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Abstract

We study the Fourier series of circle homeomorphisms and circle embeddings, with
an emphasis on the Blaschke product approximation and the vanishing of Fourier
coefficients. The analytic properties of the Fourier series are related to the geometry
of the circle embeddings, and have implications for the curvature of minimal surfaces.
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1 Introduction

This paper concerns sense-preserving embeddings f of the unit circle T = {z €
C: |z| = 1} into the complex plane C, with the emphasis on the relation between the
geometry of the image f(T) and the behavior of the Fourier coefficients f :7Z — C.
The main questions addressed here are: how often does the Fourier series of a circle
homeomorphism (f(T) = T) terminate in either positive or negative direction? And
does a circle embedding have to have non-zero Fourier coefficients in some fixed finite
subset of Z?
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324 L. V. Kovalev, X. Yang

Our main results are stated in Theorems 4.2, 5.1, and 5.2. Theorem 4.2 shows
that functions of the form arg(B(¢)/¢") are dense in C'(T), improving a C°-
approximation result due to Helson and Sarason [11]. As a corollary, circle diffeomor-
phisms of the form ¢ — B(¢)/¢™ are uniformly dense among all sense-preserving
circle homeomorphisms (Corollary 4.1). Theorem 5.1 shows that circle embeddings
can have arbitrarily long gaps at the beginning of their Fourier series. In the opposite
direction, Theorem 5.2 provides a Heinz-type estimate | f (=D] + | f M) =c>0
(cf. [10]) for circle embeddings with a horizontally convex image.

The properties of the Fourier coefficients f (n) of circle embeddings f are of
interest for multiple reasons. First, f(n) are also the Taylor coefficients of the har-
monic extension of f to the unit disk . This implies, for example, that the inequality
| f D] < | f (—1)] is an obstruction to the injectivity of this extension, by a theorem
of Lewy [5, p. 20].

When f(T) = T, a lower bound on |f(1)|2 + |f(—1)|2 yields an upper bound
on the Gaussian curvature of a minimal graph over the unit disk. This can be viewed
as a quantitative form of the Bernstein theorem on minimal surfaces: every minimal
graph over R? is a plane. This relation motivated the Heinz inequality [10] with several
subsequent improvements until the sharp form was achieved by Hall [7]. The optimal
Gaussian curvature bound remains conjectural [5, Conj. 10.3.2].

Finally, the fact that | f D] > | f (—1)| for every circle homeomorphism, in its quan-
titative form, is a key to the conformally natural extension of circle homeomorphisms
devised by Douady and Earle [3].

This paper is organized as follows. Sections 3 and 4 concern the circle dif-
feomorphisms whose Fourier series terminates in one direction; they are closely
related to Blaschke products. In Sect. 5, we consider the circle embeddings that
lack low-frequency Fourier terms. Section 2 collects the necessary background
results.

2 Preliminaries

An embedding is a map that is a homeomorphism onto its image. Formaps f: T — C,
this property is equivalent to being continuous and injective. All circle embeddings
considered in this paper are sense-preserving. In the special case f(T) = T, we have
a circle homeomorphism.

The Fourier coefficients of an integrable function f: T — C are given by the
following:

2

fn) = 1 Fe?ye " g9,
27‘[ 0

We write supp f ={nek: f (n) # 0}. The Lebesgue space L?(T) and the sequence
space ¢>(Z) are equipped with inner products:

1 2 [
(f-8)2m) = 27 Jo fe®)g(e?)do
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and

<Cl, b)(Z(Z) = Z anbn.

nez

Parseval’s theorem asserts that f +— f is an isomorphism, with

(f8ien = (1. 8) @.1)

2@

Proposition 2.1 For every measurable function f: T — T, the set of shifted Fourier
coefficients { f (- — k): k € Z} is an orthonormal basis ofﬁz(Z).

Proof By virtue of (2.1), the statement is equivalent to {e/*? f(e/?) : k € Z} being an
orthonormal basis of LZ(T). The latter follows from the multiplication map g — fg
is a unitary operator on L?(T). O

A complex-valued function is called harmonic if its real and imaginary parts are
harmonic. For any continuous function on T, the Poisson integral provides a continuous
extension F: D — C, which is harmonic in D [1, p. 169]. The continuity allow us to
relate the Taylor coefficients of F' to the Fourier coefficients of f, as follows:

1 [2= , , 1 [ . A
lim — f F(rei®e 0 d9 = — fee ™ d0 = f(n).
0 21 Jo

Let us record this as a proposition.

