
QFlow: A Reinforcement Learning Approach to High QoE Video
Streaming over Wireless Networks

Rajarshi Bhattacharyya∗, Archana Bura∗, Desik Rengarajan∗, Mason Rumuly∗,

Srinivas Shakkottai∗, Dileep Kalathil∗, Ricky K. P. Mok‡, Amogh Dhamdhere‡

∗Texas A&M University, College Station ‡CAIDA, San Diego
{rajarshibh, archanabura, desik, masondataminer, sshakkot, dileep.kalathil}@tamu.edu

{cskpmok,amogh}@caida.org

ABSTRACT
Wireless Internet access has brought legions of heterogeneous appli-
cations all sharing the same resources. However, current wireless
edge networks that cater to worst or average case performance
lack the agility to best serve these diverse sessions. Simultaneously,
software reconfigurable infrastructure has become increasingly
mainstream to the point that dynamic per packet and per flow de-
cisions are possible at multiple layers of the communications stack.
Exploiting such reconfigurability requires the design of a system
that can enable a configuration, measure the impact on the appli-
cation performance (Quality of Experience), and adaptively select
a new configuration. Effectively, this feedback loop is a Markov
Decision Process whose parameters are unknown. The goal of this
work is to design, develop and demonstrate QFlow that instantiates
this feedback loop as an application of reinforcement learning (RL).
Our context is that of reconfigurable (priority) queueing, and we
use the popular application of video streaming as our use case. We
develop both model-free and model-based RL approaches that are
tailored to the problem of determining which clients should be
assigned to which queue at each decision period. Through experi-
mental validation, we show how the RL-based control policies on
QFlow are able to schedule the right clients for prioritization in a
high-load scenario to outperform the status quo, as well as the best
known solutions with over 25% improvement in QoE, and a perfect
QoE score of 5 over 85% of the time.

CCS CONCEPTS
• Networks→ Programmable networks; Wireless access points,
base stations and infrastructure; • Computing methodologies→
Reinforcement learning.

This research was supported in part by NSF grants CNS-1149458, CNS-1513847, AST-
1443891 and NSF-Intel CNS-1719384.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Mobihoc ’19, July 2–5, 2019, Catania, Italy
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6764-6/19/07. . . $15.00
https://doi.org/10.1145/3323679.3326523

KEYWORDS
Reconfigurable queueing, Video Streaming, Reinforcement Learn-
ing
ACM Reference Format:
Rajarshi Bhattacharyya∗, Archana Bura∗, Desik Rengarajan∗, Mason Rumuly∗,,
Srinivas Shakkottai∗, Dileep Kalathil∗, Ricky K. P.Mok‡, AmoghDhamdhere‡.
2019. QFlow: A Reinforcement Learning Approach to High QoE Video
Streaming over Wireless Networks. In The Twentieth ACM International
Symposium on Mobile Ad Hoc Networking and Computing (Mobihoc ’19),
July 2–5, 2019, Catania, Italy. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3323679.3326523

1 INTRODUCTION
From software defined networking (SDN) at the network layer on
commercial routers, to different sub-layers of PHY/MAC on soft-
ware defined radio (SDR) platforms, it is becoming increasingly
easier to reconfigure networking equipment. Optimization over
these layers will be needed in upcoming dense, small cell deploy-
ments in WiFi and 5G networks that are expected to support high
and diverse loads. Among these sub-layers, a fundamental entity
that impacts per-packet and per-flow performance is the behavior
of queues at the router, which impacts statistical QoS performance
metrics, such as throughput, RTT, jitter and loss rate that flows
experience. Indeed, the fundamental nature of queueing is the rea-
son for much effort on the design and evaluation of throughput or
delay optimal scheduling mechanisms [3, 7, 22, 25].

Even when differentiated queueing mechanisms are available,
exploiting them for maximizing system-wide benefit requires a
feedback control loop of the kind shown in Figure 1. First, we need to
configure the system in terms of assigning flows to queues. Second,
we need to measure the impact of the configuration on QoE 1 and
relevant application state at the end-user. Third, we need to learn
what is the relation between realized QoE and the congfiguration
used (using a combination of offline and online learning). Finally,
we need to adapt the policy used for configuration as we learn in
order to maximize performance goals. Note that such a control loop
applies to problem of choosing optimal reconfigurations at all layers
of network stack. However, the fundamental nature of queueing
implies that first order gains might be best attained through such
adaptive queue control.

Posed in this manner, the application QoE and other measurable
application-specific parameters (such as buffered seconds of video)
1This is a number in the interval [1, 5] that indicates end-user satisfaction, with a QoE
of 5 being the best.

https://doi.org/10.1145/3323679.3326523
https://doi.org/10.1145/3323679.3326523
https://doi.org/10.1145/3323679.3326523

Configure	 Measure	

Learn	
	

Adapt	

Figure 1: Feedback loop for configuration selection.

is the observable application state of the system, whose evolution is
mediated through the assignment of flows to queues. The network
QoS statistics of each queue are hidden variables that cause tran-
sitions to the application state, potentially in a stochastic manner.
The decision of which flows to assign to what queue determines
the state transitions that a particular application is exposed to, and
must be done in a manner that maximizes QoE over all applications.
Thus, the control loop in Figure 1 can be interpreted as a Markov
Decision Process (MDP) whose transition kernel is unknown, and
which could potentially be discovered using reinforcement learning.

In this work, our goal is to design, implement, and evaluate
QFlow, a platform for reinforcement learning that instantiates the
feedback control loop described above on a WiFi access point that
faces a high demand. Performance over high capacity wired back-
haul links is near-deterministic, and resources constraints apply
tot he last hop wireless link. We choose video streaming as the
application of interest using the case study of YouTube, since video
has stringent network requirements and occupies a majority of
Internet packets today [2].

2 MAIN RESULTS
Queue Configuration: We enable reliable delivery of configu-
ration commands to hardware that can support re-configuration.
We extend the OpenFlow protocol (currently limited to the net-
work layer) in a generic manner that enables us to use it recon-
figure queueing mechanisms. We select commercially available
WiFi routers with Gigabit ethernet backhaul as the wireless edge
hardware. Reconfigurable queueing is attained by leveraging differ-
entiated queueing mechanisms available in the Traffic Controller
(tc) package by installing OpenWRT (a stripped-down Linux ver-
sion). Here, we can choose between queueing disciplines and set
filters to assign flows to queues. Details are presented in Section 5.

