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ABSTRACT
This article introduces a new procedure for analyzing the quantile co-movement of a large number of
financial time series based on a large-scale panel data model with factor structures. The proposed method
attempts to capture the unobservable heterogeneity of each of the financial time series based on sensitivity
to explanatory variables and to the unobservable factor structure. In our model, the dimension of the
common factor structure varies across quantiles, and the explanatory variables is allowed to depend on
the factor structure. The proposed method allows for both cross-sectional and serial dependence, and
heteroscedasticity, which are common in financial markets.
We propose new estimation procedures for both frequentist and Bayesian frameworks. Consistency and
asymptotic normality of the proposed estimator are established. We also propose a new model selection
criterion for determining the number of common factors together with theoretical support.
We apply the method to analyze the returns for over 6000 international stocks from over 60 countries during
the subprime crisis, European sovereign debt crisis, and subsequent period. The empirical analysis indicates
that the common factor structure varies across quantiles. We find that the common factors for the quantiles
and the common factors for the mean are different. Supplementary materials for this article are available
online.
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1. Introduction

The goal of this article is to develop a new statistical method
for analyzing the quantile co-movement of a large number of
financial time series and to empirically investigate the quantile
co-movement structure of the global financial market. In the
context of the arbitrage pricing theory (APT) of Ross (1976), the
first theoretically grounded multifactor model in asset pricing
(Goyal et al. 2008), the asset return variation of each security
is explained by a linear combination of common factors, which
captures the co-movements, plus the idiosyncratic return. A
large body of asset pricing literature has considered models that
explain expected returns or the mean structure (see, e.g., Fama
and French 2016; Griffin 2002; Hou, Karolyi, and Kho 2011, and
references therein). However, little is known about the quantile
co-movement structure of asset return distributions despite the
fact that identifying the sources of co-movement is an impor-
tant issue in asset pricing and risk management in finance.
The chief obstacle to this investigation is that common factors
that capture the quantile structure of asset returns may not be
measurable/accessible in practice. Ideally, one would directly
use measurable/accessible factors, such as Fama and French’s
(1993) three factors. However, in reality, even for explaining
expected asset returns, there is limited access to all common fac-
tors (Ando and Bai 2015). Econometric methods for analyzing
the quantile co-movement of a large number of financial time
series and the effects of common factors on the asset return
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distribution, rather than the mean, remain limited. The U.S.
subprime crisis of 2007 led to massive declines in global finan-
cial markets, which subsequently affected economic activities
worldwide. The Dow Jones Industrial Average hit the bottom in
April 2009; the long-term interest rates of Euro zone countries
started to increase at the end of 2009, the onset of the European
sovereign debt crisis. From the perspective of governmental pol-
icy, regulators, and asset management, it is important to under-
stand the quantile co-movement structure during such extreme
events. Similar to asset pricing studies that search for factors
that explain the co-movement of expected returns in global
stock markets (Fama and French 1998; Heston, Steven, and
Rouwenhorst 1994; Griffin 2002; Hou, Karolyi, and Kho 2011),
it is worthwhile to identify the determinants of the quantile co-
movement structure of the global financial market. By analyzing
a large number of stock returns in the financial industry stock,
this article seeks to answer the following empirical questions.
1. Do the quantile common-factor structures that explain the

asset-return distribution vary across quantiles?
2. Are the quantile common-factor structures symmetric in the

sense that their structures in the lower tails and the upper tails
are identical?

3. Are the quantile common-factor structures in the tails and at
the mean different?

4. Are the co-movements of quantiles captured by the stock’s
listed exchange and industry?
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5. Are there any special characteristics of the quantile structures
of financial markets during the recent financial crisis and
European sovereign debt crisis compared with the subse-
quent period?

