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Abstract— Autonomous vehicles have the potential to increase
the capacity of roads via platooning, even when human drivers
and autonomous vehicles share roads. However, when users
of a road network choose their routes selfishly, the resulting
traffic configuration may be very inefficient. Because of this,
we consider how to influence human decisions so as to decrease
congestion on these roads. We consider a network of parallel
roads with two modes of transportation: (i) human drivers who
will choose the quickest route available to them, and (ii) ride
hailing service which provides an array of autonomous vehicle
ride options, each with different prices, to users. In this work,
we seek to design these prices so that when autonomous service
users choose from these options and human drivers selfishly
choose their resulting routes, road usage is maximized and
transit delay is minimized. To do so, we formalize a model
of how autonomous service users make choices between routes
with different price/delay values. Developing a preference-based
algorithm to learn the preferences of the users, and using a
vehicle flow model related to the Fundamental Diagram of
Traffic, we formulate a planning optimization to maximize a
social objective and demonstrate the benefit of the proposed
routing and learning scheme.

I. INTRODUCTION

Road congestion is a major and growing source of ineffi-
ciency, costing drivers in the United States billions of dollars
in wasted time and fuel [1]. The emergence of autonomous
vehicles promises to improve the efficiency of road usage to
some extent by forming platoons and smoothing traffic flow.
However, if drivers make their routing decisions selfishly and
seek to minimize their experienced delay, this can result in
suboptimal network performance [2]. Moreover, in the pres-
ence of selfish users, the increase in road capacity induced by
replacing some human-driven vehicles with autonomous ones
can paradoxically worsen average transit user delay [3]. The
adverse effects arise from the way humans make decisions
about how to route themselves, and the resulting inefficiency
can be very large, even unbounded [4].

It is therefore important to consider the effect that self-
interested users will have on the system. Previous works have
shown that if autonomous users are altruistic, average latency
can be greatly reduced [4]. However, it’s not realistic to
assume altruism in many scenarios; in this paper we consider
how to monetarily incentivize such prosocial behavior. We
consider the setting in which use of autonomous vehicles
is offered by some benevolent ride hailing service or social
planner which chooses prices for each of the routes. The
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users of the autonomous service will choose their routes, as
well as whether or not they even want to travel, based on
their time-money tradeoff. Then the remaining population
of human drivers will choose routes that minimize their
delay. The role of the social planner is then to choose prices
that will optimize some social objective, which includes
maximizing road usage and minimizing average delay. Our
model can be viewed as an indirect Stackelberg game — a
game in which a social planner controls some fraction of
the population’s actions and the remainder of the population
responds selfishly [5], [6]. However, in our model the planner
can only control its portion of the vehicle flow via pricing.

In order to do so effectively, the social planner needs a
model for how people make decisions between routes with
various prices and latencies. We model these choices as being
made based on a modification of Luce’s choice axiom [7], [8]
and we model human drivers as selfish agents who reach a
Wardrop Equilibrium, a configuration in which no one could
decrease their travel time by switching paths [9].

Moreover, we use a method of actively learning the
choices of autonomous service users via a series of queries
[10], [11]. This enables the planner to predict how au-
tonomous service users will react to a set of options after
a relatively low number of training queries. We verify that
this method accurately predicts human choice, and that
our planning algorithm can use this to improve network
performance, via experiment.

We summarize our contributions as follows.

e Learning Human Decisions: We develop an active
preference-based algorithm to learn how people value
the time-money tradeoff, and choose their preferred
transportation option. This enables learning a model of
humans’ routing choices in a data-efficient manner.

o Influencing Human Decisions: We formulate and solve
an optimization for ride hailing service to minimize
congestion and maximize the road network utilization
based on the learned model of human choice, while
constraining a minimum profit for the service supplier.

« We validate the learning algorithm and the planning op-
timization formulation via simulations and user studies.
Our results show carefully designed pricing schemes
can significantly improve traffic throughput.

