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Abstract

We establish universality at the hard edge for general beta ensembles assuming that:
the background potential V' is a polynomial such that = + V(z?) is strongly convex,
B8 > 1, and the “dimension-difference” parameter a > 0. The method rests on the
corresponding tridiagonal matrix models, showing that their appropriate continuum
scaling limit is given by the Stochastic Bessel Operator. As conjectured in [10] and
rigorously established in [18], the latter characterizes the hard edge in the case of linear

potential and all 8 (the classical “beta-Laguerre” ensembles).

1 Introduction

We prove a universality result for the limiting distribution of the smallest points for a family
of coulomb gas measures. With any § > 0 and a > —1 these measures are prescribed through

the joint densities of n points {\1,..., A, } on the positive half-line:

T = AP T, wia) = Asesn e, (L.1)
i#j i=1
In general, V' can be any function that is bounded at zero and of suitable growth at infinity;
the constant Z = Z(V, 3, a,n) is the corresponding normalizer. The particular choice of the
weight w is explained by the fact that when § = 1,2,4, V(x) = /2, and «a is an integer, (1.1)
is precisely the joint density of eigenvalues for the classical Wishart (or Laguerre) ensembles
of random matrix theory. These are ensembles of the form X XT for an n x (n + a) matrix
X of independent real, complex, or quaternion (at § = 1,2, or 4) mean-zero Gaussians, here
normalized to have mean-square (n/3)~'.

The scaling limit for the smallest points in this and related contexts is now commonly

referred to as the hard-edge limit. In the solvable case of complex Gaussian entries (§ = 2 and
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a=0,1,2,...) a closed form for these distributions was discovered by Tracy and Widom
[21], with results for the real and quaternion cases following in [22]. Keeping with the
Gaussian-type potential (V(z) = x/2), but now allowing all possible values of g and a,
the densities (1.1) define the extensively studied “beta-Laguerre” ensembles. Based on a
corresponding tri-diagonal matrix model of Dumitriu and Edelman [9], Edelman and Sutton
[10] conjectured that the limiting beta-Laguerre hard edge should be described by a certain
random differential equation which they tagged the Stochastic Bessel Operator. This was
subsequently proved in [19].
The Stochastic Bessel Operator (SBOg,) takes the form:

a T l xT d 7amfl x d
SBOg.. = ARG )%e VB )%, (1.2)

where = — b(x) is a standard Brownian motion. For the present application, this is taken
l x
to act on a subspace of smooth functions of L*(R,,m(dx)) for m(dz) = e TV VEY gy

with a Dirichlet boundary condition at the origin. Viewed as a random diffusion generator
symmetric with respect to m(dz), one sees that SBOg , has almost surely discrete spectrum
[19].

Here we show that SBOg, is a universal object, characterizing the hard-edge scaling
limit for S-ensembles (1.1) with a certain class of polynomial potentials. This is the first

universality result for the hard edge beyond 5 =1, 2,4.

Theorem 1. Consider the ordered points 0 < Ay < Ay < --- drawn from the B-ensemble
(1.1) where V is a polynomial such that x — V(x?) is strongly convezr, 8 > 1, and a > 0.
Denote by 0 < Ay < Ay < --- the ordered eigenvalues of SBOg,. Then, there is a constant

0 = 0yg, Such that: as n — oo,
0n2(/\1,/\2,...) = (Al,Ag,...), (13)
in the sense of finite dimensional distributions.

The restriction to f§ > 1 and a > 0 is an additional convexity assumption, as we will
explain below. Our proof builds on the method in which the SBOg, limit was originally
established in the simpler g-Laguerre setting. We identify a family of tridiagonal matrix
models which realize (1.1) as their eigenvalue densities, and then demonstrate that SBOg,
serves as their appropriate continuum operator limit. The program is similar in spirit to the
recent soft-edge universality proof using the characterizing Stochastic Airy Operator [14].

Hard edge universality has previously been addressed at f = 1,2,4 via the Riemann-
Hilbert Problem method: for 5 = 2 quite general potentials V' are treated in [15], while for

f =1 and 4 reference [7| considers potentials that are asymptotically monomial. At these



values of # the laws (1.1) correspond to eigenvalue densities for nonnegative definite matrices
M drawn according to the law with density proportion to (det M)Ye ™V g\ (for choice
of v > —1). There are also further special values of § (outside of 1, 2, and 4) for which
the hard-edge of S-Laguerre can be accessed through multivariate special functions (without
appealing to SBOg,), see for example [12]. At the soft edge, besides again f = 1,2,4
results using the Riemann-Hilbert Problem method [6] and the operator approach of [14],
there are the results of Bekerman-Figalli-Guionnet [1] and Bourgade-Erdés-Yau [3] which
hold for a far more general class of potentials. While these latter methods might be made
to work at the hard edge, a difficulty inherent to both is the intrinsic instability of the
smallest eigenvalue with respect to perturbations. That this issue is more or less bypassed
in our proof demonstrates the power of the random operator approach. As we will see, in
this approach universality follows from the relatively simple mechanism of an appropriate

functional central limit theorem.

Tridiagonals and operator limits

Let B = B(z,y) denote the n x n lower bi-diagonal matrix
Bij=ux;fori=1,...n, By, =-yfori=1...,n—1, (1.4)

with the convention that all z; and y; are positive. Build the random B = B(X,Y) with

variables (X1,..., X,,Y1,...,Y,_1) drawn according to the density on (R )*"':
1 n n—1
P(z1,. . Tpy Y1y ey Yn1) = 7 oXP [—nﬂtrV(BBT)} Hm’g(kﬂ)_l H y,fk_l, (1.5)
k=1 k=1

with a new normalizer Z. Then, the key fact is that the random tridiagonal B(X,Y)B(X,Y)”
has joint eigenvalue density given by (1.1). This is the general potential analogue of the
Edelman-Dumitriu result [9]. When V is linear (1.5) reduces to their representation of g-
Laguerre: all X; and Y; are independent with X; ~ ﬁxﬁ(iﬂ) and Y; ~ ﬁ Xsi (xr denoting
a chi variable of parameter » > 0). The proof is much the same as that in [9], and for
completeness is included in the appendix.

Next we recall (from [19]) that SBOg, is best understood through its inverse, which has
a similar decomposition to the matrix model (BB”)™!. Mapped to act on [0, 1] rather than

the half line, this inverse takes the form K, K}, in which K, is the integral operator with

Ky(s, 1) = % (;)“/Q exp {/t %} - (1.6)

!'Throughout we use the same notation for any integral operator and its corresponding kernel.

kernel!




on L?[0,1]. The strategy that emerges is to show that, after an embedding into L?[0, 1],
[nB]~! converges to K, in a suitably strong sense.
From now on we specify V(z) = anzl gmax™, and for ¢t € [0, 1] introduce the family of

functions h; and their corresponding minimizers:

d 2
hi(x) = Z Im (QZL> ¥ — 2tlogz, ¢(t) = argmin hy(x). (1.7)
m=1

x>0

In terms of ¢, we also set

' 2
0(t) = K (/ d_u) . with kK = Ky, chosen so that 6(1) = 1. (1.8)
o P(u)

At this point our reasoning for bringing in ¢ and 6 is unclear, let alone that ¢ exists, is
unique, and such that 6 is well-defined. The motivation will come in Section 2, and that ¢
has all the needed properties is the content of Lemma 3 there. Granted all this however our

main technical result is the following.

Theorem 2. Let x — V(2?) be a strongly convex polynomial and take 3 > 1 and a > 0.
Denote by K, the canonical embedding of the random matrices [nB(X,Y)]™! as operators
from L?[0,1] to itself. Then, for any sequence n — oo there is a subsequence n’ — oo and a

probability space on which K, converges to the integral operator K with kernel

B 1 O AR S "0 dp,
K(s,t) = o)1) <Q(t)) P [\/B/G(s) \/z] Lsct, (1.9)

almost surely in Hilbert-Schmidt norm.

One observes that when V(z) = /2, (1.7) and (1.8) yield ¢(t) = v/t and 6(t) = t, and
(1.9) reduces to the advertised kernel K in (1.6). In general we have that

Ky (0(s), 000) /O ()0 (1) = 26K (s, 1), (1.10)

with # as in (1.8). In other words, the eigenvalues of K7 K and K;," K}, defined with the same
Brownian motion, agree up to an overall multiple of 4x?, identifying the (V, 3, a)-dependent
scaling constant oy g, = 4x* in (1.3). Here we are using, as is implicit the statement of
Theorem 2, that K and K, are almost-surely Hilbert-Schmidt. To conclude Theorem 1 is
more or less immediate. In the subsequential coupling of Theorem 2 one has KK, — KK7T
in trace norm. Hence, the finite parts of the spectrum of (nBBT)~! converge to those of
KTK in this manner and so also in distribution. In particular, we also have the convergence

in distribution of any fixed number of eigenfunctions as elements of L?[0,1].



Remark 1. Rather than embedding [nB] ™" according to the “flat” basis ex = /nl{x_1)/nk/m)
and performing the change of variables (1.10) after the fact, we could work instead with the
suitably weighted 1g(—1/n),0(k/n)) basis functions to define the embedding. Then, after scaling

by 4k2, the corresponding discrete kernels will converge to K, itself.

Remark 2. The introduced function ¢ turns out to provide a first order approximation
to the minimizer of the natural Hamiltonian associated with P. It can also be described
through a “time-dependent” version of the equilibrium measure for the eigenvalue law (1.1).
In particular, replace the potential V' there with V; := ¢~'V for ¢ € (0,1]. Then, with
1 the weak limit of the eigenvalue counting measure for this ¢-dependent ensemble, it is
well-understood that:

f1; = argmin /OOO Vi(@)pu(dz) — /OOO /OOO log |z — y|u(dx)u(dy),

pneM

in which M is the space of probability measures of the half-line. A computation shows that
i has support [0,4¢%(t)] for all 0 < ¢ < 1.

Overview of the proof

Using the explicit inversion formula for bidiagonal matrices, the basic object of study is now
understood to be the random kernel operator
122 v,

Ka(s,t) = — [T =& 15 (s, 0). 1.11
) = 5, T 5 10 (1.11)

Here I';; is the set on which s € [E1, 1) ¢t € [];1 i), and s < t. When ¢ = j the

n ’'n n ’'n

product in (1.11) is understood to equal one. Given this expression, that spec([nBB*]™!)
= spec(KXK,) can be checked by hand.

The measure P under which K, is drawn has the form %e‘"ﬁH dxdy with Hamiltonian

n n—1
H(z,y) = trV(BBT) _ Z (Z + % — %) log z), — Z (% — %) log yp.. (1.12)

k=1

Our assumptions imply that H is itself strongly convex, that is (VZH)(z,y) > ¢l for some
¢ >0 and all (x,y) € Ri"_l. In particular, with 8 > 1 and a > 0 each of the log terms in

(1.12) has nonnegative second derivative. One then concludes by noting that,
1 0 B
trV (BBT) = §trV(A2), for A= ( BT 0 ) .

and applying C. Davis’ theorem [5]: a (strongly) convex function of a Hermitian matrix is

(strongly) convex as a function of its entries. Since (1.11) is a simple functional of the process
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k — (Xk, Yx), one is left to quantify the anticipated Gaussian fluctuations of (X, Y;) about
the minimizer (x¢,y;) of the Hamiltonian H.
In Section 2 we develop a fine (out to o(n™!)) approximation of the minimizer which

allows us to establish the correct centering:

[nt]
, xf a 1 o(t) 1. ()
lim log & = — (—+—> log — + = log —=, 1.13
dim 2 e == (373) 850 3 5 (119)

for all fixed s,t with 0 < s <t < 1. Granted this, the limiting kernel (1.9) is identified by
showing that

n

Xy /78 1 /1 db,
Xin t), 1 — | —= 1.14
[nt] = ¢( ) k:z\_;” 0og Yk/yz = \/B 6(t) \/ﬂ ( )

in the Skorohod topology on (0,1]. Here the polynomial assumption on V' is important
as it gives P a Markov field property: for example, (X;,Y;) and (X;,Y;) with |i — j| > d
are conditionally independent given any intervening block of variables of length d. The
implied decorrelation is quantified in a deterministic way, by showing a decay of dependence
of the minimizers of conditional versions of the Hamiltonian H with respect to boundary
conditions. These estimates also appear in Section 2. Section 3 builds up further properties
of the measure P, in particular demonstrating Gaussian concentration of the field about the
minimizer, as well as Gaussian approximation of the expectations of various test functions.
Given all this, the proof of (1.14) appears in Section 4.