To address these important but challenging empirical ques-
tions, we introduce a new heterogeneous panel quantile model
with factor structures, in which a few unobservable factors
may explain the co-movement of the asset return distribu-
tions in a large number of asset returns. Quantile regression
methods have been previously used to model financial data
(Engle and Manganelli 2004; Baur 2013; Baur, Dimpfl, and Jung
2012; Chuang, Kuan, and Lin 2009; Cappiello et al. 2014; Chen
2015; So and Chung 2015; Gerlach, Chen, and Lin 2016; Chen
et al. 2017; Han et al. 2016). In this article, we consider large-
scale panel data that consist of a large number of asset return
time series. There is a growing number of studies on panel
quantile models (see Koenker 2004; Abrevaya and Dahl 2008;
Lamarche 2010; Kato, Galvao, and Montes-Rojas 2012; Harding
and Lamarche 2014; Chen, Dolado, and Gonzalo 2017, among
others). In particular, we introduce a new panel data model
with heterogeneous regression coefficients, which has many
attractive features that are lacking in those used in the above
studies. First, the heterogeneity of asset returns is captured by
using heterogeneous regression coefficients and a factor error
structure. Second, observable factors can be depend on the
unobservable common factors, factor loadings or both. Third,
the unobservable common factors are allowed to vary across
quantiles. The model is formulated without imposing any para-
metric family of distributions. We note that this is the first study
that introduces and analyzes such a general model.

If we can ignore the unobservable common factor structures,
then the estimator of the regression coefficient can be found by
running the standard quantile regression approach equation by
equation. However, the model allows the explanatory variables
depend on the unobservable effects. If the unobservable com-
mon factor structure exists and is ignored, which implies ignor-
ing possible endogeneity, then the standard quantile regression
approach produces biased results. Indeed, our simulation study
indicates that failing to account for endogeneity increases the
bias of the estimation. Even if the true regression coefficients are
zero, a direct application of the principal component approach
in the quantile panel model may yield inconsistent estimation of
the unobservable factor structure (Chen et al. 2017).

In the case of mean panel data models with factor structures,
the inference procedure is well studied. Indeed, one can employ
various estimation procedures, including Bai (2009) for homo-
geneous panels, Song (2013) for heterogeneous panels, and
Ando and Bai (2015) for heterogeneous panels with shrinkage.
However, these estimation procedures cannot be applied to the
panel quantile models with interactive effects. Although some
studies on nonlinear panel studies are available (Freyberger
2015; Chen et al. 2014; Fernández-Val and Weidner 2016), these
studies focused on smoothed objective functions and homoge-
neous coefficients, and thus are not directly applicable to our
settings. Furthermore, our model allows for a large number of
parameters.

To overcome this issue, we propose new estimation proce-
dures for both a frequentist and Bayesian framework. For fre-

quentist estimation, the proposed algorithm converges quickly
to a local minimizer. In a standard Bayesian quantile regression
for cross-sectional data, Markov chain Monte Carlo (MCMC)
is commonly employed. Assuming the asymmetric Laplace
distribution for the error term, the MCMC posterior sampling
procedure is well studied (Yu and Moyeed 2001; Geraci and
Bottai 2007; Yue and Rue 2011; Alhamzawi and Yu 2013; Chen
and Gerlach 2013). However, these studies ignored the issue of
“endogeneity,” where the set of regressors are correlated with
the error terms. Although Lancaster and Jun (2010) studied
the Bayesian estimation of the quantile regression model with
endogeneity, their study addresses cross-sectional data and a
borrowed Bayesian exponentially tilted empirical likelihood
framework. Obviously, these studies on MCMC for estimating
the cross-sectional quantile regression model can not be easily
extended to estimate panel quantile regression models with
interactive fixed effects. There are no studies that consider the
Bayesian MCMC procedure for estimating the panel quantile
regression models with interactive fixed effects. This is the
first study to investigate a data-augmentation approach to the
analysis of panel quantile regression models with endogeneity.
We develop a data-augmentation strategy without imposing any
probability distributions on the error term. We demonstrate that
our method will greatly simplify inference on the unobservable
factor structure. Our Monte Carlo simulation study shows that
the proposed procedure improves the estimation accuracy of
the underlying quantile structures in the presence of interactive
fixed effects.

In practical applications, the number of common factors
should be determined. We note that previous studies (includ-
ing Ahn and Horenstein 2013; Ando and Bai 2016, 2017; Bai
and Ng 2002; Hallin and Liška 2007; Onatski 2009) cannot
be applied directly because these methods were designed for
panel “mean” regression models with factor structures instead
of panel “quantile” models. As there are no studies that allow
us to determine the number of common factors, this issue is
not straightforward. We propose a new information criterion for
selecting the number of common factors. Our simulation study
indicates that the proposed information criterion is capable of
selecting the true dimension of the common factors.