Measurement of Application State and QoE:We enable con-
tinuous monitoring of client-specific application state consisting
of buffered seconds of video and stall duration (when the video
re-buffers). These monitors at the WiFi router and the mobile sta-
tion, are compatible with our OpenFlow extensions, and use the
protocol to periodically send statistics to the OpenFlow controller
for processing. We continuously predict the QoE of the ongoing
application (video streaming) flows as a function of the application
state using existing maps of the relationship between video events
(such as stalls) and QoE. Details are presented in Sections 4, 5.

Model-Free Reinforcement Learning: We develop a model-
free reinforcement learning (RL) method that enables adaptation to
the current QoE and application state over all users to maximize the
discounted sum of QoEs. We design a simulator that approximates
the evolution of the underlying system, and its impact on appli-
cation state and QoE. We use the simulator to train a Q-Learning

approach in an offline manner, with non-linear function approx-
imation using a neural network. This so-called Deep Q Network
(DQN) is able to account for state space explosion across the users
and provides a Q-function approximation for all states. Details are
presented in Section 6.

Model-Based Reinforcement Learning: We next develop a
model-based RL approach based on the observation that the state
evolution of an individual client is independent of others given the
action (queue assignment). We first use measurements conducted
over the system using a range of control policies to empirically
determine the transition probabilities on a per-client basis, and
then use the independence observation to construct the system
transition kernel (this applies to the vector of all client states taken
together). While doing so, we reduce the system state space by
discretization and aggregation to a subset of frequently observed
system states. Finally, we solve the MDP numerically to obtain the
model-based policy. Details are presented in Section 7.

Experimental results: The experimental configuration con-
sists of a single queue in the base (vanilla) case, and two reconfig-
urable queues in the adaptive case. We conducted experiments in
both a static scenario of 6 clients, as well as a dynamic one in which
anywhere between 4 and 6 clients are in the system at a given time.
Apart from model-free and model-based RL, we also implemented
round-robin assignment, greedy maximization of expected QoE,
and greedy selection of the clients with lowest video buffers (this
policy has been shown to ensure low probability of stalling [19]).
Our results on adaptive flow assignment (Section 8) reveal that the
vanilla approach of treating all flows identically has significantly
worse average QoE than adaptive approaches.

More interestingly, both the model-based and model-free ap-
proaches manage to ensure that any given client experiences a
perfect QoE of 5 over 85% of the time, whereas the best that any
other policy is able to achieve is only about 60%, while vanilla
manages even less at about 50%. This impressive performance im-
provement of about 25-30% indicates that by selecting flows in need
of QoE improvement (due to high likelihood of stalls in the near
future), RL-based adaptive flow assignment improves QoE for the
majority of clients.

3 RELATEDWORK
Our work brings together several different areas ranging from SDN,
QoS, QoE and machine learning.

OpenFlow and Configuration: There has been much recent inter-
est in extending the SDN idea to other layers. For example, Cross-
Flow [17, 18] uses SDN OpenFlow principles to control networks of
Software Defined Radios. In ÆtherFlow [24], the SDN/OpenFlow
framework is used to bring programmability to the Wireless LAN
setting. They show that this type of system can handle hand-offs
better than the traditional 802.11 protocol. These SD-X extensions
(X being the MAC layer in this case) focus on centralized config-
uration of the hardware and do not provide sample statistics on
performance that we desire. Closer to our theme, systems such
as AeroFlux [16] and OpenSDWN [15] develop a wireless SDN
framework for enabling prioritization rules for flows belonging to
selected applications (such as video streaming) via middle-boxes us-
ing packet inspection. However, they do not tie such prioritization

to the impact on application QoE or end-user value across compet-
ing applications from multiple clients. Nor do they use measured
QoS statistics as feedback.

QoE Maps: The map between QoS and QoE has been studied
recently, particularly on the wired network. The work in this space
attempts to determine the QoS properties of a network, and then
based on data obtained directly from an application, match the
observed QoS to the corresponding QoE. Mok et al. [11] describe a
method for determining the QoE for HTTP Streaming, focusing on
the choice of initial streaming rate for maximizing QoE. Other work
focuses on different applications, such as Skype [20] or general Web
services [20], to identify conditions that are sufficient to meet the
average QoE targets for those applications. Different from these,
we desire a continuous estimate of QoE as a function of player state
(such as buffered video seconds) and network state (QoS statistics).

SDN-based Video Streaming: A number of systems have been
proposed to improve the performance and QoE of video streaming
with SDN. One direction is to assign video streaming flows to
different network links according to various path selection schemes
[8] or the location of bottlenecks detected in the WAN [12]. In the
home network environment, the problem shifts from managing
the paths of video traffic to sharing the same network (link) with
multiple devices or flows. VQOA [13] and QFF [5] employ SDN
to monitor the traffic and change the bandwidth assignment of
each video flow to achieve better streaming performance. However,
without an accurate map of action to QoE, the controller can only
react to QoE degradation passively.

Reinforcement Learning:AnRL approach is natural for the control
of systems with measurable feedback under each configuration.
The idea of using model-free RL in the context of video streaming
rate selection was explored in [9]. The work can be seen as the
complement of our own. Whereas we are interested in allocating
network resources (at the wireless edge) to suit concurrent video
streams, their goal is to choose the streaming rate to suit the realized
network characteristics.

4 SYSTEM MODEL AND ARCHITECTURE
We consider a system in which clients are connected to an wireless
Access Point (AP) in a high demand situation. We choose video
streaming as the application of interest using the case study of
YouTube, since video has stringent network requirements and oc-
cupies a majority of Internet packets today [2]. Our goal is to maxi-
mize the overall QoE of all the clients in this resource constrained
situation.

The AP has a high priority and low priority queue. Clients as-
signed to the high priority queue typically experience a better QoS
(higher bandwidth, lower latency etc.) when compared to the clients
assigned to the low priority queue. The controller assigns clients
to each of these queues at every decision period (DP; 10 seconds in
our implementation). Determining the optimal strategy is complex,
since the controller does not have prior knowledge of the system
model. Hence, the controller must learn the system model and/or
control law.

4.1 Markov Decision Process
We consider a discrete time system where time is indexed by t ∈
{0, 1, ...}. At each DP (t = 0, 1, 2..) the controller makes an assign-
ment of clients to queues, and observes the system. Based on its
observation and previous assignment, the controller makes an as-
signment in the next DP, eventually learning the system model
empirically. This class of problem falls within the Reinforcement
Learning (RL) paradigm, and thus can be abstracted to a general
RL framework consisting of an Environment that produces states
and rewards and an Agent that takes actions.