Together (1.13) and (1.14) provide point-wise convergence (in law) of K, to K. To prove
that fol fol |K,, — K|* = 0 (over subsequences) as claimed in Theorem 2 requires a certain
domination of K,, by a tight family of L?([0,1]?) kernels. This is carried out in Section 5.

Comparison with the soft edge

We close the introduction with a few comments on the differences between the present result
and that of [14] for the soft edge. While the Stochastic Airy Operator is a more delicate
object than our integral operator K, to understand the underlying operator convergence
of the tridiagonal models at the soft edge, as first described in [17], one only requires fine
information on the first O(n'/?) entries of those matrices. For the hard edge one must resolve
O(n) variables, basically the entire range of the system. This requires much more elaborate
estimates on the minimizers of H, as well as a better handle on the decorrelation between
separate stretches of variables under P. Further, while at a high level our functional central
limit theorem in Section 4 follows a typical blocking strategy, the corresponding calculation
in [14] is really a “one-block” estimate. This also in part explains why the allied method

in [14] works for all § > 0. For us the issue is near “the singularity”, or for X and Y of



small index where the measure P becomes less coercive. Or, said another way: where, when
f < 1and/or a < 0, the Hamiltonian fails to be convex on an O(1) stretch of indices. While
the same issue appears in the soft edge, the troublesome indices are beyond the O(n'/3)
cutoff and one can get by with fairly rough estimates on that part of the field. Again, for
the present calculation we simply need more precise control of these entries (as evidenced in
particular in the operator norm estimates of Section 5). Our assumptions on [ and a cover

the classical cases, and makes an already technical paper a little less so.

2 Minimizers

As hinted at above, the function ¢ introduced in (1.7) serves as a first order approximation
to the minimizer (x°,y°) of the Hamiltonian H. We begin with a more motivated definition
(or re-definition) of this function.

Take the formula (1.12) for H and focus on a fixed index k (i.e., on the variables z; and
yy) corresponding to continuum position ¢ = k/n. Retain only those terms (in either the
tr V(BBT) or the logarithms) which involve (x,y;). Then, making the surmise that the
minimizer of H should be locally constant, set x, and y, for |[¢ — k| < d equal some x and y.
Finally, ignoring the additional (a/n — 1/ng) and (—1/nf) details in the multipliers of the
log 21, = log z and log yx = logy terms, we arrive at the following “coarse Hamiltonian” (at
fixed t € [0, 1]):

d m 2
m
Hy(z,y) = Z Im ( ) 22?2 _ tlogx — tlogy. (2.1)
/
m=1 =0
Plainly H; is symmetric in z and y, and notice that H;(z,x) equals the hi(x) introduced
in (1.7). The idea is that a minimizer (if it exists) of this approximate Hamiltonian will
be a satisfactory approximation of the true minimizer. This is ¢; its key properties are

summarized in the following.

Lemma 3. For each t € [0,1], (z,y) — Hi(z,y) has a unique minimizer (¢(t), d(t)). As
a function of t, ¢, hereafter referred to as the “coarse minimizer”, is smooth, positive for

t > 0, and increasing. It further satisfies

d
2m
t = md(t)*™, t € [0,1], 2.2
S Jamoti. foree o (2.
as well as the bounds.
< g2, G2, ¢ (1) <, (2.3)

for a constant ¢ and all small enough t > 0.



A similar approximation of the minimizer was employed in [14] where the analogous
objects are referred to as the local Hamiltonian and corresponding local minimizer. Here
though we require a much sharper approximation. In particular, to pin down the limiting

mean of the log potential, recall (1.13), one must refine (z°,¢°) out to o(n=!) errors.

Definition: In terms of ¢ define the functions ¢ ++ (1)(¢) and ¢ + y™M(t) via:

xm@%wﬂwo:(a+%)(ék%%)1—¢§X (2.4

00+ 900 = (a3 ) 0

Then, for i € [1,n], set

D (i /n W (i /n
ot = olifm) + Ty iy 4 L0,

(2.5)
We will refer to (zf,y?) as the “fine minimizer”.

Proposition 8 proved below in Section 2.3 shows that for bulk indices |2¢—zf | and |y?—y! |
are in fact O(n™?), from which for example the desired appraisal (1.13) follows.
The identification of (z?,y?) relies on strong convexity in an essential way. Indeed, a

characterization equivalent to Hess H (v, y) > cI for all (v,y) € R2""! is that

ell(z.y) = @93 < (VH(w,y) = VHE o), (z.9) = (@',9)), (2.6)

for all (z,y) and (2/,%/). Putting («/,y') = (z°,9°), the undetermined true minimizer, and

applying the Cauchy-Schwartz inequality (2.6) implies that

I(2,9) ~ (@, 9°) s < SIVH vl 2.7

The point is that the fine minimizer (x¢,y*) has been engineered so that V H (z¢,y?) vanishes
to sufficiently high order.

Before continuing we dispatch of the:

Proof of Lemma 3. We introduce an alternative description of H;. Let C' be the “circulant’
version of the truncated bidiagonal matrix B in variables zy,...x,, and yi,..., vy, (with
m > d but fixed) formed by placing a y,, entry in the upper right hand corner, and consider

m

(z,y) — trV(CCT) — tZ(log xy + log yi). (2.8)

k=1

By another application of C. Davis’ theorem, this is a (strongly) convex function for each

fixed t. It is also invariant under rotations of the indices, and so its unique minimizer satisfies
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rr = x and y, = y for some x and y and all k. But making this substitution one finds that
the right hand side of (2.8) equals mH,(z,y). Again, from here one sees that the minimum
further satisfies = = y.

Now that ¢(t) exists and is unique, one recognizes (2.2) as is equivalent to - Hy(z, )| ;=)
= 0. That t — ¢(t) is positive and increasing will then follow from showing that the right

hand side of (2.2) is increasing as a function of ¢. Rewrite that expression as in

d 2m dudu
2m 10122
m 2upV'( 2.9
2 (o o = [ 2oV (29)
Since = + V(z?) is (strongly) convex, z + 2xV’(z?) is increasing. The integral on the right
hand side of (2.9) is therefore a weighted average of increasing functions, which yields the
claim.

As for (2.3), again by strong convexity we have that g; > 0, and so for small ¢ the relation
(2.2) takes the form ¢ = 2g;$*(1+0(1)). This shows that ¢(¢) is bounded above and below by
a multiple of v/¢ for small ¢. The estimates on ¢’ and ¢” follow suit by considering successive
derivatives of (2.2). O

2.1 Identifying the fine minimizer
We establish the following.

Lemma 4. For any i € [1,n — d) it holds that

0
8232‘

1
vni3

with a constant ¢ depending on V, B and a. Fori € [n — d,n| the right hand side of (2.10)
can be replaced by O(1).

i[_[(xé’yé) <c

Héé
(z*, %) a0,

(2.10)

i

Proof. The starting point is a lattice path representation for the diagonal entries of powers
of BBT: for i € (d,n — d),

(BBT)" Z H Titp(2j—1) if p(25) =p(2j — 1)
pePm =1 \ | Yitpi-n-1 i p(25) =p(2j —1) =1

cenon iEp(27 £ 1) = p(2)
o[ ) Eeen if p(2j +1) = p(27) . (2.11)

Here P,, denotes the collection of random walk paths of length 2m beginning and ending
at height 0 and constrained as follows. At odd-timed steps j (corresponding to selecting
an entry from B), the path can either take a step of type — and remain at p(j) or take a

9



step of type \, and p(j + 1) = p(j) — 1. At even-timed steps j (corresponding to selecting
an entry from BT) the step can either be again of type — or of type ' , in which case
p(j +1) = p(j) + 1.

Note that for i € [1,d] U [n — d,n] certain paths will be truncated, resulting in a more
cumbersome expression. Also note that while in the matrix model itself we have introduced
negative signs on the y-variables, trV/ (BBT) is invariant under a global sign flip on the
y-variables. For convenience we have dropped those signs throughout this calculation.

From (2.11) it is easy to see that: with again i € (d,n — d),

if step 25 —1is —

a%trv BBY) = ngz > H e

b pEPm,r j=1 Yitp2j—1)—1  if step 25 — 1is N\

T nif step 27 is —
X ) b . (2.12)

Yi+p(25) if step 2] is /l

where now P,,, denotes those “odd-down bridges” which have exactly r steps of type —
at height zero. More precisely, the paths in P, , are constrained similarly to those in P,
in that they satisfy p(0) = p(2m) and can only move down at odd times and up at even
times. On the other hand, the common starting/ending height is now free, subject to the
new constraint dictating the number of flat steps at height zero.

Next we substitute the values of the fine minimizer into (2.12). These are used in the
form: for |k| < d and i+ k € [1,n],

ngs

2t (i + k) = ¢(i/n) + %(kgb’(z’/n) + :B(l)(z'/n)> +O ( L ) , (2.13)

with a like expression for (i + k). To see (2.13), ¢(t + k/n) and 2 (¢ + k/n) are expanded
out to second and first order, respectively. That both (d?/dt?)¢(t) and (d/dt)z(V(t) are

O(t=3/2) follows from Lemma 3. The result of the substitution is:

0

X

trV (BBT) (x?, y*) (2.14)

d

_ 2m—1 ¢2m—2 :| ( 1 )
—mzlgm{flmcb = Bz + Coy™ + D) =)

where the functions ¢, ¢/, 2() and y) are all evaluated at i/n, and

2 o2m? — 2 1
A =m ("), B, = —emtl, (2.15)
m 2m —1
CmZQmQ—QmAm’ Dm:_mQ—mAm'
2m —1 2m — 1
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Putting off the derivations behind (2.15) we can complete the proof.

For the x;-derivative of the logarithmic term in the Hamiltonian we have that,

ita—p"\ 1 ita—p"t iaW(i/n) 1
( n )xé(i)_ ne(i/n) _n2¢2(i/n)+0(m)' (2.16)

And if gff is to vanish to O (\/%?), we need that the leading order terms on the right hand

sides of (2.14) and (2.16) are equal. That is, with ¢ = i/n and multiplying throughout by
¢ = ¢(t), it is required that

t+—(a—pB"' - 5g:“)) (2.17)

d d om—1
= A" ¢ Bz + Cry + D, ¢)
; I Amd™™ + ; — + Cony) + D)
This can immediately be simplified. Noting the definition of A,,, the O(1) terms identically
cancel due to (2.2).