We make further theoretical contributions by developing an
asymptotic theory for the proposed estimator. We establish the
consistency and the asymptotic normality of the estimator. We
also establish the model selection consistency of the informa-
tion criterion in determining the number of common factors.
In our asymptotic framework, the time series dimension and
individual dimension are diverging. Due to the presence of the
unobservable common factor structures and nonsmoothness of
the quantile loss function, the development of these results is
nontrivial. Therefore, we need a novel strategy for the proof.

In summary, our contributions are as follows. First, a novel
panel heterogeneous quantile model with a factor structure is
introduced. Second, new estimation procedures are developed
for the simultaneous estimation of heterogeneous regression
coefficients and the factor structures. Third, the consistency
and asymptotic normality of the proposed frequentist estimator
are established. Fourth, a novel information criterion for deter-
mining the number of common factors is proposed together
with theoretical supports. Finally, these new results are applied
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to investigate the quantile co-movement structure of global
financial markets. In contrast to Ando and Bai (2017), which
focused on the subprime crisis period, we compared the quantile
structures of the subprime crisis period, European sovereign
debt crisis period, and the subsequent period. As a result, a
number of interesting findings are obtained. It is found that
quantile common-factor structures in the tails and at the mean
are different. Because Ando and Bai’s (2017) method is designed
for exploring the mean structures, this article complements
Ando and Bai (2017) as it provides a useful tool for exploring
the quantile structures.

The remainder of this article is organized as follows. Section 2
introduces a new panel quantile model with a factor structure
and its assumptions. Section 3 develops the parameter estima-
tion procedures. Section 4 proposes the new information crite-
rion for determining the number of common factors. Section 5
investigates the consistency and the asymptotic distribution of
the estimator. Section 6 applies the procedure to the analysis of
global stock market data. Concluding remarks are provided in
Section 7. To save space, all technical proofs of the theoretical
results and Monte Carlo simulations are provided in the online
supplementary materials.

2. Panel Quantile Regression With Interactive Fixed
Effects

2.1. The Model

Suppose that the response of an individual unit is measured over
T time periods together with some observable regressors. For
the ith unit (i = 1, . . . , N), at time t, its response yit is observed
together with a (p+1)-dimensional vector of observable regres-
sors xit = (1, xit,1, . . . , xit,p)′. We consider the following model
for the τ th conditional quantile function of the response yit ;

Qyit

(
τ |xit , f t,τ , λi,τ

) ≡ x′
itbi,τ + f ′

t,τλi,τ ,
i = 1, . . . , N, t = 1, . . . , T, (1)

where bi,τ = (bi,0,τ , bi,1,τ , . . . , bi,p,τ )
′ is a (p + 1)-dimensional

vector of regression coefficients, where f t,τ is an rτ × 1 vector of
unobservable factors and λi,τ represents the unobservable factor
loadings. Throughout the article, we treat the true unobservable
structure f t,τ and λi,τ as fixed parameters. For notational sim-
plicity, we often write ηit,τ = f ′

t,τλi,τ . This unobservable factor
structure is known as the interactive effect in the econometric
literature (e.g., Bai 2009) and employed in asset pricing (e.g.,
Ando and Bai 2017). This interactive effect provides a conve-
nient way of modeling the cross-sectional dependence of asset
returns. If we specify the dimension of the unobservable factor
as rτ = 1 and the corresponding factor loading is constant over
all possible τ , model (1) reduces to panel quantile regression
models with individual fixed effects (Koenker 2004; Kato, Gal-
vao, and Montes-Rojas 2012). In contrast to these studies, model
(1) allows the dimension of unobservable factor f t,τ to depend
on quantile τ .

Here are some examples. The first example is an interactive
effect model in the mean, yit = x′

itbi + f ′
tλi + εit , where εit are

independent over i, but are iid over t. Also, εit are independent
of {xit , f t , λi}. Let qi(τ ) be the τ th quantile of εit , then,

Qyit

(
τ |xit , f t , λi

) = x′
itbi + f ′

tλi + qi(τ ).