Proposition 2.2 If f: T — C is continuous, then the series

F) =) fm+) f(-mz"
n=0 n=1

defines a harmonic function in D, for which f provides a continuous boundary exten-
sion.

If f: T — C\{0} is a continuous function, we denote by At arg f the change of
the continuous argument of f(z) as z travels around T once in the positive direction.
Note that At arg f is the winding number of f around 0, multiplied by 27 .

A (finite) Blaschke product is a function of the form:

n
B(Z):O‘HZ Tk
k=1

-

where z1,...,2, € D and o € T. Note that At arg B = 2wn. We refer to n as the
degree of B. A Blaschke product of degree 1 is a Mobius transformation. All Blaschke
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326 L. V. Kovaley, X. Yang

products in this paper are finite. The recent book [2] is an excellent reference on such
products. We will often use the identity [2, (3.4.7)], which states that

n

B'(¢) 1-— |Zk|2 n
T oi—ul ks ). 22
¢ B(¢) /; TNE ;PD(ZIC ¢) € eT) 2.2)

where Pp is the Poisson kernel for D [12, p. 8]:

§+z)_ L—|z

= R = .
o) e(c—z ¢ — 2P

Note that, for ¢ € T, the quantity ¢ B'(¢)/B(¢) is the derivative of arg B(¢) with
respect to arg . This derivative can be used for the following elementary characteri-
zation of circle homeomorphisms and diffeomorphisms.

. i6
Proposition 2.3 Suppose that f: T — Tisa C'-smoothmap. Let g(¢'?) = %
be its derivative. Then

(a) f is a homeomorphism if and only if Ararg f = 2n, g > 0on T and g is not
identically zero on any non-trivial subarc of T,
(b) f is a diffeomorphism if and only if Ararg f =2mw and g > 0onT.

The assumption of g not vanishing on any subarc holds if f is real-analytic.

3 Circle Homeomorphisms with a Terminating Fourier Series

In this section, f: T — T is a sense-preserving homeomorphism. Our goal is to
identify all such homeomorphisms for which supp f is bounded from above or from
below. It is a simple observation that supp f can be bounded from both sides only if
it is exactly {1}.

Proposition 3.1 If f is a circle homeomorphism with supp f bounded, then f is a
rotation.

Proof Let a = min supp f and b = max supp f .Ifa < b, then

(Fa+o. fe+), =Fa@ie #o,

2(Z)
contradicting Proposition 2.1. Hence, a = b, which means that f(z) = cz? for some

constant c¢. This map is a homeomorphism only when a = 1, i.e., f is arotation. 0O

In contrast to the above, there are rich families of circle homeomorphisms whose
Fourier series terminates in one direction only.

Proposition 3.2 Suppose f: T — T is a circle homeomorphism. Then

(a) supp f is bounded below if and only if f(¢) = B(¢)/¢" for some n € N U {0},
where B is a Blaschke product of degree n + 1;
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Fourier Series of Circle Embeddings 327

(b) supp f is bounded above if and only if f(¢) = ¢"/B(¢) for some n € N, where
B is a Blaschke product of degree n — 1.

Proof The “if” part is clear in both cases: the Fourier series of B(¢)/¢" is supported
on Z N [—n, 00), while the Fourier series of {"/B(¢) = C"B(C) is supported on
Z N (—o0, n]. We proceed to “only if”.

(a) Let n = max (0, — min supp f) and g(¢) = ¢" f(¢). By construction, g(k) =0
for all k < 0. By Proposition 2.2, the function g has a holomorphic extension to D
which is continuous on . Since |g| = 1 on T, it follows that g is a Blaschke product [2,
Thm. 3.5.2] Letd be the degree of g. It follows that At arg ¢ = 2w d. Onthe other hand,
Ararg f = 2w, because f is a homeomorphism. Hence, At arg(¢") = 2x(d — 1),
which means n = d — 1. Part (a) is proved.