To produce a system that can identify () and y(!), one must also use g—g. The resulting
formulas are similar to (2.14) and (2.16) where: in the analog of the former, B,, and C,,
change roles and D,, changes sign, while in the latter y» replaces ") on the right hand side

and a is set to zero. This produces an analog of (2.17) which, when taken together, yield:

_ Bl _ t..(1) d 2
) 61 t ¢1x - m ( m) > (2.18)
—B- _$y() m:12m—1 m

1)

yW
gb/

Y

2
X<2m2—2m—|—1 om2 — 2m —m2+m>

2m2 — 2m 2m? —2m+1 m?>—m

having employed (2.15).

The claim is that the advertised formulas for () and y» follow from here. For example,
adding the rows of (2.18) we find that the expression for 2™ (¢) + 3" (¢) in (2.4) would be
implied by the identity

~ gum(Am® —dm 4 1) (2 o 1t
mzl 2m — 1 (m)gb(t) IIORRO)

but this is yet another consequence of (2.2). The expression for z((¢) — y™M(¢) is checked
in a similar way.

We remark that while this exact vanishing cannot hold for indices i € [1,d] or [n — d, n],
for i = O(1) we have from Lemma 3 that the right hand sides of both (2.14) and (2.16) are
O(1/4/n). This allows the estimate (2.10) to be extended to the lower range.
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We now go back and verify (2.15). In counting weighted P, , paths it is convenient to

introduce the following bijection. First, denote by F,,, those paths in P, , which start and
end at height zero and for which the first step is of type —. Then define

(p,j) € Py x{1,....1} = (P,q) € Py, x{0,...,2m — 1}, (2.19)

where p is obtained by rotating p to the left so that the j* height-zero step of type — of p
becomes the first step of p. The number ¢ tracks how far p is shifted to produce p. There
is a subtlety here in that each path p € Pm,r with an odd label ¢ appears reflected across
the axis after the the shift that carried it from p. Indeed, any p has only down steps at odd
times and up steps at even times will, after being rotated by an odd number of steps, have
up steps at odd times and down steps at even times. Still, given these reflections the count
on the right hand side of (2.19) is the same.

For A,, we select the same factor (the ¢(i/n) from (2.13)) in each factor in the inner
product of (2.14), and so

2m m
A= 3" 1|Puyl = 2m|Py| = 2m <m€— 1) (TZ) (2.20)
/=0

r=1

The second equality uses (2.19) with P,, denoting the union over all Pmm, that is, those
paths just constrained to start with a — step. Then we sum over choices of positions for
the ¢ steps of type \, among the remaining m — 1 odd-timed steps, balanced by a choice of
¢ (of m possible) steps of type , at the even-timed steps. The last expression in (2.20) can
be written 2> ;" E(’Z)Q, which in turn equals m(%zl).

In computing B,,, one of the previous ¢ factors is now a (). These can only appear
at — steps, and so in the sum over P,,, paths one has the weight (#{— steps} — 1) to
account for the possible choices of position of the (") factor. (The —1 shift is due the fact
we have differentiated in the z; variable.) Hence, with an obvious shorthand and by the

same reasoning behind (2.20):

Bmzin:r - (#ﬁ—1)=2mZ(#ﬁ—n:2mzm:(2m—2£—1)<m£_1> (?)

r=1  pEPm,r peﬁ'm £=0

Similar to before we can rewrite the above as " (2¢)(2(—1) (?)2, from which the expression
in (2.15) follows from the derivation of A,, along with known expressions for >,  ¢? (?)2.
The calculation for C,, is basically the same, with # .\, in place of #_, — 1.

Finally turning to D,,, note that any appearance of ¢’ is weighted by the relative height
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of the path, and we have that

D, =% % Ti p(2j 1) |P@D) ifstep 27is

>0 pePp ., j=1 p(2j) — 1 if step 25 is
=) Y 22— 1) =4m Y > p(2j—1), (2.21)
r>0 pEPm,r j=1 peﬁm Jj=1

where we have used that the corresponding weight is always the smaller of the heights across
any step. To evaluate the last sum in (2.21) we use a method which we learned from [11]

(see in particular Prop. 4.2):

>3 se-n- 2 w-w(™ (M) ()

— - . - (41 12
peP,, J=1 i1,k1,m1,i2,k2,m2>0
mi1+mao=m
11—k1+i9—ko=0

:[wO] [Zm] < Z u@uuil_kl ,Uig—kgzml—i-mg

i1,k1,m1,i2,k2,m2>0
% m1—1 m1—1 m2+1 mo
11 kq 19 ko

. ; 1+
=[w’][z ](uaul—z(u+2+u1)1—2(“+2+”1))

U,V W

U,VW

In line one, i; and k; count the running number of type " and “\, steps, respectively. In
line two, we have used the notation [zP]f(z) for the p'* coefficient of the Taylor expansion

of the (analytic) function = — f(z). The remaining evaluations are straightforward. O

2.2 Minimizers and boundary conditions

Here we consider the Hamiltonian H subject to certain boundary conditions. To be more
precise, start by fixing an interval I = [ig,4;] C [1,n] and denote by 0/ (the boundary of I)
the at most d indices to the left/right of I. That is, 0I = ([ip—d,ip—1]U[i1+ 1,41 +d])N[1, n].
View H as a function of (x,y) € I with those coordinates whose indices lie in 01 prescribed
to equal some values ¢q. By the assumptions on V', those (z,y) ¢ I U0l decouple from the
(x,y) € I given g. This restricted function is referred to as the “conditional Hamiltonian”
H, with boundary conditions g.

The goal is to quantify at what rate the minimizers of H, become independent of ¢ as

one moves away from the boundary.

Proposition 5. For an interval I C [1,n] consider the conditional Hamiltonian H,, i.e., H

restricted to I with the coordinates in OI set equal to some values q. Assume ||q]| < .

13



Then, with (z9,y?) the minimizer of H,, it holds that
jof = 2f| + [yf = y7| < ella = (@) l|ooor O, (2.22)

for anyi € I. Here c = c(V,B,a,c). If I = [ig, 1] C [1,n — d] there is also the bound,

jf —af| + ! — yi| < c max ( g = (@, y*) 01 6_diSt(i’aI)/C> : (2.23)

1
/i
for anyi e I.

Proposition 5 is a deterministic version of decorrelation, and will play an important role
in the blocking estimates behind the functional central limit theorem in Section 4. Here is
is used to turn the calculation of Lemma 4 into a fairly optimal estimate on the distance
between the true and fine minimizers (Proposition 8 in the next subsection).

The proof of Proposition 5 is based on the following two lemmas. The first, Lemma 6, is
a direct consequence of the strong convexity criteria (2.6) - (2.7). This is then bootstrapped
to yield the proposition with the help of Lemma 7, which is a kind of discrete Gronwall
inequality. The proof of the latter is a simple inductive argument which is not reproduced
here.

The program is reminiscent of that in Sections 6-7 of [14]. However, here we use convexity,
through inequalities (2.6) and (2.7) in a fundamentally different way. This streamlines things
considerably, bypassing for example the a priori lower bounds on minimizers tediously built
in [14].

Lemma 6. For any conditional minimizer (z?,y?) of an H, defined on some I C [1,n],

1%, y7) = (2°,4°)

21 < P@lla = (%, y°) 301 (2.24)

where p(q) is polynomial of degree 2d in the boundary variables q (with bounded coefficients
depending only on V, 3, and a). And if I C [1,n — d] it also holds that

c
19,9 — () B < 3 -5+ pl@lla — (2t ) B (2.25)
iel
with another polynomial p of degree 2d and c = ¢(V, 3, a).

Lemma 7. Let a; and b; be nonnegative sequences satisfying Zf:o a; < capqq + Zf:o b; for
a positive constant ¢ and all k < m. Then it holds that

k k i
c c
<ol — > bi,
aO_C(c—l—l) G+ (c—l—l)

=0

again for all k < m.
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Proof of Lemma 6. We first observe that (z° y°) is bounded in sup-norm, independent of

the dimension. By (2.7): with a different constant c,
Iz, y%) = (2% )% < II(2?,y%) = (2%, 9)3 < I VH (=, 5?15,

and this is O(1) by Lemma 4. The explicit formulas (2.4) and (2.5) then show that
|(z%, y*)||oo is bounded independently of n which yields the claim.
Similarly,

1)~ @ er <c S (0 Hy )P +10,He ), (2:26)
i€l dist(1,01)<d

since if ¢ € I with dist(z,0I) > d, we have that (0H,/0z;)(2°,y°) = (0H/0z;)(z°,y°) = 0 for

z; = x; or y;. For the remaining 2d terms denote by Py the polynomial part of H and note:

with again z; = x; or y;,
10, Hy (2%, y°) [ = 10-, Py (2°, y°) — 0., Py (2°,5% q)

where the notation indicates that coordinates in 0I are evaluated at either the entries of
(x°,y°) or the corresponding ¢. But by pairing entries the above is bounded by a sum of
|q — zi|? terms with coefficients that are polynomials (of degree at most 2d) in (z°,1°, q). As
we have just shown that ||(z°,y°)||« is uniformly bounded, all these polynomial factors can
be further controlled above by a p(q) with the claimed properties.

For (2.25) we basically repeat the argument. The key difference being that in the estimate

corresponding to (2.26), the sum over ¢ € [ : dist(é,0/) > d on the right hand side does not
1
i€l nid>

the restriction of I in this case to [1,n —d|. O

vanish, but instead produces a multiple of > courtesy Lemma 4. This also explains

Proof of Proposition 5. Consider first (2.23). The idea is to apply the inequality (2.25) of
Lemma 6 to a well-chosen collection of subintervals of .

Fix an index ¢ € [ and decompose I U Ol into consecutive blocks I_,,,..., I, with
0l = 1_,, U I, such that i € I, and each I; for j # 0 is of length d. Denote J, = Ujjj<xl;

and 0J;y = I_j_1 U I;41. Then, as a consequence of (2.25), we have that

1% 07) = (&), < @) = @y B + €D, (220
i€y
for k=0,...m—1.
Note first that a direct application of (2.25) would replace the constant ¢ multiplying the
first term on the right hand side of (2.27) by a polynomial in the variable (27, y?) appearing
in Ji. But (2.25) (or (2.24)) also shows that every |z?| and |y?| is bounded by the same

polynomial in the ¢ variables. By assumption the ¢ are bounded, and so it is possible to use
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the same constant ¢ (for all k) throughout (2.27). Second, in case the definition of any I;
places it outside of {1,n — d} the corresponding sum is simply taken as empty. This allows
the conclusion to extend to one-sided minimizers; when for example I is of the form [1, L]
with boundary conditions placed at [L + 1, L + d].
Returning to (2.27), we can now apply Lemma 7 with
a = Iy = @y B b= Y

, nis
'LEI_jUIj

In particular, there is a constant ¢’ for which

_m/clam—i—c max _b;.
j€[0,m—1]

ag < e

This is recogmzed as (2.23) upon noting: ag > (|2f—zf |+[y{—y! )2 am < dllg—(2¢, y*)||% o1,
and b; < ﬁ for al j € [0,m — 1]. The proof of (2.22) is identical save that in that case
0

2.3 The limiting mean

The results of the previous subsection yield the following.

Proposition 8. There is a constant ¢ = ¢(V, 3,a) so that

\/iﬁ for i < clogn,

\(xf,yf)_(iﬂf’yf)lécl \/7117 for clogn < i <n — clogn, (2.28)
e~ =D/ form —clogn < i <n,

with a constant ¢ depending on c. Hence,

[nt)

20 0. 60 1. o)
log Te — _ (Q+_) log == + =~ log ——= (2.29)
2= ) g T )
1 lclogn| 1 lclogn| )
__ T —k c
POl 2 Zt 2

k=|ns] k=|n(1-t)]

forall0 <s<t<1.