Environment: The environment is composed of clients and the
AP. Let C denote the set of clients.

State: Each client keeps track of its state which consists of its
current buffer (the number of seconds of video that it has buffered
up), the number of stalls it has experienced (i.e., the number of
times that it has experienced a break in playout and consequent re-
buffering), and its current QoE (a number in [1, 5] that represents
user satisfaction, with 5 being the best). The state of the system is
the union of the states of all clients. Let sct denote the state of client
c at time t and st denote the state of the system,

sct = [Current Buffer State, Stall Information, Current QoE] ∀c ∈ C

st =
[
∪∀c ∈Csct

]
Agent: The controller is the agent, which takes an action at ∈ A

(queue assignment) in every decision period in order to maximize
its expected discounted reward. Let act denote the action taken on
client c at time t ,

at = [∪∀c ∈Cact]
Reward: The reward R(st ,at) obtained by taking action at at

state st is the average QoE of all clients in state st+1.
The goal of the agent is to maximize the overall QoE of the

system. This goal can be formulated as maximizing the expected
discounted reward over an infinite horizon. Let π (at |st) denote the
probability of taking action at given the current state (called the
policy) and γ denote the discount factor. Then the goal is to find
π∗, the policy that maximizes the expected discounted reward,

π∗ = argmaxπE

[
∞∑
t=0

γ tR(st ,at)|s0 = s,at ∼ π (·|st)

]
.

4.2 Measuring QoE for Video Streaming
Considerable progress has been made in identifying the relation be-
tween video events such as stalling, and subjective user perception
(QoE) [4, 6, 26] via laboratory studies. However, these studies are
insufficient in our context, since they do not consider the network
conditions (QoS statistics) that gave rise to the video events. Nev-
ertheless, we can leverage these studies by using them as models
of human perception of objectively measurable video events. We
considered three models in this context, namely Delivery Quality
Score (DQS) [26], generalized DQS [4], and Time-Varying QoE (TV-
QoE) [6]. All of the three models are based on the same features
(stall event information) if there is no rate adaptation. Since our
goal is to support high resolution video without degradation, we
fix the resolution so as to prevent video rate adaptation. Under this
scenario, all three models are similar, and we choose DQS as our

candidate. Note that DQS has been validated using 183 videos and
53 human subjects [26], and we do not repeat these experiments.

The DQS model weights the impact according to duration of
the impairments to better model human perception. For example,
the impact on QoE of stall events during playback is greater than
that of initial buffering. Similarly, the first stall event produces
less dissatisfaction than repeated stalling. The state diagram of the
model is shown in Figure 2. The increases and the decreases in
perceived QoE are captured by a combination of raised cosine and
ramp functions. This enables it to model greater or lesser changes
in the perceived QoE according to the time it spends in a particular
state. The behavior of the predicted QoE by the model in the pres-
ence of a particular stalling pattern can be seen in Figure 3, where
the two stall events result in degradation of QoE. Recovery of QoE
from each stall event becomes progressively harder.

4.3 QFlow System Architecture
The system architecture is illustrated in Figure 4. The three main
units are, (i) an off-the-shelf WiFi access point running the Open-
WRT operating system, (ii) a centralized controller hosted on a
Linux workstation, and (iii) multiple wireless stations. We denote
each software functionality with both a color and a circled number.
These functionalities pertain to 1○ queueing mechanisms, 2○ QoS
policy (configuration selection), 3○ Reinforcement Learning, and
4○ Policy Adaptation, which we overview below. Tying together
the units are 5○ Databases at the Controller (to log all events), and
at each station (that obtains a subset of the data for local decision
making). The final components are 6○ Network Interfaces and 7○
User Application, which are unaware of our system. We refer to
the user application as a client or session, which is composed of
one or more flows that are treated identically.

1○ Per-Packet Queueing Mechanisms: At the level of data
packets, we utilize the MAC layer of software defined infrastruc-
ture, namely, reconfigurable queueing. Multiple Layer 2 queues can
be created, and different per-packet scheduling mechanisms can be
applied over them. When such mechanisms are applied to aggre-
gates of flows, the resulting QoS statistics at the queue level can be
varied, with higher priority queues getting improved performances.
In turn, this results in state and QoE changes at the application.

2○ QoS Policy and Statistics: Policy decisions are used to se-
lect configurations (which clients are assigned to which queue).
Decisions are made at a centralized controller that communicates
using the OpenFlow protocol. We create a custom set of OpenFlow
messages for QFlow. The Access Point runs QFlow, which inter-
prets these messages and instantiates the queueing mechanisms
and configurations selected by the controller. The access point peri-
odically collects statistics related to QoS, including signal strengths,
throughput, and RTT and returns those back to the controller (these
statistics are used for sanity checks).

A smart middleware layer at clients is used to interface with
QFlow in a manner that is transparent to the applications (such
as YouTube) and the end-user. The middleware determines the
foreground application, and samples the application to determine
its state (stalls, and buffered seconds on YouTube). QoE is calculated
using the DQSmodel. The client middleware contacts the Controller
Database to periodically send the application state and QoE.

3○ Reinforcement Learning Agent: Application state and
configuration decisions (state-action pairs) are used to train RL
agents. in the case of the Model-Free approach, a simulation envi-
ronment duplicating the QFlow setup is used for offline training,
and online training continues on the actual system. In the case of
Model-Based RL, state-action pairs (resulting from various different
policies) stored in the controller database are used for learning the
model.

4○ Policy Adaptation: Policy Adaptation has to do with imple-
menting the policy as empirical data accumulates. An assignment
algorithm (policy) matches sessions to queues every 10 seconds,
and obtains a sample of client state each time it does so. This state-
action pair is captured in the database, and a new action is obtained
form the database (as determined by the RL agent). The assignment
algorithm is geared towards discounted QoE maximization.

Interactions: The Client Middleware at each wireless client
captures the state and calculates the corresponding QoE values
specific to the foreground application. These realized QoE and
state values from all participating clients are sent to the Controller,
which performs a policy decision for flow assignment. These policy
decisions are sent to the Access Point usingOpenFlowExperimenter
messages. QFlow interprets and implements these policy decisions.
These steps are executed once every 10 seconds.