To prove (b), let n = max(0, max supp f) and g(¢) = ¢"f(¢) = ¢"/f(¢). By
construction g(k) = 0 for all k < 0. As in part (a), we conclude that g is a Blaschke
product of some degree d. This time, Atargg = 2md together with the relation
g()=1¢"/f(¢)yieldd = n — 1, completing the proof. O

Proposition 3.2 does not yet establish the above claim about having rich families
of circle homeomorphisms, because not every quotient of the form stated in Propo-
sition 3.2 is a homeomorphism of T. As a warm-up, let us consider the special case
n = 2 of Proposition 3.2 (b); that is

T
f@) = aczz_—zzlf (z1€D, o €. 3.1

Letting B(¢) = (¢ — z1)/(1 — Z1¢), we obtain from (2.2) that

LFQ) _, B@®) _, -l
f@) B(¢) e —aP

¢ em. 3.2)
The expression (3.2) is minimized when | — z1| = 1 — |z1], and thus, its minimum
value is as follows:

Ll 1-3
=l 1—fal

By Proposition 2.3, the function (3.1) is a circle homeomorphism if and only if
|z1] < 1/3, and is a diffeomorphism if and only if |z;| < 1/3.

To treat both cases of Proposition 3.2 in a unified way, let us consider the quotients
of two Blaschke products. These are precisely the rational functions that map T to
itself.

Lemma 3.1 Suppose that By and By are finite Blaschke products; that is

1 —wiz’

n
Z—Z —w
Bo=al]l{—=. Bo=n H : (3.3)
k=1
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328 L. V. Kovaley, X. Yang

where 71, ...,2n, W1, ..., Wy, € D and 01,0, € T. The quotient f = B1/B> is a
circle homeomorphism if and only ifn —m = 1 and

Y PoG ) = Y Po(wi, ) forall¢ €T, (3.4)
k=1 k=1

where Pp is the Poisson kernel. If, additionally, strict inequality holds in (3.4) for all
¢ €T, then f is a circle diffeomorphism.

Proof Using (2.2), we get

(f'6) _§BIQ)  ¢B() ¢ RS
f@Q  Bi©) B ,;PD(Z"’ 2 ,;PD(’“”"’ ¢
and then, the conclusion follows from Proposition 2.3. O

Lemma 3.1 raises the question of verifying the condition (3.4). This condition can
be restated in two equivalent ways. First, it is equivalent to saying that the balayage
of the signed measure:

n m

DI IL

k=1 k=1

onto the boundary of D is a positive measure; see [13, p. 6]. Second, it is equivalent
to the inequality

D hGz) = Y h(wp), (3.5)
k=1 k=1

being true for every positive harmonic function / in D; this follows by expressing &
as a Poisson integral. However, neither of these two interpretations is easier to verify
in practice than the original condition (3.4). If the approach used for the special case
(3.1) is applied to the analysis of (3.4), it leads to the sufficient condition:

n m
1 — |zk] 1+ |wil
> _— 3.6
Zl+IZk|_Zl—|wk| G0

k=1 k=1

However, (3.6) is unsatisfactory as it lacks the Mdbius invariance property that is
inherent in condition (3.4) [this invariance is particularly clear from the form (3.5)].
Let d(z, w) denote the pseudo-hyperbolic distance between z and w, namely

d(z,w) = ’f_ zu%' (z,w € D).

By construction, d is invariant under the Mobius transformations of D.
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Fourier Series of Circle Embeddings 329

Theorem 3.1 Ifthe points zg, . .., Zy, W1, ..., W, € D satisfy the condition:
1 —d(zg, 1 —d(wg,
Az, wi) < L4 20)1( Wk 200) (.7)
n

then the quotient

n n 71
_ ¢ —zk { — wg
f(g“)—]g)l_m (gl_w_“) (3.8)

is a circle homeomorphism. Furthermore, if (3.7) is strict for some k, then f is a
diffeomorphism of T.

The proof requires the following “additive Harnack inequality” for positive har-
monic functions in D.

Lemma 3.2 For every positive harmonic function h on D and all z, w € D, we have

the following:
2|z — w|
h(z) —h h(0). 3.9
4D = bW = = () (3.9)

Proof Since h can be written as a Poisson integral:

h(Z)=/TPJD>(Z, £)du(t)

for some measure p on T [4, Thm. 1.1], it suffices to prove (3.9) for h(z) = P(z,¢)
with ¢ € T. For such &, we have the following:

|M@—hwn=bk(§+z—§+wﬂ

{—z ¢—w

<’2@—w¢ L le-wl
S le=a¢—w| T A =D - wl)

which proves (3.9), as 7(0) = 1. O

Equality is sometimes attained in (3.9), for example, if 1(z) = P(z, 1), w = 0, and
0 < z < 1. However, (3.9) is not sharp for general z, w € D. It may be of interest to
obtain a sharp form of the additive Harnack inequality.