Related Work. Previous works have shown the potential
benefits that autonomous vehicles can have for traffic net-
works, by increasing road capacity through platooning [12],
[13], damping shockwaves of slowing vehicles [14]-[16],
managing merges [17], and decongesting freeways in the
event of accidents [18]. In [3], the authors show that the ca-
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Fig. 1: Vehicle flow model for mixed autonomy based on the Fundamental
Diagram of Traffic. (a) and (b) show flow vs density and latency vs flow
characteristics if all vehicles are either human-driven or autonomous, where
autonomy increases the critical density n; and the maximum flow F; of a
road. The blue and red regions correspond to the road being free-flow and
congested states, respectively, and the arrow denotes increasing density.

pacity improvement from platooning can actually worsen the
total delay experienced by users of the networks. Relatedly,
many works (e.g. [19], [20], on shared roads, [21]) analyze
and bound the inefficiency that can arise from network users
choosing their routes selfishly.

As we use financial incentives to influence this behavior,
our formulation is related to work in tolling [22], including
works that consider users with different sensitivities to tolls
[23], [24]. In contrast to many of these works, as well as
some works that develop efficient algorithms for rebalancing
an autonomous fleet [25], we consider a probabilistic model
for human choice that has been empirically shown to reflect
human choice making processes [26], and we model vehicle
flow on shared roads based on the foundational Fundamental
Diagram of Traffic (FDT) [4], [27], which we will describe
in more detail in Section [l

On the human choice models, there have recently been
a lot of effort on learning human reward functions which
are assumed to be sufficient to model the preferences. In-
verse reinforcement learning [28]—[31] and preference-based
learning [10], [11], [32], [33] are the most popular choices.
In this paper, we employ preference-based learning as it is a
natural fit to our problem. We actively synthesize queries as
a non-trivial generalization and extension of [10] for data-
efficiency and better usability.

II. PROBLEM SETTING

Vehicle Flow Model. We consider a nonatomic model in
which individual users control an infinitesimal unit of vehicle
flow and this quantity is treated as a continuous variable. To
model flow of mixed-autonomous traffic on roads, we use our
model in [4], summarized in this section. This is an extension
of the FDT [27], in which flow inhabits one of two regimes
— free flow, in which the flow on a road increases as vehicle
density increases, and congestion, in which flow decreases as
density increases. The flow decreases until the jam density,
74, at which point the flow ceases entirely. Similarly, the
relationship between latency and flow on a road shows a
similar divide: in free flow latency is constant with respect to
flow, and in congestion latency increases as flow decreases.
These behaviors are shown in Fig. [T} o; denotes the free-flow
speed of the road.

The transition between free flow and congestion occurs
when the density on a road exceeds the critical density of
that road, denoted 7n,;. We model the effect of autonomous
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Fig. 2: Illustration of vehicle spacing if (a) autonomous vehicles maintain
the same headway behind any vehicle they follow, regardless of type, or (b)
autonomous vehicles can reorder themselves to form a large platoon.
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vehicles as increasing this critical density, as autonomous
cars can maintain shorter headways than human drivers:
il 0
ol + (1 — ai) by
where a; € [0,1] is the autonomy level, or fraction of
vehicles on road i that are autonomous, b; is the number
of lanes on that road, and h? and h! are the space occupied
by an autonomous and human driven car, respectively, when
traveling at the nominal velocity of the road. This model
[21] assumes that either the autonomous vehicles maintain
the same headway to any vehicle they may follow or that they
can rearrange themselves on a road to form large platoons
[34], [35], as shown in Fig. Note that if h? < h?, the
presence of autonomous cars increases the critical density
and therefore also increases the maximum flow possible on
aroad, i.e. F;(1) > F;(0) where [ is a function of autonomy
level that gives the maximum capacity of road i. Fig.[T|shows
the effect of increased autonomy on a road.

We use s; to denote the state of road 7 such that s; = 0
denotes it is in free flow and s; = 1 denotes it is congested.
We use nl! and n? to denote the density of human-driven and
autonomous vehicles, respectively on road ¢. Accordingly,

0 nf +nf <a;(nd/(nf +nd))
1 otherwise .

ﬁi(ai) =

S; =

We model the road as first-in-first-out, so o; = n?/(nll +
nd) = f2/(fM + f2), where fI and f? respectively are the
human-driven and autonomous vehicle flow on road 1.
The flow on a road, f; = f + f2 is a function of the
density of each vehicle type as follows.
fi (n];, ni) =
;- (Nl + nd), if Nl +n? <o)
DA D) i (o) < 4 md < ny ()

0, otherwise .