5 QFLOW IMPLEMENTATION DETAILS
Our implementation of QFlow extends the OpenFlow protocol using
experimenter messages. We exploit the separation of control and
data planes of OpenFlow to implement policy decisions usingQFlow.
Further, our choice of using experimenter messages ensures that
we do not require changes at the controller. We use an off-the-shelf
TP-LinkWR1043ND v3 router with OpenWRT Chaos Calmer as the
firmware for our implementation. We choose OpenWRT because
of its support for Linux based utilities like tc (Traffic Control) for
implementing per packet mechanisms. Since OpenWRT does not
natively support SDN, we use CPqD SoftSwitch [1], an OpenFlow
1.3 compatible user-space software switch implementation.

We next extend SoftSwitch to include QFlow capabilities. Such
capabilities include the ability to modify packet-handling mecha-
nisms. Our goal is to enable configuration changes, in addition to
the collection of statistics related to the implemented per packet
mechanisms and the connected clients. We construct two types
of QFlow commands for implementing the described capabilities,
Policy commands and Statistics commands. The rationale behind this
separation is to differentiate policy decisions from statistics collec-
tion. The controller uses Experimenter messages to communicate
these commands to the Access Point using OpenFlow.

5.1 Policy Commands
We design Policy commands to allow us to choose between avail-
able mechanisms at different layers. Every time a Policy command
is sent, it is paired with a Solicited response that is generated by
the receiver and sent to the controller using an experimenter mes-
sage. A Solicited response message thus provides us with feedback
from the intended receiver. We define the format of the policy ex-
perimenter messages as shown in Figure 5 (left). The Controller
packs a policy command, and sends it to the Access Point using

Begin	

Startup	
delay	

Initial	
Playing	

End	

First	Re-
buffering	

First	Re-
buffering	
Playing	

Multiple	
Re-

buffering	

Multiple	
Re-

buffering	
Playing	

Figure 2: DQS state machine

0 10 20 30 40 50 60 70 80
Time (in seconds)

1

2

3

4

5

De
liv

er
y

Qu
al

ity
 S

co
re

Sta
ll

Stall

Play

Play

DQS Play Status

Figure 3: Sample DQS evolution.

Experimenter ID: QFlow

Type: QFlow Policy Command

Command ID

Command Length

Command

Experimenter ID: QFlow

Type: QFlow Client Statistics

Client ID

Average RTT (in ms)

RSSI (in dBm)

Application speci"c info

Policy	Command	Packet	 Client	State	Packet	

Figure 5: Packet formats in QFlow
Wireless	Station	

QoS	Policy	

Controller	
Database	

Controller	

Client	Middleware	 To/From	
Internet	

Network	
Interface	

Qflow	
Interface	

Queueing	
Mechanism	

Statistics	
Collection	

Reconfigurable	
Queueing	

User	
Application	

Data	path	
	
Control	path	

Statistics	
Collection	

WiFi	Access	Point	

Statistics	

Policy	Commands	

RL		
Agent	

Policy	
Adaptation	

2	

2	

2	

1	

3	

4	

5	

6	

Network	
Interface	

6	7	

Statistics	

5	2	
Client	

Database	

Figure 4: The system architecture of QFlow.

OpenFlow. On receiving the message, QFlow unpacks it, identifies
the specific policy command using the type field, and performs the
corresponding operation. Using this framework, we implemented
policy commands for the MAC layer.

Data Link Layer Queue Command: At the data link layer, we
need a means of providing variable queueing schemes. Traffic con-
trol (tc) is a Linux utility that enables us to configure the settings
of the kernel packet scheduler by allowing us to Shape (control the
rate of transmission and smooth out bursts) and Schedule (prioritize)
traffic. Each network interface is associated with a qdisc (Queueing
discipline) which receives packets destined for the interface. We se-
lected Hierarchical Token Bucket (htb) for our experiments because
of the versatility of the scheme. It performs shaping by specifying
rate (guaranteed bandwith) and ceil (maximum bandwidth) for a
class, with sharing of available bandwidth between children of the
same parent class, and can also prioritize classes. Finally, we use
Filters to classify and enqueue packets into classes.

In our experiments, we create queues with different token rates
using htb. Tokens may be borrowed between queues, meaning that
queues will share tokens if they have no traffic. We also create a
default queue that handles any background traffic. Decisions at the
data link layer include assigning flows to queues, setting admis-
sion limits, changing the throughput caps queues, and enabling or
disabling sharing of excess (unused) throughput between them.

5.2 Statistics Commands
Policy commands result in changes to the QoS statistics of the
queues. We define Statistics commands to collect these results and
send them back to the controller for analysis. Queue statistics in-
clude cumulative counts of downlink packets, bytes and dropped

packets. Client-specific statistics consist of average Round Trip
Times (RTT; which includes both the RTT from the base station to
the client as well as the RTT from the base station to the wide-area
destinations with which the client communicates), signal strength
(RSSI) and Application specific statistics like buffer state, stall in-
formation and video bitrate. Since statistics are sent periodically
(once every second) to the controller, we label such messages as
Unsolicited response messages.

Similar to Policy commands, we define the structure of both
Queue and Client-specific Statistics messages. After collecting the
respective statistics, QFlow packs the data and sends them to the
Controller using OpenFlow. On receiving these messages, the Con-
troller unpacks them, identifies the type from the header informa-
tion and then saves the extracted data to the database. The packet
formats of the Client Statistics messages is shown in Figure 5 (right).

QFlow thus is capable of generating state-action, and measuring
the resultant rewards in terms of QoE. The details of using the
system for RL will be described in the next two sections.

The client-specific statistics, together with statistics of the queue
it is placed in, constitute the Quality of Service (QoS) for a client.

6 MODEL-FREE RL
We describe a model-free RL based approach for learning a control
algorithm for the system described in Section 4. More specifically,
the objective is to learn a control policy for the MDP when the sys-
tem model (transition probability kernel of the MDP) is unknown.
Model-free RL algorithms learn the optimal control policy directly
via the interactions with the system, without explicitly estimating
the system model. The interaction of the RL agent with the system
is modeled as a set of tuples (st ,at ,Rt+1, st+1) over time and the
goal of the RL agent is to learn a policy π that recommends an
action to take given a state, in order to maximize its long term
expected cumulative reward. We will employ a specific model-free
RL algorithm known as Q-learning algorithm.

