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Abstract

We establish universality at the hard edge for general beta ensembles assuming that:

the background potential V is a polynomial such that x 7→ V (x2) is strongly convex,

β ≥ 1, and the “dimension-difference” parameter a ≥ 0. The method rests on the

corresponding tridiagonal matrix models, showing that their appropriate continuum

scaling limit is given by the Stochastic Bessel Operator. As conjectured in [10] and

rigorously established in [18], the latter characterizes the hard edge in the case of linear

potential and all β (the classical “beta-Laguerre” ensembles).

1 Introduction

We prove a universality result for the limiting distribution of the smallest points for a family

of coulomb gas measures. With any β > 0 and a > −1 these measures are prescribed through

the joint densities of n points {λ1, . . . , λn} on the positive half-line:

1

Z

∏
i 6=j

|λi − λj|β
n∏
i=1

w(λi), w(λ) = λ
β
2

(a+1)−1e−βnV (λ). (1.1)

In general, V can be any function that is bounded at zero and of suitable growth at infinity;

the constant Z = Z(V, β, a, n) is the corresponding normalizer. The particular choice of the

weight w is explained by the fact that when β = 1, 2, 4, V (x) = x/2, and a is an integer, (1.1)

is precisely the joint density of eigenvalues for the classical Wishart (or Laguerre) ensembles

of random matrix theory. These are ensembles of the form XX† for an n × (n + a) matrix

X of independent real, complex, or quaternion (at β = 1, 2, or 4) mean-zero Gaussians, here

normalized to have mean-square (nβ)−1.

The scaling limit for the smallest points in this and related contexts is now commonly

referred to as the hard-edge limit. In the solvable case of complex Gaussian entries (β = 2 and
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a = 0, 1, 2, . . . ) a closed form for these distributions was discovered by Tracy and Widom

[21], with results for the real and quaternion cases following in [22]. Keeping with the

Gaussian-type potential (V (x) = x/2), but now allowing all possible values of β and a,

the densities (1.1) define the extensively studied “beta-Laguerre” ensembles. Based on a

corresponding tri-diagonal matrix model of Dumitriu and Edelman [9], Edelman and Sutton

[10] conjectured that the limiting beta-Laguerre hard edge should be described by a certain

random differential equation which they tagged the Stochastic Bessel Operator. This was

subsequently proved in [19].

The Stochastic Bessel Operator (SBOβ,a) takes the form:

SBOβ,a = − e(a+1)x+
2√
β
b(x) d

dx
e
−ax− 2√

β
b(x) d

dx
, (1.2)

where x 7→ b(x) is a standard Brownian motion. For the present application, this is taken

to act on a subspace of smooth functions of L2(R+,m(dx)) for m(dx) = e
−(a+1)x− 2√

β
b(x)

dx

with a Dirichlet boundary condition at the origin. Viewed as a random diffusion generator

symmetric with respect to m(dx), one sees that SBOβ,a has almost surely discrete spectrum

[19].

Here we show that SBOβ,a is a universal object, characterizing the hard-edge scaling

limit for β-ensembles (1.1) with a certain class of polynomial potentials. This is the first

universality result for the hard edge beyond β = 1, 2, 4.

Theorem 1. Consider the ordered points 0 < λ1 < λ2 < · · · drawn from the β-ensemble

(1.1) where V is a polynomial such that x 7→ V (x2) is strongly convex, β ≥ 1, and a ≥ 0.

Denote by 0 < Λ1 < Λ2 < · · · the ordered eigenvalues of SBOβ,a. Then, there is a constant

σ = σV,β,a such that: as n→∞,

σn2(λ1, λ2, . . . )⇒ (Λ1,Λ2, . . . ), (1.3)

in the sense of finite dimensional distributions.

The restriction to β ≥ 1 and a ≥ 0 is an additional convexity assumption, as we will

explain below. Our proof builds on the method in which the SBOβ,a limit was originally

established in the simpler β-Laguerre setting. We identify a family of tridiagonal matrix

models which realize (1.1) as their eigenvalue densities, and then demonstrate that SBOβ,a

serves as their appropriate continuum operator limit. The program is similar in spirit to the

recent soft-edge universality proof using the characterizing Stochastic Airy Operator [14].

Hard edge universality has previously been addressed at β = 1, 2, 4 via the Riemann-

Hilbert Problem method: for β = 2 quite general potentials V are treated in [15], while for

β = 1 and 4 reference [7] considers potentials that are asymptotically monomial. At these
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values of β the laws (1.1) correspond to eigenvalue densities for nonnegative definite matrices

M drawn according to the law with density proportion to (detM)γe−trV (M)dM (for choice

of γ > −1). There are also further special values of β (outside of 1, 2, and 4) for which

the hard-edge of β-Laguerre can be accessed through multivariate special functions (without

appealing to SBOβ,a), see for example [12]. At the soft edge, besides again β = 1, 2, 4

results using the Riemann-Hilbert Problem method [6] and the operator approach of [14],

there are the results of Bekerman-Figalli-Guionnet [1] and Bourgade-Erdös-Yau [3] which

hold for a far more general class of potentials. While these latter methods might be made

to work at the hard edge, a difficulty inherent to both is the intrinsic instability of the

smallest eigenvalue with respect to perturbations. That this issue is more or less bypassed

in our proof demonstrates the power of the random operator approach. As we will see, in

this approach universality follows from the relatively simple mechanism of an appropriate

functional central limit theorem.

Tridiagonals and operator limits

Let B = B(x, y) denote the n× n lower bi-diagonal matrix

Bi,i = xi for i = 1, . . . n, Bi+1,i = −yi for i = 1, . . . , n− 1, (1.4)

with the convention that all xi and yi are positive. Build the random B = B(X, Y ) with

variables (X1, . . . , Xn, Y1, . . . , Yn−1) drawn according to the density on (R+)2n−1:

P (x1, . . . xn, y1, . . . , yn−1) =
1

Z
exp

[
−nβtrV (BBT )

] n∏
k=1

x
β(k+a)−1
k

n−1∏
k=1

yβk−1
k , (1.5)

with a new normalizer Z. Then, the key fact is that the random tridiagonalB(X, Y )B(X, Y )T

has joint eigenvalue density given by (1.1). This is the general potential analogue of the

Edelman-Dumitriu result [9]. When V is linear (1.5) reduces to their representation of β-

Laguerre: all Xi and Yi are independent with Xi ∼ 1√
nβ
χβ(i+a) and Yi ∼ 1√

nβ
χβi (χr denoting

a chi variable of parameter r > 0). The proof is much the same as that in [9], and for

completeness is included in the appendix.

Next we recall (from [19]) that SBOβ,a is best understood through its inverse, which has

a similar decomposition to the matrix model (BBT )−1. Mapped to act on [0, 1] rather than

the half line, this inverse takes the form Kb
TKb in which Kb is the integral operator with

kernel1

Kb(s, t) =
1√
t

(s
t

)a/2
exp

[∫ t

s

dbu√
βu

]
1s<t (1.6)

1Throughout we use the same notation for any integral operator and its corresponding kernel.
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on L2[0, 1]. The strategy that emerges is to show that, after an embedding into L2[0, 1],

[nB]−1 converges to Kb in a suitably strong sense.

From now on we specify V (x) =
∑d

m=1 gmx
m, and for t ∈ [0, 1] introduce the family of

functions ht and their corresponding minimizers:

ht(x) =
d∑

m=1

gm

(
2m

`

)2

x2m − 2t log x, φ(t) = argmin
x≥0

ht(x). (1.7)

In terms of φ, we also set

θ(t) = κ

(∫ t

0

du

φ(u)

)2

, with κ = κV,β,a chosen so that θ(1) = 1. (1.8)

At this point our reasoning for bringing in φ and θ is unclear, let alone that φ exists, is

unique, and such that θ is well-defined. The motivation will come in Section 2, and that φ

has all the needed properties is the content of Lemma 3 there. Granted all this however our

main technical result is the following.

Theorem 2. Let x 7→ V (x2) be a strongly convex polynomial and take β ≥ 1 and a ≥ 0.

Denote by Kn the canonical embedding of the random matrices [nB(X, Y )]−1 as operators

from L2[0, 1] to itself. Then, for any sequence n→∞ there is a subsequence n′ →∞ and a

probability space on which Kn′ converges to the integral operator K with kernel

K(s, t) =
1√

φ(s)φ(t)

(
θ(s)

θ(t)

)a
2

+ 1
4

exp

[
1√
β

∫ θ(t)

θ(s)

dbz√
z

]
1s<t, (1.9)

almost surely in Hilbert-Schmidt norm.

One observes that when V (x) = x/2, (1.7) and (1.8) yield φ(t) =
√
t and θ(t) = t, and

(1.9) reduces to the advertised kernel K in (1.6). In general we have that

Kb(θ(s), θ(t))
√
θ′(s)θ′(t) = 2κK(s, t), (1.10)

with κ as in (1.8). In other words, the eigenvalues of KTK and Kb
TKb, defined with the same

Brownian motion, agree up to an overall multiple of 4κ2, identifying the (V, β, a)-dependent

scaling constant σV,β,a = 4κ2 in (1.3). Here we are using, as is implicit the statement of

Theorem 2, that K and Kb are almost-surely Hilbert-Schmidt. To conclude Theorem 1 is

more or less immediate. In the subsequential coupling of Theorem 2 one has KT
nKn → KKT

in trace norm. Hence, the finite parts of the spectrum of (nBBT )−1 converge to those of

KTK in this manner and so also in distribution. In particular, we also have the convergence

in distribution of any fixed number of eigenfunctions as elements of L2[0, 1].

4



Remark 1. Rather than embedding [nB]−1 according to the “flat” basis ek =
√
n1[(k−1)/n,k/n)

and performing the change of variables (1.10) after the fact, we could work instead with the

suitably weighted 1[θ(k−1/n),θ(k/n)) basis functions to define the embedding. Then, after scaling

by 4κ2, the corresponding discrete kernels will converge to Kb itself.

Remark 2. The introduced function φ turns out to provide a first order approximation

to the minimizer of the natural Hamiltonian associated with P . It can also be described

through a “time-dependent” version of the equilibrium measure for the eigenvalue law (1.1).

In particular, replace the potential V there with Vt := t−1V for t ∈ (0, 1]. Then, with

µt the weak limit of the eigenvalue counting measure for this t-dependent ensemble, it is

well-understood that:

µt = argmin
µ∈M

∫ ∞
0

Vt(x)µ(dx)−
∫ ∞

0

∫ ∞
0

log |x− y|µ(dx)µ(dy),

in which M is the space of probability measures of the half-line. A computation shows that

µt has support [0, 4φ2(t)] for all 0 < t ≤ 1.

Overview of the proof

Using the explicit inversion formula for bidiagonal matrices, the basic object of study is now

understood to be the random kernel operator

Kn(s, t) =
1

Xj

j−1∏
k=i

Yk
Xk

1Γij(s, t). (1.11)

Here Γij is the set on which s ∈
[
i−1
n
, i
n

)
, t ∈

[
j−1
n
, j
n

)
, and s < t. When i = j the

product in (1.11) is understood to equal one. Given this expression, that spec([nBBT ]−1)

= spec(KT
nKn) can be checked by hand.

The measure P under which Kn is drawn has the form 1
Z
e−nβHdxdy with Hamiltonian

H(x, y) = trV
(
BBT

)
−

n∑
k=1

(
k

n
+
a

n
− 1

nβ

)
log xk −

n−1∑
k=1

(
k

n
− 1

nβ

)
log yk. (1.12)

Our assumptions imply that H is itself strongly convex, that is (∇2H)(x, y) ≥ cI for some

c > 0 and all (x, y) ∈ R2n−1
+ . In particular, with β ≥ 1 and a ≥ 0 each of the log terms in

(1.12) has nonnegative second derivative. One then concludes by noting that,

trV (BBT ) =
1

2
trV (A2), for A =

(
0 B

BT 0

)
.

and applying C. Davis’ theorem [5]: a (strongly) convex function of a Hermitian matrix is

(strongly) convex as a function of its entries. Since (1.11) is a simple functional of the process
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k 7→ (Xk, Yk), one is left to quantify the anticipated Gaussian fluctuations of (Xk, Yk) about

the minimizer (xok, y
o
k) of the Hamiltonian H.

In Section 2 we develop a fine (out to o(n−1)) approximation of the minimizer which

allows us to establish the correct centering:

lim
n→∞

bntc∑
k=bnsc

log
xok
yok

=−
(
a

2
+

1

4

)
log

θ(t)

θ(s)
+

1

2
log

φ(t)

φ(s)
, (1.13)

for all fixed s, t with 0 < s < t < 1. Granted this, the limiting kernel (1.9) is identified by

showing that

Xbntc ⇒ φ(t),
n∑

k=bntc

log
Xk/x

o
k

Yk/yok
⇒ 1√

β

∫ 1

θ(t)

dbu√
u

(1.14)

in the Skorohod topology on (0, 1]. Here the polynomial assumption on V is important

as it gives P a Markov field property: for example, (Xi, Yi) and (Xj, Yj) with |i − j| > d

are conditionally independent given any intervening block of variables of length d. The

implied decorrelation is quantified in a deterministic way, by showing a decay of dependence

of the minimizers of conditional versions of the Hamiltonian H with respect to boundary

conditions. These estimates also appear in Section 2. Section 3 builds up further properties

of the measure P , in particular demonstrating Gaussian concentration of the field about the

minimizer, as well as Gaussian approximation of the expectations of various test functions.