We can then write the latency as a function of vehicle flow
and the state of the road [4], [6]:

G f s = & if s; =0

COL I VIS R

where d; is the length of road i.
Problem Overview. We assume that the demand of human
drivers is fixed, and that the demand of people using the
autonomous service is elastic — if prices and latencies are
high, some people may choose not to use the autonomous
mobility service. Our goal is then to simultaneously maxi-
mize the number of autonomous service users that can use
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Fig. 3: Some possible equilibria of a three-road network with fixed flow
demand. Blue and red lines denote the free-flow and congested regimes,
respectively. Equilibria may have (a) one road in free-flow or (b) all used
roads congested. An equilibrium has an associated equilibrium latency
experienced by all selfish users. By considering a given equilibrium latency,
we can reason about which roads must be congested at that equilibrium as
well how much flow is on each road.

the road, and minimize the average delay experienced by all
the people using the roads.

Our control variables in this optimization are the latencies
on each road and the prices offered to the users for traveling
on the routes. However, we can’t arbitrarily choose prices
and latencies — we need to respect

1) the characteristics of the roads, in terms of how the
flow demand for a road corresponds to the latency on
that road, and

2) how people make decisions, making sure that the num-
ber of people who choose each option corresponds to
the latencies of the roads described in the options.

Moreover, we want to be fair and must therefore offer
the same pricing and routing options to all users of the
autonomous service.

How a population of users chooses between a variety of
price and latency pairs depends on their valuation of time
and money. Without knowing this choice model, we cannot
plan vehicle flows and will not be able to ensure the result-
ing configuration matches our vehicle flow models for the
roads. Also, since different populations may have different
parameter distributions, we need to learn this tradeoff for
our population before we can estimate how many people
will choose which option. To untangle these constraints, in
the subsequent sections we describe our models for vehicle
flow and human choices. Following that we return with a
mathematical formulation of this optimization.

III. LEARNING THE HUMAN CHOICE MODEL

In this section we describe how both human drivers and

the autonomous service users make routing decisions. We
then provide a data-efficient learning algorithm for estimating
the way that the autonomous service users make routing
decisions, allowing us to predict the response a population
will have to a set of latency/price options.
Human Drivers. We consider a network of N parallel roads.
We assume that no two roads have the same free-flow latency
and denote the free-flow latency of road ¢ by a;. We order
the indices such that a1 < ay < ... < ay, and we use [k]
to denote the set of the first k roads.

For the human drivers, we assume their only consideration
is minimizing their commute time. This leads to a Wardrop
Equilibrium [36], [37], which, on parallel roads, means that
if one road has positive flow on it, all other roads must have

higher or equal latency. Formally,
fh>0:>€(zv )<€(1 z’vSZ)Vivi/E[N]'

This implies that all selﬁsh users experience the same latency.
It is therefore useful to consider the flow-latency diagrams
of roads when studying which equilibria exist — by fixing
the latency on the y-axis, one can reason about which roads
must be congested to achieve that equilibrium. As shown in
Fig. |3 equilibria may have one road in free-flow and rest
congested, or all may be congested [4], [6].

Autonomous Service Users. Though human drivers are
motivated directly only by delay, autonomous service users
experience cost in both delay and the price of the ride. We
model the users as having some underlying reward function,
which is parameterized by their time/money tradeoff, as well
as the desirability of the option of traveling by some other
means such as walking or public transit. We assume that a
strictly dominated option in terms of latency and prices is
completely undesirable. Formally,

D ={i € [N][(pi > pis Nli > i)V (pi = py N > Lir)
for some i’ € [N]}

denotes this set of dominated roads. We also define the set
of undominated roads, D = [N]\D. We model the reward
function of user j for choosing road ¢ as follows:

Tj (Kv P, Z) =

—wj li —wj,p; if user j chooses road i and ¢ € D

-0 if user j chooses road ¢ and i € D

—Ge” if user j declines the service ,
where £ denotes the vector of road latencies, p de-
notes prices, w; = [w;, ij]T characterizes the users’

time/money tradeoff and (; specifies their willingness to use
an alternative option, which has delay ¢*. This alternate
option could be walking, biking, or public transportation.