6.1 Q-Learning
Each state-action pair (s,a) under a policy π can be mapped to a
scalar value, using a Q-function.Qπ (s,a) is the expected cumulative
reward of taking an action a in a state s and following the policy π
from there on. Qπ is specified as

Qπ (s,a) = E

[
∞∑
t=0

γ tR(st ,π (st))|s0 = s,a0 = a

]
,

where γ ∈ (0, 1) is the discount factor. Maximizing the cumulative
reward is equivalent to finding a policy that maximizes the Q-
function. The optimal Q-function,Q∗ satisfies the Bellman equation

Q∗(s,a) = R(s,a) + γEs ′[max
b

Q∗(s ′,b)],∀s,a.
The objective of the Q-learning algorithm is to learn this optimalQ∗

from the sequence of observations (st ,at ,Rt+1, st+1). The optimal
policy π∗ can be computed from Q∗ as,

π∗(s) = argmax
a

Q∗(s,a).

Q-learning algorithm is implemented as follows. At each time
step k , the RL agent updates the Q-function Qk as

Qk+1(s,a) =


(1 − αk)Qk (s,a) + αk (Rk + γ maxb Qk (sk+1,b))

if s = sk ,a = ak
Qk (s,a) otherwise

where αk is the learning rate. If each-state action pairs is sampled
infinitely often and under some suitable conditions on the step size,
Qk will converge to the optimal Q-function Q∗ [21].

6.2 Deep Q-Learning
Using a standard tabular Q-learning algorithm as described above to
solve our problem is infeasible due to the huge state space associated
with it. Figure 6 depicts our learning problem. The individual client
states are combined to form a joint state. The aggregate reward is
the reward of all clients combined. The learning agent observes the
states and rewards, and outputs an action. The environment then
moves to the next state, yielding a reward.

Figure 6: RL Framework

The state of each client is a tuple consisting of its buffer state, stall
information, and its QoE at t . Buffer state and QoE are considered to
be real numbers, and thus can take an uncountable number of values.
Even if we quantize, the number of states increases exponentially
with the dimension and the number of clients. Tabular Q-learning
approaches fails in such scenarios.

To overcome this issue due to the curse of dimensionality, we
address this problem through the framework of deep reinforcement
learning. In particular, we use the double DQN algorithm in [23] that
achieved the state of the art performance in many tasks including
Atari games. This approach is a clever combination of three main
ideas: Q-function approximation with neural network, experience
replay, and target network. We give a brief description below.

Q-function approximationwithneural network:To address
the problem of large and continuous state space, we approximate
the Q-function using a multi-layer neural network, i.e., Q(s,a) ≈
Qw (s,a)wherew is the parameter of the neural network. Deep neu-
ral networks have achieved tremendous success in both supervised
learning (image recognition, speech processing) and reinforcement
learning (AlphaGo games) tasks. They can approximate arbitrary
functions without explicitly designing the features like in classical
approximation techniques. The parameter of the neural network
can be updated using a (stochastic) gradient descent with step size
α as

w = w + α∇Qw (st ,at)(Rt + γ max
b

Qw (st+1,b) −Qw (st ,at)) (1)

Experience Replay: Unlike supervised learning algorithm, the
data samples {st ,at ,Rt , st+1} obtained by an RL algorithm is cor-
related in time due to the underlying system dynamics. This often
leads to a very slow convergence or non-convergence of the gra-
dient descent algorithms like (1). The idea of experience replay
is to break this temporal correlation by randomly sampling some
data points from a buffer of previously observed (experienced) data
points to perform the gradient step in (1) [10]. New observation
are then added to the replay buffer and the process is repeated.

Target Network: In (1), the target Rt + γ maxb Qw (st+1,b) de-
pends on the neural network parameterw , unlike the targets used
for supervised learning which are fixed before learning begins. This
often leads to poor convergence in RL algorithms. To addresses this
issue, deep RL algorithms maintain a separate neural network for
the target. The target network is kept fixed for multiple steps. The
update equation with target network is given below.

w = w + α∇Qw (st ,at)(Rt + γ max
b

Qw− (st+1,b) −Qw (st ,at))

w− = w after every N steps.

The combination of neural networks, experience replay and
target network forms the core of the DQN algorithm [10]. However,
it is known that DQN algorithm suffers from overestimation of Q
values. Double DQN algorithm [23] overcomes this problem using
slightly modified updated equation as

w = w + α∇Qw (st ,at)(Rt + γQw− (st+1, argmax
b

Qw (st+1,b))

−Qw (st ,at)).

The target network is updated after every N steps as before.

6.3 Training the RL Algorithm
We implemented the double DQN algorithm using the TensorForce
library [14]. Hyperparameters are selected via random search. The
final configuration and hyperparameter of the RL algorithm is
specified in Table 1.

For the faster training of our RL algorithm, we first implement a
simulation environment which closely mimics the dynamics of the
physical testbed. The environment simulates each video including
its bitrate, buffer, length, and QoE. The bitrate and length of each
video is generated according to a normal distribution; buffer is
stored in terms of time, rather than bits. Each client continuously
plays one video after another, stalling where its buffer runs out and
building up a buffer of 10 seconds before attempting playing again.

Table 1: Selected hyperparameters for RL agent

Hyperparameter Chosen Value
Discount 0.9999
Network Hidden Layers (64, 32)
Network Optimizer Adam, Learning Rate 0.001
Replay Buffer 500000
Replay Batch 32
Target Sync Period 100000
Huber Loss 1.0
Double Learning On
Control Policy ϵ-greedy, Decay ϵ from 1.0 to 0.01 over 1000000 steps

Queues are serviced with a constant total bandwith, but the fairness
of queue’s service among flows assigned to that queue is chosen
in each decision period (DP) according to a Dirichlet distribution.
Each DP is of duration 10 seconds. The simulation environment
uses a high-priority queue with 11 Mbps bandwidth and a low-
priority queue with 4.3 Mbps. In the static network configuration,
six clients are specified that draw video bit-rates from a truncated
N(2.9, 10) distribution in Mbps, and draw video lengths from a
truncated N(600, 50) distribution in seconds.

Figure 7: Training model-free RL via simulations

For hyperparameter search, the system was simulated for 200 DP
per episode for 1000 episodes. Note that increasing the number of
units or layers in the network used for value estimation after (64, 32)
does not significantly affect the convergence curve; however, the
magnitude of the learning rate creates large differences in the per-
formance to which the agent ultimately converges. Further, a single
layer is incapable of learning to the performance achieved by the
two-layer network. We therefore choose the (64, 32) configuration
for our agent. The evolution of value during the training process is
shown in Figure 7 top-left. As is seen, the trained controller achieves
a high QoE of near 5.