We can absorb qi(τ ) into the coefficient of the constant regres-
sor. Next, consider yit = x′

itbi(uit) + f ′
tλi, where uit are iid

U(0, 1), independent of {xit , f t , λi}. Also, assume x′
itbi(uit) is

increasing in uit . Then,

Qyit

(
τ |xit , f t , λi

) = x′
itbi(τ ) + f ′

tλi.

The quantile literature treats bi(τ ) as a nonrandom function
of τ , and is interested in estimating this function. Finally, con-
sider yit = x′

itbi(uit) + f t(uit)′λi(uit), where uit is U(0, 1),
independent of xit . Also, assume that the right hand side of yit
is increasing in uit (see Koenker 2005 for quantile regression
models expressed as functions of uniform random variables),
then

Qyit

(
τ |xit , f t(τ ), λi(τ )

) = x′
itbi(τ ) + f t(τ )′λi(τ ).

Define the error term εit,τ ≡ yit−x′
itbi,τ −f ′

t,τλi,τ , then P(εit,τ ≤
0|xit , f t,τ , λi,τ ) = τ . Our purpose is to estimate the unknown
conditional quantile function Qyit

(
τ |xit , f t,τ , λi,τ

)
based on the

observations {(yit , xit); i = 1, . . . , N, t = 1, . . . , T}.
If one ignores the unobservable effects (ηit,τ = 0), the quan-

tile estimator of bi,τ (i = 1, . . . , N) is found as the minimizer of
the standard quantile loss function:

�τ (Y|X, Bτ ) =
N∑

i=1

T∑
t=1

ρτ (yit − x′
itbi,τ ), (2)

where ρτ (u) = u(τ − I(u < 0)) is the quantile loss function,
Y ≡ {yit|i = 1, . . . , N, t = 1, . . . , T}, X ≡ {xit|i = 1, . . . , N, t =
1, . . . , T} and Bτ = {b1,τ , . . . , bN,τ }.

However, if the factor structure exists and is ignored, the esti-
mator of Bτ in the above is biased (see Section 5 and the Monte
Carlo simulation result). This is because, similar to Koenker
(2004) and Kato, Galvao, and Montes-Rojas (2012), we allow
the observables xit depend on the unobservable effects ηit,τ
(existence of endogeneity). In such a case, we have to estimate
the unknown parameters Bτ , �τ = (λ1,τ , . . . , λN,τ )′, and Fτ =
(f 1,τ , . . . , f T,τ )

′ by simultaneously minimizing the following
objective function

�τ (Y|X, Bτ , Fτ , �τ ) =
N∑

i=1

T∑
t=1

ρτ (yit − x′
itbi,τ − f ′

t,τλi,τ ). (3)

A new parameter estimation procedure is proposed in Section 3.
Because the likelihood function is nonlinear in the factor struc-
ture, inference on interactive fixed effects in model (1) is a
challenging problem.

There are several past studies relating to our proposed model
(1). Ando and Tsay (2011) consider a quantile regression model
with factor-augmented predictors. In their study, the common
factors that explain the quantile structure are also allowed to
vary across quantiles τ . In contrast to our study, however, their
study is about the modeling of a quantile structure in the cross-
sectional context. Harding and Lamarche (2014) consider a
quantile regression model with interactive effects. In contrast
to the heterogeneous regression coefficients in Equation (1),
their model only allows homogeneous regression coefficients.
Moreover, in their setup, the common factor structure is not
allowed to vary across quantiles. When we set the heterogeneous
regression coefficients as bi,τ = 0 for i = 1, . . . , N, the
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model becomes similar to the quantile factor model of Chen
et al. (2017) in the sense that the common factors vary across
quantiles. We note that the parameter estimation procedure in
model (1) becomes more complicated due to the existence of the
term x′

itbi,τ . Furthermore, the investigation of asymptotic theory
becomes challenging; the convergence rate for the estimated
common factor structures and the convergence rate for the
estimated regression coefficients depend on one another.

Remark 1. Past empirical studies (e.g., Nath and Brooks 2015;
Ni, Wang, and Xue 2015) indicated that a set of important
(observable) common factors vary with τ . Thus, it is ideal to
formulate model (1) so that unobservable common factors vary
with quantile points τ because its dimension is often unknown
for each τ in practice.