We don’t assume that users are simple reward maximizers.
Rather, we draw from Luce’s Choice Axiom [7] to model
the probability with which users choose each option, in
combination with a softmax rule [26], formalized as follows.

0 (s Ep)
Zq‘,’e[N] exp (Tj (eapa Z/))

In order to determine optimal pricing, we want to know
how many users will choose each route as a function of the
route prices and latencies. To this end, we define ¢;(£, p) as
the expected fraction of autonomous service users that will
choose route ¢. If the parameter distribution for autonomous
service users is g(w, (), then

4i(6,p) = / / / 9(w, ) P(ifeo, ¢ duondC

where P(i|w, () is the probability that a user with reward
function parameters (w, () will choose road i. This expres-
sion relate prices and latency to human choices, enabling us
to determine the prices that will maximize our social objec-
tive. This will be important in constraining our optimization
to only consider latency/price options that correspond to the
desired vehicle flows.

P(user j chooses route i) =




Data-Efficient Learning of Human Reward Functions.
While the routes in a specific network can be fully modeled
with the physical properties and the speed limits, user’s
decision models must be learned in a data-driven way.
As described above, reward function parameters (w,() are
sufficient to model the decisions of a user.

The parameters will be different among the users. While
a business executive might prefer paying extra to reach their
company quickly, a graduate student may decide to go to the
lab a little later in order to save a few dollars. Therefore, we
have to learn personalized parameters w and (.

We learn the parameters from users’ previous choices,
which is known as preference-based learning. If user j
chooses from a variety of options, the user’s choice gives us a
noisy estimate of which road 7 € [N] maximizes their reward
function r; (€, p, 7). We could start from either uniform priors
or priors informed by domain knowledge, then sample from
the distribution g(w, ¢).

However, a major drawback of doing so is how quickly we
learn the user preferences. Preference-based learning suffers
from the small amount of information that each query carries.
For example, if we show 4 options to a user (including the
option to decline the service), then the maximum information
we can get from that query is just 2 bits. To tackle this
issue, previous works pose the query synthesis problem as
an optimization and maximize a measure of the expected
change in the learned distribution after the queries [10], [11].

While those works focused only on pairwise queries, in
this case we expect to pose several route options to the users
and therefore need more general query types. By using these
general queries that offer a variety of routes with varied
latencies and prices, we can consider various ways of using
this learning framework to learn the human preferences.

e We could do a user study on a few people to learn a
good prior distribution.

o We could do an exploration/exploitation strategy if we
are allowed to break the fairness constraint a few times
for some small portion of the users. This could be made
through user-specific campaigns; for each user we may
either choose to use the learned model or to offer special
rates that would help us profile the user better.

o We could do an initial profiling study for each new user,
where we ask them queries synthesized by the active
learning framework.

To implement any of these options, we formulate the
following active learning optimization. First, we discuss the
general preference-based learning framework. Given the data
from previous choices of user j, which we denote as Dj,
we can formalize the probability of (w;,{;) being true
parameters for that user as follows:

P(w;, §|D;) < P(w;, ) [ [ P(Ds,lw5: ¢;)
m
where D;  denotes the road user j chose in their m™
choice (with D;, = 0 meaning that the user preferred the
alternative option). The relation is due to the assumption that
the users’ choices are conditionally independent from each

other given the reward function parameters.

We can readily obtain the second term from the human
choice model. For the prior, we can simply use a uniform
distribution over nonnegative values of the parameters. The
prior can be crucial especially when we do not have enough
data for a new user. In such settings, we incorporate domain
knowledge to start with a better prior.

We can then use this unnormalized P(w, (;|D;) to obtain
the samples of (w;, (;) using Metropolis-Hastings algorithm.
Doing this for each user, which can be easily parallelized,
we can directly obtain the samples (@, () ~ g(w, ¢).