Given all this, the proof of (1.14) appears in Section 4.

Together (1.13) and (1.14) provide point-wise convergence (in law) of Kn to K. To prove

that
∫ 1

0

∫ 1

0
|Kn − K|2 → 0 (over subsequences) as claimed in Theorem 2 requires a certain

domination of Kn by a tight family of L2([0, 1]2) kernels. This is carried out in Section 5.

Comparison with the soft edge

We close the introduction with a few comments on the differences between the present result

and that of [14] for the soft edge. While the Stochastic Airy Operator is a more delicate

object than our integral operator K, to understand the underlying operator convergence

of the tridiagonal models at the soft edge, as first described in [17], one only requires fine

information on the first O(n1/3) entries of those matrices. For the hard edge one must resolve

O(n) variables, basically the entire range of the system. This requires much more elaborate

estimates on the minimizers of H, as well as a better handle on the decorrelation between

separate stretches of variables under P . Further, while at a high level our functional central

limit theorem in Section 4 follows a typical blocking strategy, the corresponding calculation

in [14] is really a “one-block” estimate. This also in part explains why the allied method

in [14] works for all β > 0. For us the issue is near “the singularity”, or for X and Y of
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small index where the measure P becomes less coercive. Or, said another way: where, when

β < 1 and/or a < 0, the Hamiltonian fails to be convex on an O(1) stretch of indices. While

the same issue appears in the soft edge, the troublesome indices are beyond the O(n1/3)

cutoff and one can get by with fairly rough estimates on that part of the field. Again, for

the present calculation we simply need more precise control of these entries (as evidenced in

particular in the operator norm estimates of Section 5). Our assumptions on β and a cover

the classical cases, and makes an already technical paper a little less so.

2 Minimizers

As hinted at above, the function φ introduced in (1.7) serves as a first order approximation

to the minimizer (xo, yo) of the Hamiltonian H. We begin with a more motivated definition

(or re-definition) of this function.

Take the formula (1.12) for H and focus on a fixed index k (i.e., on the variables xk and

yk) corresponding to continuum position t = k/n. Retain only those terms (in either the

trV (BBT ) or the logarithms) which involve (xk, yk). Then, making the surmise that the

minimizer of H should be locally constant, set x` and y` for |`− k| ≤ d equal some x and y.

Finally, ignoring the additional (a/n− 1/nβ) and (−1/nβ) details in the multipliers of the

log xk = log x and log yk = log y terms, we arrive at the following “coarse Hamiltonian” (at

fixed t ∈ [0, 1]):

Ht(x, y) =
d∑

m=1

gm

m∑
`=0

(
m

`

)2

x2`y2m−2` − t log x− t log y. (2.1)

Plainly Ht is symmetric in x and y, and notice that Ht(x, x) equals the ht(x) introduced

in (1.7). The idea is that a minimizer (if it exists) of this approximate Hamiltonian will

be a satisfactory approximation of the true minimizer. This is φ; its key properties are

summarized in the following.

Lemma 3. For each t ∈ [0, 1], (x, y) 7→ Ht(x, y) has a unique minimizer (φ(t), φ(t)). As

a function of t, φ, hereafter referred to as the “coarse minimizer”, is smooth, positive for

t > 0, and increasing. It further satisfies

t =
d∑

m=1

m

(
2m

m

)
gmφ(t)2m, for t ∈ [0, 1], (2.2)

as well as the bounds.

c−1 ≤ φ(t)t−1/2, φ′(t)t1/2, φ′′(t)t3/2 ≤ c, (2.3)

for a constant c and all small enough t > 0.
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A similar approximation of the minimizer was employed in [14] where the analogous

objects are referred to as the local Hamiltonian and corresponding local minimizer. Here

though we require a much sharper approximation. In particular, to pin down the limiting

mean of the log potential, recall (1.13), one must refine (xo, yo) out to o(n−1) errors.

Definition: In terms of φ define the functions t 7→ x(1)(t) and t 7→ y(1)(t) via:

x(1)(t)− y(1)(t) =

(
a+

1

2

)(∫ t

0

du

φ(u)

)−1

− φ′(t)

2
, (2.4)

x(1)(t) + y(1)(t) =

(
a− 2

β

)
φ′(t).

Then, for i ∈ [1, n], set

x i = φ(i/n) +
x(1)(i/n)

n
, y i = φ(i/n) +

y(1)(i/n)

n
. (2.5)

We will refer to (x , y ) as the “fine minimizer”.

Proposition 8 proved below in Section 2.3 shows that for bulk indices |xoi−x
 
i | and |yoi−y

 
i |

are in fact O(n−2), from which for example the desired appraisal (1.13) follows.

The identification of (x , y ) relies on strong convexity in an essential way. Indeed, a

characterization equivalent to HessH(x, y) ≥ cI for all (x, y) ∈ R2n−1
+ is that

c‖(x, y)− (x′, y′)‖2
2 ≤

〈
∇H(x, y)−∇H(x′, y′), (x, y)− (x′, y′)

〉
, (2.6)

for all (x, y) and (x′, y′). Putting (x′, y′) = (xo, yo), the undetermined true minimizer, and

applying the Cauchy-Schwartz inequality (2.6) implies that

‖(x, y)− (xo, yo)‖2 ≤
1

c
‖∇H(x, y)‖2. (2.7)

The point is that the fine minimizer (x , y ) has been engineered so that∇H(x , y ) vanishes

to sufficiently high order.

Before continuing we dispatch of the:

Proof of Lemma 3. We introduce an alternative description of Ht. Let C be the “circulant’

version of the truncated bidiagonal matrix B in variables x1, . . . xm and y1, . . . , ym (with

m > d but fixed) formed by placing a ym entry in the upper right hand corner, and consider

(x, y) 7→ trV (CCT )− t
m∑
k=1

(log xk + log yk). (2.8)

By another application of C. Davis’ theorem, this is a (strongly) convex function for each

fixed t. It is also invariant under rotations of the indices, and so its unique minimizer satisfies
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xk ≡ x and yk ≡ y for some x and y and all k. But making this substitution one finds that

the right hand side of (2.8) equals mHt(x, y). Again, from here one sees that the minimum

further satisfies x = y.

Now that φ(t) exists and is unique, one recognizes (2.2) as is equivalent to d
dx
Ht(x, x)|x=φ(t)

= 0. That t 7→ φ(t) is positive and increasing will then follow from showing that the right

hand side of (2.2) is increasing as a function of φ. Rewrite that expression as in

d∑
m=1

m

(
2m

m

)
gmφ

2m = φ

∫ 2

0

2uφV ′(φ2u2)
4udu√
4− u2

. (2.9)

Since x 7→ V (x2) is (strongly) convex, x 7→ 2xV ′(x2) is increasing. The integral on the right

hand side of (2.9) is therefore a weighted average of increasing functions, which yields the

claim.

As for (2.3), again by strong convexity we have that g1 > 0, and so for small t the relation

(2.2) takes the form t = 2g1φ
2(1+o(1)). This shows that φ(t) is bounded above and below by

a multiple of
√
t for small t. The estimates on φ′ and φ′′ follow suit by considering successive

derivatives of (2.2).

2.1 Identifying the fine minimizer

We establish the following.

Lemma 4. For any i ∈ [1, n− d) it holds that∣∣∣∣ ∂∂xiH(x , y )

∣∣∣∣+

∣∣∣∣ ∂∂yiH(x , y )

∣∣∣∣ ≤ c
1√
ni3

(2.10)

with a constant c depending on V, β and a. For i ∈ [n − d, n] the right hand side of (2.10)

can be replaced by O(1).

Proof. The starting point is a lattice path representation for the diagonal entries of powers

of BBT : for i ∈ (d, n− d),

[(BBT )m]ii =
∑
p∈Pm

m∏
j=1

xi+p(2j−1) if p(2j) = p(2j − 1)

yi+p(2j−1)−1 if p(2j) = p(2j − 1)− 1


×

xi+p(2j) if p(2j + 1) = p(2j)

yi+p(2j) if p(2j + 1) = p(2j) + 1

 . (2.11)

Here Pm denotes the collection of random walk paths of length 2m beginning and ending

at height 0 and constrained as follows. At odd-timed steps j (corresponding to selecting

an entry from B), the path can either take a step of type → and remain at p(j) or take a
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step of type ↘ and p(j + 1) = p(j) − 1. At even-timed steps j (corresponding to selecting

an entry from BT ) the step can either be again of type → or of type ↗ , in which case

p(j + 1) = p(j) + 1.

Note that for i ∈ [1, d] ∪ [n − d, n] certain paths will be truncated, resulting in a more

cumbersome expression. Also note that while in the matrix model itself we have introduced

negative signs on the y-variables, trV (BBT ) is invariant under a global sign flip on the

y-variables. For convenience we have dropped those signs throughout this calculation.

From (2.11) it is easy to see that: with again i ∈ (d, n− d),

∂

∂xi
trV (BBT ) =

d∑
m=1

gm

2m∑
r=1

r

xi

∑
p∈Pm,r

m∏
j=1

[xi+p(2j−1) if step 2j − 1 is →

yi+p(2j−1)−1 if step 2j − 1 is ↘


×

xi+p(2j) if step 2j is →

yi+p(2j) if step 2j is ↗

], (2.12)

where now Pm,r denotes those “odd-down bridges” which have exactly r steps of type →
at height zero. More precisely, the paths in Pm,r are constrained similarly to those in Pm

in that they satisfy p(0) = p(2m) and can only move down at odd times and up at even

times. On the other hand, the common starting/ending height is now free, subject to the

new constraint dictating the number of flat steps at height zero.

Next we substitute the values of the fine minimizer into (2.12). These are used in the

form: for |k| ≤ d and i+ k ∈ [1, n],

x (i+ k) = φ(i/n) +
1

n

(
kφ′(i/n) + x(1)(i/n)

)
+O

(
1√
ni3

)
, (2.13)

with a like expression for y (i+ k). To see (2.13), φ(t+ k/n) and x(1)(t+ k/n) are expanded

out to second and first order, respectively. That both (d2/dt2)φ(t) and (d/dt)x(1)(t) are

O(t−3/2) follows from Lemma 3. The result of the substitution is:

∂

∂xi
trV (BBT )(x , y ) (2.14)

=
d∑

m=1

gm

[
Amφ

2m−1 +
φ2m−2

n

(
Bmx

(1) + Cmy
(1) +Dmφ

′)]+O

(
1√
ni3

)
,

where the functions φ, φ′, x(1) and y(1) are all evaluated at i/n, and

Am =m

(
2m

m

)
, Bm =

2m2 − 2m+ 1

2m− 1
Am, (2.15)

Cm =
2m2 − 2m

2m− 1
Am, Dm =− m2 −m

2m− 1
Am.

10



Putting off the derivations behind (2.15) we can complete the proof.

For the xi-derivative of the logarithmic term in the Hamiltonian we have that,(i+ a− β−1

n

) 1

x (i)
=
i+ a− β−1

nφ(i/n)
− ix(1)(i/n)

n2φ2(i/n)
+O

(
1√
ni3

)
. (2.16)

And if ∂H
∂xi

is to vanish to O
(

1√
ni3

)
, we need that the leading order terms on the right hand

sides of (2.14) and (2.16) are equal. That is, with t = i/n and multiplying throughout by

φ = φ(t), it is required that

t+
1

n
(a−β−1 − t

φ
x(1)) (2.17)

=
d∑

m=1

gmAmφ
2m +

d∑
m=1

φ2m−1

n

(
Bmx

(1) + Cmy
(1) +Dmφ

′) .
This can immediately be simplified. Noting the definition of Am, the O(1) terms identically

cancel due to (2.2).

To produce a system that can identify x(1) and y(1), one must also use ∂H
∂yi

. The resulting

formulas are similar to (2.14) and (2.16) where: in the analog of the former, Bm and Cm

change roles and Dm changes sign, while in the latter y(1) replaces x(1) on the right hand side

and a is set to zero. This produces an analog of (2.17) which, when taken together, yield:(
a− β−1 − t

φ
x(1)

−β−1 − t
φ
y(1)

)
=

d∑
m=1

gmm

2m− 1

(
2m

m

)
φ2m−1 (2.18)

×

(
2m2 − 2m+ 1 2m2 − 2m −m2 +m

2m2 − 2m 2m2 − 2m+ 1 m2 −m

)x(1)

y(1)

φ′

 ,

having employed (2.15).

The claim is that the advertised formulas for x(1) and y(1) follow from here. For example,

adding the rows of (2.18) we find that the expression for x(1)(t) + y(1)(t) in (2.4) would be

implied by the identity

d∑
m=1

gmm(4m2 − 4m+ 1)

2m− 1

(
2m

m

)
φ(t)2m−1 =

1

φ′(t)
− t

φ(t)
,

but this is yet another consequence of (2.2). The expression for x(1)(t) − y(1)(t) is checked

in a similar way.