Proof of Theorem 3.1 By Lemma 3.1, we only need to estimate

> Po(zk, ©) = ) Po(wg, ¢) (3.10)

k=0 k=1

from below. By composing f with a Mdbius transformation, we can achieve zg = 0
without affecting the homeomorphism property of f. Then, (3.7) takes the form:

(I = Jze D = Jwr )

k=1,...,n. 3.11
4n . ( )

d(zg, wi) <
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330 L. V. Kovaley, X. Yang

Using Lemma 3.2 and noting that |zx — wi| < 2d(zx, wi), we arrive at

4d (zx, wi)
|z D (1 — [wil)
Since Pp(0,¢) = 1 on T, we conclude that (3.10) is bounded from below by 1 —

n(l/n) = 0. Furthermore, if O is attained, then equality must hold in (3.11) and,
consequently, in (3.7) for all k. O

1
< -—.
T n

Poaks £) = Po(ug, O] < =

We can finally show that the circle homeomorphisms of the two types identified
by Proposition 3.2, indeed, exist for all values of n. The following corollary of The-
orem 3.1 is obtained by specializing the theorem to the cases wy = 0 and z; = 0.

Corollary 3.1 Suppose z1, ..., z, € D.
@ If,fork=1,...,n—1:

1-— |Zn|

< —(1 — d(zg, ,
|2k | = T = 1)( (2ks 2n))
then the function
n
- =z
f@Q=¢ — (3.12)
i1 924
is a circle homeomorphism.
®) Iflzel < 1/@n+ 1) fork =1, ..., n, then the function
~ 1 -7%¢
f@O =] (3.13)
i=1 & T
is a circle homeomorphism.
Proof (a) When w = - -- = w, in Theorem 3.1, condition (3.7) becomes

(I — d(zx, 20)) (1 — |zol)

k=1,...,n.
4n

|zl <

To align this with the condition in part (a), replace n by n — 1 and relabel zg as z,,.
The map (3.8) then becomes (3.12).
(b) When zg = - - - = z, in Theorem 3.1, condition (3.7) becomes

1 — Jwg]

, k=1,...,n,
4n

[wi| <

which simplifies to |wg| < 1/(4n + 1). It remains to relabel wy, ..., w, as
Z1, - .., Zn and observe that (3.8) reduces to (3.13).
O
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4 Approximation by Rational Circle Homeomorphisms

The goal of this section is to show that the circle homeomorphisms with a terminating
Fourier series (i.e., those identified by the Proposition 3.2) are dense in the set of all
circle homeomorphisms, with respect to the uniform norm. A similar approximation
result for continuous functions was obtained by Helson and Sarason [11], see also [2,
Thm. 4.3.1].

Theorem 4.1 [11, p. 9] Every continuous function u: T — R can be approximated
uniformly by functions of the form arg(B(¢)/¢"), where B is a Blaschke product and
n is the degree of B.

Given a circle homeomorphism f: T — T, we can take a continuous branch
of u(¢) = arg(f(¢)/¢) on T and apply Lemma 4.1 to it. It follows that f can be
uniformly approximated by functions of the form B(¢)/¢"~! with n = deg B. The
same argument, applied to v(¢) = arg(¢/ f(¢)), yields an approximation to f of the
form ¢"*!/B(¢). However, this does not achieve our goal stated above, since it is not
guaranteed that the approximating function is a circle homeomorphism.

We need a stronger form of the Helson—Sarason theorem, with approximation in
the C' norm instead of the uniform norm. A smooth function u: T — R can be
interpreted as a smooth 2 -periodic function on R, and we use this interpretation to
define its derivative u’': T — R and the C! norm ||u -1 = supy [u| + supy |u/].

Theorem 4.2 Every C'-smooth function u: T — R can be approximated in the C'
norm by functions of the form arg(B(¢)/¢™), where B is a Blaschke product and n is
the degree of B.

Before proving Theorem 4.2, let us observe that it implies that circle diffeomor-
phisms with a terminating Fourier series are uniformly dense in the set of circle
homeomorphisms.