In the error term of (2.29) empty sums are interpreted as being equal to zero. For fixed
s < t, bounded away from 0 and 1 respectively, this object is O(1/n) and we have the proof of
(1.13). Said another way, (2.29) identifies the limiting mean of the field Zk ins) 108(X5/ Yi).

We have recorded the error term in this more elaborate form for use in Section 5.
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Proof. For (2.28) start with the case that ¢ is a distance O(logn) away from both 1 and n.
Let [ = [i — clogn, i+ logn] and consider the conditional Hamiltonian H, with ¢ = (2°,y°)
on 0I. The conditional minimizer is then the true minimizer through I and we can apply
(2.23) of Proposition 5 with (z%,y?) = (z°y°). The result is that

V/n(i — clogn)3’

having used that (z°, y°) has bounded entries (proved in the coarse of establishing Lemma

1 /!
(2, y!) = (27, 97)] < ¢ max < e ‘Og") , (2.30)

6). But ¢’ can be made large with ¢ and by choice i — clogn = O(i). The other two cases
are similar. For example for i < clogn, consider I = [1,¢”logn| with one-sided boundary
conditions = (z°,y°) on the d-length stretch to the right of ¢’ logn (and ¢’ > ¢). Then the
boundary component in the analog of (2.30) can be made smaller than any inverse power of
n, but the O(n~'/2) stemming from i, = 1 cannot be beat.

Moving to (2.29) we start by noting that

=@ (k/n)

log T — 1o [ L | _ 2O /m) =y k/n)
08 T8 PRI no(k/n) ’
Y L+ St

by the estimates of Lemma 3. Summed over [ns,nt] this contributes to O((ns)™!) to the

advertised error. Next we have that,

2 O (k/n) —yD(k/n) [t 2D (u) —yD(u) 1
EL:J no(k/n) ‘/s ow O (n—)

where the integral equals the right hand side of the first line in (2.29). The error here follows
4 (—xm(“q)ﬁa;m(“))’ = O(u™?) for small
u > 0, again by Lemma 3. The remaining overall error term is (the sum of)

O(k~1/2) for £ < clogn,
zp — xj YP — i
log [ 1+ —log |1+ F—F ) =1 O(k™?) for clogn < k <n — clogn,

4 4
O(e=("=R/e)  for n — clogn < i < mn,

from the standard Riemann sum bound given that

Ly, Yg

Here we have used (2.28) and the fact that zf,y! = O(y/k/n) for small k. The first and
third bounds on the right hand side explain the final terms in line two of (2.29). O]

3 Gaussian concentration and approximation

We build up yet more technical machinery. First we establish a sharp form of Gaussian

concentration for P about the minimizer (z°,y°) of the Hamiltonian H. Along the way we
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see that similar concentration holds for the conditional distributions of P, or those measures
of the form P, with density proportional e~"PHa(=y) vestricted to the corresponding interval
I. Here H, is the conditional Hamiltonian with boundary conditions ¢ on OI introduced
in the last section. These estimates are then used to establish approximations of certain P

expectations by their Gaussian counterparts.

3.1 Concentration

We re-emphasize that we are assuming 8 > 1 and a > 0. Our main Gaussian concentration

result is the following.

Proposition 9. There is a constant ¢ depending on V, 3, and a such that for t > C—In we

3

have
P (X — 20| + Vi — 2] > t) < ce /e (3.1)

for any k € [1,n] and ¢ depending on .

This serves as a refinement of the Brascamp-Lieb type inequality proved as Lemma 8.1
of [14]:

Lemma 10. There is a constant ¢ = ¢(V,3,a) so that |[(X,Y) — (2°,vy°)||2 is stochasti-
cally dominated by ||G||2 where G is the Gaussian vector on R*"™! with density proportional
to e=c"l9l3/2 Additionally, under any P, we have that ||(X,Y) — (z9,y%)||o.; is similarly

dominated by the norm of a Gaussian vector in dimension 2|I| with entry variance (cn)™'.

Note that [14] states the above in a far more general way. What is important for the
present application is that the convexity constant for any conditional H, can be bounded
below by that of H. Lemma 10 may be iterated to produce increasingly better tail estimates
on local scales (or shorter stretches of indices). While this sufficed for the soft edge problem
in [17], for the control required below it is more efficient to take a different approach.

Here we rely on the fact that, with § > 1 and a > 0, P satisfies a Logarithmic Sobolev
Inequality (see for example [2]). Given that, “Herbst’s argument” (see Theorem 5.3 of [16])
yields:

Lemma 11. There is a constant ¢ = c¢(V, 3,a) such that
P(F(X,Y) = EF(X,Y)| > 1) < 2¢- /1Pl
for any Lipschitz function F : ]Ri”_l — R.

Applied to F(x,y) = x) or y, this produces an inequality of the form (3.1) for all ¢ > 0,
though centered at the mean rather than at the minimizer. Proposition 9 then follows from
the next estimate, which actually makes essential use of the old Gaussian concentration

result Lemma 10.
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Lemma 12. [t holds that
o o C
B{|1X0 = o]+ i -l < =,
for any k € [1,n] and ¢ = ¢(V, B, a).

Proof. Throughout we use the shorthand Z (or z) to denote the pair of variables (X,Y) (or
(z,9))-

To start we fix an interval D = {k € [ —d/2,{ + d/2]}, and for a choice of m (to be
determined) let I be the interval made up of D and the (at most) m indices to the left /right.
As usual 07 will denote the d indices to the left and/or right of I. If any part of D, I, or 01
falls outside of [1,n], it is truncated in the obvious way or viewed as empty. Then, with £,

the conditional expectation with respect to the variables ¢ € 0I we write
— 29 < — 2 0 _ | .
Erl?eagde %l _EEqI]?E%(‘Zk Zk’+EEqr]£1€aB<‘2k 2l (3.2)

Here 27 denotes the conditional minimizer of H, on I (with boundary conditions ¢). By
passing the randomness onto the variables ¢ (for which we continue to use lower case) we
will be able to iterate this inequality.

Further bounding (3.2) above we have that

/m
EE, Il?eal%de — 2| S EE|Z — 2|25 < ¢ - (3.3)

by Lemma 10. And by Proposition 5 we also have the bound: with Qs; the event that
|q - Zo|oo,81 < b7

m/

o _ .9 < !/ _— c Q_ .
max |z; — z;|1g,, < ce”™ max |z} — g, (3.4)

for a ¢ = ¢(b). And using Lemma 6 on the complement of Qy;:
EE 0 _ 4| <« —m/c |: o __ ; ] [ o c |
qmax|zp — 2| < e B \max|2} —q;| | + E|p(g)lz° — dall2or, Qo

By Holder’s inequality and an application of Lemma 10 we can control the second term on
the right hand side by a constant multiple of P(Q%;) < ¢e™™¢ with a new ¢ = ¢(b).
Adjusting constants and substituting this last estimate along with (3.3) into (3.2) gives

FEmax|Z, — 27| <c¢ Dy ce™ep {max |20 — ql\] + ce7e. (3.5)
keD V n i€dl

At this point we can choose m large enough (but independent of n) so that ce™™/¢ < 1/4
and then for large enough n absorb the final term on the right hand side into the first. Then

(3.5) may be schematized as in:

1
ap < 2c¢y/ % + Z—l(ak,m + apim)- (3.6)
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Here ay, is F max;ep | Z; — z¢| for whatever interval D centered at k with ay = 0 for £ <0 or
¢ > n. In this interpretation, the ¢ in the expectation on the right hand side of (3.5) stands
in for the corresponding (random) Z variable while 01 serves as a shifted copy of D.

The claim is that (3.6) (along with its corresponding side conditions) implies all the

~1/2 After a scaling the problem can be

ar = ag(n) are bounded by a constant multiple of n
summarized thus: Given an array by = bi(L), for k£ = 0,..., L which is nonnegative, finite

and satisfies (for each L),

1
by <1+ Z(bk—l +bgy1), bo=0b, =0, (3.7)

there is a constant which bounds all b, independently of L. This can be seen by contradiction:
if for some j we have that say b; > 4, any such solution must grow exponentially to either
the left or right of j. But this would violate the Dirichlet boundary conditions imposed at
j=0orj=L. O

3.2 Laplace estimates

Along with P,(dx,dy) = ZiqefnﬁHq(x’y) dzxdy introduce the natural Gaussian measure approx-

imating P, over the same interval I:

1
Vl,q(dxu dy) = 7 exp (_g<(x - 'rq7 Yy — yq)7 /Hq(x - mq7 Yy — yq>>)dl’dy, (38)
q
where H, denotes the Hessian of H, evaluated at (x9,y?). We also bring in the mixture of

V4 over boundary conditions in “typical” position, defined by

[ Fanntdo.dy) = B[ [ Fagwra(dodn), o= @ o < 8] 39)

with 6, = |/ %82,

To determine the statistics of the field for bulk indices, we have the following estimate
which relates the P-expectation of certain polynomial test functions to those of averaged

Gaussians.

Proposition 13. Fiz a small § > 0 and let I C [0n,n]. Denote by K the interval made
up of I along with the (at most) clogn indices to its left and right. Next, for given (z',y’)
= (2}, Y} ficny let Frap(x,y) be a nonnegative polynomial with bounded coefficients and of
bounded degree in the variables (x; — x});e; and (y; — yi)icr- Then, there ezists a choice of ¢
and a further constant ¢ (both depend on V, 3, a and the degree of Fy) such that

E [FMW (X, Y)} (3.10)

_ ( / Fi g g (2, ) pirc. o (d, dy) + 0<n‘2>> (1 +0 (%)) |

20



Here, ¢ and ¢ figure into the implied constants in the error terms and the estimate (3.10)
presumes that |K|(logn)3/?n=1/2 = o(1).

As a consequence of Proposition 13 the limiting variance of the field k — (X, Y}) will
be determined through:

Corollary 14. Again fiv a § > 0 and now let I = [ig,i1] be of length at most n'/*~ and
supported in [on,n — 2clogn]|. With K = [ip — clogn,iy, + clogn], denote by P, be the
conditional measure on K with boundary conditions q satisfying ||qg — (2°,9°)||cc.oxc < ¢'0n.
Then, for large enough ¢ = c¢(V, B,a) and ¢ = (V, B, a), it holds that

20 — (Y — 1° 2 — B2 n9’(i0/n)(il—z’0) (logn)?
, (Z(x - (¥, yn) #liofm g )y o (BEDD) ()

Here the implied constant in the error term depends only on d,V, 3,a,c,c’. The same estimate
holds with E in place of E,.

Last, we will require the more particular control for indices down to O(logn) away from

the singularity:.

Corollary 15. It holds that
. . log k)?
Bl - o) - 0 -] =0 (2, (3.12)

and

o0 k)5/2
B[(X -0 — (Vi — )] = O (%) , (3.13)

uniformly for k € [clogn,n — clogn| with ¢ = ¢(V, 3, a) sufficiently large.

While Corollary 14 is a direct calculation based on Proposition 13, the proof of Corollary
15 entails that a higher order expansion be made than that behind the estimate (3.10).
(The unattractive log factors in (3.12) and (3.13) could be improved by yet a higher order

expansion, but the above suffices for what we will need.)

Proof of Proposition 13. To be concrete, we will assume that there is a constant x and an
exponent p so that Fy . (7,y) < k(1 + ||(z,y) — (¢',y)[[5,;)- It will be clear in the course
of the argument that other choices of (bounded coefficient and bounded degree) polynomial
Fi ., will only alter the choices of ¢’ and ¢ made along the way.