We remark that while this exact vanishing cannot hold for indices i ∈ [1, d] or [n− d, n],

for i = O(1) we have from Lemma 3 that the right hand sides of both (2.14) and (2.16) are

O(1/
√
n). This allows the estimate (2.10) to be extended to the lower range.

11



We now go back and verify (2.15). In counting weighted Pm,r paths it is convenient to

introduce the following bijection. First, denote by P̃m,r those paths in Pm,r which start and

end at height zero and for which the first step is of type →. Then define

(p, j) ∈ Pm,r × {1, . . . , r} 7→ (p̃, q) ∈ P̃m,r × {0, . . . , 2m− 1}, (2.19)

where p̃ is obtained by rotating p to the left so that the jth height-zero step of type → of p

becomes the first step of p̃. The number q tracks how far p is shifted to produce p̃. There

is a subtlety here in that each path p̃ ∈ P̃m,r with an odd label q appears reflected across

the axis after the the shift that carried it from p. Indeed, any p has only down steps at odd

times and up steps at even times will, after being rotated by an odd number of steps, have

up steps at odd times and down steps at even times. Still, given these reflections the count

on the right hand side of (2.19) is the same.

For Am we select the same factor (the φ(i/n) from (2.13)) in each factor in the inner

product of (2.14), and so

Am =
2m∑
r=1

r|Pm,r| = 2m|P̃m| = 2m
m∑
`=0

(
m− 1

`

)(
m

`

)
. (2.20)

The second equality uses (2.19) with P̃m denoting the union over all P̃m,r, that is, those

paths just constrained to start with a → step. Then we sum over choices of positions for

the ` steps of type ↘ among the remaining m− 1 odd-timed steps, balanced by a choice of

` (of m possible) steps of type ↗ at the even-timed steps. The last expression in (2.20) can

be written 2
∑m

`=0 `
(
m
`

)2
, which in turn equals m

(
2m
m

)
.

In computing Bm, one of the previous φ factors is now a x(1). These can only appear

at → steps, and so in the sum over Pm,r paths one has the weight (#{→ steps} − 1) to

account for the possible choices of position of the x(1) factor. (The −1 shift is due the fact

we have differentiated in the xi variable.) Hence, with an obvious shorthand and by the

same reasoning behind (2.20):

Bm =
2m∑
r=1

r
∑
p∈Pm,r

(#→ − 1) = 2m
∑
p∈P̃m

(#→ − 1) = 2m
m∑
`=0

(2m− 2`− 1)

(
m− 1

`

)(
m

`

)
.

Similar to before we can rewrite the above as
∑m

`=0(2`)(2`−1)
(
m
`

)2
, from which the expression

in (2.15) follows from the derivation of Am along with known expressions for
∑m

`=0 `
2
(
m
`

)2
.

The calculation for Cm is basically the same, with #↗∪↘ in place of #→ − 1.

Finally turning to Dm, note that any appearance of φ′ is weighted by the relative height

12



of the path, and we have that

Dm =
∑
r≥0

∑
p∈Pm,r

r
m∑
j=1

p(2j − 1) +

p(2j) if step 2j is →

p(2j)− 1 if step 2j is ↗


=
∑
r≥0

∑
p∈Pm,r

r

m∑
j=1

2p(2j − 1) = 4m
∑
p∈P̃m

m∑
j=1

p(2j − 1), (2.21)

where we have used that the corresponding weight is always the smaller of the heights across

any step. To evaluate the last sum in (2.21) we use a method which we learned from [11]

(see in particular Prop. 4.2):

∑
p∈P̃m

m∑
j=1

p(2j − 1) =
∑

i1,k1,m1,i2,k2,m2≥0
m1+m2=m

i1−k1+i2−k2=0

(i1 − k1)

(
m1 − 1

i1

)(
m1 − 1

k1

)(
m2 + 1

i2

)(
m2

k2

)

=[w0][zm]

( ∑
i1,k1,m1,i2,k2,m2≥0

u∂uu
i1−k1vi2−k2zm1+m2

×
(
m1 − 1

i1

)(
m1 − 1

k1

)(
m2 + 1

i2

)(
m2

k2

)) ∣∣∣
u,v 7→w

=[w0][zm]

(
u∂u

z

1− z(u+ 2 + u−1)

1 + v

1− z(v + 2 + v−1)

) ∣∣∣
u,v 7→w

.

In line one, i1 and k1 count the running number of type ↗ and ↘ steps, respectively. In

line two, we have used the notation [xp]f(x) for the pth coefficient of the Taylor expansion

of the (analytic) function x 7→ f(x). The remaining evaluations are straightforward.

2.2 Minimizers and boundary conditions

Here we consider the Hamiltonian H subject to certain boundary conditions. To be more

precise, start by fixing an interval I = [i0, i1] ⊂ [1, n] and denote by ∂I (the boundary of I)

the at most d indices to the left/right of I. That is, ∂I = ([i0−d, i0−1]∪[i1+1, i1+d])∩[1, n].

View H as a function of (x, y) ∈ I with those coordinates whose indices lie in ∂I prescribed

to equal some values q. By the assumptions on V , those (x, y) /∈ I ∪ ∂I decouple from the

(x, y) ∈ I given q. This restricted function is referred to as the “conditional Hamiltonian”

Hq with boundary conditions q.

The goal is to quantify at what rate the minimizers of Hq become independent of q as

one moves away from the boundary.

Proposition 5. For an interval I ⊂ [1, n] consider the conditional Hamiltonian Hq, i.e., H

restricted to I with the coordinates in ∂I set equal to some values q. Assume ‖q‖∞ ≤ c′.

13



Then, with (xq, yq) the minimizer of Hq, it holds that

|xqi − xoi |+ |y
q
i − yoi | ≤ c ‖q − (xo, yo)‖∞,∂I e−dist(i,∂I)/c, (2.22)

for any i ∈ I. Here c = c(V, β, a, c′). If I = [i0, i1] ⊂ [1, n− d] there is also the bound,

|xqi − x
 
i |+ |y

q
i − y

 
i | ≤ c max

(
1√
ni30

, ‖q − (x , y )‖∞,∂I e−dist(i,∂I)/c

)
, (2.23)

for any i ∈ I.

Proposition 5 is a deterministic version of decorrelation, and will play an important role

in the blocking estimates behind the functional central limit theorem in Section 4. Here is

is used to turn the calculation of Lemma 4 into a fairly optimal estimate on the distance

between the true and fine minimizers (Proposition 8 in the next subsection).

The proof of Proposition 5 is based on the following two lemmas. The first, Lemma 6, is

a direct consequence of the strong convexity criteria (2.6) - (2.7). This is then bootstrapped

to yield the proposition with the help of Lemma 7, which is a kind of discrete Gronwall

inequality. The proof of the latter is a simple inductive argument which is not reproduced

here.

The program is reminiscent of that in Sections 6-7 of [14]. However, here we use convexity,

through inequalities (2.6) and (2.7) in a fundamentally different way. This streamlines things

considerably, bypassing for example the a priori lower bounds on minimizers tediously built

in [14].

Lemma 6. For any conditional minimizer (xq, yq) of an Hq defined on some I ⊂ [1, n],

‖(xq, yq)− (xo, yo)‖2
2,I ≤ ρ(q)‖q − (xo, yo)‖2

2,∂I (2.24)

where ρ(q) is polynomial of degree 2d in the boundary variables q (with bounded coefficients

depending only on V, β, and a). And if I ⊂ [1, n− d] it also holds that

‖(xq, yq)− (x , y )‖2
2,I ≤

∑
i∈I

c

ni3
+ ρ(q)‖q − (x , y )‖2

2,∂I (2.25)

with another polynomial ρ of degree 2d and c = c(V, β, a).

Lemma 7. Let ai and bi be nonnegative sequences satisfying
∑k

i=0 ai ≤ cak+1 +
∑k

i=0 bi for

a positive constant c and all k ≤ m. Then it holds that

a0 ≤ c

(
c

c+ 1

)k
ak+1 +

k∑
i=0

(
c

c+ 1

)i
bi,

again for all k ≤ m.
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Proof of Lemma 6. We first observe that (xo, yo) is bounded in sup-norm, independent of

the dimension. By (2.7): with a different constant c,

‖(x , y )− (xo, yo)‖2
∞ ≤ ‖(x , y )− (xo, yo)‖2

2 ≤ c‖∇H(x , y )‖2
2,

and this is O(1) by Lemma 4. The explicit formulas (2.4) and (2.5) then show that

‖(x , y )‖∞ is bounded independently of n which yields the claim.

Similarly,

‖(xo, yo)− (xq, yq)‖2
∞,I ≤ c

∑
i∈I: dist(i,∂I)≤d

(
|∂xiHq(x

o, yo)|2 + |∂yiHq(x
o, yo)|2

)
, (2.26)

since if i ∈ I with dist(i, ∂I) > d, we have that (∂Hq/∂zi)(x
o, yo) = (∂H/∂zi)(x

o, yo) = 0 for

zi = xi or yi. For the remaining 2d terms denote by PV the polynomial part of H and note:

with again zi = xi or yi,

|∂ziHq(x
o, yo)|2 = |∂ziPV (xo, yo)− ∂ziPV (xo, yo; q)|2,

where the notation indicates that coordinates in ∂I are evaluated at either the entries of

(xo, yo) or the corresponding q. But by pairing entries the above is bounded by a sum of

|q− zi|2 terms with coefficients that are polynomials (of degree at most 2d) in (xo, yo, q). As

we have just shown that ‖(xo, yo)‖∞ is uniformly bounded, all these polynomial factors can

be further controlled above by a ρ(q) with the claimed properties.

For (2.25) we basically repeat the argument. The key difference being that in the estimate

corresponding to (2.26), the sum over i ∈ I : dist(i, ∂I) > d on the right hand side does not

vanish, but instead produces a multiple of
∑

i∈I
1
ni3

, courtesy Lemma 4. This also explains

the restriction of I in this case to [1, n− d].

Proof of Proposition 5. Consider first (2.23). The idea is to apply the inequality (2.25) of

Lemma 6 to a well-chosen collection of subintervals of I.

Fix an index i ∈ I and decompose I ∪ ∂I into consecutive blocks I−m, . . . , Im with

∂I = I−m ∪ Im such that i ∈ I0 and each Ij for j 6= 0 is of length d. Denote Jk = ∪|j|≤kIj
and ∂Jk = I−k−1 ∪ Ik+1. Then, as a consequence of (2.25), we have that

‖(xq, yq)− (x , y )‖2
2,Jk
≤ c‖(xq, yq)− (x , y )‖2

2,∂Jk
+ c

∑
i∈Jk

1

ni3
, (2.27)

for k = 0, . . .m− 1.

Note first that a direct application of (2.25) would replace the constant c multiplying the

first term on the right hand side of (2.27) by a polynomial in the variable (xq, yq) appearing

in Jk. But (2.25) (or (2.24)) also shows that every |xq| and |yq| is bounded by the same

polynomial in the q variables. By assumption the q are bounded, and so it is possible to use
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the same constant c (for all k) throughout (2.27). Second, in case the definition of any Ij

places it outside of {1, n− d} the corresponding sum is simply taken as empty. This allows

the conclusion to extend to one-sided minimizers; when for example I is of the form [1, L]

with boundary conditions placed at [L+ 1, L+ d].

Returning to (2.27), we can now apply Lemma 7 with

aj = ‖(xq, yq)− (x , y )‖2
2,I−j∪Ij , bj =

∑
i∈I−j∪Ij

c

ni3
.

In particular, there is a constant c′ for which

a0 ≤ c′e−m/c
′
am + c′ max

j∈[0,m−1]
bj.

This is recognized as (2.23) upon noting: a0 ≥ (|xqi−x
 
i |+|y

q
i−y

 
i |)2, am ≤ d‖q−(x , y )‖2

∞,∂I ,

and bj ≤ 1
ni30

for al j ∈ [0,m − 1]. The proof of (2.22) is identical save that in that case

bj ≡ 0.

2.3 The limiting mean

The results of the previous subsection yield the following.

Proposition 8. There is a constant c = c(V, β, a) so that

|(x i , y
 
i )− (xoi , y

o
i )| ≤ c′


1√
n

for i ≤ c log n,
1√
ni3

for c log n < i ≤ n− c log n,

e−(n−i)/c′ for n− c log n < i ≤ n,

(2.28)

with a constant c′ depending on c. Hence,

bntc∑
k=bnsc

log
xok
yok

=−
(
a

2
+

1

4

)
log

θ(t)

θ(s)
+

1

2
log

φ(t)

φ(s)
(2.29)

+O

 1

ns
+

bc lognc∑
k=bnsc

1√
k

+

bc lognc∑
k=bn(1−t)c

e−k/c

 ,

for all 0 ≤ s < t ≤ 1.

In the error term of (2.29) empty sums are interpreted as being equal to zero. For fixed

s < t, bounded away from 0 and 1 respectively, this object is O(1/n) and we have the proof of

(1.13). Said another way, (2.29) identifies the limiting mean of the field
∑[nt]

k=[ns] log(Xk/Yk).

We have recorded the error term in this more elaborate form for use in Section 5.
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Proof. For (2.28) start with the case that i is a distance O(log n) away from both 1 and n.

