
µ = Poi(c).

We will show that limn→∞ nEµngn(X) �= 0 when
f(p) = −p ln p and limn→∞ nα

Eµngn(X) �= 0 when
f(p) = pα.

For f(p) = −p ln p,

Eµnn · gn(X)

=Eµnn ·
(
n

X

n
ln

n

X
− n − 1

n

(n − X)X
n − 1

ln
n − 1

X

− n − 1
n

X(X − 1)
n − 1

ln
n − 1
X − 1

− c

n
ln

n

c

)
(376)

=Eµnn ·
(
X ln

n

X
− X(n − X)

n
ln

n − 1
X

− X(X − 1)
n

ln
n − 1
X − 1

− c

n
ln

n

c

)
(377)

=Eµnn ·
(
X ln n − X(n − X)

n
ln(n − 1)

− X(X − 1)
n

ln(n − 1) − c

n
ln

n

c

)
(378)

+ Eµnn ·
(
X ln

1
X

− X(n − X)
n

ln
1
X

− X(X − 1)
n

ln
1

X − 1

)
(379)

=
(

(c − cn) ln
(

1 − 1
n

)
+ c ln c

)

+ Eµn

(
X2 ln

1
X

− X(X − 1) ln
1

X − 1

)
(380)

=An + Bn. (381)

Since limn→∞ An = c + c ln c, limc→0+ c−2(c + c ln c) = ∞,

and c−2
Eµ

(
X2 ln 1

X − X(X − 1) ln 1
X−1

)
has a finite limit

at c = 0+, we know there exists some c > 0 such that

lim
n→∞Eµnn · gn(X) �= 0. (382)

For f(p) = pα, 0 < α < 1, we have

Eµnnα · gn(X)

=nα
(
n

(
X

n

)α

− n − 1
n

(n − X)
(

X

n − 1

)α

− n − 1
n

X

(
X − 1
n − 1

)α

−
( c

n

)α )
(383)

=Eµn

(
nXα −

(
n − 1

n

)α

(Xα(n − X) + X(X − 1)α)

− cα
)

(384)

=Eµn

(
nXα

(
1 −

(
1 − 1

n

)α)
− cα

)

+
(

n − 1
n

)1−α

Eµn

(
Xα+1 − X(X − 1)α

)
. (385)

Hence,

lim
n→∞Eµnnα · gn(X) = Eµ

(
αXα + Xα+1 − X(X − 1)α

)
− cα. (386)

Noting that c−1
Eµ

(
αXα + Xα+1 − X(X − 1)α

)
has a finite

limit at c = 0 but cα−1 does not, we know there exists some
c > 0 such that

lim
n→∞Eµnnα · gn(X) �= 0 (387)

when f(p) = pα, 0 < α < 1.
For a 2-jackknife that satisfies Condition 1, the lower bound

is given by Theorem 1 and (12).

G. Proof of Theorem 8

The first three statements follow from [56]. The last state-
ment follows from [51]. Now we work to prove the fourth
statement.

It follows from [29, Inequality 9.3.5., 9.3.7.] that for f ∈
C[0, 1], we have ‖ϕ2m(Bk[f ])(2m)‖ ≤ Ckm‖f‖, and for f
such that f (2m) ∈ C[0, 1], we have ‖ϕ2m(Bk[f ])(2m)‖ ≤
C‖ϕ2mf (2m)‖. Here ϕ(x) =

√
x(1 − x).

It follows from the definition of the K-functional
K2m,ϕ(f, 1/nm) that

K2m,ϕ(f, 1/nm) ≤‖f −⊕mBk[f ]‖
+ n−m‖ϕ2m(⊕mBk[f ])(2m)‖ (388)

Noting that ⊕mBk[f ] is nothing but linear combinations of
the powers of Bk up to degree m, we can apply the estimates
on ‖ϕ2m(Bk[f ])(2m)‖ to ‖ϕ2m(⊕mBk[f ])(2m)‖. For any
g ∈ A.C.loc, we have