Corollary 4.1 Every circle homeomorphism f: T — T is a uniform limit of circle
diffeomorphisms of the form ¢ +— B(¢)/¢"~!, where B is a Blaschke product of degree
n. It is also a uniform limit of circle diffeomorphisms of the form ¢ +— ¢"T1/B(¢),
where B is a Blaschke product of degree n.

Proof 1t is straightforward to approximate f by a diffeomorphisms g: T — T in the
uniform norm. Indeed, f lifts to a continuous strictly increasing function F: R — R,
suchthat f(e/?) = ¢/ ® Ttis easy to see that the convolution of F with a smooth bump
function has strictly positive derivative, and, thus, descends to a circle diffeomorphism.

The function u(¢) = arg(g(¢)/¢) is C'-smooth, with ' > —1 on T. Theorem 4.2
provides C! approximation to u of the form v(¢) = arg(B(¢)/¢™). When |lu — vt

is small enough, we have v’ > —1, and therefore, the map ¢ — B(¢)/ {"‘1 is a circle
diffeomorphism.

To prove the second statement, apply Theorem 4.2 to the function u(¢) =
arg(¢/g(¢)) for which u’ < 1, and conclude as above. O

Algebraic approximation of circle maps was also considered by Ebenfelt et al. [6].
Ebenfelt et al. [6, Thm. 2.3] assert that circle diffeomorphisms of the form z +—
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332 L. V. Kovaley, X. Yang

B(z)'/", where B is a Blaschke product of degree n, approximate all orientation-
preserving circle diffeomorphisms in the C!' norm. Our proof of Theorem 4.2 has
some common elements with the proof of Ebenfelt et al. [6, Thm. 2.3]. There are also
differences between these results, e.g., our approximation is by rational functions.

Our first step toward the proof of Theorem 4.2 is to approximate a continuous
function with zero mean by a linear combination of Poisson kernels with integer
coefficients.

Lemma 4.1 Suppose that h: T — R is continuous and [ h = 0. Then, for any € > 0,
there existn € Nand z, wy € D (k =1, ..., n), such that

h(&) =Y Po(a. )+ Y Po(wi. )| <€ forall¢ €T. (4.1)
k=1 k=1

Proof Let H be the harmonic extension of / to the unit disk. We fix r < 1, such that
|[H(r¢) —h(t)| <€/3 forall¢ eT. 4.2)

In what follows it will be convenient to consider & as a 27 -periodic function on R,
writing /() instead of A (e'?). Similarly, we write P, (6) for Pp(re?, 1).

Since h has zero mean, there exists a C!-smooth 27 -periodic function g, such that
g = h. The Poisson integral of /& can be written in terms of g via integration by parts:

) 1 2
H(e?) =5 / h(@) P, — 0) dg
T Jo
_ L 9P(¢—6)
=5 ), 8(#) =5 do. 4.3)
Denote
_ PO _ PO
0r(0) = — = and R.(0) = — 3

For sufficiently large n, the last integral in (4.3) is well approximated by an n-point
Riemann sum, meaning that

. 1 &
Hre”) + 5— 3 800 0 (¢ —0)] < 5. (44)
k=1

where ¢y = 2’;—]‘

For 1 <k < n,letay = —g(¢x)/n. By Taylor’s theorem,

Rr(wk)az

Pr(pp =0 +ar) — Pr(dr —0) —ax Qr (9 — 0) = 5 Gk

(4.5)
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for some ;. Both g and R, are bounded on R, being continuous and periodic. There-
fore, (4.5) implies that

C
|Pr(¢x — 0 +ar) — Pr(dr —0) —arQr(dx — )| = 3 (4.6)

with a constant C independent of . Summing over k and letting n be sufficiently large,
we conclude that

n
€

Z{Pr(¢k —0+ar) — P —0) —ar Qr (¢ — 0)}| < 3 4.7

k=1
Finally, combine (4.2), (4.4), and (4.7) to obtain

n
h(0) — Y {Pr(x — 0 +a) — Pr(¢gx —0)}| <€
k=1

from where the lemma follows by letting z; = re! +%) and wy, = rei?*. ]

The approximation provided by Lemma 4.1 yields approximation in the C! norm
by a quotient of Blaschke products, as shown below.