Before, we propose the novel estimation procedures and
the asymptotic theory, the set of assumptions on the model is
clarified in the next section.

2.2. Assumptions

We first define some notations. Let ‖A‖ = [tr(A′A)]1/2 be the
usual norm of the matrix A, where “tr” denotes the trace of
a square matrix. The equation an = O(bn) states that the
deterministic sequence an is at most of order bn; cn = Op(dn)
states that the random variable cn is at most of order dn
in terms of probability and cn = op(dn) is of a smaller
order in terms of probability. The true regression coefficient
is denoted by bi,0,τ . Further, F0,τ = (f 1,0,τ , . . . , f T,0,τ )

′ and
�0,τ = (λ1,0,τ , . . . , λN,0,τ )

′ are the true common factor and its
factor loadings. The set of regularity conditions that are imposed
on the proposed model are as follows:

Assumption A. Common Factors
Let F be a compact subset of Rrτ . The common factors f t,0,τ ∈
F satisfy T−1 ∑T

t=1 f t,0,τ f t,0,τ
′ → �Fτ as T → ∞, where �Fτ

is an rτ × rτ positive definite matrix.

Assumption B. Factor Loadings and Regression Coefficients
Let B and L be compact subsets Rp+1 and Rrτ . The regression
coefficient bi,0,τ and the factor-loading for the common factors
satisfy bi,0,τ ∈ B and λi,0,τ ∈ L. In addition, the factor-loading
matrix �0,τ = (λ1,0,τ , . . . , λN,0,τ )

′ satisfies N−1�′
0,τ�0,τ being

a rτ × rτ positive definite matrix for all N.

Assumption C. Idiosyncratic Error Terms
(C1): The random variable εit,τ = yit − x′

itbi,0,τ − f ′
t,0,τλi,0,τ

is independently distributed over i and t, conditional
on X, F0,τ and �0,τ . In addition, it satisfies E[|εit,τ −
E[εit,τ ]|K] < K!CK

ε for K ≥ 1 and positive constant
Cε < ∞.

(C2): The conditional density function of εit,τ given
(xit , f t,0,τ , λi,0,τ ), denoted as git(εit,τ |xit , f t,0,τ , λi,0,τ ), is
continuous. In addition, for any compact set C, there
exists a positive constant ḡ > 0 (depending on C) such
that inf c∈C git(c|xit , f t,0,τ , λi,0,τ ) ≥ ḡ for all i and t.

Assumption D. Predictors and Design Matrix
(D1): For a positive constant Cx, predictors satisfy supit ‖xit‖ <

Cx < ∞.
(D2): There exist positive constants C1 and C2 such that for each

Xi,

0 < C1 < λmin(T−1(Xi, F0,τ )
′(Xi, F0,τ ))

< λmax(T−1(Xi, F0,τ )
′(Xi, F0,τ )) < C2 < ∞,

where Xi = (xi1, . . . , xiT)′, λmin(A) and λmax(A) denote
the smallest and the largest eigenvalue of a matrix A,
respectively. These inequalities hold with probability one
as T approaches infinity.

(D3): Define Ai,τ = 1
T X′

iMFτ Xi, Bi,τ = (λi,0,τλ
′
i,0,τ )⊗IT , C′

i,τ =
1√
T
λ′

i,0,τ ⊗ (X′
iMFτ ), MFτ = I −Fτ (F′

τ Fτ )
−1F′

τ . Let Fτ be
the collection of Fτ such that Fτ = {Fτ : F′

τ Fτ /T = I}.
We assume

infFτ ∈Fτ λmin

[
1
N

N∑
i=1

Ei,τ (Fτ )

]
> 0, (4)

where Ei,τ (Fτ ) = Bi,τ −C′
i,τ A−1

i,τ Ci,τ and inf is taken under
the fixed τ which is the focus.