‖ϕ2m(⊕mBk[f ])(2m)‖
≤‖ϕ2m(⊕mBk[f − g])(2m)‖ + ‖ϕ2m(⊕mBk[g])(2m)‖

(389)

≤Ckm‖f − g‖ + C‖ϕ2mg(2m)‖. (390)

Hence,

n−m‖ϕ2m(⊕mBk[f ])(2m)‖
≤C inf

g

(
k

n

)m (
‖f − g‖ + k−m‖ϕ2mg(2m)‖

)
(391)

=C

(
k

n

)m

K2m,ϕ(f, k−m). (392)

We have showed that

K2m,ϕ(f, 1/nm) ≤‖f −⊕mBk[f ]‖
+ C

(
k

n

)m

K2m,ϕ(f, k−m). (393)

Now we utilize the assumption that ω2m
ϕ (f, 2t) ≤

Dω2m
ϕ (f, t). We have

D−qω2m
ϕ (f, 1/

√
k) ≤ ω2m

ϕ (f, 2−qk−1/2) (394)

= ω2m
ϕ (f, (22qk)−1/2) (395)

≤ M1K2m,ϕ(f, 1/(22q(m)km)), (396)
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where in the last step we have used the equivalence between
K-functional and the Ditzian–Totik modulus.

Setting n = 22qk and applying (393), we have

D−qω2m
ϕ (f, 1/

√
k) ≤M1‖f −⊕mBk[f ]‖

+ M12−2qmω2m
ϕ (f, 1/

√
k). (397)

We now choose q so that D−q > 2M12−2qm, which is
possible since D−1 > 2−2m, and obtain

‖f −⊕mBk[f ]‖ ≥ 2−2qmω2m
ϕ (f, 1/

√
k). (398)

The proof is complete.

H. Proof of Lemma 3

It follows from [57, Theorem 1] that∣∣∣∣∣∣Epf(p̂n) − f(p) −
2k−1∑
j=1

f (j)(p)
j!

Ep (p̂n − p)j

∣∣∣∣∣∣ �k,L
1
nk

.

(399)

It follows from Lemma 14 and 15 that for any j ≥ 1 integer
there exist polynomials hm,j(p) with degree no more than j,
and coefficients independent of n such that

Ep(p̂n − p)j =
�j/2
∑
m=1

hm,j(p)
1

nj−m
. (400)

Define

Tj[f ](p) =
2k−1∑
i=1

f (i)(p)
i!

hi−j,i(p)

· � (i − �i/2� ≤ j ≤ i − 1) . (401)

It is clear that Tj[f ](p) depends on f only through the
derivatives of f of order from j+1 to 2j. Concretely, Tj[f ](p)
is a linear combination of the derivatives of f of order from
j+1 to 2j where the combination coefficients are polynomials
of p with degree no more than 2j.

I. Proof of Theorem 9

Proof: We first show, through induction, that each ti, 0 ≤
i ≤ k − 1 satisfies condition D2(k−i) with parameter �k L.
Indeed, it is true for i = 0. Assuming that it is true for
i = m, 1 ≤ m ≤ k − 2, we now show that it is true for
i = m + 1. We have

tm+1(p) = −
m+1∑
j=1

Tj [tm+1−j ](p). (402)

Since Tj[f ] involves the derivatives of f up to order 2j
(Lemma 3), for each j-th term Tj[tm+1−j ](p), 1 ≤ j ≤ m+1,
it involves the derivatives of f up to order

2(m + 1 − j) + 2j = 2(m + 1), (403)

which implies that tm+1 satisfies the condition D2k−2(m+1)

with parameter �k L.