Lemma4.2 Supposeu: T — Risa C! smooth function, and the numbers z1, . . ., Zn,
wi, ..., w, €D are such that
n n
W) =Y Po@O)+ Y Po(wi, O)| <€ (4.8)
k=1 k=1

forall ¢ € T. Then, there exists o € T, such that the rational function

—zr 1 —wget
B@)_UH —Zk¢ & — wi

satisfies |\u — arg B||c1 < (7w + 1)e for some continuous branch of arg B.

Proof Recall from (2.2) that the derivative of arg B(ei 0) with respect to 6 is equal to
n ) n )
> Po(zr, @) =) Po(wg, ¢)
k=1 k=1

By (4.8), the derivative of the difference u(e/?) — arg B(e'?) is less than € in absolute
value. By choosing o, so that arg B(1) = u(1) and using the mean value theorem, we
conclude that |u(e'?) — arg B(e'?)| < me for all & € [—m, 7]. The estimate for the
C! norm of u — arg B follows. O
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334 L. V. Kovaley, X. Yang

The combination of Lemmas 4.1 and 4.2 yields an approximation result similar to
Theorem 4.2 but with the quotient of two Blaschke products instead of a Blaschke
product divided by a monomial. The following result will allow us to shift the poles
of the quotient to 0.

Lemma 4.3 Forevery zo € D and every € > O, there existn € Nand 71, ..., z,—1 in
D, such that
n—1
ZP(Zk,K)—n <¢€ forallz €T. 4.9)
k=0

Specifically, we can take z; = zoexp(2mik/n).

Proof Fix ¢ € T. Let r = |z0| and choose R, such that r < R < 1. The rational
function ¥ (z) = (¢ +2z)/(¢ —z) is holomorphic and boundedby M = (1+R)/(1—R)
on the disk |z| < R. Trefethen and Weideman [14, Thm. 2.1] asserts that uniform
Riemann sums converge exponentially fast to the integral of ¥ over |z| = r, namely

) n—1 27 ' 2 M
TN e - | woe®do| < (4.10)
n = 0 (R/ry" =1

where zx = zopexp(2mwik/n). By the mean value property foh Y(relfydo =

2y (0) = 2. Multiplying (4.10) by n/(2m), we obtain the following:

2nMn

= (R/r)—”—l (4.11)

n—1
D vz —n
k=0

The right-hand side of (4.11) tends to 0 as n — oo. This fact and the identity
Re ¥ (zx) = Pp(zk, ¢) yield (4.9). o

The following is a corollary of Lemmas 4.1 and 4.3.

Corollary 4.2 Suppose that h: T — R is continuous and fTh = 0. Then, for any
€ > 0, thereexistn e Nand zy, ..., z, €D, such that

h(&) =Y Po(zk. §) +n| <€ forallg €T. (4.12)

k=1

Proof Lemma 4.1 yields an approximation of the form:

h(@) =Y Po(z ©) + ) Po(wi, ¢)

k=1 k=1

max << (4.13)
ceT 2
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Then, we use Lemma 4.3 to replace each term Pp(wg, ¢) in (4.13) by a sum of the
form ny — Z"" ! P(wgj, ¢), such that

max Pp(wg, &) — yn —”kZ:IP(w Ol < =
k k kj ’ 2}’1 ’
j=1
thus, arriving at (4.12) with some larger value of 7. O

Proof of Theorem 4.2 First, apply Corollary 4.2 to the function ~ = u’. Then, use
Lemma 4.2 withw; =--- = w, = 0. O

5 Vanishing Fourier Coefficients

In the investigation of the Fourier coefficients of circle homeomorphisms, a special
role is played by the first coefficient f (1). Indeed, the identity map f(¢) = ¢ has all
coefficients other than f (1) equal to zero. In contrast, Hall [7] proved that f (1) never
vanishes for circle homeomorphisms. This result cannot be strengthened to a lower
bound for |f(l)| as is shown by the Mobius transformation f(¢) = (¢ +a)/(1+ag)
which has f ©0) = a, and consequently, | f (1)|2 <1—lal? by Parseval’s theorem.
However, having large | f (0)] is the only obstruction here: Hall [7, Thm. 2] gave a
positive lower bound for | f O]+ f (1)| among all circle homeomorphisms, which
Weitsman [15] sharpened to |f(0)| + IfA(1)| > 2/m, using [8].