Let I = [i− c log n, i+ log n] and consider the conditional Hamiltonian Hq with q = (xo, yo)

on ∂I. The conditional minimizer is then the true minimizer through I and we can apply

(2.23) of Proposition 5 with (xq, yq) = (xo, yo). The result is that

|(x i , y
 
i )− (xoi , y

o
i )| ≤ c′max

(
1√

n(i− c log n)3
, e−c

′′ logn

)
, (2.30)

having used that (xo, yo) has bounded entries (proved in the coarse of establishing Lemma

6). But c′′ can be made large with c and by choice i − c log n = O(i). The other two cases

are similar. For example for i ≤ c log n, consider I = [1, c′′ log n] with one-sided boundary

conditions = (xo, yo) on the d-length stretch to the right of c′′ log n (and c′′ � c). Then the

boundary component in the analog of (2.30) can be made smaller than any inverse power of

n, but the O(n−1/2) stemming from i0 = 1 cannot be beat.

Moving to (2.29) we start by noting that

log
x k
y k

= log

1 + x(1)(k/n)
nφ(k/n)

1 + y(1)(k/n)
nφ(k/n)

 =
x(1)(k/n)− y(1)(k/n)

nφ(k/n)
+O(k−2),

by the estimates of Lemma 3. Summed over [ns, nt] this contributes to O((ns)−1) to the

advertised error. Next we have that,

bntc∑
k=bnsc

x(1)(k/n)− y(1)(k/n)

nφ(k/n)
=

∫ t

s

x(1)(u)− y(1)(u)

φ(u)
du+O

(
1

ns

)
,

where the integral equals the right hand side of the first line in (2.29). The error here follows

from the standard Riemann sum bound given that
∣∣∣ ddu (x(1)(u)−y(1)(u)

φ(u)

)∣∣∣ = O(u−2) for small

u > 0, again by Lemma 3. The remaining overall error term is (the sum of)

log

(
1 +

xok − x
 
k

x k

)
− log

(
1 +

yok − y
 
k

y k

)
=


O(k−1/2) for k ≤ c log n,

O(k−2) for c log n < k ≤ n− c log n,

O(e−(n−k)/c) for n− c log n < i ≤ n,

Here we have used (2.28) and the fact that x k , y
 
k = O(

√
k/n) for small k. The first and

third bounds on the right hand side explain the final terms in line two of (2.29).

3 Gaussian concentration and approximation

We build up yet more technical machinery. First we establish a sharp form of Gaussian

concentration for P about the minimizer (xo, yo) of the Hamiltonian H. Along the way we
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see that similar concentration holds for the conditional distributions of P , or those measures

of the form Pq with density proportional e−nβHq(x,y) restricted to the corresponding interval

I. Here Hq is the conditional Hamiltonian with boundary conditions q on ∂I introduced

in the last section. These estimates are then used to establish approximations of certain P

expectations by their Gaussian counterparts.

3.1 Concentration

We re-emphasize that we are assuming β ≥ 1 and a ≥ 0. Our main Gaussian concentration

result is the following.

Proposition 9. There is a constant c′ depending on V, β, and a such that for t > c′√
n

we

have

P (|Xk − xok|+ |Yk − yok| > t) ≤ ce−nt
2/c (3.1)

for any k ∈ [1, n] and c depending on c′.

This serves as a refinement of the Brascamp-Lieb type inequality proved as Lemma 8.1

of [14]:

Lemma 10. There is a constant c = c(V, β, a) so that ‖(X, Y ) − (xo, yo)‖2 is stochasti-

cally dominated by ‖G‖2 where G is the Gaussian vector on R2n−1 with density proportional

to e−cn‖g‖
2
2/2. Additionally, under any Pq we have that ‖(X, Y ) − (xq, yq)‖2,I is similarly

dominated by the norm of a Gaussian vector in dimension 2|I| with entry variance (cn)−1.

Note that [14] states the above in a far more general way. What is important for the

present application is that the convexity constant for any conditional Hq can be bounded

below by that of H. Lemma 10 may be iterated to produce increasingly better tail estimates

on local scales (or shorter stretches of indices). While this sufficed for the soft edge problem

in [17], for the control required below it is more efficient to take a different approach.

Here we rely on the fact that, with β ≥ 1 and a ≥ 0, P satisfies a Logarithmic Sobolev

Inequality (see for example [2]). Given that, “Herbst’s argument” (see Theorem 5.3 of [16])

yields:

Lemma 11. There is a constant c = c(V, β, a) such that

P (|F (X, Y )− EF (X, Y )| > t) ≤ 2e−cnt
2/‖F‖2Lip ,

for any Lipschitz function F : R2n−1
+ → R.

Applied to F (x, y) = xk or yk this produces an inequality of the form (3.1) for all t > 0,

though centered at the mean rather than at the minimizer. Proposition 9 then follows from

the next estimate, which actually makes essential use of the old Gaussian concentration

result Lemma 10.
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Lemma 12. It holds that

E
[
|Xk − xok|+ |Yk − yok|

]
≤ c√

n
,

for any k ∈ [1, n] and c = c(V, β, a).

Proof. Throughout we use the shorthand Z (or z) to denote the pair of variables (X, Y ) (or

(x, y)).

To start we fix an interval D = {k ∈ [` − d/2, ` + d/2]}, and for a choice of m (to be

determined) let I be the interval made up of D and the (at most) m indices to the left/right.

As usual ∂I will denote the d indices to the left and/or right of I. If any part of D, I, or ∂I

falls outside of [1, n], it is truncated in the obvious way or viewed as empty. Then, with Eq

the conditional expectation with respect to the variables q ∈ ∂I we write

Emax
k∈D
|Zk − zok| ≤ EEq max

k∈D
|Zk − zqk|+ EEq max

k∈D
|zok − z

q
k|. (3.2)

Here zq denotes the conditional minimizer of Hq on I (with boundary conditions q). By

passing the randomness onto the variables q (for which we continue to use lower case) we

will be able to iterate this inequality.

Further bounding (3.2) above we have that

EEq max
k∈D
|Zk − zqk| ≤ EEq‖Z − zq‖2,I ≤ c

√
m

n
(3.3)

by Lemma 10. And by Proposition 5 we also have the bound: with Q∂I the event that

|q − zo|∞,∂I < b,

max
k∈D
|zok − z

q
k|1Q∂I ≤ c′e−m/c max

i∈∂I
|zoi − qi|, (3.4)

for a c = c′(b). And using Lemma 6 on the complement of Q∂I :

EEq max
k∈D
|zok − z

q
k| ≤ c′e−m/cE

[
max
i∈∂I
|zoi − qi|

]
+ E

[
ρ(q)‖zo − q‖2,∂I , Q

c
∂I

]
.

By Hölder’s inequality and an application of Lemma 10 we can control the second term on

the right hand side by a constant multiple of P (Qc
∂I) ≤ c′e−n/c

′
with a new c′ = c′(b).

Adjusting constants and substituting this last estimate along with (3.3) into (3.2) gives

Emax
k∈D
|Zk − zok| ≤ c

√
m

n
+ ce−m/cE

[
max
i∈∂I
|zoi − qi|

]
+ ce−n/c. (3.5)

At this point we can choose m large enough (but independent of n) so that ce−m/c < 1/4

and then for large enough n absorb the final term on the right hand side into the first. Then

(3.5) may be schematized as in:

ak ≤ 2c

√
m

n
+

1

4
(ak−m + ak+m). (3.6)
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Here ak is Emaxi∈D |Zi − zoi | for whatever interval D centered at k with a` = 0 for ` ≤ 0 or

` ≥ n. In this interpretation, the q in the expectation on the right hand side of (3.5) stands

in for the corresponding (random) Z variable while ∂I serves as a shifted copy of D.

The claim is that (3.6) (along with its corresponding side conditions) implies all the

ak = ak(n) are bounded by a constant multiple of n−1/2. After a scaling the problem can be

summarized thus: Given an array bk = bk(L), for k = 0, . . . , L which is nonnegative, finite

and satisfies (for each L),

bk ≤ 1 +
1

4
(bk−1 + bk+1), b0 = bL = 0, (3.7)

there is a constant which bounds all bk independently of L. This can be seen by contradiction:

if for some j we have that say bj ≥ 4, any such solution must grow exponentially to either

the left or right of j. But this would violate the Dirichlet boundary conditions imposed at

j = 0 or j = L.

3.2 Laplace estimates

Along with Pq(dx, dy) = 1
Zq
e−nβHq(x,y)dxdy introduce the natural Gaussian measure approx-

imating Pq over the same interval I:

νI,q(dx, dy) =
1

Z ′q
exp

(
−nβ

2

〈
(x− xq, y − yq),Hq(x− xq, y − yq)

〉)
dxdy, (3.8)

where Hq denotes the Hessian of Hq evaluated at (xq, yq). We also bring in the mixture of

νq over boundary conditions in “typical” position, defined by∫
F (x, y)µI,c(dx, dy) = E

[∫
F (x, y)νI,q(dx, dy), ‖q − (xo, yo)‖∞,∂I ≤ cδn

]
(3.9)

with δn =
√

logn
n

.

To determine the statistics of the field for bulk indices, we have the following estimate

which relates the P -expectation of certain polynomial test functions to those of averaged

Gaussians.

Proposition 13. Fix a small δ > 0 and let I ⊂ [δn, n]. Denote by K the interval made

up of I along with the (at most) c log n indices to its left and right. Next, for given (x′, y′)

= (x′i, y
′
i){i∈I} let FI,x′,y′(x, y) be a nonnegative polynomial with bounded coefficients and of

bounded degree in the variables (xi − x′i)i∈I and (yi − y′i)i∈I . Then, there exists a choice of c

and a further constant c′ (both depend on V, β, a and the degree of FI) such that

E
[
FI,xo,yo(X, Y )

]
(3.10)

=

(∫
FI,xq ,yq(x, y)µK,c′(dx, dy) +O(n−2)

)(
1 +O

(
|K|(log n)3/2

√
n

))
.
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Here, c and c′ figure into the implied constants in the error terms and the estimate (3.10)

presumes that |K|(log n)3/2n−1/2 = o(1).

As a consequence of Proposition 13 the limiting variance of the field k 7→ (Xk, Yk) will

be determined through:

Corollary 14. Again fix a δ > 0 and now let I = [i0, i1] be of length at most n1/4− and

supported in [δn, n − 2c log n]. With K = [i0 − c log n, i1 + c log n], denote by Pq be the

conditional measure on K with boundary conditions q satisfying ‖q − (xo, yo)‖∞,∂K ≤ c′δn.

Then, for large enough c = c(V, β, a) and c′ = c′(V, β, a), it holds that

Eq

(∑
i∈I

(Xi − xoi )− (Yi − yoi )

)2
 = φ2(i0/n)

θ′(i0/n)

θ(i0/n)

(i1 − i0)

βn
+O

(
(log n)2

n

)
(3.11)

Here the implied constant in the error term depends only on δ, V, β, a, c, c′. The same estimate

holds with E in place of Eq.

Last, we will require the more particular control for indices down to O(log n) away from

the singularity.

Corollary 15. It holds that

E [(Xk − xok)− (Yk − yok)] = O

(
(log k)5

√
nk

)
, (3.12)

and

E
[
(Xk − xok)2 − (Yk − yok)2

]
= O

(
(log k)5/2

n
√
k

)
, (3.13)

uniformly for k ∈ [c log n, n− c log n] with c = c(V, β, a) sufficiently large.

While Corollary 14 is a direct calculation based on Proposition 13, the proof of Corollary

15 entails that a higher order expansion be made than that behind the estimate (3.10).

(The unattractive log factors in (3.12) and (3.13) could be improved by yet a higher order

expansion, but the above suffices for what we will need.)

Proof of Proposition 13. To be concrete, we will assume that there is a constant κ and an

exponent p so that FI,x′,y′(x, y) ≤ κ(1 + ‖(x, y) − (x′, y′)‖p2,I). It will be clear in the course

of the argument that other choices of (bounded coefficient and bounded degree) polynomial

FI,x′,y′ will only alter the choices of c′ and c made along the way.

With FI as specified and Q∂K = {‖q−(xo, yo)‖∞,∂K ≤ c′δn}, we first claim that by choice

of c′ and c:

E
[
FI,xo,yo(X, Y )

]
= E

[
Eq[FI,xoyo(X, Y )], Q∂K

]
+O(n−2) (3.14)

= E
[
Eq[FI,xq ,yq(X, Y )], Q∂K

]
+O(n−2),
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where (xq, yq) refers to the minimizer of the corresponding Hq on the larger interval K.

(Note: if the right edge of support of I is less than c log n away from n, we are considering

a one-sided minimization with boundary conditions placed to the left of K.) For line one,

Lemma 10 shows EF 2
I,xo,yo = O(1) while for c′ large enough P (Qc

∂K) = O(n−4) by Proposition

9. (The exponent of (−4) may be replaced by any negative power by choice of c′.) Then

apply Cauchy-Schwartz. For line two we assume that c is large enough depending on c′ , so

that Proposition 5 provides: for any i ∈ I, |xqi − xoi |, |y
q
i − yoi | ≤ c′′n−4 with a c′′ uniform

over q ∈ Q∂K . A second application of Cauchy-Schwartz using Lemma 10 to control the Eq

expectation of powers of FI,xq ,yq produces the estimate.