With Fy as specified and Qax = {||¢— (2%, ¥°)||cc.ox < /8, }, we first claim that by choice

of ¢ and ¢:
B[ Fy o0 (X, Y)} - E[Eq[FWyO(X, Y)],QaK} +0(n?) (3.14)

= B|Ey[Fran(X,Y)), Qox | + On™),

21



where (29,y?) refers to the minimizer of the corresponding H, on the larger interval K.
(Note: if the right edge of support of I is less than clogn away from n, we are considering
a one-sided minimization with boundary conditions placed to the left of K.) For line one,
Lemma 10 shows EF7 ., . = O(1) while for ¢’ large enough P(Qg) = O(n~*) by Proposition
9. (The exponent of (—4) may be replaced by any negative power by choice of ¢’.) Then
apply Cauchy-Schwartz. For line two we assume that c¢ is large enough depending on ¢ , so

4 with a ¢’ uniform

that Proposition 5 provides: for any i € I, |z — 22|, |yf — y?| < 'n”~
over ¢ € Qpk. A second application of Cauchy-Schwartz using Lemma 10 to control the E,
expectation of powers of F7 4 4« produces the estimate.

At the expense of another O(n~2) error, we can now further restrict the inner E, expec-
tation in (3.14) to the event Qg on which | X; — 2|, |Y; — y¥| < "0, for all i € K for some
c”. This is a repetition of the argument employed in the first estimate of (3.14) coupled
with the fact that Proposition 5 gives that |z! — 22| V |y! — y?| is O(6,,) throughout K (with
the sharper estimate used just above holding on ).

Now we are in position to approximate P, by the Gaussian measure v, = vk , introduced
in (3.8). If necessary we can adjust Z, (the P, normalizer) so that H,(x9, y?) = 0. Then,

with
(3) - q o 1 a a
Hq ($7y)—Hq($,y>—<<$—$ ,y—y),iﬂq(l’—I 7y_y>>7 (315>

Taylor’s formula gives that

4k n 4k
nlze(@F  nlys(t)]

HO(2,9) < sup 3 (pk<t> T
te(0,1] ke kK

) (g — Ly (3.16)

Here py = py, indicates a (positive) polynomial of fixed degree in the variables (x;(t), y;(t))
for i € [k — d, k + d], while (x(t),y(t)) draws out the line between (z9,y?) and (z,y). We
use the fact that trV (BBT) is finite-range, so there are fixed number of mixed third-partial
derivative involving any index k € K stemming from the polynomial of H,. For the factors
corresponding to the third derivatives of the log terms in H,, note that any k£ € K under
consideration is large enough so that 4k > 2(k + |a| + 1/0).

Further, with the left endpoint of K at least dn /2, the results of Section 2 give that: re-
stricted to Q, (x9,y9), and so also (z(t), y(t)), are bounded above and below independently
of n or ¢ € Qsk. Therefore,

(logn)*
BIHP o )er < 1K1 (VB (3.17)

with v depending only on the parameters 6, ¢, V, 5, a. This allows the conclusion that

B,y [Fanye (X, Y )10, ] = / Franan(r, 9. ) (1 +0 (M\;Z'K')) C318)
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which is effectively the claim. Here we have used that, with n the right hand side of (3.17),

Zq 1
Q) < 7 < e

The Logarithmic Sobolev Inequality for Gaussian measures gives that v,(Qr) is the same

(3.19)

order as P,(Qx) (the measures were built to have the same convexity constant). That is,

with each of these factors a negative power of n, the upper and lower bounds in (3.19) are
controlled by e*" = 1 + O(n) with n = o(1). O

Proof of Corollary 14. Denoting by Sy 4o 0 (X,Y) the squared sum within the expectation
of (3.11), the (beginning of) the proof of Proposition 13 yields

Eq[SI,x",yo (X, Y)] = Eq[sl,:vq,yq <X7 Y>1QK] + O(”J)-

Again, Qg is the event that ||(z,y) — (2%, y?)||co.x is less than ¢'d,, (for choice of ¢’). Contin-

uing, the same proposition gives that

Ey[Srz0,40(X, Y )1, ] (3.20)

_ ( / St a2,y vl de, dy) + O(n—2)) (1 +0 (%;2'[(’» ,

and we will show that the appraisal (3.11) holds for the remaining v, integral. This is enough
since the multiplicative error in (3.20), can be combined with the O(n~!|K|) leading order
term in (3.11) and thus absorbed into a second o((logn)?/n) additive error. Note that the
factor ¢*(ig/n) 0(10//: n (3.11) is of order one.

Now compute,

1
/Sl,xq,yq(z,y)uq(dx,dy) = %wTHq_lw, (3.21)

where the right hand side is read as follows. Indexing the integral (and so H,) accord-
ing t0 (Tky, Yrkos Thot1, Yot - - - » Thys Yy ) Where [ko, k1] = K, the (2|K|)-vector w has entries
(—1)? for indices corresponding to the coordinates in I C K and is otherwise zero. To esti-
mate wT’Hq’lw we approximate 'H;l by its “coarse” version. This is where we will use the
assumption that [ is supported O(logn) away from n.

Bring in the alternate description on the coarse Hamiltonian developed in Lemma 3,

: : : _ (kotk1) _ (io+i1) I .
notated slightly differently here. With ¢ = %5~ = 2% the midpoint of K

Hy(z,y) = 2V (CCT) =t Y log(zays), (3.22)

keK
where again C' is the appropriate circulant version of the matrix B(x,y) restricted to K,
recall (2.8). Then, with H, the Hessian of Hy evaluated at its minimizer zy = y, = ¢(1),

the key observation is:

v ()Tl = |K]o(t)?

(3.23)
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for v the vector vy = (—=1)*,k = 1,...2|K|. To see this, first note that #, is circulant
Toeplitz, and hence has v as an eigenvector. With A the corresponding eigenvalue, and

(217 Ry 23y Zhy e v+ ) = (xkoa Ykos Tho+15 Yko+15 - - - )7 Compute:

1/0 0 \2
=s\lm5-—5 ) H
zi=¢(t)i=1,...2|K| 2 (8x 8y) (2, )

Where in the second equality we bring back our initial definition (2.1) of the coarse Hamil-

2
A= Y (—1yﬁlfzfﬁi

0210z
1<k 0<2|K]| k&<t

r=y=o(t)

tonian H;. Using that formula we find that

d t
t m 2m _ 1 ds 20(t)
)\ = + m—< )¢ t 2m—2 _ — )
S " 2 am—1\m ) 750 ), 56 T Foew
The middle equality follows from the definition (2.2) for ¢ upon multiplying both sides of
that identity by ¢'(t)¢~2(t) and integrating by parts.

To finish the proof it remains to show that

jw 1w — o (H) | = O((log n)2> (3.24)

In particular, comparing (3.23) to the chief term in (3.11) the only difference is that in the
latter ¢ and 6 are sample at the initial point ig/n rather than the midpoint (ig +41)/n. But
the continuity of those functions shows the error entailed in this shift is of sufficiently lower
order.

As for (3.24), we bring in yet another approximate Hessian, defining H to be the 2d-
banded submatrix of H,.. Equivalently, H is the Hessian for the Hamiltonian (3.22) modified
so that the circulant C is replaced by the (truncated) bidiagonal B in the same variables.
Strong convexity then gives that both ! and the new H ! are bounded in norm. It follows
that [vTH v — vT (H.) o] = O(1), since, with H and H, differing by at most O(1) entries
in the upper right and lower left corners, ||H — H.|| is O(1).

Next, H, and H are also nearly the same. They are 2d-banded with corresponding entries
built from the same functions — except along the diagonal — evaluated at either (x?,y?) or
(p(t), o(t)). Along the diagonal the functional entries differ only in the coefficients of the
terms corresponding to the second derivatives of the logarithm in H, or Hg: there one must
compare t¢%(t) to (k+a—1/8)n" (z})"2 or (k—1/B8)n"*(yl) % for any k € K. But these
coefficients (t and (k+a —1/8)/n or (k—1/8)/n) are no more than O(|K|n~') = O(n=3/%)
apart. Further, restricted to Qx the values of (27 y?) and (¢(¢),¢(t)) are no more than
O(9,) apart (and are also uniformly bounded below). This last point combines: Proposition
5, showing that (z? y?) and (z°y°) are O(d,) apart, Proposition 8, which controls the
distance between fine and true minimizers, and the fact that coarse and fine minimizers are

O(n~1') apart on this range (see the definition of (z?,y?)).
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These observations along with the Gershgorin circle theorem yield ||H, — H|| = O(6,).

Similar to before then
1M, = H < I A 1, — I < 6,

now using strong convexity for a constant upper bound on both ||#, || and |H~'||. The

final step is to notice that
(0 =) 1w+ 0)| = O((logn)?).

This follows first because (w — v) has only O(logn) non-zero entries, and second because, H
being banded Toeplitz, the entries of its inverse decay exponentially away from the diagonal.

[]

Proof of Corollary 15. The idea is similar to that behind Proposition 13, though now for
each k € [clogn,n — clogn] we let K be the interval of length clogk centered at k for the

constant ¢ to be chosen momentarily. Let again ¢ denote the coordinates in 0K, but now let

%}- (3.25)

Qarc = {lla = (="l < ¢
The point is that, since we are working on potentially shorter intervals K than above, we
can squeeze the conditioning event a bit for sharper estimates
By choice of ¢ and Proposition 9, P(Qox) = 1 — O(k™*) since k > 1. The same
proposition gives that F[(Xy—z9)*+ (Y, —yg)?*] = O(n™?). Both estimates are uniform in k.
And so, by the Cauchy-Schwarz (and Jensen’s) inequality E[E,| X, —z2[P, Q%] = O(n Pk™2),
and likewise in the y-variable. Next, for any given ¢ in a given Qyx, we can select the
¢ = ¢(B,V,a) so that Proposition 5 gives |2 — x| + |yf — yf| = O(e~¢"()1oek(log k /n)'/?)
= O(k~?n~'/%). The conclusion is that: for p =1 or 2,

B[(Xi = a0)" = (Vi = 4] = B [y [8(Xe, Vi) law | Taurc | + O 72K7%),  (3.26)
uniformly in k. Here we have made the definition,
Ap(@e, ye) = (xe — 23)" — (ye — yi)",

and Qx = Qx(q) is the event {||(z,y) — (2%, y9)||co,x < ¢/ 2L}, for a possibly adjusted .
That we can restrict the E, integral in (3.26) to QQx with the stated level of error, follows

from the same argument used at the analogous step in the proof of Proposition 13.
Turning to an estimate on E,[A, (X, Yi)1g,], we start with the case p = 2. Under the

approximating Gaussian measure v, = vk, we have that

1 _ _ 1
on Ao (T, yr)vy(dz, dy) = @ ((Hq 1)2k—1,2k—1 - (’Hq 1)2k,2k> +0 (W) . (3.27)
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The first term is an exact Gaussian computation, after removing the restriction to Q. The
error term uses that by choice of ¢ it holds v,(Qx) = 1 — O(k™*). With K = [ko, k1] the
indices of the v, integral and the matrix H, are indexed Zy,, Yy, Tho+1s Yko+1, ---, as before.