The most notable estimate for the Fourier coefficients of circle homeomorphisms
is | f(=D> + | f(D)> = 27/(47x?), which is a sharp bound obtained by Hall [7]
after 30 years of gradual improvements, starting with the paper [10] by Heinz. This
line of investigation, motivated by curvature estimates for minimal surfaces, remains
unfinished (see [5, §10.3] and [9]).

There are also non-vanishing results for more general circle embeddings. When
f(T) is convex, the Rad6—Kneser—Choquet theorem [5, p. 29] states that the harmonic
extension of f is a diffeomorphism, and therefore, f (1) # 0; more precisely, | f (D] >
|f(—1)|. When f(T) is star-shaped about 0, Hall [7, Thm. 2] proved that |f(0)| +
| f (1)| > 0. The following proposition shows that the term | f (0)| is necessary here.

Proposition 5.1 There exists an embedding f: T — C, such that f(T) is star-shaped
about 0 and f(1) = 0.

Proof We look for f, such that f(¢) = fA(E) forall ¢ € T, which ensures that f(T)is
symmetric about the real axis, and that f is real-valued. Let us write f (e’ %y = F(9)
for 6 € [0, ], and then:

fn)=— Re /n F(©)e™"d0.
0
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Our F will be piecewise linear, which justifies integration by parts:

7 f(1)=ReiF@®)e "’ — Re/ iF'(0)e ?do = Im/ F'(®)e?do,
0

0 0

where the boundary term has zero contribution, because F(0) and F(;) are real.
We choose F piecewise linear with F(0) = 1, F(r) = —1,and F (27 /3) = x+1iy,
where x, y > 0 are to be chosen later. Thus:

F0) = (x—1+iy), 0<0<21/3;
2(-1—-x—iy), 2m/3<6<m,
which yields
b4 ) 3(x — 1 2m/3 3 2r/3
Im/ F'(@0)e%do = —M/ sinf do + —y/ cos 6 do
0 2 0 2 0
3 ) (7 3y (7
—}—M sin@d@——y cos 9 do
big 21 /3 T J2r/3
9x—1) 33y 3(x+1) 33
_ OG- 3By 34D 33y
4 4 2 2
3
= G(—x+3\/§y+5).

For example, we achieve f (1) = 0 with the choice (x,y) = (8, 1/ «/§). The curve
f(T) is a non-convex quadrilateral with vertices 1, x + iy, —1,x — iy, which is
obviously star-shaped about 0. O

By subtracting a constant from f in Proposition 5.1, we can achieve f ) = f () =
0; of course, f(T) will no longer be star-shaped about 0 then. On the other hand, for
every circle embedding f (n) must be non-zero for some positive n. Indeed, a compu-
tation with Green’s formula shows that the area enclosed by f(T)is7 >, ez 1l f (n) |2,
which implies f (n) # 0 for some n > 0. This raises the question: is there a fixed
integer N, such that

N A~
> Ifmi>o, (5.1)
n=—N

for every circle embedding f? By Hall’s theorem, N = 1 suffices when f(T) is
star-shaped about 0. The main result of this section shows there is no universal N for
general circle embeddings.

Theorem 5.1 For every N € N, there exists an embedding f: T — C, such that
f((n) = 0 whenever |n| < N.

Proof Letk = N +2. We will consider embeddings f: T — C with k-fold symmetry;
that is ' '
f@ey = @), ¢ eT. (5.2)
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As a consequence of (5.2), the Fourier coefficients of f satisfy that
eZnni/kf(n) zeZJTi/kf(n)’ n GZ,

which implies that f (n) = 0 for all n, such that n % 1 mod k. It remains to construct
an embedding f, such that (5.2) holds and f (1) = 0, which will ensure that f n)=0
forl —k<n<1+k.

For 6 € R, we define the following:

2 1
g(0) = arccos(cos0), p(@) =1+ ;g((?), h(®) = g(0) + ;g(f))z.
Since p and & are 2w -periodic and continuous, the function
f(eie) — p(ke)ei(9+h(k9)) (53)

is well defined and continuous on T. It has the k-fold symmetry (5.2) by construction.
Let us check that f is injective. Suppose that f(e/?) = f(e!¥) for some 0, ¥ € R.
Then, p(k0) = p(kyr), which, by the definition of p, implies g(k0) = g(kyr), and
hence, h(k0) = h(kyr). Comparing the arguments of f (e?) and f (e'V), we see that
0 4+ h(k0) = ¥ + h(ky) mod 2m. Therefore, 6 = ¢ mod 27 as required.
Since g is 27 -periodic and even, it follows that:

A 1 (2 . Kk [k '
f(l) = E/O p(ke)ezh(kG) do = E/O p(ke)ezh(kG) do
1 2 ) 1 T .
= 2—f p(t)e‘h([) dr = _/ p(,)eth(t) dr.
T Jo T Jo

However, g(t) = ¢ for ¢ € [0, ], which simplifies the above to

A~ T 2 0
xf(l) = / <1 + —t> e/ gy
0 T

27
:/ e’ds =0
0

where we used s =  + t2/7. The proof is complete. O

The example constructed in Theorem 5.2 is highly non-convex and is not star-shaped
with respect to any point (see Fig. 1 which illustrates the case k = 3).

We obtain a non-vanishing result under the assumption of the horizontal convexity
of f(T), which is substantially weaker than convexity. Horizontal convexity naturally
appears in the studies of harmonic maps [5, §3.4].

Definition 5.1 A subset A C R? is horizontally convex if its intersection with every
horizontal line is connected (i.e., is an interval or empty set). Referring to a Jordan
curve, we say that it is horizontally convex if its interior region is.
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Fig.1 Threefold symmetry with f (1)=0

Observe that f(T) is horizontally convex if and only if T is the union of two arcs
on each of which Im f is monotone. These arcs connect the global maximum of Im f
on T to its global minimum; all the extrema of Im f are global.

The map in Proposition 5.1 shows that the horizontal convexity of f(T) allows for
f (1) = 0. We need to consider another Fourier coefficient to ensure at least one of
them is non-zero.

TheoreAm 521Iff: T — C is an embedding with horizontally convex image f(T),
then | f(—D)| + | f(1)| > O. If, in addition, Im f is Lipschitz continuous, then

A A ) 8
lf(=DI+ D] = §<1_COSE>’ (5.4

where § = maxt Im f — mint Im f and L is the Lipschitz constant of Im f.

Proof By the Borsuk—Ulam theorem (or just the intermediate value theorem), there
exists {o € T, such that Im f(p) = Im f(—¢p). Replacing f with f(«a¢) + B for
suitable « € T and B € C, we can arrange that {p = 1 and Im f(£p) = 0. Note that
this replacement does not affect either side of (5.4).

By virtue of horizontal convexity, Im f does not attain values of opposite sign on
the upper half-circle; the same applies to the lower half-circle. Thus, Im f(e/?) sin 6
does not attain values of opposite sign on T. Since

2
Re (f(1) _ f(—l)) = %/0 Im £ () sin 6 d6, (5.5)
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we find that Re ( f (H — f (— 1)) # O unless the integrand in (5.5) is identically zero.

However, the latter is impossible, because the Jordan curve f(T) cannot be contained
in a line.

It remains to prove (5.4). Pick ¢; € T, such that |Im f| > §/2. Let y be the arc
of length §/(2L) centered at ¢1. On this arc, we have | Im f| > §/4 by the Lipschitz
condition. Therefore, the absolute value of the integral in (5.5) is at least

8 s [/GD) 8 8
—/|sin9|d92—f |sin9|d9=—<1—cos—)

proving (5.4). O

Let us record an application of Theorem 5.2 to minimal surfaces.

Corollary 5.1 Let F: D — R? be a conformally parameterized minimal surface with
a continuous extension to T. Let f: T — RZ? be the composition of Fir with an
orthogonal projection R3 — R2. If f satisfies the assumptions of Theorem 5.2, then
the Gaussian curvature K of the minimal surface at F(0) does not exceed

3272

8% (1 — cos 4‘3—L)2’
where § and L are as in Theorem 5.2.

Proof The computation in [5, p. 183] shows that

K < — h = .
FEDR+IFOP

On the other hand, Theorem 5.2 implies that

FEDE+1FDP = 247D+ 17 = " () 5\’
a 5 - — |1 —cos— | ,
T2 ~ 8n? 4L
which proves the estimate, as claimed O

Question 5.1 1s there a non-vanishing result of the form (5.1) for circle embeddings
with a star-shaped image? On one hand, Hall’s theorem [7, Thm. 2] gives | f ) +
| f (D] > 0if f(T) is star-shaped about O on the other subtracting f (0) from the
example in Proposition 5.1 shows that | f O+ f (1)| can vanish for general star-
shaped embeddings.
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