At the expense of another O(n−2) error, we can now further restrict the inner Eq expec-

tation in (3.14) to the event QK on which |Xi − xqi |, |Yi − y
q
i | ≤ c′′′δn for all i ∈ K for some

c′′′. This is a repetition of the argument employed in the first estimate of (3.14) coupled

with the fact that Proposition 5 gives that |xqi − xoi | ∨ |y
q
i − yoi | is O(δn) throughout K (with

the sharper estimate used just above holding on I).

Now we are in position to approximate Pq by the Gaussian measure νq = νK,q introduced

in (3.8). If necessary we can adjust Zq (the Pq normalizer) so that Hq(x
q, yq) = 0. Then,

with

H(3)
q (x, y) = Hq(x, y)−

〈
(x− xq, y − yq), 1

2
Hq(x− xq, y − yq)

〉
, (3.15)

Taylor’s formula gives that

|H(3)
q (x, y)| ≤ sup

t∈[0,1]

∑
k∈K

(
ρk(t) +

4k

n|xk(t)|3
+

4k

n|yk(t)|3

)
|(xk, yk)− (xqk, y

q
k)|

3. (3.16)

Here ρk = ρV,k indicates a (positive) polynomial of fixed degree in the variables (xi(t), yi(t))

for i ∈ [k − d, k + d], while (x(t), y(t)) draws out the line between (xq, yq) and (x, y). We

use the fact that trV (BBT ) is finite-range, so there are fixed number of mixed third-partial

derivative involving any index k ∈ K stemming from the polynomial of Hq. For the factors

corresponding to the third derivatives of the log terms in Hq, note that any k ∈ K under

consideration is large enough so that 4k ≥ 2(k + |a|+ 1/β).

Further, with the left endpoint of K at least δn/2, the results of Section 2 give that: re-

stricted to QK , (xq, yq), and so also (x(t), y(t)), are bounded above and below independently

of n or q ∈ Q∂K . Therefore,

nβ|H(3)
q (x, y)|1QK ≤ γ|K|

(
(log n)3/2

n1/2

)
(3.17)

with γ depending only on the parameters δ, c, V, β, a. This allows the conclusion that

Eq[FI,xq ,yq(X, Y )1QK ] =

∫
QK

FI,xq ,yq(x, y)νq(dx, dy)

(
1 +O

(
(log n)3/2|K|√

n

))
, (3.18)
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which is effectively the claim. Here we have used that, with η the right hand side of (3.17),

e−ηνq(QK) ≤ Zq
Z ′q
≤ eη

1

Pq(QK)
. (3.19)

The Logarithmic Sobolev Inequality for Gaussian measures gives that νq(QK) is the same

order as Pq(QK) (the measures were built to have the same convexity constant). That is,

with each of these factors a negative power of n, the upper and lower bounds in (3.19) are

controlled by e±η = 1 +O(η) with η = o(1).

Proof of Corollary 14. Denoting by SI,xo,yo(X, Y ) the squared sum within the expectation

of (3.11), the (beginning of) the proof of Proposition 13 yields

Eq[SI,xo,yo(X, Y )] = Eq[SI,xq ,yq(X, Y )1QK ] +O(n−2).

Again, QK is the event that ‖(x, y)− (xq, yq)‖∞,K is less than c′δn (for choice of c′). Contin-

uing, the same proposition gives that

Eq[SI,xq ,yq(X, Y )1QK ] (3.20)

=

(∫
SI,xq ,yq(x, y)νq(dx, dy) +O(n−2)

)(
1 +O

(
(log n)3/2|K|√

n

))
,

and we will show that the appraisal (3.11) holds for the remaining νq integral. This is enough

since the multiplicative error in (3.20), can be combined with the O(n−1|K|) leading order

term in (3.11) and thus absorbed into a second o((log n)2/n) additive error. Note that the

factor φ2(i0/n) θ
′(i0/n)
θ(i0/n)

in (3.11) is of order one.

Now compute, ∫
SI,xq ,yq(x, y)νq(dx, dy) =

1

nβ
wTH−1

q w, (3.21)

where the right hand side is read as follows. Indexing the integral (and so Hq) accord-

ing to (xk0 , yk0 , xk0+1, yk0+1 . . . , xk1 , yk1) where [k0, k1] = K, the (2|K|)-vector w has entries

(−1)i for indices corresponding to the coordinates in I ⊂ K and is otherwise zero. To esti-

mate wTH−1
q w we approximate H−1

q by its “coarse” version. This is where we will use the

assumption that I is supported O(log n) away from n.

Bring in the alternate description on the coarse Hamiltonian developed in Lemma 3,

notated slightly differently here. With t = (k0+k1)
2n

= (i0+i1)
2n

the midpoint of K:

HK(x, y) = trV (CCT )− t
∑
k∈K

log(xkyk), (3.22)

where again C is the appropriate circulant version of the matrix B(x, y) restricted to K,

recall (2.8). Then, with H∗ the Hessian of HK evaluated at its minimizer xk = yk = φ(t),

the key observation is:

vT (H∗)−1v = |K|φ(t)2 θ
′(t)

θ(t)
, (3.23)
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for v the vector vk = (−1)k, k = 1, . . . 2|K|. To see this, first note that H∗ is circulant

Toeplitz, and hence has v as an eigenvector. With λ the corresponding eigenvalue, and

(z1, z2, z3, z4, . . . ) = (xk0 , yk0 , xk0+1, yk0+1, . . . ), compute:

λ =

 ∑
1≤k,`≤2|K|

(−1)k+` ∂
2HK

∂zk∂z`

∣∣∣
zi=φ(t),i=1,...,2|K|

=
1

2

(
∂

∂x
− ∂

∂y

)2

Ht(x, y)
∣∣∣
x=y=φ(t)

.

Where in the second equality we bring back our initial definition (2.1) of the coarse Hamil-

tonian Ht. Using that formula we find that

λ =
t

φ(t)2
+

d∑
m=1

gm
m

2m− 1

(
2m

m

)
φ(t)2m−2 =

1

φ(t)

∫ t

0

ds

φ(s)
=

2θ(t)

φ2(t)θ′(t)
.

The middle equality follows from the definition (2.2) for φ upon multiplying both sides of

that identity by φ′(t)φ−2(t) and integrating by parts.

To finish the proof it remains to show that∣∣wTH−1
q w − vT (H∗)−1v

∣∣ = O
(

(log n)2
)
. (3.24)

In particular, comparing (3.23) to the chief term in (3.11) the only difference is that in the

latter φ and θ are sample at the initial point i0/n rather than the midpoint (i0 + i1)/n. But

the continuity of those functions shows the error entailed in this shift is of sufficiently lower

order.

As for (3.24), we bring in yet another approximate Hessian, defining H to be the 2d-

banded submatrix of H∗. Equivalently, H is the Hessian for the Hamiltonian (3.22) modified

so that the circulant C is replaced by the (truncated) bidiagonal B in the same variables.

Strong convexity then gives that both H−1
∗ and the new H−1 are bounded in norm. It follows

that |vTH−1v − vT (H∗)−1v| = O(1), since, with H and H∗ differing by at most O(1) entries

in the upper right and lower left corners, ‖H −H∗‖ is O(1).

Next, Hq and H are also nearly the same. They are 2d-banded with corresponding entries

built from the same functions − except along the diagonal − evaluated at either (xq, yq) or

(φ(t), φ(t)). Along the diagonal the functional entries differ only in the coefficients of the

terms corresponding to the second derivatives of the logarithm in Hq or HK : there one must

compare tφ−2(t) to (k+ a− 1/β)n−1(xqk)
−2 or (k− 1/β)n−1(yqk)

−2 for any k ∈ K. But these

coefficients (t and (k+ a− 1/β)/n or (k− 1/β)/n) are no more than O(|K|n−1) = O(n−3/4)

apart. Further, restricted to QK the values of (xq, yq) and (φ(t), φ(t)) are no more than

O(δn) apart (and are also uniformly bounded below). This last point combines: Proposition

5, showing that (xq, yq) and (xo, yo) are O(δn) apart, Proposition 8, which controls the

distance between fine and true minimizers, and the fact that coarse and fine minimizers are

O(n−1) apart on this range (see the definition of (x , y )).
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These observations along with the Gershgorin circle theorem yield ‖Hq − H‖ = O(δn).

Similar to before then

‖H−1
q −H−1‖ ≤ ‖H−1

q ‖‖H−1‖ ‖Hq −H‖ ≤ c′′δn,

now using strong convexity for a constant upper bound on both ‖H−1
q ‖ and ‖H−1‖. The

final step is to notice that

|(w − v)TH−1(w + v)| = O
(

(log n)2
)
.

This follows first because (w− v) has only O(log n) non-zero entries, and second because, H
being banded Toeplitz, the entries of its inverse decay exponentially away from the diagonal.

Proof of Corollary 15. The idea is similar to that behind Proposition 13, though now for

each k ∈ [c log n, n − c log n] we let K be the interval of length c log k centered at k for the

constant c to be chosen momentarily. Let again q denote the coordinates in ∂K, but now let

Q∂K =
{
‖q − (xo, yo)‖∞,∂K ≤ c′

√
log k

n

}
. (3.25)

The point is that, since we are working on potentially shorter intervals K than above, we

can squeeze the conditioning event a bit for sharper estimates

By choice of c′ and Proposition 9, P (Q∂K) = 1 − O(k−4) since k � 1. The same

proposition gives that E[(Xk−xok)2p+(Yk−yok)2p] = O(n−p). Both estimates are uniform in k.

And so, by the Cauchy-Schwarz (and Jensen’s) inequality E[Eq|Xk−xok|p, Qc
∂K ] = O(n−pk−2),

and likewise in the y-variable. Next, for any given q in a given Q∂K , we can select the

c = c(β, V, a) so that Proposition 5 gives |xok − x
q
k| + |yok − y

q
k| = O(e−c

′′(c) log k(log k/n)1/2)

= O(k−2n−1/2). The conclusion is that: for p = 1 or 2,

E
[
(Xk − xok)p − (Yk − yok)p] = E

[
Eq

[
4p(Xk, Yk)1QK

]
1Q∂K

]
+O(n−p/2k−2), (3.26)

uniformly in k. Here we have made the definition,

4p(xk, yk) = (xk − xqk)
p − (yk − yqk)

p,

and QK = QK(q) is the event {‖(x, y)− (xq, yq)‖∞,K ≤ c′
√

log k
n
}, for a possibly adjusted c′.

That we can restrict the Eq integral in (3.26) to QK with the stated level of error, follows

from the same argument used at the analogous step in the proof of Proposition 13.

Turning to an estimate on Eq[4p(Xk, Yk)1QK ], we start with the case p = 2. Under the

approximating Gaussian measure νq = νK,q we have that∫
QK

∆2(xk, yk)νq(dx, dy) =
1

nβ

(
(H−1

q )2k−1,2k−1 − (H−1
q )2k,2k

)
+O

(
1

nk2

)
. (3.27)
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The first term is an exact Gaussian computation, after removing the restriction to Qk. The

error term uses that by choice of c′ it holds νq(QK) = 1 − O(k−4). With K = [k0, k1] the

indices of the νq integral and the matrix Hq are indexed xk0 , yk0 , xk0+1, yk0+1, ..., as before.

Next recall that the proof of Corollary 14 introduces a banded Toeplitz approximation H
to Hq (H is the Hessian of the coarse Hamiltonian HK on K, with the corner entries which

make the latter circulant removed), and would like to replace the appearances of Hq in

(3.27) with this approximation. Since (H−1)ii = (H−1)jj for all i, j ∈ K and, by convexity,

‖H−1
q − H−1‖ is controlled by a constant multiple of ‖Hq − H‖, this norm must now be

estimated for K possibly within log n of the singularity.

In the current setting we have that: with φ(t) for t = k/n, the common variable where

the entries of H are evaluated,

|xqi − φ(t)|+ |yqi − φ(t)| = O

(√
log k

n

)
.

This uses (3.25), Proposition 5, and the more refined estimate that coarse and fine minimizers

are O((ni)−1/2) apart for potentially small indices i. Hence the difference between any

off diagonal of H and Hq are also controlled by O(
√

log k/n). The more delicate issue is

now the diagonals where one has to consider the absolute differences |φ(t)−2 − (xqi )
−2| or

|φ(t)−2 − (yqi )
−2| which are O((n/k)3/2 ×

√
log k/n). Here we use that in general we have

that φ(t) ≥ δ
√
k/n, and so the given xqi and yqi for i ∈ K satisfy the same lower bound.