Now we apply Lemma 3 to each term in the formula of f̂k.
For the i-th term, 0 ≤ i ≤ k − 1, we have

Ep

[
1
ni

ti(p̂n)
]

=
1
ni

ti(p) +
k−i−1∑

j=1

1
nj+i

Tj[ti](p) + O

(
1
nk

)
(404)

=
1
ni

ti(p) +
k−1∑

m=i+1

1
nm

Tm−i[ti](p) + O

(
1
nk

)
. (405)

Sum over 0 ≤ i ≤ k − 1, we have

Ep[f̂k] =
k−1∑
i=0

(
1
ni

ti(p) +
k−1∑

m=i+1

1
nm

Tm−i[ti](p)

)

+ O

(
1
nk

)
. (406)

It suffices to show that
k−1∑
i=0

(
1
ni

ti(p) +
k−1∑

m=i+1

1
nm

Tm−i[ti](p)

)
= f(p). (407)

We have
k−1∑
i=0

(
1
ni

ti(p)
)

= f(p) +
k−1∑
i=1

1
ni

ti(p), (408)

and
k−1∑
i=0

k−1∑
m=i+1

1
nm

Tm−i[ti](p) =
k−1∑
m=1

1
nm

m−1∑
i=0

Tm−i[ti](p)

(409)

= −
k−1∑
m=1

1
nm

tm(p), (410)

where in the last step we used the definition of ti(p). The
proof is now complete. �

APPENDIX D
PROOFS OF AUXILIARY LEMMAS

A. Proof of Lemma 11

Let p(x) be the Lagrangian interpolating polynomial of f
at points x0, · · · , xr, and define g(x) = f(x)−p(x). It is easy
to see that g(x) has at least (r + 1) zeros x0, · · · , xr . Since

0 = g(x1) − g(x0) =
x1∑

x=x0+1

∆g(x) (411)

there must be some y0 ∈ (x0, x1] such that ∆g(y0) ≤ 0. Sim-
ilarly, there exists some y1 ∈ (x1, x2] such that ∆g(y1) ≥ 0,
and y2 ∈ (x2, x3] such that ∆g(y2) ≤ 0, so on and so forth.
Next observe that

0 ≤ ∆g(y1) − ∆g(y0) =
y1∑

y=y0+1

∆2g(y) (412)

there must exist some z0 ∈ (y0, y1] such that ∆2g(z0) ≥ 0.
Similarly, there exists some z1 ∈ (y1, y2] such that
∆2g(z1) ≤ 0, and z2 ∈ (y2, y3] such that ∆2g(z2) ≥ 0,
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so on and so forth. Repeating this process, there must be some
x ∈ [x0, xr] such that (−1)r∆rg(x) ≥ 0. Note that p(x) is
a degree-r polynomial with leading coefficient f [x0, · · · , xr],
we conclude that

0 ≤ (−1)r∆rg(x) (413)

= (−1)r∆r(f(x) − p(x)) (414)

= (−1)r(∆rf(x) − r!f [x0, · · · , xr]). (415)

Similarly, we can also show that there exists x′ ∈ [x0, xr]
such that

0 ≤ (−1)r+1(∆rf(x′) − r!f [x0, · · · , xr]). (416)

Combining these two inequalities completes the proof.

B. Proof of Lemma 13

The key idea is to connect the problem of solving the
matrix equations (18) to the notion of divided difference in
approximation theory.

For ρ ≥ 0, ρ ∈ Z,
r∑

i=1

Ci

nρ
i

=
r∑

i=1

1
nρ

i

∏
j �=i

ni

ni − nj
(417)

=
r∑

i=1

nr−1−ρ
i

∏
j �=i

1
ni − nj

(418)

= xr−1−ρ[n1, n2, . . . , nr], (419)

where f [x1, x2, . . . , xr] denotes the divided difference in
Definition 3. The lemma is proved using the mean value
theorem (Lemma 10) of the divided difference for function
xr−1−ρ.

C. Proof of Lemma 15

The first part follows from Lemma 14. Regarding the second
part, the moment generating function of p̂n − p is given by

E[exp(z(p̂n − p))] = e−zp
(
1 + p(ez/n − 1)

)n

. (420)

Written as formal power series of z, the previous identity
becomes

∞∑
s=0

E(p̂n − p)s

s!
zs

=

( ∞∑
i=0

(−p)i

i!
zi

)
 n∑

k=0

(
n

k

)
pk

( ∞∑
l=1

1
l!

(
z

n
)l

)k

 .

(421)

Hence, by comparing the coefficient of nj−szs at both sides,
we obtain

hj,s(p)
s!