Next we formulate the active learning framework, which is
needed so that it will not take an excessive number of queries
to learn human preferences. For this, we want to maximize
the expectation of the difference between the prior and the
unnormalized posterior:

query;, = argmaxEp, [P(‘-% G| Piyin—1)—
query,,

P(wj’ Cj ‘D] 1:m—1)P(Djm,|wj’ Cj ’ Djlﬂn—l):|

= arg min EDjm |:P(Dj'm ‘wj7 CJ’ Dj1:7n—1):|
query,,,

As we will use the sampled (w;, ;) to compute the proba-
bilities of road choices, we can write the optimization as:

query,, = argminEp, Z P(D;, 1@, Dy i)

query,, @
7057

where we have M samples denoted as (&, fj) = denotes
asymptotic equality as M — oo, and the term 1/M is
canceled. Using the law of total probability,

1 R
P(Dj ‘IDjlszl) = M Z P(Djm|wj,<j,pj1:m,1)
@;,C;

which then leads to

query,

iagil;'linz P(DfnL',Djl:m—l) Z P(D7m|‘:)]7 {-j? ,Djlzm—l)
Yo, @G

2

=arg min Z P(D;, |®;,¢;)
query,,, - 5

im \@j,Cj

We can easily compute this objective value for any given

query,,,. This optimization is nonconvex due to the human

choice model. As in previous works, we assume local optima

is good enough [10], [11]. We then use a Quasi-Newton

method (L-BFGS [38]) to find the local optima, and we

repeat this for 1000 times starting from random initial points.

IV. INFLUENCING HUMAN DECISION MAKING

Problem Formulation. We are now ready to formulate our
objective. Since the demand of autonomous service users is
elastic, we cannot just minimize the average latency. That
would result in extremely high prices to reduce latency by
keeping autonomous service users off the network. Hence,
we consider the objective to be a combination of maximizing
road usage and minimizing average travel time. We parame-



terize this tradeoff with parameter 6 > 0 in the cost function

J(fh fa S): ZLE[N] (fzh+fia)€l( zhﬂ

Given q(£,p), the cost function J(f", f*,s), inelastic
flow demand of human drivers A\, and elastic demand of
autonomous users \?, we are ready to formulate the planning
optimization. The most straightforward way is to optimize
jointly over f", f* £ and p. However, £ is fully defined by
fh, f* and s. Hence, instead of £, we use s so that we can
search over the possible values of s. The problem is then:

min J(f", £ s) (4)
I FPERT ) RENT, sk v €{0, 13N —FF1
subject to Z =) (5)
i€E[N]
fE=Xq(e(f", £, s),p),Vi € [N] (6)
ar < Le(fR, fh,s6) < agsr (7N
=0 foric [N]\ [k] (8)
G I 1) = G(f, iy se) fori € (K] (9)
4+ < F (/4 1), Vi€ [N] - (10)
7 (fipi — fidic) > P (11

1€[N]

with s1.,x_1 = 1 due to selfishness of human-driven vehicles,
where k is the longest road with human-driven vehicle flow,
P is the minimum profit per unit time that we want to make
from autonomous service users and c is the constant fuel cost
per unit length, which can be easily calculated by multiplying
the vehicles’ fuel consumption per unit distance and the fuel
price. We can describe the constraints as follows.

(®) The human-driven vehicle flow demand is fulfilled.

(6) Autonomous flow will be distributed based on the
choice model described in the preceding section.

The “longest equilibrium road” has latency on the
given interval of free flow latencies.

(8),@©) Human-driven cars are selfish.

The maximum capacities of the roads are respected.

(TI) The minimum profit per unit time is satisfied.

We can further improve the search space by relying on
the heuristic that the roads that are not used by the human-
driven vehicles will be in free-flow, i.e. sx41.5 = 0. While
we do not have a proof for this, we also note constructing
counterexamples seems to require extremely careful design,
which suggests the heuristic holds in general. Furthermore,
the following proposition shows we could also set s = 0
under an additional assumption.

Proposition 1: Under the assumptions that the reward
function is homogeneous among the users and wy > 0,
there exists a free-flow road k in the optimal solution to
the problem such that ¢; = ¢, for Vi € [k], and f = 0 for
Vi € [N]\ [k] as long as the optimization is feasible.