But since any of these diagonal components are multiplied by coefficients which are O(k/n)

throughout K, the corresponding entry differences are actually O(
√

log k/k) and we have

that

‖Hq −H‖ = O

(√
log k

k

)
,

compare the O(δn) estimate used in Corollary 14. Therefore, (3.27) can be continued as in∫
QK

∆2(xk, yk)νq(dx, dy) = O

(√
log k

n
√
k

)
. (3.28)

To finish, write

Eq

[
42(Xk, Yk), QK

]
=
Z ′q
Zq

∫
QK

∆2dνq +
Z ′q
Zq

∫
QK

∆2(enβH
(3)
q − 1)dνq, (3.29)

where once more Z ′q and Zq denote the normalizers for νq and Pq, respectively. Now recalling

(3.16) from the proof of Proposition 13, the estimate (3.17) can be replaced by

nβ|H(3)
q (x, y)|1QK ≤ γ

(
(log k)5/2

k1/2

)
, (3.30)
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for another constant γ = γ(V, β, a, c, c′). Here we have used the current definition of QK

which restricts ‖(xq, yq)− (x, y)‖3
∞,∂K to O((log k/n)3/2), that now |K| = c log k, and a worse

case upper bound of O((n/k)3/2) on any of the xi(t)
−3 or yi(t)

−3 for i ∈ K. (Recall that these

are the interpolants from (xqi , y
q
i ) to (xi, yi) ∈ QK , and that each appears with a coefficient

that is O(k/n)). Next, since the right hand side of (3.30) is o(1) for k ≥ c log n, (3.19) shows

the ratios Z ′q/Zq are bounded above and below by constants only depending on c, c′ and

V, β, a. Finally then, using that |eζ − 1| ≤ 2|ζ| for |ζ| ≤ 1 (applied to ζ = nβH
(3)
q restricted

to QK) and
∫
|42|dνq = O(n−1), we find for the second term in (3.29) that∫

QK

∆2(enβH
(3)
q − 1)dνq = O

(
(log k)5/2

nk1/2

)
. (3.31)

This is the estimate reported in (3.13).

For the difference of the means, one has to consider an additional order. We now write,

Eq[41(Xk, Yk), QK ] =
Z ′q
Zq

∫
QK

∆1(1 + nH(3)
q )dνq +

Z ′q
Zq

∫
QK

∆1(enβH
(3)
q − 1− nH(3)

q )dνq,

for which we readily have the following: ∫
QK

∆1dνq = O(n−1/2k−2), (3.32)∫
QK

∆1(enβH
(3)
q − 1−H(3)

q )dνq = O

(
(log k)5

n1/2k

)
.

The first of these is due:
∫
41dνq = 0,

∫
|41|2dνq = O(n−1), while c′ can be chosen so

that νq(Q
c
K) = O(k−4). (The displayed estimate follows from applying Cauchy-Schwartz

to integral over Qc
K). The second is similar to (3.31): now

∫
|41|dνq = O(n−1/2) while

|enβH
(3)
q − 1− nH(3)

q | on QK is controlled by the square of the right hand side of (3.30).

As we have noted, Z ′q/Zq is of constant order (uniformly for all K and choices of “good”

boundary conditions q), and so it remains to consider n
∫
QK
41H

(3)
q dνq. For this we first

schematize H
(3)
q as in

H(3)
q (x, y) = PV (x, y) +

∑
i∈K

(
ai(xi − xqi )3 + bi(yi − yqi )3

)
. (3.33)

Here PV,q represents the appropriate sum of third derivatives of the potential term, while

with

ai = 2xi(t)
−3(i/n+ a/n− 1/nβ), bi = 2yi(t)

−3(i/n− 1/nβ),

the sum over centered cubics corresponds to the (third derivatives of the) logarithmic terms

of Hq. Since ai and bi are complicated functions of (x, y), to perform the desired integral we

first note: on QK ,

|ai − ci|+ |bi − ci| = O

(√
n log k

k

)
, with ci =

2i

nφ3(i/n)
.
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Hence, if we replace all appearances of ai and bi in (3.33) by ci, we make an O(log k ×
√
n log k
k
× (log k)3/2

n3/2 ) = O( (log k)2

nk
) sup-norm error (granted we working on QK) to H

(3)
q , and so

a O( (log k)2√
nk

) error in any estimate of n
∫
QK
41H

(3)
q dνq.

Similar preprocessing is required for the integral involving PV . However, that integral

will clearly be subdominant compared with that over the second term in (3.33) since both

ai and bi are as large as O(
√
n/i). We will therefore only detail how to deal with this term.

After making the substitution just described, we have the evaluation:∫
41(xk, yk)

(
n
∑
i∈K

ci
(
(xi − xqi )3 + (yi − yqi )

))
dνq (3.34)

=
1

n

∑
i∈K

(3ci)
[
(H−1

q )2i−1,2i−1

(
(H−1

q )2k−1,2i−1 − (H−1
q )2k,2i−1

)
+ (H−1

q )2i,2i

(
(H−1

q )2k−1,2i − (H−1
q )2k,2i

)]
.

It is by now understood that we can go from this full-space integral to that restricted to

QK making further subdominant errors. Things are at long last wrapped in the same way

that (3.27) was treated. First observe that, if we could replace Hq with its approximate H
throughout (3.34), the quantity within the square brackets vanishes on account that H is

Toeplitz. Since again all entries ofH−1
q andH−1 are uniformly bounded, a computation using

(3.2) shows that the the error incurred in making that substitution in (3.34) is O( (log k)7/2√
nk

).

As this lies under the larger of the error estimates in (3.32) − which is what is reported in

(3.12) − the proof is finished.

4 Central limit theorem

Here we complete the identification of the limit of the Kn kernel by proving:

Proposition 16. As n→∞,

n∑
k=bntc

log
Xk/x

o
k

Yk/yok
⇒ 1√

β

∫ 1

θ(t)

dbu√
u
,

in the Skorohod topology on (0, 1].

Recall (1.14). Note that Gaussian concentration plus the formulas for the minimizer

developed in the last two sections already give that Xbntc ⇒ φ(t) as processes on [δ, 1] for

any δ > 0.
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4.1 Linearizing

As a first step we have the following.

Lemma 17. For Proposition 16 it is sufficient to show that

n∑
k=bntc

(Xk − xok)− (Yk − yok)
φ(k/n)

⇒ 1√
β

∫ 1

θ(t)

dbu√
u
,

in the Skorohod topology on (0, 1].

Proof. We fix a (small) δ > 0, and show the claim for all processes restricted to t ∈ [δ, 1].

Afterwards it will be clear that the choice of δ is arbitrary.

Again denote

Q =

{
|Xk − xok|, |Yk − yok| ≤ c

√
log n

n
for all k ∈ [1, n]

}
,

with c chosen so that P (Qc) ≤ n−4 for all n large enough (Proposition 9). Certainly it is

enough to work with the process 1Q
∑n

k=bntc log
Xk/x

o
k

Yk/y
o
k

. At the same time,

1Q

[
log

Xk/x
o
k

Yk/yok
−
(

(Xk − xok)− (Yk − yok)
φ(k/n)

)
+

(
(Xk − xok)2 − (Yk − yok)2

2φ(k/n)2

)]
= O(n−(3/2−ε)),

uniformly for k ∈ [nδ, n] with probability one. Here ε can be chosen as small as one likes

subject to the implied constant on the right hand side depending on ε. This follows as

| log(1 + t) − t + t2/2| ≤ |t|3 for all |t| ≤ 1/2 while, with (Z, z) = (X, x) or (Y, y): on Q all

|Zk − zok|p are O(n−(p/2−ε)), zok is uniformly bounded below for k > δn, and | 1
zk
− 1

φ(k/n)
| =

O(n−1) throughout the same range of indices. For the last two facts see Proposition 8. So,

with the left hand side of the above display denoted by ηk,n we have that t 7→
∑n
bntc ηk,n

converges to the zero process.

Consider next

ζnm(X, Y ) = 1Q

n∑
k=m

(Xk − xok)2 − (Yk − yok)2

φ(k/n)2
.

The proof will be finished by showing that maxm∈[δn,n] |ζnm| goes to zero with probability one.

We actually take the approximation

ζ̂nm(X, Y ) =
n∑

k=m

ψ(Xk − xok)− ψ(Yk − yok)
φ(k/n)2

,

for ψ(z) = z2 for |z| ≤ c
√

logn
n

outside of which ψ is taken to be constant. Obviously, ζ̂nm and

ζnm agree on Q, while as a map from xm, ym, . . . xn, yn − 1 to R, we have that |∇ζ̂nm(x, y)|2 ≤
c′ log n with c′ depending on δ. Lemma 11 then implies that

P
(
|ζ̂nm − Eζ̂nm| > n−1/4

)
≤ 2e−c

′′(n1/2/ logn), (4.1)
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for all m > δn with a c′′ = c′′(V, β, a, δ). But then by (3.13) of Corollary 15 have that

Eζnm = O((log n/n)1/2) uniformly in m > δn, and the same estimate will hold for Eζ̂nm. Now

the result follows from (4.1) and a union bound.

4.2 Finite dimensional convergence

We employ a classical blocking argument, with the limit being understood through the sum

over “good blocks” (of length O(n1/6)) of the variables, each such block separated by O(log n)

“buffers”. That the minimizer of any conditional Hamiltonian becomes independent of the

boundary in O(log n) steps will produce the required decorrelation between adjacent blocks.

Define recursively the times,

m1 = 1, mk+1 =

{
mk + bc log nc if k is odd

mk + bn1/6c if k is even,

and corresponding good blocks and buffers: for i = 1, 2, . . . ,

Gi =
1

φ(m2i/n)

m2i+1∑
k=m2i

[(Xk − xok)− (Yk − yok)], (4.2)

Bi =
1

φ(m2i−1/n)

m2i∑
k=m2i−1

[(Xk − xok)− (Yk − yok)].

Here we made one more approximation in pulling the φ−1 of smallest index out of each

block sum. By the continuity of φ it will be clear that this will make no difference in what

follows. Also, truncating the final Gi sum if necessary we can always assume that the stretch

[n− c log n, n] is buffer. With this setup the result is:

Lemma 18. Set Gnt =
∑

i:mi∈[nt,n] Gi and Bnt =
∑

i:mi∈[nt,n] Bi. Then as n → ∞, there is a

suitable choice of c = c(V, β, a) in (4.2) so that for any k and 0 < t1 < t2 < · · · < tk ≤ 1,

(Gnt1 ,G
n
t2
, . . . ,Gntk) and (Bnt1 ,B

n
t2
, . . . ,Bntk), converge in law to a centered Gaussian vector with

covariance 1
β

log 1
θ(ti)
∧ 1

β
log 1

θ(tj)
and the zero vector, respectively.

Proof. We start by estimating EeiτG
n
t for t fixed. With Ii the support of any corresponding

Gi figuring into Gnt , denote by Ki the interval formed by adjoining the (c/3) log n length

stretches of indices to the left/right of Ii. The parameter c is chosen large enough so that

the strategy of Proposition 13 can be followed (the length c log n buffer about Ii is now

length (c/3) log n, but c is chosen as needed in both cases). In particular, boundary values

set at ∂Ki will have weak influence on the statistics of Gi.
With qi the variables in ∂Ki we by now understand that

EeiτG
n
t = E

[
1Q

∏
i:mi∈[nt,n]

Eqi
[
eiτGi

]]
+ o(1) (4.3)
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where Q is the event that maxi ‖qi − (xo, yo)‖∞,∂Ki ≤ c′
√

logn
n

for suitably large c′. Further,∣∣∣Eqi [eiτGi − (1 + iτGi −
1

2
τG2

i )]
∣∣∣ ≤ Eqi|τGi|3 = O(|Ii|3n−3/2),

by Proposition 13 (or rather its proof). Similarly, by Corollary 15 we have that EqiGi =

O(|Ii|(log n)5n−3/2). Combining these facts with Corollary 14 we find that

Eqie
iτGi = 1− τ 2

2

θ′(m2i/n)

βθ(m2i/n)

(m2i+1 −m2i)

n
+ κn (4.4)

with |κn| = o((m2i+1 − m2i)n
−1) uniformly in qi ∈ Q. Substituting back into (4.3) we

recognize the Riemann sum for
∫ 1

t
θ′(s)θ−1(s)ds on scale 4 = (m2i+1 −m2i)n

−1.

The same considerations apply to Bnt , with the right hand side of (4.4) modified by

shifting 2i to 2i − 1. But (m2i −m2i−1)n−1 = o(4) while there are still 4−1 factors in the

analog of (4.3) The outcome is that EeiτB
n
t → 1 as n → ∞. To be precise we note that

while Corollaries 14 and 15 do not apply to the final block Bi(n) in Bnt (as it is constructed

to be supported on [n − c log n, n], a more crude estimate by Proposition 13 gives that

E(Bi(n))
2 = o(1).

The convergence of k-point marginals follows from the asymptotic independence of in-

crements for t 7→ Gnt which is immediate from the necessary version of (4.3). Taking k = 2

gets the point across. With s < t and any τ and ν,

EeiτG
n
s +iνGnt = E

[
Eqe

iτ(Gns −Gnt )Eq′e
i(τ+ν)Gnt

]
= e−

τ2

2β
log

θ(t)
θ(s) e−

(τ+ν)2

2β
log 1

θ(t) + o(1),

and the exponent reads (− 1
2β

)× (τ 2 log 1
θ(s)

+ ν2 log 1
θ(t)

+ 2τν log 1
θ(t)

) as desired. In line one

above we simply use that no Gi is included in both (Gns −Gnt ) and Gnt − the convention being

it belongs to the sum in which its left-most point of support lies. Thus the conditionings

variables q and q′ can be chosen not to overlap, and to be a distance O(log n) from any of

the corresponding Gi’s within. Now we simply apply the strategy inherent in (4.4) to the Eq

and Eq′ expectations separately.