=
j∑

i=0

(−p)i

i!




s−i∑
k=j−i

tk,j−i

k!
pk

∑
a1+···+ak=s−i,

a1,··· ,ak≥1

k∏
l=1

1
al!



(422)

where tk,r is the coefficient of xr in x(x− 1) · · · (x− k + 1).
It’s easy to see

|tk,r| ≤ kk−r

(
k

r

)
≤ kk

r!
. (423)

Moreover, it’s easy to see when k ≤ s − i, we have

∑
a1+···+ak=s−i,a1,··· ,ak≥1

k∏
l=1

1
al!

≤
∑

a1+···+ak=s−i

k∏
l=1

1
al!

(424)

≤
∑

a1+···+ak+i=s

k+i∏
l=1

1
al!

=
(k + i)s

s!
(425)

and this quantity is zero when k > s − i.
Then, applying k! ≥ (

k
e

)k
yields

|hj,s(p)| ≤
j∑

i=0

1
i!

s−i∑
k=j−i

ek(k + i)s

(j − i)!
(426)

≤
j∑

i=0

sesss

i!(j − i)!
(427)

= s(es)s 2j

j!
(428)

≤ s(2es)s

j!
(429)

≤ (4es)s

j!
(430)

D. Proof of Lemma 17

We first prove the statement when the domain of f is the
whole real line. We introduce the first and second Stekolv
functions fh(x), fhh(x) as follows:

fh(x) = f ∗ Kh (431)

fh(x) = fh ∗ Kh = f ∗ Kh ∗ Kh, (432)

where Kh = 1
h�(x ∈ [−h/2, h/2]) is the box kernel, and the

operation ∗ denotes convolution.
The Steklov functions have the following nice proper-

ties [58, Chap. V, Sec. 83]:

f(x) − fh(x) =
1
h

∫ h/2

−h/2

(f(x) − f(x + t))dt (433)

f ′
h(x) =

1
h

(
f

(
x +

h

2

)
− f

(
x − h

2

))
(434)

f(x) − fhh(x) =
1
h2

∫ h/2

0

∫ h/2

0

[4f(x) − f(x + s + t)

− f(x + s − t) − f(x − s + t)
− f(x − s − t)]dsdt (435)

f ′′
hh(x) =

1
h2

(f(x + h) + f(x − h) − 2f(x)) .

(436)
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Hence, we have

|f(x) − fhh(x)|

≤ 1
h2

∫ h/2

0

∫ h/2

0

[|2f(x) − f(x + s + t) − f(x − s − t)|
+ |2f(x) − f(x + s − t) − f(x − s + t)|]dsdt (437)

≤ 1
h2

∫ h/2

0

∫ h/2

0

[2ω2(f, h)]dsdt (438)

=
1
2
ω2(f, h), (439)

and

‖f ′′
hh(x)‖ ≤ 1

h2
ω2(f, h). (440)

We use

|E[f(X)] − f(E[X ])|
≤|E[f(X) − fhh(X) + fhh(X) − fhh(E[X ])

+ fhh(E[X ]) − f(E[X ])]| (441)

≤2‖f − fhh‖ + |E[fhh(X)] − fhh(E[X ])| (442)

≤2‖f−fhh‖ +
1
2
‖f ′′

hh‖Var(X) (443)

≤ω2(f, h) +
1

2h2
ω2(f, h)Var(X) (444)

=3 · ω2(f, h), (445)

where h =
√

Var(X)

2 .
Now we argue that when the domain of f is an interval

[a, b] that is a strict subset of R, we can replace the constant 3
by 15. Indeed, as argued in [59, Sec. 3.5.71, pg. 121], for
any continuous function f ∈ [a, b], one can extend φ(x) =
f(x) − f(b)−f(a)

b−a (x − a) − f(a) to the whole real line while
ensuring the second order modulus of the extension is upper
bounded by five times the ω2(f, t) of the original function f .
Indeed, one achieves this by extending φ so as to be odd with
respect to the ends of the [a, b] and then periodically with
period 2(b − a) on the whole real line.
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