The proof is given in Appendix.

Generalizations. We assumed all autonomous cars are con-
trolled by a centralized planner. To extend our framework to
scenarios where the planner has the control over a fraction

a 51,)
—0 hy pay
e P+ ) %}(m a)

of autonomous cars, we can simply do the following modifi-
cations: The optimization will also be over f° € RY,, which
will now represent the autonomous flow that does not belong
to the planner. We add the corresponding constraint of [5 for
fP. Similar to |8} we will also have f? = 0 for i > k due
to selfishness. We will also replace f*’s in [7} 0] and [I0] with
f& 4 f® with appropriate subscripts.

Solving the Optimization. We first take M samples
(@,¢) ~ g(w,¢) as we previously described in Section m
We then approximate the expected fraction of autonomous
service users that will choose road 7 as:

qi(€,p) = % Z P(user chooses route |@, ()
@,

We then locally solve the nonconvex planning optimization
using interior point algorithms [39], [40]. We execute the
algorithms with 100 random initial points.

V. EXPERIMENTS & RESULTS

To validate our framework, we conducted different simu-
lations and a user study.

Hypotheses. We test three hypotheses that together sug-
gest our framework successfully reduces traffic congestion
through pricing, after it learns the humans’ choice models:

H1: Our active learning algorithm can learn the au-
tonomous service users’ preferences in a data-efficient way.

H2: Our planning optimization reduces the latencies by
creating altruistic behavior through pricing.

H3: When used by humans, the overall framework works
well and is advantageous over non-altruistic algorithms.
Implementation Details. In the planning optimization, we
used the heuristic that sx41.x = 0, but did not set s; = 0.
We assumed there is only walking alternative for autonomous
service users. We set ¢ = 6 x 107° USD/meter, b = 1. We
assumed the human-driven cars keep a 2-second headway
distance with the leading car, whereas autonomous cars keep
1-second distance. We set the length of the cars as 5 meters,
and the minimum gap between two cars as 2 meters.
Experiments and Analyses. To validate H1, we simulated
5 autonomous service users with different preferences. We
tested our active learning framework by asking two sets of
200 queries, each of which consisted of 4 road options,
similar to Fig. [6l and a walking option. The queries were
generated actively in the first set and randomly in the second.
After each query, we recorded the sample (w,() which has
the highest likelihood as our estimates.

Fig. |4 shows how the estimates evolved within active
learning setting for one of the users. All values are overes-
timated initially. This is intuitively because getting noiseless
responses has higher likelihood in the beginning. As we
query more, accepting some of the responses as noisy max-
imizes the likelihood. Therefore, the values start decreasing.

Another important observation is that the estimates of
the parameters increase and decrease together even in the
early iterations. This suggests we are able to learn the ratio
between the parameters, e.g. w1 /wy very quickly. To check
this claim, we used the following error metric:

exy = ll2/y = 2/9ll1



0 50 100 150 200
Number of Queries
Fig. 4: The errors of the reward function estimates are shown with varying
number of queries. W, W2 and f represent the estimates.

where z,y € {w,ws,(} and &,y represent the correspond-
ing estimates. Figure [5] shows how this error decreases with
increasing number of queries. It also shows how active
querying enables data-efficient learning compared to the
random querying baseline. We are able to learn the relation-
ship between parameters even under 20 queries with active
learning. All these results strongly support H1.
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Fig. 5: The error metric is averaged over 5 different reward functions, and
the results are plotted.

The fact that we are able to learn the ratios implies we
can estimate which road the user is most likely to choose.
We will only be unsure about how noisy the user is if the
parameter estimates did not converge yet. Therefore, we can
still use the estimates for our planning optimization even
when we have small number of queries.
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Fig. 6: The 4-road network from [4]. The roads are not to the scale and
ordered with respect to the free-flow latencies.