4.3 Pathwise convergence

To lift the convergence from marginal distributions to convergence in the space of continuous

paths we show the following.

Lemma 19. With ζnt either equal to Gnt or Bnt defined in the statement of Lemma 18 and

all 0 ≤ r ≤ s ≤ t ≤ 1:

E
[
(ζnr − ζns )2(ζns − ζnt )2

]
≤ c

(
log

θ(t)

θ(r)

)2

(4.5)

for a constant c and all large enough n.
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This suffices for the tightness of t 7→ Gnt and t 7→ Bnt due to Theorem 13.5 of [4]. To

compare the above with that statement, note that we are using the latter in the case that the

limit process is continuous, the α and β parameters defined there equal to one, and choice

of F (t) = −
√
c log θ(t) (our time-like parameter naturally runs “in reverse”). We can then

conclude the full convergence of the desired process t 7→ Gnt +Bnt to t 7→
∫ 1

θ(t)
dbu√
βu

by Slutsky’s

Lemma.

Proof. We show the inequality (4.5) holds for the process of good blocks Gnt . A similar

calculation will apply to Bnt . To start write

E
[
(Gnr − Gns )2(Gns − Gnt )2

]
=

∑
i1,i2:m2i∈[nr,ns)
ji,j2:m2j∈[ns,nt)

E[Gi1Gi2Gj1Gj2 ], (4.6)

recalling (4.2). The main contribution stems from terms on the right hand side of (4.6) in

which i1 = i2 and j1 = j2. For any such term we have that: with δn = c′
√

logn
n

and large

enough c′,

E[G2
i G2

j ] = E
[
Eqi [G2

i ]Eqj [G2
j ], ‖qi, qj‖∞ ≤ δn

]
+ o(n−2) (4.7)

≤ c′′
(m2i+1 −m2i)(m2j+1 −m2j)

n2φ(m2i/n)φ(m2j/n)
+ o(n−2),

by reasoning used several times before. And as in all such cases, we can choose the supports

of the disjoint boundary qi and qj a large multiple of log n away from the respective supports

of Gi and Gj. The inequality in (4.7) is then a direct consequence of Corollary 14. Summed

over all O(n2|m2k+1 − m2k|−2) = O(n5/3) possible i and j we get a constant multiple of∫ s
r

du
φ(u)

∫ t
s

dv
φ(v)

upper bound for the corresponding subsum of (4.6).

Terms of type i1 6= i2 or j1 6= j2 in (4.6) are easily seen to be subdominant given, in

this regime of indices, |Eq[Gi]|1||q||∞≤δn = O(n−(3/2−)). This is a byproduct of the proof of

Corollary 15.

5 Convergence in norm

The results of the previous section imply the pointwise convergence of Kn(s, t) to K(s, t), at

least over subsequences on a suitable probability space. The proof of the convergence of the

corresponding operators in Hilbert-Schmidt norm (and in the same subsequential coupling)

would follow if we could build a dominating kernel K̂ (that is, Kn(s, t) ≤ K̂(s, t)) which lies

almost surely in L2([0, 1]2). Note that one readily checks that
∫ 1

0

∫ t
0
|K(s, t)|2 dsdt <∞ with

probability one.

The next proposition provides such an estimate, but only away from the singularity at

the origin.
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Proposition 20. For sufficiently large c = c(V, β, a) and any ε > 0,

Kn(s, t) ≤ Cn
(θ(s)θ(t))−ε

(φ(s)φ(t))1/2

(
θ(s)

θ(t)

)a
2

+ 1
4

for c
log n

n
≤ s ≤ t ≤ 1, (5.1)

in which Cn = Cn(c, ε) is a tight random sequence.

The point is that, denoting the deterministic part of the right hand side of (5.1) by

Kε(s, t) =
(θ(s)θ(t))−ε

(φ(s)φ(t))1/2

(
θ(s)

θ(t)

)a
2

+ 1
4

, (5.2)

a calculation shows that
∫ 1

0

∫ t
0
|Kε(s, t)|2dsdt <∞ as long as ε < 1

4
∧ (a+1)

2
(keeping in mind

the general possibility that a > −1). To bridge the gap for small values of s and t, we will

show the following.

Proposition 21. For any c > 0, ∫∫
0≤s≤t≤1, s≤c logn

n

|Kn(s, t)|2 dsdt→ 0 (5.3)

in probability.

We mention that in establishing the convergence of the classical β-Laguerre matrix model

to SBOβ,a in [18] a single dominating kernel was relatively easy to come by. On the other

hand, for the “spiked” hard edge considered in [19] in which case one deals with matrix kernel

operators a similar cutoff procedure was required O(log n) steps away from the singularity.

In any case, one may now argue as follows. Given any subsequence of operators Kn,

choose a further subsequence Kn′ and a probability space on which (5.3) takes place almost

surely and the bound (5.1) holds almost surely with the tight sequence Cn′ replaced by

some deterministic constant. Presuming the pointwise convergence Kn′ → K of kernels also

takes place almost surely on the same space (which may be achieved by taking yet a further

subequence), it follows that
∫ 1

0

∫ t
0
|Kn′(s, t) −K(s, t)|2dsdt → 0 with probability one. This

completes the proof of Theorem 2 and hence the main result.

The proofs of Propositions 20 and 21 occupy the next two subsections.

5.1 Tight kernel bound away from the singularity

Proposition 20 is a consequence of the following.

Lemma 22. Define h(t) = (1 + log 1
θ(t)

)p. Then for any p ∈ (1/2, 1) and c = c(V, β, a) large

enough, the sequence

max
k≥c logn

1

h(k/n)

n∑
j=k

log

(
Yj/y

o
j

Xj/xoj

)
(5.4)

is tight.
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The results of Sections 2 and 3 (concentration about the minimizers and closeness of the

coarse and true minimizers) show that maxk>c logn(φ(k/n)/Xk) is also tight, controlling the

prefactor to the random product appearing in the definition of Kn(s, t). In particular then

there is a tight random sequence Cn such that 1/Xk ≤ Cn/φ(k/n) and
∑n

j=k log(
Yj/y

0
j

Xj/x0j
) ≤

Cnh(k/n), at least for k in the prescribed range. Thus,

Kn(s, t) = X−1
bntc e

∑bntc−1
k=bnsc log

(
(Yk/y

o
k)/(Xk/x

o
k)

)
e
−

∑bntc−1
k=bnsc log

(
xok/y

o
k

)
(5.5)

≤ Cn
eCn(h(s)+h(t))

(φ(s)φ(t))1/2

(
θ(s)

θ(t)

)a
2

+ 1
4

, for s, t > c
log n

n
.

In addition to Lemma 22 we have also used the refined error estimate of Proposition 8 which

gives ∣∣∣∣∣∣
n∑

j=bntc

log(xoj/y
o
j )−

(
a

2
+

1

4

)
log θ(t) +

1

2
log φ(t)

∣∣∣∣∣∣ ≤ c′,

with a constant c′ for all t in the presumed range (we choose the c here so that the middle

error term in equation (2.29) of the proposition vanishes). And to see that (5.5) implies the

claimed inequality (5.1) of Proposition 20 note: for any positive c and ε and p ∈ [0, 1) there

is a c′′ = c(ε, p) so that c(1 + z)p ≤ c′′ + εz for all z ≥ 0.

As for Lemma 22 we need one last ingredient. This is due to Dudley [8] (though see

Proposition 2.2.10 of [20] for a succinct proof).

Proposition 23. Consider a metric space (T, d) and a centered process (Zt)t∈T with law P

satisfying

P(|Zs − Zt| ≥ λ) ≤ 2e
− λ2

2d(s,t)2 (5.6)

for all λ > 0. Then there is a universal constant c such that

E sup
t∈T

Zt ≤ c
∑
q≥0

2q/2eq(T ), (5.7)

in which eq(T ) = inf supt∈T d(t, Tq) and the infimum is over all Tq ⊂ T of cardinality ≤ 22q .

Proof of Lemma 22. The first step is to truncate the logarithm. With c′ > 1 to be chosen

momentarily let δn = c′
√

logn
n

, and for each j ∈ [c log n, n], where c ≥ c′ will also be chosen

along the way, define:

Gj(z) =

{
log(z/zoj ), for |z − zoj | ≤ δn,

log(1− δn/zoj ) or log(1 + δn/z
o
j ), for z ≤ zoj − δn or z ≥ zoj + δn.

(5.8)

Here zoj denotes the coordinate of the minimizer xoj or yoj according to whether Gj is to be

evaluated at xj or yj. Since both xoj and yoj can be bounded below by a small constant
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multiple of φ(j/n) which in turn is O(
√
j/n) for small j, by choice of c = c(c′) we have that:

δn/x
o
j ∨ δn/yoj ≤

1

2
, (xoj − δn) ∧ (yoj − δn) ≥ 1

2

√
j

n
, for all j ≥ c log n. (5.9)

These bounds at least guarantee that (5.8) is sensible. Further, for all k in the range of

interest the sum

Sk = Sk(X, Y ) =
n∑
j=k

Gj(Yj)−Gj(Xj) (5.10)

agrees with
∑n

j=k log
(
Yj/y

o
j

Xj/xoj

)
on the event Q = {|Xj − xoj |, |Yj − yoj | ≤ δn for all j ≥ log n}.

Proposition 9 along with a union bound implies P (Q) = 1 − o(1) granted c′ = c′(V, β, a) is

chosen large enough. Hence, to prove the claim it suffices to show that

max
k≥c logn

Sk
h(k/n)

is tight, (5.11)

where now c = c(V, β, a) can be fixed.

Next we note that, as a map taking (xk, . . . xn; yk, . . . yn) 7→ R, Sk has square Lipschitz

norm bounded as in

‖∇Sk(x, y)‖2
2 ≤

n∑
j=k

1

(xoj − δn)2
+

1

(yoj − δn)2
≤ 8n

n∑
j=k

1

j
≤ 16n log

(n
k

)
, (5.12)

where the second inequality in (5.9) is used. Therefore, by Lemma 11

P
(
Sk(X, Y ) ≥ ESk(X, Y ) + λ

)
≤ exp

(
− λ2

c′′ log n
k

)
, (5.13)

for all λ > 0 and all k ≥ c log n with yet another constant c′′ = c′′(V, β, a)

Turning to (5.11), we introduce

Fm = max
e−m−1< k

n
≤e−m

Sk, for m = 1, 2, . . . , (5.14)

and, noting that it is only the small (as in o(n)) values of k which really require attention,

estimate as follows:

P

(
max

c logn≤k≤ 1
4
n

Sk
h(k/n)

> λ

)
≤

∞∑
m=1

P
(
Fm > λh(e−m)

)
(5.15)

≤
∞∑
m=1

exp
(
−(λmp − EFm)2/4c′′m

)
.

The second inequality is due to (5.13) along with the fact that the maximum function has

Lipschitz norm one. Recalling that p > 1/2, the proof will be finished by showing that EFm
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is uniformly bounded in m and n (in which case the right hand side above can be made as

small as one likes by taking λ ↑ ∞). This is where Proposition 23 comes in.

Another application for (5.13) shows that the condition (5.6) of that Proposition is satis-

fied with the discrete process k 7→ Sk−ESk in the role of t 7→ Zt with T = [ne−m−1, ne−m] and

metric d(k, `) equal to a constant (i.e., independent of both n and m) multiple of
√
| log k/`|.

In particular, T = T (m,n) has diameter bounded independently of n or m. Thus, the eq(T )

in the punchline (5.7) can be bounded by supk∈T d(k, Tq) for an equally spaced Tq, with the

result that eq = O(2−2q) and

E

[
max

e−m−1≤k/n≤e−m
(Sk − ESk)

]
≤ c′′′,

where c′′′ can be chosen fixed for all n and m.

It is left is to demonstrate that supk>c lognESk is similarly bounded. Since E log(Zk/z
o
k)1Qc

(for (Z, z) either (X, x) or (Y, y)) can made exponentially small in n, we have

E log

(
Yk/y

o
k

Xk/xok

)
= E

(
Xk − xok
xok

− Yk − yok
yok

)
+ E

(
(Xk − xok)2

2(xok)
2
− (Yk − yok)2

2(yok)
2

)
+O(k−3/2),

after restoring the integrals to the full domain (fromQ) and using that E|Zk−zok|3 = O(n−3/2)

and once more that zok ≥ c
√
k/n in the last term. But by Corollary 15 we have, for example,

that

n∑
k=c logn

∣∣∣∣E [Xk − xok
xok

− Yk − yok
yok

]∣∣∣∣ =
n∑

k=c logn

φ(k/n)−1|E(Xk − xok)− (Yk − yok)|(1 + o(1))

≤ c′′
n∑

k=c logn

(log k)5k−3/2 = o(1),

with a similar conclusion for the sum of the mean-square differences.

5.2 Near the singularity

Proposition 21 actually uses Proposition 20 as input, in addition to the next rough estimate.

Again the strategy is similar to that in [19] (see Sections 3.5-3.6 there).

Lemma 24. For any c > 0 there exist events Bn of probability tending to one on which

Kn(s, t) ≤ c′

φ(t)
exp

(
κn

∫ t

s

dτ

φ(τ)

)
for 0 ≤ s ≤ t ≤ c

log n

n
, (5.16)

with a constant c′ = c(V, β, a, c) and κn = c′
√
n log2 n.