Next, we compare the performance of different policies in the
simulation environment. Figure 7 top-right shows the average
QoE attained by different policies, which suggests that perhaps
the model-free approach, while best, may not give substantial per-
formance improvements. The QoE CDFs in Figure 7 bottom-left,
however, indicate that model-free RL achieves a higher QoE for a

larger fraction of clients, suggesting that it might be more robust to
resource constraints. Indeed, we will see in experiments in Section 8
that it attains quite substantial gains over the other approaches in
practice under a bandwidth constrained environment.

6.4 Dynamic Number of Clients
In the above description, we assumed that the number of clients in
the system is static. The timescale at which the number of clients
change is very large (several tens of minutes; this models human
mobility) when compared to the decision period (10 seconds). In-
cluding a dynamic number of clients into training would require
augmenting the state space with the number of connected clients,
and a Markov model of transitions in this value. Since this increases
the state space and training duration, we instead obtain the optimal
static policy for the system with 4 to 6 clients using the model-free
approach. Figure 7 bottom-right shows the evolution of value over
the training process over the different cases. We can then choose
the the right policy based on number of clients in the system. In-
terestingly, there appears to be enough structure in our problem
that a policy developed for a larger number of clients can simply
be used for a smaller number (setting non-existent clients to have
large QoE and buffer values), since the relative priorities of clients
is all that matters. This simplifies training considerably.

7 MODEL-BASED RL
In this section, we discuss the scenario in which the dynamics of
the system (transition kernel) are first determined, i.e., given the
current state st of the system and the action taken at , we find the
transition probabilities to the next states st+1. Given the transition
kernel of the system P, we can use policy or value iteration to solve
for the optimal policy π∗. The model-based approach is particularly
interesting because of its special structure, since the state transitions
of a client given its current state and action are independent of the
states and actions of other clients in the system. In other words,

P(st+1 |at , st) =
∏
∀c ∈C

P(sct+1 |a
c
t , s

c
t)

It must also be noted that the state transitions of all clients in the
system given their current states and actions are identical. Thus,
we can determine the transition kernel of the system using the
transition kernel of each individual client.

7.1 Static Model
In what follows, we determine the transition kernel of the system
with a fixed number of clients, and obtain the optimal policy.

Experimental Traces. We generate state (sct), action (act) and
next state (sct+1) tuples for all clients by running the system under
Round Robin, Greedy Buffer, Random,Model Free and Vanilla policy
for a duration of 10 hours.

Discretizing the state space. The state of each individual client
sct and hence the state of the system st have elements that are (non-
negative) real numbers. In order to calculate the transition kernel
of the client in atractable manner, we discretize the state space
of the client according to table 2. Since the state of a client is 3
dimensional (Buffer, Stall, QoE) we encode it to obtain a label for
each client state as follows, Let NSB and NQB denote the number

Table 2: Client State Space Discretization

Parameter Range Bins
Buffer [0,20] 21
Stalls [0,5] 5
QoE [1,5] 9

of stall and QoE bins respectively,

sct = Buffer × NSB × NQB + QoE × NSB + Stall

The discretized and encoded state space of a client Sc has a cardi-
nality of 945.

Determining the transitionkernel of a client.Wedetermine
the transition kernel of a single client by fitting an empirical distri-
bution over the state, action, and next state tuples collected from
experimental traces, i.e., we empirical determine,

P(sct+1 |a
c
t , s

c
t) ∀sct+1, sct ∈ Sc ∀act ∈ Ac

from experimental traces. Ac is the set of all actions for a client c .
Identifying Frequent States of the system. The state of the

system (st) is the union of states of all clients (sct) in the system.
If there are N clients in the system, the state of the system is a
N dimensional vector, where each dimension corresponds to the
state of a client. Let S denote the discretized state space of the
system. The cardinality of S is of the order of 945N . Solving an
MDP with 945N states is intractable. Hence, based on experimental
traces, we identify the most frequent states Sp of the system, and
approximate all other states to these popular states using the L2
norm, i.e., given a state in S, we approximate it by a state in Sp
with the least Euclidean distance.

Calculating the transition kernel of the system. The state
space of our system has now reduced from S to Sp . To obtain
the transition kernel of this system, we empirically sample one
hundred state transitions for each state in Sp under each action in
A using the transition kernel of individual clients. If the generated
state transitions are outside Sp , we approximate it with the state
in Sp which is closest in Euclidean distance. Thus, we obtain state,
action, next state tuples for the system with state space Sp . We fit
an empirical distribution over these tuples to obtain the transition
kernel of the system. Hence, we empirically determine

P(st+1 |at , st) ∀st+1, st ∈ Sp ∀at ∈ A.

Obtaining the optimal policy We obtain the optimal policy
π∗ by running value iteration over the transition kernel generated
for Sp . It must be noted that the reward obtained by taking action
at in state st is the average QoE of state st+1 which is a part of st+1
and hence need not be calculated explicitly.

7.2 Dynamic Number of Clients
In the previous subsection, we assumed that the number of clients
in the system are static. To deal with a dynamic number of clients,
we follow an approach similar to the one described in section 6. We
obtain the optimal policy for the system with 4-6 clients using the
static model approach described in the previous subsection. In the
same manner as the model-free case, we may also use the policy
for 6 clients for a smaller number of clients by just comparing their
relative priorities.

8 EVALUATION
An off-the-shelf WiFi router installed with QFlow is used as the
Access Point and three Intel NUCs are used to instantiate up to 6
clients (YouTube sessions) for our experiments. Note that each such
session can be associated with multiple TCP flows, and we treat all
the flows associated with a particular YouTube session identically.
The three NUCs are equipped with 5th generation i7 processors
with 8 GB of memory, each capable of running multiple traffic
intensive sessions simultaneously. Relevant session information
such as ports used by an application, play/load progress, bitrate and
stall information for YouTube sessions is collected every second
and written to the database.

We setup a scenario with two downlink queues, onewith a higher
bandwidth allocation (resulting in better QoS) than the other using
token bucket queueing. A default queue is used for any background
traffic. Two clients may be allowed into the high priority queue.
For the no differentiation case, we just set up a single queue with
the same total throughput limit as that of the two queues in the
previous scenarios. Our control problem is to determine which
sessions to assign to which queues.

8.1 Policies
In addition to described Model-based and Model-free policies, we
consider four additional policies for choosing these assignments.

Vanilla: This is the base case with a single queue that is allocated
the full bandwidth, and with no differentiation between clients.