Next recall that the proof of Corollary 14 introduces a banded Toeplitz approximation H
to H, (H is the Hessian of the coarse Hamiltonian Hy on K, with the corner entries which
make the latter circulant removed), and would like to replace the appearances of H, in
(3.27) with this approximation. Since (H™'); = (H™');; for all i,j € K and, by convexity,
|#, ' — H | is controlled by a constant multiple of |[H, — #||, this norm must now be
estimated for K possibly within logn of the singularity.

In the current setting we have that: with ¢(¢) for t = k/n, the common variable where

the entries of H are evaluated,

|z = )] + |y — o(t)| = O ( 10§k> .

This uses (3.25), Proposition 5, and the more refined estimate that coarse and fine minimizers
are O((ni)~'/2) apart for potentially small indices i. Hence the difference between any
off diagonal of H# and H, are also controlled by O(y/logk/n). The more delicate issue is
now the diagonals where one has to consider the absolute differences |¢(t)™2 — (2)72| or
|6(t) 2 — (y¥)~2| which are O((n/k)*? x \/logk/n). Here we use that in general we have
that ¢(t) > §1/k/n, and so the given z¥ and y! for i € K satisfy the same lower bound.
But since any of these diagonal components are multiplied by coefficients which are O(k/n)

throughout K, the corresponding entry differences are actually O(y/logk/k) and we have

that
log k
HHq—HH:O( : )

compare the O(4,,) estimate used in Corollary 14. Therefore, (3.27) can be continued as in

(%) | (3.28)

/ Ao(zr, g )g(de, dy) = O

K

To finish, write

7 / )
B2, @u] = Z [ e+ Z [ @, (329
q K q K

where once more Z; and Z, denote the normalizers for v, and F,, respectively. Now recalling
(3.16) from the proof of Proposition 13, the estimate (3.17) can be replaced by

log k)3/2
wBIHP ey <o (V5 ), (3.30)
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for another constant v = v(V, 3,a,¢,). Here we have used the current definition of Qg
which restricts ||(z7, y?) — (z,y) |3, ox to O((log k/n)*?), that now |K| = clog k, and a worse
case upper bound of O((n/k)3/?) on any of the z;(t) =3 or y;(t)~> for i € K. (Recall that these
are the interpolants from (z,y?) to (x;,v;) € Qk, and that each appears with a coefficient
that is O(k/n)). Next, since the right hand side of (3.30) is o(1) for k£ > clogn, (3.19) shows
the ratios Z,/Z, are bounded above and below by constants only depending on ¢, ¢ and
V,3,a. Finally then, using that |e¢ — 1| < 2|¢] for |¢] < 1 (applied to ¢ = nﬁHéS) restricted
to Qi) and [|Asldy, = O(n™'), we find for the second term in (3.29) that

5 5/2
Ag(e"1” _ 1)dy, = O <M> . (3.31)

Qx nk!/2

This is the estimate reported in (3.13).

For the difference of the means, one has to consider an additional order. We now write,

7! A 3)
E A (Xk, Ya), Q] = 7‘1/ Ay (1+nHP)dv, + 7‘1 Aq(e"Ha — 1 —nHP)dy,,
q JQk 79 JQk

for which we readily have the following:

/ Aydy, = O(n~Y2E72), (3.32)
nBH® (log k)®
/Q A (emPHa —1—H(§3))d1/q20( 2y )

The first of these is due: [ Agdy, = 0, [|A|*dy, = O(n™'), while ¢ can be chosen so
that v,(Q%) = O(k™*). (The displayed estimate follows from applying Cauchy-Schwartz
to integral over Q%). The second is similar to (3.31): now [ |A;|dy, = O(n~Y/?) while
|e”5H§3) —-1- nH(§3)| on Q is controlled by the square of the right hand side of (3.30).

As we have noted, Z;/Z, is of constant order (uniformly for all K and choices of “good”
boundary conditions ¢), and so it remains to consider n fQK AlHq(S)qu. For this we first

schematize H§3) as in

HO (@,y) = Po(ey) + D (ailw; — ) + bilyi - 4)*). (3.33)
ieK
Here Py, represents the appropriate sum of third derivatives of the potential term, while
with
a; = 2z;(t)3(i/n+a/n —1/np), by =2y(t)>(i/n—1/nj),
the sum over centered cubics corresponds to the (third derivatives of the) logarithmic terms
of H,. Since a; and b; are complicated functions of (z,y), to perform the desired integral we

first note: on Q,

vnlogk 2
|Gz’—Cz’|+|bz‘—Cz‘|=O<n—Og>, -

’ with ¢; = ———.

ng*(i/n)
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Hence, if we replace all appearances of a; and b; in (3.33) by ¢;, we make an O(logk X
Vnlogk o (logk)gm)
k n3/2

a O((lfng]?Q) error in any estimate of anK AlHég)dz/q.

Similar preprocessing is required for the integral involving P,. However, that integral

= O(%) sup-norm error (granted we working on Q) to Hég), and so

will clearly be subdominant compared with that over the second term in (3.33) since both
a; and b; are as large as O(y/n/i). We will therefore only detail how to deal with this term.

After making the substitution just described, we have the evaluation:

/A Tk, Yr) (anl i — ] +(yi—yf))> dv, (3.34)

€K

= — Z 3¢i) [ q_ 2i— 121—1((7{;1)%—1721‘—1 - (Hq_l)%,m‘—1>

+ (7—[;1)2@%((%;1)%71,% - (Hz;l)%?i)] :

It is by now understood that we can go from this full-space integral to that restricted to
@k making further subdominant errors. Things are at long last wrapped in the same way
that (3.27) was treated. First observe that, if we could replace H, with its approximate H
throughout (3.34), the quantity within the square brackets vanishes on account that H is
Toeplitz. Since again all entries of H‘l and H~! are uniformly bounded, a computation using
(3.2) shows that the the error incurred in making that substitution in (3.34) is O( 10313)]: /2).
As this lies under the larger of the error estimates in (3.32) — which is what is reported in
(3.12) — the proof is finished. O

4 Central limit theorem

Here we complete the identification of the limit of the K,, kernel by proving:

Proposition 16. Asn — oo,

Z tos k/yk \/_/

k=|nt]
in the Skorohod topology on (0, 1].

Recall (1.14). Note that Gaussian concentration plus the formulas for the minimizer
developed in the last two sections already give that X|,;; = ¢(t) as processes on [6, 1] for
any 0 > 0.
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4.1 Linearizing

As a first step we have the following.

Lemma 17. For Proposition 16 it is sufficient to show that

n

(Xk_$k> (Y — yk
2 ¢(k/n) \/_/(t)\/_’

k=|nt|
in the Skorohod topology on (0, 1].

Proof. We fix a (small) § > 0, and show the claim for all processes restricted to t € [9, 1].
Afterwards it will be clear that the choice of § is arbitrary.

1
_ {yxk—xm,m—y;;\ <oy 22 for all k € [1,n]},
n

with ¢ chosen so that P(Q¢) < n™* for all n large enough (Proposition 9). Certainly it is

Again denote

enough to work with the process 19y ,_ (] log );k// L. At the same time,
o o o 0\2 0)2
1 {log Xk/fﬂok _ ((Xk —ag) — (Y — yk)) i ((Xk —ap)” — (ik — i) )} — O(n-/2-9)),
Yi/ v ¢(k/n) 2¢(k/n)

uniformly for k& € [nd,n] with probability one. Here e can be chosen as small as one likes
subject to the implied constant on the right hand side depending on e. This follows as
|log(1+t) —t +t2/2| < |t|? for all |¢t| < 1/2 while, with (Z,z) = (X, ) or (Y,y): on Q all
| Z), — 22|P are O(n~#/279)), 22 is uniformly bounded below for k& > én, and |i - m| =
O(n~!) throughout the same range of indices. For the last two facts see Proposition 8. So,
with the left hand side of the above display denoted by 7, we have that t — ZTm | Mesn
converges to the zero process.

Counsider next

X, Y) = 1q Z G x’“)(k/ngy’“ — v
=

The proof will be finished by showing that max,,c(sn,n) |(| goes to zero with probability one.

We actually take the approximation

i) =3 V(X — fb(zi()k;nl)é(yk - 3/13)7

for 1(z) = 22 for |z] < ¢y / 10% outside of which 1 is taken to be constant. Obviously, " and

¢! agree on (), while as a map from %, Y, - - - Tn, Yo — 1 to R, we have that |V§A,’}1(x, y)]? <

' logn with ¢ depending on 0. Lemma 11 then implies that
P (IG5 = EGal > n/4) < g toem, (4.1)
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for all m > dn with a " = ¢'(V,5,a,0). But then by (3.13) of Corollary 15 have that
EC" = O((logn/n)"/?) uniformly in m > dn, and the same estimate will hold for EC". Now

the result follows from (4.1) and a union bound. O

4.2 Finite dimensional convergence

We employ a classical blocking argument, with the limit being understood through the sum
over “good blocks” (of length O(n'/%)) of the variables, each such block separated by O(logn)
“buffers”. That the minimizer of any conditional Hamiltonian becomes independent of the
boundary in O(logn) steps will produce the required decorrelation between adjacent blocks.

Define recursively the times,

my + [clogn| if k is odd

m =1 m =
' e { my + |nt/°] if k is even,

and corresponding good blocks and buffers: for 1 =1,2,...,

m2i+1
1

Ql- = W kzmm[(Xk - xZ) - (}/k - ylg)]v (42)
1 ma; ] i
B; = S /) k:%_l[(Xk —ap) — (Y —yp)]-

Here we made one more approximation in pulling the ¢—! of smallest index out of each
block sum. By the continuity of ¢ it will be clear that this will make no difference in what
follows. Also, truncating the final G; sum if necessary we can always assume that the stretch

[n — clogn,n] is buffer. With this setup the result is:

Lemma 18. Set Gi' = >_, iy Gi and By = >, cni Bi- Then as n — oo, there is a
suitable choice of ¢ = ¢(V, 3,a) in (4.2) so that for any k and 0 < t; <ty < -+ <ty <1,
Gr.Ge,..., Q{Z) and (BY,BE,, ..., Bi.), converge in law to a centered Gaussian vector with

: 1 1 1 1 :
covariance 3 log wy N log o) and the zero vector, respectively.

Proof. We start by estimating Ee™%" for t fixed. With I; the support of any corresponding
G; figuring into G}, denote by K; the interval formed by adjoining the (¢/3)logn length
stretches of indices to the left/right of I;. The parameter ¢ is chosen large enough so that
the strategy of Proposition 13 can be followed (the length clogn buffer about I; is now
length (¢/3)logn, but ¢ is chosen as needed in both cases). In particular, boundary values
set at OK; will have weak influence on the statistics of G;.

With ¢; the variables in K; we by now understand that

B9 — E[lQ H E, [ewgi]] +o(1) (4.3)

:m;€[nt,n]
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where () is the event that max; ||¢; — (2°, ¥°)||cc.0r; < ¢ k’% for suitably large ¢’. Further,

Egle™ — (1 +irG; — 5793)]\ < B, |7Gil* = O(|LPn ™),

by Proposition 13 (or rather its proof). Similarly, by Corollary 15 we have that E,G; =
O(|1;|(log n)®n=3/2). Combining these facts with Corollary 14 we find that

Eq.eiTgi —1— 7'_2 Ql(mgl/n) <m2i+1 _ in) i
Z 2 f6(ma;/n) n

with |k, = o((mgi11 — mzz‘)”—l) uniformly in ¢; € Q. Substituting back into (4.3) we
-1

(4.4)

recognize the Riemann sum for ftl 0'(s)0'(s)ds on scale A = (mg; 11 — ma;)n

The same considerations apply to B}, with the right hand side of (4.4) modified by
shifting 2i to 2 — 1. But (mgy; — ma;_1)n~ ' = o(A) while there are still A™! factors in the
analog of (4.3) The outcome is that Ee’™" — 1 as n — oo. To be precise we note that
while Corollaries 14 and 15 do not apply to the final block B;(,) in B} (as it is constructed
to be supported on [n — clogn,n|, a more crude estimate by Proposition 13 gives that
E(Bim))* = o(1).