Granted this we will first prove the proposition and return to the proof of Lemma 24

afterwards.
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Proof of Proposition 21. As the integral in (5.3) is increasing in c we may as well assume

that c is large enough so that Proposition 20 is in place. In addition, we will invoke that

proposition in the following way. Denote by An the event that the random sequence Cn

appearing (5.1) in bounded by some c′. By choice of c′ we can take the probability of An
as close to one as we like. We are left to show that the appraisal (5.3) takes place on the

intersection of An and Bn.

Now denoting δn = c logn
n

and on Bn, Lemma 24 gives that,∫∫
0≤s≤t≤δn

|Kn(s, t)|2dsdt ≤ c′
∫ δn

0

∫ t

0

1

t
eκn(

√
t−
√
s)dsdt ≤ c′δne

κn
√
δn , (5.17)

which is O( 1
n1−η ) for any η > 0. The first inequality uses (5.16) along with the fact that

φ(t) is bounded above and below by constant multiples of
√
t for t ≤ δn (and absorbs these

constants into an adjusted c′).

On the remaining domain of integration write∫ 1

δn

∫ δn

0

|Kn(s, t)|2dsdt =

∫ 1

δn

|Kn(δn, t)|2dt
∫ δn

0

X2
[nδn]|Kn(s, δn)|2ds.

Restricted to the event An ∩ Bn this is bounded above as in∫ 1

δn

∫ δn

0

|Kn(s, t)|2dsdt ≤ c′
∫ 1

δn

|Kε(δn, t)|2dt
∫ δn

0

eκn(
√
δn−
√
s)ds (5.18)

≤ c′
(
δa−2ε
n

∫ 1

δn

t−(a+1+2ε)dt

)
×
(
δne

κn
√
δn
)
.

The first inequality here is similar to that in (5.17), using the observation that the proof of

Lemma 24 also includes the bound
√
X[nt]Kn(s, t) ≤ c′eκn

∫ t
s

dτ
φ(τ) on Bn. The second inequality

recalls the definition of Kε from (5.2) and uses now that both θ(t) and φ2(t) are bounded

above and below by constant multiples of t for all t small. Finally, completing the remaining

integral gives that (5.18) is controlled by a constant multiple of δ1−4ε
n eκn

√
δn , which tends to

zero like a small negative power of n by choosing as long as ε < 1
4
.

It remains to go back and establish Lemma 24.

Proof of Lemma 24. The events Bn are constructed so that the inequality

Yk
Xk

≤ 1 + c′
√

log2 n√
nφ(k/n)

(5.19)

holds for all indices k ≤ c log n with a fixed constant c′ = c′(c, β, a, V ). Granted this one has

that

XbntcKn(s, t) =

bntc−1∏
k=bnsc

Yk
Xk

≤ exp

c′√n log2 n

bntc−1∑
k=bnsc

1

nφ(k/n)

 ,
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for s, t ≤ c logn
n

, simply due to (1 + a) ≤ ea for a ≥ 0. Further overestimating the Riemann

sum on the right hand side produces the exponential factor in the advertised (5.16). An

appropriate upper bound on the (Xbntc)
−1 prefactors will follow in the course of establishing

(5.19).

To begin, using Proposition 9 yet again we have that

P

(
|(Xk, Yk)− (xok, y

o
k)| ≥ c′

√
log2 n

n
for any k ≤ c log n

)
≤ c log n× (log n)−γ(c′), (5.20)

where γ can be made large by choice of c′. On the other hand we also have that

|xok − φ(k/n)|+ |yok − φ(k/n)| ≤ c′
1√
n
, (5.21)

for k ≤ c log n. The latter follows from the established O(1/
√
n) closeness of the true and

fine minimizers for k ≤ c log n (Proposition 8) coupled with the explicit formulas for the fine

minimizers. Now set

B(1)
n =

{
|(Xk, Yk)− (φ(k/n), φ(k/n))| ≤ c′

√
log2 n

n
for c′′ log2 n ≤ k ≤ c log n

}
with a c′′ to be chosen momentarily. We have just explained why P (B(1)

n ) = 1− o(1), while

on that event there is the bound

Yk
Xk

≤
φ(k/n) + c′

√
log2 n
n

φ(k/n)− c′
√

log2 n
n

(5.22)

≤ 1 + 4c′
√

log2 n√
nφ(k/n)

, granted that c′
√

log2 n√
nφ(k/n)

<
1

2
,

which can be guaranteed by taking c′′ large depending on c′. This is (5.19), after a readjust-

ment of c′.

Moving to the range k ≤ c′′ log2 n first observe that for such indices the right hand side

of (5.19) can be replaced by a constant multiple of
√

log2 n
k

. Here we select a small δ > 0

such that

δ

√
k

n
≤ φ(k/n) ≤ 1

δ

√
k

n
for k ≤ c′′ log2 n, (5.23)

and define

B(2)
n =

{
|Yk − φ(k/n))| ≤ c′

√
log3 n

n
for k ≤ c′′ log2 n

}
∩
{
Xk > δ2φ(k/n) for log4 n ≤ k ≤ c′′ log2 n, Xk >

1√
n log3 n

for k ≤ log4 n
}
.
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With the corresponding restrictions on Xk and Yk in place it holds that

Yk
Xk

≤ 1

δ2
+
c′

δ

√
log3 n

k
, for k ∈ [log4 n, c

′′ log2 n], (5.24)

while
Yk
Xk

≤
(

1

δ
+ c′

)
log3 n, for k ∈ [1, log4 n]. (5.25)

The right hand sides of both (5.24) and (5.25) are then O

(√
log2 n
k

)
as desired.

Leaving aside the verification that P (B(2)
n ) = 1 − o(1), the claim is that the proof is

complete by choosing Bn = B(1)
n ∩ B(2)

n . The remaining detail is the prefactor [Xbntc]
−1

multiplying
∏bntc−1

k=bnsc
Yk
Xk

in the definition of the kernel. For k = bntc ≥ log4 n the definition

of Bn explicitly restricts [Xk]
−1 to be less than a constant multiple of [φ(k/n)]−1, as desired.

For smaller values of k the bound available from the definition of B(2)
n is off by a factor of√

log3 n
k

. But this is readily absorbed into the upper bound on Yk/Xk provided by (5.25).

Returning to the probability of B(n)
2 , that

P

(
|Yk − φ(k/n))| ≥ c′

√
log3 n

n
for k ≤ c′′ log2 n

)
= o(1)

holds by the same reasoning behind (5.20) and (5.21). The twist is the different type of

restriction placed on Xk from below for k in this range, the lower bound provided by Gaussian

concentration now being cumbersome.

For k ∈ [log4 n, c
′′ log2 n] we require an upper bound on

P
(
Xk ≤ δ2φ(k/n)

)
≤ P

(
Xk ≤ δ

√
k/n

)
.

As Lemma 25 below shows, this probability is less than a constant multiple of P (ζ ≤ εEζ)

in which ζ ∼ χβ(k+a) and ε = ε(δ, a, β) can be taken less than 1/2 granted that δ � 1. Here

we use that k � 1 and that for any χr random variable
√
r − 1/2 ≤ Eχr ≤

√
r as long as

r ≥ 1. Next bring in the following tail inequality: again with χr denoting a random variable

of the indicated law and r ≥ 1,

P (|χr − Eχr| ≥ ηEχr) ≤ 2e−η
2r/2. (5.26)

This is a consequence of the Logarithmic Sobolev Inequality for measures with strictly log-

concave densities (Chapter 5 of [16]) along with the mentioned upper/lower bounds on Eχr.

Combining these remarks the conclusion is that

P
(
Xk ≤ δ2φ(k/n), for some k ∈ [log4 n, c

′′ log2 n]
)
≤ c′′′

∑
k≥log4 n

e−
β
8
k,
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which tends to zero as n→∞.

Finally, for k ≤ log4 n (with the real problem being when k is order one) the inequality

(5.26) becomes ineffective. Instead we can make do with the more elementary P (χr ≤ δ) ≤
κδr where κ is fixed (for r ≥ 1). This simple estimate yields

P

(
Xk ≤

1√
n log3 n

, for some k ≤ log4 n

)
≤

log4 n∑
k=1

(
c′′′√
log3 n

)β(k+a)

→ 0,

after another application of Lemma 25.

Lemma 25. Let k ≤ c log n and denote by Ik the interval [(k−d)∨0, k+d]. Then, for large

enough n,

P (Xk ≤ t |Xj, Yj, j ∈ Ik) 1
{Xj ,Yj≤c

√
log2 n
n

, j∈Ik}
≤ c′P (ζ ≤ c′

√
nt), (5.27)

in which ζ is a χβ(k+a) random variable and c′ depends on c (and β, a, V ).

Proof. First, conditioned on all the other variables Xk has density function proportional to,

f(x; z) = xβ(k+a)−1e−nγx
2+nΓ(x,z),

where γ > 0 is a constant and Γ(x, z) is polynomial in x and the other coordinates zj ∈ Ik.
Note that the exponent of any variable in Γ is at least two. Hence, with p(t) denoting the

left hand side of (5.27) we have that

p(t) ≤
∫ t

0
f(x; z)dx∫ logn√
n

0 f(x; z)dx

1
{x,z≤c

√
log2 n
n
}
≤

∫ t
0
xβ(k+a)−1e−nγ(1−c′′ log2 n

n
)x2dx∫ logn√

n

0 xβ(k+a)−1e−nγ(1+c′′ log
2 n
n

)x2dx

,

with a constant c′′ depending on V and β.

Next denote c+ = γ(1+c′′ log2 n
n

) and c− = γ(1−c′′ log2 n
n

). For large enough n there are the

bounds γ/2 ≤ c−, c+ ≤ 2γ, while (c+/c−)r ≤ 2 for any exponent r of order log n. Changing

variables then produces

p(t) ≤ 2

∫ √2γnt

0
xβ(k+a)−1e−x

2/2dx∫√γ/2 logn

0
xβ(k+a)−1e−x2/2dx

=
2P (ζ ≤

√
2γnt)

P (ζ ≤
√
γ/2 log n)

.

The proof is completed by noting that for k ≤ c log n one has that Eζ ≤ c′
√

log n, and so

the denominator of the right hand side tends to one as n→∞.
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Appendix

We include here the derivation that our matrix model B(X, Y )B(X, Y )T (with (X, Y ) sam-

pled from the measure P ) realizes the joint eigenvalue density (1.1). To simplify notation

a bit we take c
∏

i<j |λi − λj|β
∏n

i=1 λ
γ
i e
−V (λi) as the target density, with any γ > −1 and

polynomial V .

Also, to make a more direct connection with the derivation of the β-Laguerre ensemble

one finds in the literature (in say [9]) consider first an upper bidiagonal matrix M with

coordinates labeled in decreasing order: Mi,i = xn−i+1 for i = 1, . . . , n and Mi,i+1 = yn−i for

i = 1, . . . , n− 1, with all xi, yi positive. Also introduce the tridiagonal coordinates through

a Jacobi matrix T = T (a, b) with Ti,i = an−i+1 for i = 1, . . . , n and Ti,i+1 = Ti+1,i = bn−i

for i = 1, . . . , n − 1. Here each ai ∈ R and each bi ∈ R+. We track the calculation from

eigenvalue/eigenvector coordinates to (x, y) coordinates via QΛQ† = T = MMT . Here Q is

the eigenvector matrix, of which we only need the first components. These can be chosen to

be real positive, and are denoted (q1, . . . , qn−1), noting that qn is specified by
∑n

i=1 q
2
i = 1.

Next, we have that the Jacobians for the maps from (λ, q) to (a, b), and then from (a, b)

to (x, y) are given by

J = qn

∏n
i=1 qi∏n−1
i=1 bi

, J ′ = 2nx1

n∏
i=2

x2
i ,

respectively. See [13, eq. 1.156] for the former. The latter is derived from the identities

ai = x2
i + y2

i and bi = xi+1yi (where yn = 0 is understood). We will also need the well-known

relation, ∏
i<j

(λi − λj)2 =

∏n−1
i=1 b

2i
i∏n

i=1 q
2
i

,

for which see [13, eq. 1.148].

Since we obviously have that
∑n

i=1 V (λi) = trV (MMT ), the necessary computation is:

(
n∏
i=1

λi)
γ
∏
i<j

|λi − λj|β(q−1
n

n∏
i=1

qβ−1
i ) dq ∧ dλ = (

n∏
i=1

x2γ
i )

(∏n−1
i=1 (xi+1yi)

βi∏n−1
i=1 q

β
i

)
JJ ′ dx ∧ dy

= 2n
n∏
i=1

x
2γ+β(i−1)+1
i

n−1∏
i=1

yβi−1
i dx ∧ dy.

Putting in γ = β
2
(a + 1) − 1 we recognize the factors in x

β(a+i)−1
i and yβi−1

i in the claimed

bidiagonal matrix density (1.5). Here we have decided to work with B = SMS−1 where S

is the antidiagonal matrix of alternating signs. This transformation does not effect the joint

density of the individual coordinates, and the eigenvalues of BBT and MMT agree.
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