To validate H2, we adopt 3 of the equilibria from [4]
for comparison, namely, Nash Equilibrium where all drivers
are selfish; Best Nash Equilibrium which gives the smallest
average latency again with selfish drivers; and Fully Altruis-
tic Best Nash Equilibrium which gives the smallest average
latency where autonomous users are fully altruistic and
human-driven cars route selfishly. Here, we give the average
latencies for the specific 4-road network from that study
which we visualize in Fig. [6| and where A" = 0.4, \* = 1.2
cars per second:

o Nash Equilibrium: 400.00 seconds

« Best Nash Equilibrium: 125.66 seconds

o Fully Altruistic Best Nash Equilibrium: 102.85 seconds

We then assumed we perfectly learned the preferences of
the 5 simulated users. We ran the planning optimization with

P = 0 and 3 different 6 to show the trade-off. The results
are summarized in Table [

TABLE I: Results of Routing Simulation
[ Avg. Latency (seconds)  Flow (cars/second)

1 90.41 0.4412
20 97.03 1.2746
106 111.28 1.5964

It can be seen we can adjust the trade-off between average
latency and the served flow by tuning 6. Also, given the
human preferences, even when we served (almost) all of
autonomous demand, our framework outperforms Best Nash
Equilibrium. This shows the effectiveness of our framework
on creating altruism and supports H2.

For H3, we recruited 21 subjects (9 female, 12 male)
with an age range from 19 to 60. In the first phase of the
experiment, each participant was asked 40 queries (4 roads
+ 1 walking option) which are all actively synthesized. We
then used their responses to get the sample (@, () that has
the highest likelihood. Afterwards, we designed 5 different
road networks each with 4 different roads and an additional
route where people may choose to walk. The roads on the 5
different networks cover a range of different road lengths
from 1.8 kilometers to 78 kilometers. For each network,
we also set different 6, A\', X2, and P. By assuming all
autonomous flow is in the service of these 21 subjects, or
of the groups that match with their preferences, we locally
solved the planning optimization to obtain the pricing scheme
for each traffic network. We refer to the results of this
optimization as anticipated values.

In the second phase of the user study, we presented the
route-price pairs and the walking option to the same 21
subjects. For each of the 5 networks, they picked the option
they would prefer. Using these responses, we allocated the
autonomous flow into the roads. However, it is technically
possible that more users select a road than its maximum flow.
To handle such cases, we assumed extra flow is transferred
to the roads with smaller latencies without making the users
pay more. If that is not feasible, extra flow is transferred to
the slower roads, without any discount. While these break
the fairness constraint, it rarely happens and affects only a
very small portion of the flow. After autonomous flows are
allocated, human driven cars selfishly chose their routes in
a way to minimize the overall average latency. We refer to
the results of this allocation as actual values.

Table |lI| compares the anticipated and the actual values.
We report latencies in seconds, flows in cars per second, and
profit is a rate value with the unit USD per second. In order to
show how our framework incentivizes altruistic behavior, we
also added two other selfish best Nash equilibrium baselines:
one where the same flow as actual flow is routed (BNE1) and
one where all flow demand is routed (no walking option)
again under best Nash equilibrium (BNE2).

It can be seen that there is generally an alignment between
anticipated and actual values. While the mismatch may be
further reduced by doing more queries or having more
users, the difference with BNE methods is significant. In
all cases, our framework achieved to incentivize altruism,



which yielded lower average latencies compared to BNEI.
Especially in Case 3 and Case 5, our framework approx-
imately halved the average latency compared to the best
Nash equilibria. We visualize this difference in Fig. [7] Fur-
thermore, our framework successfully reduced flow demand
when satisfying the full demand is impossible (Case 1).
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Fig. 7: The comparison of the actual results and BNEI, both of which
allocate the same amount of flow.

One caveat is the small amount of actual flow in Case 1,
which also caused an important profit loss. This is because
the roads are relatively shorter, and most users preferred
walking over paying for an autonomous car. Our framework
could not predict this, because the learned reward functions
failed to accurately estimate the probabilities. This issue will
be further discussed in Section [VIl

VI. CONCLUSION

In this work, we develop a method improving the effi-
ciency of traffic networks shared between human-driven and
autonomous vehicles by influencing the routing behavior of
humans. Considering an autonomous service that offers a
choice of a number of routes, we formulate an optimization
to find the prices that influence user choices so that when
they choose their routes, and the human-driven traffic routes
solely based on travel delay, travel delay is minimized and
road usage is maximized. In order to do so, we model
how people choose between routes with differing prices and
latencies, and develop a method to actively learn the choice
model parameters for a population of users. We verify these
mechanisms through a user study.