Remark 2. The full rank assumption in Assumptions A and
B is necessary for the number of common factors to be rτ .
In Assumption C, heteroscedasticity is allowed. Although it
is outside the scope of this article, the errors can have serial
correlation. In such a case, it will require more technical con-
ditions such as those in Bai (2009). Assumption D imposes the
regularity condition on design matrix Xi and common factor
structure F0,τ . (D2) is the usual rank condition for identification.
(D3) is similar to that used in Ando and Bai (2015) and Song
(2013). Similar to Belloni and Chernozhukov (2011), Wang et
al. (2012), Tang et al. (2013), and Sherwood and Wang (2016),
the quantile function under a particular τ is focused rather
than the entire quantile function over all possible τ . When
the entire quantile function is focused, there are studies that
try to ensure the monotonicity of the quantile function as a
function of τ , for example, He (1997), Bondell, Reich, and Wang
(2010), Dette and Volgushev (2008), Chernozhukov, Fernández-
Val, and Galichon (2010), and Yuan, Chen, and Zhou (2017).
It is known that if non-crossing is required in linear quantile
regression on an unbounded domain in any covariate direction,
the quantile function results in the constant slope, location-shift
model (Bondell, Reich, and Wang 2010). Therefore, we consider
a compact space for xit , f t,0,τ , and λi,0,τ in the assumptions.

3. Estimation

We begin by presenting the reason for which parameters Bτ ,
Fτ , and �τ should be estimated simultaneously. One might
consider a two-step procedure to estimate the model param-
eters. In the first step, the principal component analysis (see,
e.g., Bai 2003; Connor and Korajzcyk 1986) is applied to build
the common factors. Plugging these estimated common fac-
tors into �τ (Y|X, Bτ , Fτ , �τ ) in Equation (3), the second step
jointly estimates the regression coefficients and factor loadings.
However, as discussed in Chen, Dolado, and Gonzalo (2017)
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for pure factor models, when there exist common factors that
affect the quantiles but not the means, the two-step procedure
may result in inconsistent estimators due to the omission of
important common factors in the second step purely because the
principal component estimator cannot always expand the true
common factor space for implementing the second step. Indeed,
our empirical analysis indicates that there exist common factors
that affect the quantiles but not the means. Therefore, the factor-
augmented approach to quantile regression (Ando and Tsay
2011) may not work, and the simultaneous direct minimization
of �τ (Y|X, Bτ , Fτ , �τ ) in terms of Bτ , Fτ and �τ is important. In
Section 3.1, the frequentist estimation procedure is developed.
We also propose the novel data-augmentation strategy in Sec-
tion 3.2.

3.1. Frequentist Estimation

Note that one cannot separately identify Fτ and �τ without
further restrictions because they enter the model in a mul-
tiplicative way. Following Bai and Ng (2013), we impose the
following restrictions F′

τ Fτ /T = Irτ and �′
τ = (�′

1,τ , �′
2,τ )

′,
with �1,τ being an invertible lower triangular matrix. Bai and
Ng (2013) demonstrate that this restriction will lead to the
identification of Fτ and �τ . We refer to Bai and Ng (2002,
2013) and Stock and Watson (2002) for the identification of the
principal component estimator for the mean panel data model.
Then, the frequentist estimator is obtained by minimizing the
following objective function �τ (Y|X, Bτ , Fτ , �τ ) in Equation (3)
under the restriction.

Given values of τ and the number of common factors rτ ,
the following algorithm can be used to obtain the frequentist
estimator.

Estimation Algorithm:

Step 1. Initialize parameters B̂τ , F̂τ , and �̂τ .
Step 2. Given F̂τ , update b̂i,τ and λ̂i,τ as the minimizer of∑T

t=1 ρτ (yit − x′
itbi,τ − f̂

′
t,τλi,τ ) for i = 1, . . . , N.

Step 3. Given b̂i,τ and λ̂i,τ (i = 1, . . . , N), update f t,τ as the
minimizer of

∑N
i=1 ρτ (yit − x′

itb̂i,τ − f ′
t,τ λ̂i,τ ) for t =

1, . . . , T.
Step 4. Obtain a QR decomposition of F̂τ to yield F̂τ = Q̄F

τ R̄F
τ ,

where R̄F
τ is an upper triangular matrix with positive

diagonal elements and Q̄F
τ is an T × rτ orthogonal

matrix such that Q̄F′
τ Q̄F

τ = Irτ . Then, obtain a QR
decomposition of R̄F

τ �̂
′
τ , to yield R̄F

τ �̂
′
τ = Q̄�

τ R̄�
τ . Here,

R̄�
τ is an upper triangular matrix with positive diagonal

elements, and Q̄�
τ is an rτ × rτ orthogonal matrix such

that Q̄�′
τ Q̄�

τ = Irτ . Update the common factor F̂τ and
the factor loading matrix �̂τ as F̂τ = √

TQ̄F
τ Q̄�

τ and
�̂′

τ = R̄�
τ , respectively.