The convergence of k-point marginals follows from the asymptotic independence of in-
crements for ¢ — G which is immediate from the necessary version of (4.3). Taking k = 2

gets the point across. With s < ¢t and any 7 and v,

BTG = [0 -00 B, ¢+

_r2 e (4?1
R Ny P T Rl R Tcy +o(1),

1
28
above we simply use that no G; is included in both (G — G/") and G;* — the convention being

and the exponent reads (—3=)x (72log ﬁ + v?log ﬁ +27vlog ﬁ) as desired. In line one

it belongs to the sum in which its left-most point of support lies. Thus the conditionings
variables ¢ and ¢’ can be chosen not to overlap, and to be a distance O(logn) from any of
the corresponding G;’s within. Now we simply apply the strategy inherent in (4.4) to the E,

and Ey expectations separately. O

4.3 Pathwise convergence

To lift the convergence from marginal distributions to convergence in the space of continuous

paths we show the following.

Lemma 19. With ¢ either equal to Gi' or B} defined in the statement of Lemma 18 and
al0<r<s<t<I1:

B¢ - (-] <c (1og %) (45)

for a constant ¢ and all large enough n.
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This suffices for the tightness of ¢ — G;' and ¢ + B} due to Theorem 13.5 of [4]. To
compare the above with that statement, note that we are using the latter in the case that the
limit process is continuous, the o and [ parameters defined there equal to one, and choice

of F(t) = —y/clogf(t) (our time-like parameter naturally runs “in reverse”). We can then

conclude the full convergence of the desired process t — GJ'+ B} to t — |, 91( 9 \‘}% by Slutsky’s

Lemma.
Proof. We show the inequality (4.5) holds for the process of good blocks G. A similar

calculation will apply to Bj'. To start write

E[(Gr—gm*@r -6 = > El6,94,6:,G). (4.6)
o

recalling (4.2). The main contribution stems from terms on the right hand side of (4.6) in

/ logn
n

which i1 = i3 and j; = js. For any such term we have that: with 4,, = ¢ and large

enough ¢/,

E[G2G?) = E| Ey[G7 By, (62 10i, 65l < ] +0(n™2) (4.7)

< (m2i+1 - m2¢)(m2j+1 - mzj)
- n2g(ma;/n)p(ma;/n)

by reasoning used several times before. And as in all such cases, we can choose the supports

+o(n?),

of the disjoint boundary ¢; and g; a large multiple of log n away from the respective supports
of G; and G;. The inequality in (4.7) is then a direct consequence of Corollary 14. Summed
over all O(n?|magy1 — mar|~2) = O(n®?) possible i and j we get a constant multiple of
N % fst % upper bound for the corresponding subsum of (4.6).

Terms of type i1 # iy or j; # js in (4.6) are easily seen to be subdominant given, in
this regime of indices, |E,[Gi]|1|jgj<s, = O(n~®/27)). This is a byproduct of the proof of

Corollary 15. n

5 Convergence in norm

The results of the previous section imply the pointwise convergence of K,(s,t) to K(s,t), at
least over subsequences on a suitable probability space. The proof of the convergence of the
corresponding operators in Hilbert-Schmidt norm (and in the same subsequential coupling)
would follow if we could build a dominating kernel K (that is, K, (s,t) < K (s,t)) which lies
almost surely in L?([0,1]?). Note that one readily checks that [, [ |K (s, t)|* dsdt < oo with
probability one.

The next proposition provides such an estimate, but only away from the singularity at

the origin.
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Proposition 20. For sufficiently large ¢ = ¢(V, 5,a) and any € > 0,

i s B () e i

in which C,, = Cy(c,€) is a tight random sequence.

The point is that, denoting the deterministic part of the right hand side of (5.1) by

_(0(s)0(6) " (0(s)\ 2T
Ke<s,t>—(¢<s)¢(t))l/2(w)) ’ (5:2)
(a+1)

a calculation shows that fol fot |K(s,t)|?dsdt < oo as long as € < 1 A ““2~ (keeping in mind

the general possibility that a > —1). To bridge the gap for small values of s and ¢, we will

=

show the following.

Proposition 21. For any ¢ > 0,

// | K, (s,t)|* dsdt — 0 (5.3)

wn probability.

We mention that in establishing the convergence of the classical g-Laguerre matrix model
to SBOg, in [18] a single dominating kernel was relatively easy to come by. On the other
hand, for the “spiked” hard edge considered in [19] in which case one deals with matrix kernel
operators a similar cutoff procedure was required O(logn) steps away from the singularity.

In any case, one may now argue as follows. Given any subsequence of operators K,
choose a further subsequence K, and a probability space on which (5.3) takes place almost
surely and the bound (5.1) holds almost surely with the tight sequence C, replaced by
some deterministic constant. Presuming the pointwise convergence K,, — K of kernels also
takes place almost surely on the same space (which may be achieved by taking yet a further
subequence), it follows that fol f(f | Ko (s,t) — K(s,t)]*dsdt — 0 with probability one. This
completes the proof of Theorem 2 and hence the main result.

The proofs of Propositions 20 and 21 occupy the next two subsections.

5.1 Tight kernel bound away from the singularity
Proposition 20 is a consequence of the following.

Lemma 22. Define h(t) = (1 + log ﬁ)p. Then for any p € (1/2,1) and ¢ = ¢(V, B, a) large

1 & Y;/vyj
1 j 5.4
kgcli)g(n h(k/n) ]z:; o8 (XJ/335> .

enough, the sequence

18 tight.
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The results of Sections 2 and 3 (concentration about the minimizers and closeness of the
coarse and true minimizers) show that maxysciogn(¢(k/n)/Xy) is also tight, controlling the
prefactor to the random product appearing in the definition of K,(s,t). In particular then

. /0,0
there is a tight random sequence C,, such that 1/X) < C,/¢(k/n) and 7, log(%) <
Cnh(k/n), at least for k in the prescribed range. Thus,

Ko(s.1) = X1 ezifﬁ,;j 1og(<Yk/yz>/<Xk/xz)) - S o (a:z/y;;>

[nt]

(Cn(h(s)+h(1)) <9<S))2+i logn
<O, , forst>c
= (B(s)e(t)2 \ 0(t) n

In addition to Lemma 22 we have also used the refined error estimate of Proposition 8 which

(5.5)

gives

Z log (x5 /y;7) — ( )10g9() %logcb(t) <d,

j=|nt
with a constant ¢’ for all ¢ in the presumed range (we choose the ¢ here so that the middle
error term in equation (2.29) of the proposition vanishes). And to see that (5.5) implies the
claimed inequality (5.1) of Proposition 20 note: for any positive ¢ and € and p € [0, 1) there
is a ¢’ = c(€,p) so that ¢(1 + 2)? <’ + ez for all z> 0.
As for Lemma 22 we need one last ingredient. This is due to Dudley [8] (though see
Proposition 2.2.10 of [20] for a succinct proof).

Proposition 23. Consider a metric space (T, d) and a centered process (Z;)ier with law P
satisfying
__ 2%
P(|Zs — Zi| > \) < 2e 24607 (5.6)

for all X > 0. Then there is a universal constant ¢ such that

EsupZ, < c) 2%, (T), (5.7)

teT =0
in which e,(T) = inf sup,e d(t, T,) and the infimum is over all T, C T of cardinality < 2%".

Proof of Lemma 22. The first step is to truncate the logarithm. With ¢/ > 1 to be chosen

log n

momentarily let 6, = ¢/ , and for each j € [clogn,n], where ¢ > ¢ will also be chosen

along the way, define:

Gi(2) = { log(z/23), for |2 — 28| < dn,

5.8
log(1 —0,/25) or log(1+d,/2%), for 2 <2zf—4d, or 2 > 27 + 0. (5:8)

Here z7 denotes the coordinate of the minimizer z7 or y; according to whether G; is to be

evaluated at xz; or y;. Since both z7 and yj can be bounded below by a small constant
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multiple of ¢(j/n) which in turn is O(1/j/n) for small j, by choice of ¢ = ¢(¢’) we have that:

1 1 /g
On/T5V 0n /Y] < Y (2§ = 0n) A (Y] — 6n) > 5\/%, for all j > clogn. (5.9)

These bounds at least guarantee that (5.8) is sensible. Further, for all k in the range of

interest the sum

S, = Sp(X,Y) ZG X;) (5.10)

agrees with > 7 log (%) on the event Q = {|X; — 25|, [Y; — y¢| < 4, for all j > logn}.
i/
Proposition 9 along with a union bound implies P(Q) = 1 — o(1) granted ¢ = ¢(V, B, a) is

chosen large enough. Hence, to prove the claim it suffices to show that

Sk
is tigh A1
Koeioan h(k/n) 1s tight, (5.11)
where now ¢ = ¢(V, 8, a) can be fixed.
Next we note that, as a map taking (z,...Zn; Yk, - .- Yn) — R, Sk has square Lipschitz

norm bounded as in

1V Sk (2, )1 < Z 5 o+ = 8nz < 16nlog (k) (5.12)

= (@F (Y7 — 0n)? =

where the second inequality in (5.9) is used. Therefore, by Lemma 11

2
P(Sk(X, Y)> ES,(X,)Y) + )\) < exp (_c” l/:)g@)’ (5.13)
k

for all A\ > 0 and all k£ > clogn with yet another constant ¢’ = ¢’(V, 3, a)

Turning to (5.11), we introduce

F, = max Sk, form=1,2 ..., (5.14)

—m—-1-k —m
e < <e

and, noting that it is only the small (as in o(n)) values of k which really require attention,

estimate as follows:

Sk - m
Pl s A) S o

The second inequality is due to (5.13) along with the fact that the maximum function has

Lipschitz norm one. Recalling that p > 1/2, the proof will be finished by showing that E'F,,
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is uniformly bounded in m and n (in which case the right hand side above can be made as
small as one likes by taking A 1 0o). This is where Proposition 23 comes in.

Another application for (5.13) shows that the condition (5.6) of that Proposition is satis-
fied with the discrete process k — S, —ESy in the role of t — Z; with T' = [ne™™"! ne™™] and
metric d(k, £) equal to a constant (i.e., independent of both n and m) multiple of W )
In particular, T' = T'(m, n) has diameter bounded independently of n or m. Thus, the e, (T)
in the punchline (5.7) can be bounded by sup,p d(k,T},) for an equally spaced T, with the
result that e, = O(27%") and

e~ 1<k /n<e—m

FE |: max (Sk — ESk):| S C”/,

where ¢’ can be chosen fixed for all n and m.
It is left is to demonstrate that supy...ioe, £S5 is similarly bounded. Since Elog(Zy/z})1qe
(for (Z, z) either (X, z) or (Y,y)) can made exponentially small in n, we have
Y, o X, — 1° Y, — ° X, — 1° 2 Y, —° 2
Elog ( k/ylz> — B ( k _ Ty Tk O?/k) L E (( k 0952k) _ (Yk Oyg) ) -|—O(k;_3/2)7
Xy /23, L, Yk 2(x7) 2(yp)
after restoring the integrals to the full domain (from Q) and using that E|Z;,—2¢|> = O(n=3/2)
and once more that 2y > ¢y/k/n in the last term. But by Corollary 15 we have, for example,
that

n n

Xk —z9 Yk — yo _ o o
> |F [ - } = > ok/m) B, — ) = (Y — )1+ o(1)
k=clogn k Y k=clogn
<" > (logh)’ k™2 = o(1),
k=clogn
with a similar conclusion for the sum of the mean-square differences. n

5.2 Near the singularity

Proposition 21 actually uses Proposition 20 as input, in addition to the next rough estimate.
Again the strategy is similar to that in [19] (see Sections 3.5-3.6 there).