There are areas in which our mechanism can be improved.
Specifically, one could further refine the reward function
model for autonomous service users and not necessarily
assume that it’s linear. One could also consider the human-
driven vehicle demand to be elastic, meaning that people
may choose to stay home or choose public transportation if
congestion is high. Further, we find that the profit constraint
is often unsatisfied in the actual results with a small margin.
We could instead include profit as part of the objective
function or optimize for the worst-case performance.

We considered only a single alternative to the autonomous
service. However, a population may choose from a variety of
options such as walking, biking, or taking the bus,  will have
a multimodal distribution; we then need to learn the mixture.
Finally, it is unclear if it is better to use many samples
from our posterior on (w, () or just the maximum likelihood
sample while computing q for the planning optimization.

Future work can address these issues or expand in broader
directions. It would be worthwhile to look at more general
network topologies. Further, the information people have

access plays a huge role in decision making. It would be
enlightening to develop choice models that incorporate this
information availability as well as possibly other aspects of
decision making, such as risk aversion. These expansions
would do much to address congestion on roads that are soon
to be shared between human drivers and autonomous cars.
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APPENDIX
A. Proof of Proposition

Let us call the reward function that is homogeneous
among the users as 7. Assume the optimal solution is
(€, p*, ', F*), and € > a;, where k = argmax; a;
subject to fh;-k > 0. Due to selfishness, we know ¢; = ¢
for Vi € [k]. Also, let D* (and D*) be the set of dominated
(undominated) options under the optimal solution.

Let (¢, p’) be such that

o Ui =17 and p) = pf, for Vi € [N]\ [k],

o ap < g;c < /3,

o Ui =1, for Viek—1],

e pi =pf + ¢ where € > 0 for Vi € [k] U D",

e q(t,p') =q(€",p*) fori e [k] .

We also define D’ and D’ similarly. The only two free
variables of (€', p’) are ¢/, and e. To show such an (¢, p’)
with the last constraint exists, we prove 1) For any ¢}, there
exists an e such that #(£*,p*,i) = #(£',p’,i) for Vi € [k],
2) D* = D'. These together imply 7(£*, p*,i) = 7(£',p’,1)
for Vi € [N], which then implies the last constraint.

The first one is easy to show. #(£*,p*,i) = (£, p*, k)
for Vi € [k]. For any £}, we can set € = &1 (£ — {}) to get
7€, p' i) = 7€, p*,i) for Vi € [k] where w is associated
with 7. The equality also holds for ¢ € [N] \ [k], because
the prices and latencies are the same between (£°,p*) and
(£',p') in those roads.

We show D* = D’ in two steps:

1) D*N[k] = D' N k], since the roads had the same latency
drop and price increase, and they cannot be dominated by
any of [N]\ [k], because they have strictly lower latency.
2) D*\ [k] = D’ \ [k], because the roads have the same
latency between two configurations and the prices went up
only for those in D*, so they cannot dominate each other in
a different way between the configurations. They also cannot
dominate any of the roads in [k], because they have strictly
higher latency. And i € D'\ [k] = i € D*\ [k], because
the roads in [k] had already lower latency in the optimal
solution and their prices only went up.

Having showed (£,p’) exists, we note (E’,p’,fh/,fa*)
is a feasible solution for some fh/, because the distribu-
tion of autonomous service users remained the same and
the prices went only up, which together means the profit
constraint (TI)) is still satisfied. The other constraints are
trivially satisfied by the construction of (¢',p’) and as the
optimal solution has to be feasible. Then, since the demand
of human-driven cars are inelastic, the total served flow is
the same between two solutions. However, the latencies of



the roads in [k] decreased, which means their capacities
increased. Hence, k£ > argmax;a; subject to fh; > 0.
Then, the average latencies of human-driven cars decreased.
Similarly, the average latencies of autonomous service users
may only go down. Hence, J(f"", £**,s%)> J(f, ¥, /).
and (£, p*, o f**) cannot be the optimal solution. O
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