Step 5. Repeat Step 2 to Step 4 until convergence.

In Step 1, the initial values of parameters are prepared as
follows. First, estimate bi,τ (i = 1, . . . , N) by minimizing
�τ (Y|X, Bτ ) in Equation (2). Given b̂i,τ (i = 1, . . . , N), define
the variable Zτ = (z1,τ , . . . , zN,τ ) with zi,τ = yi −Xib̂i,τ . Obtain
the principal components’ estimate of F̂τ = (f̂ 1,τ , . . . , f̂ T,τ )

′,

subject to the normalization F′
τ Fτ /T = Irτ , which is

√
T times

the eigenvectors corresponding to the rτ largest eigenvalues of
the T × T matrix Z′

τ Zτ (see Bai and Ng 2002). Then, obtain
λ̂i,τ as the minimizer of

∑T
t=1 ρτ (yit − x′

itb̂i,τ − f̂
′
t,τλi,τ ) for i =

1, . . . , N. One can step the iteration based on N−1 ∑N
i=1 ‖b̂

new
i,τ −

b̂
old
i,τ ‖2+(NT)−1 ∑N

i=1
∑T

t=1{(f̂
′
t,τ λ̂i,τ )new−(f̂

′
t,τ λ̂i,τ )old}2 < δ2,

where δ2 is a small value.
Our simulation study found that the above algorithm

converges quickly. Under the fixed Fτ , the loss function
�τ (Y|X, Bτ , Fτ , �τ ) in Equation (3) is convex in Bτ and �τ . This
implies that �τ (Y|X, Bnew

τ , Fτ , �new
τ ) ≤ �τ (Y|X, Bold

τ , Fτ , �old
τ ).

Similarly, given Bτ and
�τ , �τ (Y|X, Bτ , Fnew

τ , �τ ) ≤ �τ (Y|X, Bτ , Fold
τ , �τ ). Therefore,

we have
�τ (Y|X, Bnew

τ , Fnew
τ , �new

τ ) ≤ �τ (Y|X, Bnew
τ , Fold

τ , �new
τ )

≤ �τ (Y|X, Bold
τ , Fold

τ , �old
τ ),

which implies that the convergence of the algorithm to a local
minimum is guaranteed. As it is pointed out in Bai (2009),
the loss function of the panel mean model with interactive
effects has multiple modes. Convergence to a global optimum
is not guaranteed. This also applies to the present framework.
However, under large N and T, the convergence is very quick
in our simulations and the converged point appears to be the
global optimum as it is very close to the true value. In Section 4,
we develop the asymptotic property of the frequentist estimator
under large N and T.

Remark 3. This idea of Bai and Ng (2013) is employed in Step 4.
We first note that the product F̂τ �̂

′
τ remains the same even when

the common factor and the factor loading matrix are rotated
(see Bai and Ng 2013). Regarding F̂τ , we see that F̂′

τ F̂τ /T =
(
√

TQ̄F
τ Q̄�

τ )′(
√

TQ̄F
τ Q̄�

τ )/T = Q̄�′
τ Q̄�

τ = Irτ . Furthermore, R̄�
τ

is an upper triangular matrix with positive diagonal elements;
thus, both F̂τ and �̂τ in Step 4 satisfy the restriction.

3.2. Data-Augmentation Approach for Bayesian Inference

This section develops the data-augmentation approach for
Bayesian inference. To implement the data-augmentation
approach, we first define the pseudo likelihood

L(Y|X, Bτ , Fτ , �τ ) = exp {−�τ (Y|X, Bτ , Fτ , �τ )}
and specify the prior distribution of the parameters as π(Bτ ,
Fτ , �τ ). Similar to the frequentist estimator, the prior density
π(Bτ , �τ )π(Fτ ) accommodates the following identification
restriction: F′

τ Fτ /T = Irτ and �′
τ = (�′

1,τ , �′
2,τ )

′ with �1,τ
being an invertible lower triangular matrix.