Round Robin: As the name suggests, we assign clients to the
high priority queue in turn. Although it is computationally inexpen-
sive, work-conserving and prevents starvation, it might lead to the
wrong clients (those who have no hope of significantly increasing
their QoE) being considered for the high-quality service instead of
clients who might benefit much more from the service.

Reward Greedy: This policy computes the expected one-step
reward on a per-client basis, and assigns clients so as to maximize
the sum of rewards. We can think of this as a myopic version of
model-based RL. This might starve sessions that were unlucky and
stalled at some point, since QoE growth rates reduce after stalls.

Greedy Buffer: The smooth playout of a video depends on the
size of the playback buffer. When the buffer is empty, the client
experiences a stall and the perceived QoE drops. This approach
promotes the clients with the lowest buffered video to the high
priority queue to prevent this from occurring. This policy might
promote the wrong agents who have low buffers because they are
at the end of their videos, or those that have stalled multiple times
and can never recover high QoE.

8.2 Static Network Configuration
In our static configuration, each NUC hosts two YouTube sessions to
simulate a total of 6 clients. The QoE performance comparison of the
different policies is shown in Figures 8, 9 and 10. We first compare
the average QoE of the various policies in the first figure. It is clear
that the Model-based and the Model-free policies outperform the
other policies. This gap in performance becomes even more evident
when we compare the CDFs of the individual and the average QoE
of the different policies in Figures 9 and 10. For example, we can
observe from Figure 9 that the Model-based and the Model-free

Vanilla Round
Robin

Reward
Greedy

Greedy
Buffer

Model
based

Model
free

0

1

2

3

4

5

Av
er

ag
e

Qo
E

Figure 8: Comparison of average QoE

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Client QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 9: Comparison of client QoE CDF

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 10: Comparison of average QoE
CDF

Vanilla Round
Robin

Reward
Greedy

Greedy
Buffer

Model
based

Model
free

0

1

2

3

4

5

6

Av
er

ag
e

Bu
ffe

r s
ta

te
 (s

ec
)

Figure 11: Comparison of average Buffer

50 25 0 25 50 75 100 125
Client Buffer state (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 12: Comparison of client Buffer
CDF

20 10 0 10 20 30 40 50
Average Buffer state (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 13: Comparison of average Buffer
CDF

policies are able to provide a QoE of 5 for almost 90 and 85% of the
time for all clients, whereas it is only about 65% of the time for the
next best policy. Similarly, it can be deduced from Figure 10 that
the Model-based and the Model-free policies are able to achieve an
average QoE of 5 for all participating clients in the system about
55 and 40% respectively. The value of this metric for the next best
policy is about 5%.

The QoE experienced by a client is affected by the buffer state of
the client and the stalls experienced during video playback. Hence,
we study the buffer state and the stall durations experienced by the
clients under the different policies. Similar to the QoE plots, we
compared the averages, the CDFs of the individual and the average
values for both these features in Figures 11 to 16. Again, it is evident
from the figures that the Model-based and the Model-free policies
ensure better buffer state and lower stall durations (both individual
and average) than the other policies under consideration.

8.3 Dynamic Number of Clients
We next study the performance of the policies in a scenario with a
varying number of clients. We choose the number of active clients
in the system to vary between 4 and 6, while keeping the bandwidth
allocation same as that of the static configuration.

We consider a larger timescale of 30 minutes for changing the
number of clients participating in the system.We start with 6 clients
in the system and then remove 1 client each for the next two time
periods. At the end of the third period, we introduce two more
clients in the system. The evolution of the average QoE for each of

the policies for the above scenario is shown in Figure 17. It is seen
that Model-based and Model-free policies perform well irrespective
of the number of users in the system, whereas other policies only
do well when there are relatively fewer clients in the system.

Since the bandwidth allocation is the same, reducing the number
of clients implies relaxation of the resource constraints and hence,
other policies see an improvement in performance. This can be seen
in Figures 18 and 19, where the CDF curves of the other policies
are closer to those of the Model-based and the Model-free polciies.
Even so, Model-based and Model-free policies exhibit the best per-
formance, which reinforces their superiority over other policies in
both static and dynamic client scenarios.

9 CONCLUSION
In this paper, we considered the design, development and evalua-
tion of QFlow, a platform for reinforcement learning based edge
network configuration. Working with off-the-shelf hardware and
open source operating systems and protocols, we showed how to
couple queueing, learning and scheduling to develop a system that
is able to reconfigure itself to best suit the needs of video streaming
applications. As our YouTube observations suggest, such a holistic
framework that accounts for this entire chain can reveal efficiencies
and interactions that a narrow focus on individual components of
the system is incapable of achieving. We believe that the application
of our system will be in upcoming small cell wireless architectures
such as 5G, and our goal will be to extend our ideas to such settings.

Vanilla Round
Robin

Reward
Greedy

Greedy
Buffer

Model
based

Model
free

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Av
er

ag
e

St
al

l D
ur

at
io

n
(s

ec
)

Figure 14: Comparison of average stall
duration

0 2 4 6 8 10
Client Stall Duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 15: Comparison of stall duration
CDF

0 1 2 3 4 5 6 7
Average Stall Duration (sec)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 16: Comparison of average stall
duration CDF

0 500 1000 1500 2000 2500 3000 3500
Decision Period

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

Av
er

ag
e

Qo
E

5 clients
4 clients 6 clients

Vanilla
Round Robin

Reward Greedy
Greedy Buffer

Model-based
Model-free

Figure 17: Evolution of QoE for dynamic
clients

1 2 3 4 5
Client QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 18: Comparison of client QoE
CDF for dynamic clients

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Average QoE

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Vanilla
Round Robin
Reward Greedy
Greedy Buffer
Model-based
Model-free

Figure 19: Comparison of average QoE
CDF for dynamic clients

REFERENCES
[1] CPqD. 2015. OpenFlow Software Switch. http://cpqd.github.io/ofsoftswitch13/.
[2] Ericsson. 2015. Ericsson Mobility Report: On the Pulse of the Networked So-

ciety. https://www.ericsson.com/assets/local/mobility-report/documents/2015/
ericsson-mobility-report-june-2015.pdf.

[3] A. Eryilmaz, R. Srikant, and J. Perkins. 2005. Stable Scheduling Policies for fading
wireless channels. IEEE/ACM Trans. Network. 13 (April 2005), 411–424.