Lemma 24. For any c > 0 there exist events B,, of probability tending to one on which

C/

K,(s,t) < Mexp </@n /: %) for0<s<t< cloin, (5.16)

with a constant ¢ = c¢(V, B, a,c¢) and k, = ¢’\/nlog,n.

Granted this we will first prove the proposition and return to the proof of Lemma 24

afterwards.
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Proof of Proposition 21. As the integral in (5.3) is increasing in ¢ we may as well assume
that ¢ is large enough so that Proposition 20 is in place. In addition, we will invoke that
proposition in the following way. Denote by A, the event that the random sequence C,
appearing (5.1) in bounded by some ¢’. By choice of ¢ we can take the probability of A,
as close to one as we like. We are left to show that the appraisal (5.3) takes place on the
intersection of A,, and B,,.

Now denoting 9,, = cloﬂ and on B,,, Lemma 24 gives that,

// (s,1)*dsdt < ¢ / / Zemn VIR dsdt < 5, e Von, (5.17)
0<s<t<dn

which is O(-;) for any 7 > 0. The first inequality uses (5.16) along with the fact that
#(t) is bounded above and below by constant multiples of v/t for ¢ < 8, (and absorbs these
constants into an adjusted ¢).

On the remaining domain of integration write

// (5, 2dsdt /|K 5n,t]dt/ X2, |Fa(s,6,) s,

Restricted to the event A,, N B,, this is bounded above as in

/ / (5.1)] dsdt<c/ K(6,.1) dt/ hn (VB g (5.18)
0
1
< J (5?L25/ t(a+1+26)dt) % <6nenn\/a> )
On

The first inequality here is similar to that in (5.17), using the observation that the proof of
Lemma 24 also includes the bound /X, K, (s,t) < de™ s e on B,. The second inequality
recalls the definition of K, from (5.2) and uses now that both 6(¢) and ¢*(t) are bounded
above and below by constant multiples of ¢ for all ¢ small. Finally, completing the remaining
integral gives that (5.18) is controlled by a constant multiple of §'~*¢® V% which tends to

zero like a small negative power of n by choosing as long as € < %. [
It remains to go back and establish Lemma 24.

Proof of Lemma 24. The events B,, are constructed so that the inequality

LR 1+ c’—”logzn (5.19)
Xy~ Vno(k/n)
holds for all indices k < clogn with a fixed constant ¢ = (¢, 8,a, V). Granted this one has

that
[nt]—1 [nt]—1

Yi
Xint) Kn(s,t) = H Y<exp d/nlogyn Z > k:/n) :

k=|ns] k=|ns]
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for s,t < clof’;" , simply due to (1+ a) < e” for a > 0. Further overestimating the Riemann

sum on the right hand side produces the exponential factor in the advertised (5.16). An
appropriate upper bound on the (X, )~! prefactors will follow in the course of establishing
(5.19).

To begin, using Proposition 9 yet again we have that

log, n

n

P <|(Xk,Yk) — (z0,y0)] > ¢ for any k < clogn) < clogn x (logn)™),  (5.20)

where v can be made large by choice of ¢’. On the other hand we also have that

122 — p(k/n)| + [y — d(k/n)| < % (5.21)

for k£ < clogn. The latter follows from the established O(1/4/n) closeness of the true and
fine minimizers for k£ < clogn (Proposition 8) coupled with the explicit formulas for the fine

minimizers. Now set

B = {1(Xe, Ye) — (@(h/m), o(k/m))| < ¢/ E2" for 'logyn < k < clogn}

with a ¢’ to be chosen momentarily. We have just explained why P(Bg)) =1—o0(1), while

on that event there is the bound

k /. [logam
Yi o(k/n) + /= (5.22)
A ok /n) =y

\/logy,n \/1ogs

1
<1+4d—-—%—, granted that =" < Y

Vno(k/n)’ Vng(k/n)

which can be guaranteed by taking ¢’ large depending on ¢. This is (5.19), after a readjust-

ment of .

Moving to the range k < ¢’ log, n first observe that for such indices the right hand side

of (5.19) can be replaced by a constant multiple of logTQ". Here we select a small 6 > 0
such that
5\/E < ¢(k/n) < l\/E for k < "logyn (5.23)
n - ~dVn - 2
and define

1
B :{]Yk —o(k/n))| < 4/ og;fn for k < ¢” loan}

N {Xk > 82(k/n) for logyn < k < ¢"logyn, Xi > for k < 1og4n}.

1
/nlogsn
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With the corresponding restrictions on X and Y} in place it holds that

X, < 52 + 5 . for k € [log, n, ¢’ log, nl, (5.24)
while
) L,
— <=+ )logyn, for ke [l,log,n]. (5.25)
Xy )

The right hand sides of both (5.24) and (5.25) are then O (\ / bgTQ”) as desired.

Leaving aside the verification that P(BS) = 1 — o(1), the claim is that the proof is
complete by choosing B, = B N BY. The remaining detail is the prefactor [X|,,,|™"
multiplying H,Eitﬂ;:] ;;—’Z in the definition of the kernel. For k = |nt| > log, n the definition
of B,, explicitly restricts [X;] ™! to be less than a constant multiple of [¢(k/n)] ™!, as desired.
For smaller values of k the bound available from the definition of B{Y is off by a factor of

logT?’n. But this is readily absorbed into the upper bound on Y}/ X} provided by (5.25).

Returning to the probability of Bén), that

P <\Yk — d(k/n))| > 4/ lt)gT3n for k£ < " log, n> =o(1)

holds by the same reasoning behind (5.20) and (5.21). The twist is the different type of
restriction placed on X, from below for £ in this range, the lower bound provided by Gaussian
concentration now being cumbersome.

For k € [log, n, " log, n] we require an upper bound on

P (X, < 8%(k/n)) < P <Xk < 5\/l<;/_n) .

As Lemma 25 below shows, this probability is less than a constant multiple of P({ < ¢E()
in which ¢ ~ Xg(k+a) and € = €(6, a, §) can be taken less than 1/2 granted that § < 1. Here
we use that £ > 1 and that for any y, random variable \/m < Ex, < /r as long as
r > 1. Next bring in the following tail inequality: again with x, denoting a random variable
of the indicated law and r > 1,

P(Ixr = Ex| > nEx,) < 2777/, (5.26)

This is a consequence of the Logarithmic Sobolev Inequality for measures with strictly log-
concave densities (Chapter 5 of [16]) along with the mentioned upper/lower bounds on E'y,.

Combining these remarks the conclusion is that

P<Xk < 6%¢(k/n), for some k € [log,n,c”"log, n]> <" Z e‘gk,

k>log,mn
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which tends to zero as n — oo.
Finally, for k£ < log, n (with the real problem being when k is order one) the inequality
(5.26) becomes ineffective. Instead we can make do with the more elementary P(y, <) <

k0" where k is fixed (for r > 1). This simple estimate yields

1 log, n W B(k+a)
Pl X, <——, forsome k <log,n | < _— — 0,
( £= \/nlogsn &1 ) ; <\/10g3n)

after another application of Lemma 25. n

Lemma 25. Let k < clogn and denote by I, the interval [(k—d)VO0,k+d]. Then, for large

enough n,
P<X’€ <t‘ Js ]a] elk)l{x Y<C\/@ eI}SCP(C<CI\/_t) (527)

in which  is a Xg(ktq) random variable and ¢ depends on ¢ (and 5,a,V ).
Proof. First, conditioned on all the other variables X}, has density function proportional to,

f(.T, Z) - B(k+a)—1 e T 24nl(z,2)

)

where v > 0 is a constant and I'(z, z) is polynomial in z and the other coordinates z; € I.
Note that the exponent of any variable in T" is at least two. Hence, with p(¢) denoting the
left hand side of (5.27) we have that

Jo fla; 2)da [y aBkta)—1g=mi= B2y
(t) —_ logn 1{x72<c 10372”} S log n Hlog . ,
foﬁ f(x; z)dx = 7 foﬁ pBk+a)—1g—ny(1+c a2 g

with a constant ¢’ depending on V' and f3.

Next denote ¢, = (14" log® “El)and c. =y(1-c" log; =82 For large enough n there are the
bounds /2 < ¢_, ¢y < 24, while (¢ /c_)" < 2 for any exponent 7 of order logn. Changing
variables then produces
VML Bta)—1e—22 /2y, 2P(¢ < \/2vnt

f\/fy/Zlognxﬁ(k+a)_1€_$2/2dx B P(C < \/’}//QIOgn)

0

The proof is completed by noting that for & < clogn one has that E{ < ¢’v/logn, and so

the denominator of the right hand side tends to one as n — oc. O
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Appendix

We include here the derivation that our matrix model B(X,Y)B(X,Y)” (with (X,Y) sam-
pled from the measure P) realizes the joint eigenvalue density (1.1). To simplify notation
a bit we take c[[;_; [Ai — A P TT, VN as the target density, with any v > —1 and
polynomial V.

Also, to make a more direct connection with the derivation of the g-Laguerre ensemble

one finds in the literature (in say [9]) consider first an upper bidiagonal matrix M with

coordinates labeled in decreasing order: M;; = x,,_;41 for i =1,...,n and M, = y,—; for
1=1,...,n—1, with all x;, y; positive. Also introduce the tridiagonal coordinates through
a Jacobi matrix 7' = T'(a,b) with T;; = a1 for i = 1,...,n and T; ;41 = Tiy1; = bni

fori =1,...,n — 1. Here each a; € R and each b; € R,. We track the calculation from
eigenvalue/eigenvector coordinates to (x,%) coordinates via QAQT =T = MMT. Here Q is
the eigenvector matrix, of which we only need the first components. These can be chosen to
be real positive, and are denoted (g1, ..., ¢n—1), noting that g, is specified by Y ¢? = 1.

Next, we have that the Jacobians for the maps from (), ¢) to (a,b), and then from (a, b)
to (x,y) are given by

Hﬁfl 4di / ) 2
J = qn rzlil ) J = anl T,

Hi:l bs ;,ll
respectively. See [13, eq. 1.156] for the former. The latter is derived from the identities
a; = xf + yf and b; = x;11y; (where y,, = 0 is understood). We will also need the well-known

relation,

n—1 19

) b+
[T =) = le?—llw
i<j | PG

for which see [13, eq. 1.148].
Since we obviously have that > i, V(\;) = trV (M M7), the necessary computation is:

n n—1 Bi
H TIIN =1 qu Ydgndr = (][] =) (Hiﬁ?’f?’) )JJ'dfMdy

1<j i=1 i=1 4q;

n

_ o H 2’y+,3 i—1)+1 Hyﬁz ldJT A dy

=1 =1

Bla+i)—1 Bi—1

Putting in v = g(a + 1) — 1 we recognize the factors in z; and y; in the claimed
bidiagonal matrix density (1.5). Here we have decided to work with B = SMS~! where S
is the antidiagonal matrix of alternating signs. This transformation does not effect the joint

density of the individual coordinates, and the eigenvalues of BBT and M M7 agree.
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