[4] N. Eswara, K. Manasa, A. Kommineni, S. Chakraborty, H. P. Sethuram, K. Kuchi, A.
Kumar, and S. S. Channappayya. 2017. A Continuous QoE Evaluation Framework
for Video Streaming over HTTP. IEEE Transactions on Circuits and Systems for
Video Technology In press (2017). https://doi.org/10.1109/TCSVT.2017.2742601

[5] Panagiotis Georgopoulos, Yehia Elkhatib, Matthew Broadbent, Mu Mu, and
Nicholas Race. 2013. Towards Network-wide QoE Fairness Using Openflow-
assisted Adaptive Video Streaming. In Proceedings of ACM FhMN.

[6] D. Ghadiyaram, J. Pan, and A. C. Bovik. 2018. Learning a Continuous-Time
Streaming Video QoE Model. IEEE Transactions on Image Processing 27, 5 (May
2018), 2257–2271. https://doi.org/10.1109/TIP.2018.2790347

[7] I.H. Hou, V. Borkar, and P.R Kumar. 2009. A theory of QoS for wireless. In
Proceedings of IEEE INFOCOM.

[8] Michael Jarschel, Florian Wamser, Thomas Hohn, Thomas Zinner, and Phuoc
Tran-Gia. 2013. SDN-based Application-Aware Networking on the Example of
YouTube Video Streaming. In Proceedings of EWSDN.

[9] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. 2017. Neural adaptive
video streaming with pensieve. In Proceedings of the Conference of the ACM Special
Interest Group on Data Communication. ACM, 197–210.

[10] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529.

[11] Ricky Mok, Weichi Li, and Rocky Chang. 2016. IRate: Initial Video Bitrate Selec-
tion System for HTTP Streaming. IEEE Journal on Selected Areas in Communica-
tions 34, 6 (June 2016), 1914–1928. https://doi.org/10.1109/JSAC.2016.2559078

[12] Hyunwoo Nam, Kyung-Hwa Kim, Jong Yul Kim, and Henning Schulzrinne. 2014.
Towards QoE-aware Video Streaming using SDN. In Proceedings of IEEE GLOBE-
COM.

[13] Sangeeta Ramakrishnan, Xiaoqing Zhu, Frank Chan, and Kashyap Kambhatla.
2015. SDN Based QoE Optimization for HTTP-Based Adaptive Video Streaming.

In Proceedings of IEEE ISM.
[14] Michael Schaarschmidt, Alexander Kuhnle, and Kai Fricke. 2017. Ten-

sorForce: A TensorFlow library for applied reinforcement learning.
https://github.com/reinforceio/tensorforce.

[15] J. Schulz-Zander, C. Mayer, B. Ciobotaru, S. Schmid, and A. Feldmann. 2015.
OpenSDWN: Programmatic control over home and enterprise WiFi. In Proceed-
ings of ACM SOSR.

[16] Julius Schulz-Zander, Nadi Sarrar, and Stefan Schmid. 2014. AeroFlux: A Near-
Sighted Controller Architecture for Software-Defined Wireless Networks. In
Proceedings of USENIX ONS.

[17] P. Shome, J. Modares, N. Mastronarde, and A. Sprintson. 2017. Enabling Dy-
namic Reconfigurability of SDRs Using SDN Principles. In Proceedings of Ad Hoc
Networks.

[18] P. Shome, M. Yan, S. M. Najafabad, N. Mastronarde, and A. Sprintson. 2015. Cross-
Flow: A cross-layer architecture for SDR using SDN principles. In Proceedings of
IEEE NFV-SDN. https://doi.org/10.1109/NFV-SDN.2015.7387403

[19] Rahul Singh and PR Kumar. 2015. Optimizing quality of experience of dynamic
video streaming over fading wireless networks. In Decision and Control (CDC),
2015 IEEE 54th Annual Conference on. IEEE, 7195–7200.

[20] T. Spetebroot, S. Afra, N. Aguilera, D. Saucez, and C. Barakat. 2015. From network-
level measurements to expected Quality of Experience: The Skype use case. In
Proceedings of IEEE M&N.

[21] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[22] L. Tassiulas and A.Ephermides. 1992. Stability properties of constrained queueing
systems and scheduling policies for maximum throughput in multihop radio
networks. IEEE Trans. Automat. Contr. 37, 12 (1992), 1936–1948.

[23] Hado Van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning.. In AAAI, Vol. 2. Phoenix, AZ, 5.

[24] M. Yan, J. Casey, P. Shome, A. Sprintson, and A. Sutton. 2015. ÆtherFlow:
Principled Wireless Support in SDN. In Proceedings of IEEE ICNP. https://doi.
org/10.1109/ICNP.2015.9

[25] Simon Yau, Ping-Chun Hsieh, Rajarshi Bhattacharyya, KR Bhargav, Srinivas
Shakkottai, I Hou, PR Kumar, et al. 2018. PULS: Processor-Supported Ultra-Low
Latency Scheduling. In Proceedings of ACM MobiHoc.

[26] H. Yeganeh, R. Kordasiewicz, M. Gallant, D. Ghadiyaram, and A. C. Bovik. 2014.
Delivery quality score model for Internet video. In Proceedings of IEEE ICIP.
https://doi.org/10.1109/ICIP.2014.7025402

http://cpqd.github.io/ofsoftswitch13/
https://www.ericsson.com/assets/local/mobility-report/documents/2015/ericsson-mobility-report-june-2015.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2015/ericsson-mobility-report-june-2015.pdf
https://doi.org/10.1109/TCSVT.2017.2742601
https://doi.org/10.1109/TIP.2018.2790347
https://doi.org/10.1109/JSAC.2016.2559078
https://doi.org/10.1109/NFV-SDN.2015.7387403
https://doi.org/10.1109/ICNP.2015.9
https://doi.org/10.1109/ICNP.2015.9
https://doi.org/10.1109/ICIP.2014.7025402

	Abstract
	1 Introduction
	2 Main Results
	3 Related Work
	4 System Model and Architecture
	4.1 Markov Decision Process
	4.2 Measuring QoE for Video Streaming
	4.3 QFlow System Architecture

	5 QFlow Implementation Details
	5.1 Policy Commands
	5.2 Statistics Commands

	6 Model-Free RL
	6.1 Q-Learning
	6.2 Deep Q-Learning
	6.3 Training the RL Algorithm
	6.4 Dynamic Number of Clients

	7 Model-Based RL
	7.1 Static Model
	7.2 Dynamic Number of Clients

	8 Evaluation
	8.1 Policies
	8.2 Static Network Configuration
	8.3 Dynamic Number of Clients

	9 Conclusion
	References