Note that unlike previous studies on Bayesian inference in
quantile regression that use the asymmetric Laplace distribution
for the error component (Yu and Moyeed 2001; Geraci and Bot-
tai 2007; Yue and Rue 2011), we develop the data-augmentation
strategy without directly imposing probability distributions.
Then, the posterior density is π(Bτ , Fτ , �τ |Y , X) ∝ L(Y|X,
Fτ , �τ , Bτ )π(Bτ , Fτ , �τ ), which does not provide analytical
density forms. Note that there is no easy method for sampling
from their posterior distribution because the error distribution
is unknown.
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3.2.1. Data-Augmentation Strategy for Fτ

Because the common factor Fτ is subject to the normalization
condition F′

τ Fτ /T = Irτ for identification purposes, Fτ belongs
to a hyperball in T dimensions, and its support is restricted to
being the Cartesian product of the T-dimensional hyperball.
Furthermore, because of the orthogonality requirement, its sup-
port is then reduced to a Stiefel manifold ST,rτ of radius

√
T

(see, e.g., Khatri and Mardia 1977; Tsay and Ando 2012 and
references therein). Thus, the prior of Fτ is a flat prior over the
Stiefel manifold

π(Fτ ) = 1
C(T, rτ )

· 1(Fτ ∈ ST,rτ ), (5)

where 1(·) is the indicator function and C(T, k) = 2kπkT/2

Tk(2T−k−1)/4/{πk(k−1)/4 ∏k
j=1 �{(T − j + 1)/2}} is the normal-

izing constant with �(·) being the Gamma function.
To derive the conditional posterior of Fτ , we use the follow-

ing equality

exp (−{|κ| + (2τ − 1)κ}) =
∫ ∞

0
φ(κ|(1 − 2τ)ω, ω)

exp(−2τ(1 − τ)ω)dω, (6)

where φ(x|μ, ω) is the normal density, evaluated at x, for mean
μ and variance ω (see, e.g., Polson and Scott 2013). Using this
result, the loss contribution of observation yit can be expressed
as

exp
(−{|yit − x′

itbi,τ − f ′
t,τλi,τ | + (2τ − 1)

{yit − x′
itbi,τ − f ′

t,τλi,τ }}
)

∝
∫ ∞

0
exp

{
−{zit,τ − x′

itbi,τ − f ′
t,τλi,τ }2

2ωit,τ

}

exp{−2τ(1 − τ)ωit,τ }dωit,τ ,

where zit,τ = yit − (1 − 2τ)ωit,τ . Combining the terms from all
observations yields the following expression for the conditional
posterior of Fτ , given �τ ≡ {ωit,τ |i = 1, . . . , N, t = 1, . . . , T}:

π(Fτ |Y , X, Bτ , �τ , �τ )

∝
N∏

i=1

T∏
t=1

exp

{
−{zit,τ − x′

itbi,τ − f ′
t,τλi,τ }2

2ωit,τ

}
× π(Fτ )

∝ exp

{
−1

2

N∑
i=1

(z∗
i,τ − Fτλi,τ )

′�−1
iτ (z∗

i,τ − Fτλi,τ )

}
(7)

× 1(Fτ ∈ ST,r),

where �i,τ = diag{ωi1,τ , . . . , ωiT,τ }, z∗
i,τ = (z∗

i1,τ , . . . , z∗
iT,τ )

with z∗
it,τ = zit,τ − x′

itbi,τ .
Because the diagonal matrix �i,τ prevents the derivation of

an analytical conditional posterior of Fτ , further analysis of
the conditional posterior of Fτ in Equation (8) is not straight-
forward. To generate the posterior sample of Fτ , we use the
Metropolis–Hastings algorithm, which first draws a candidate
parameter value Fnew

τ from the proposal density p(Fτ ). Then,
this generated parameter value Fnew

τ is accepted or rejected
based on the acceptance probability

α = min
{

1,
L(Y|X, Fnew

τ , �τ , Bτ )π(B, Fnew
τ , �τ )/p(Fnew

τ )

L(Y|X, Fold
τ , �τ , Bτ )π(Bτ , Fold

τ , �τ )/p(Fold
τ )

}
,

where Fold
τ is the current state of Fτ .

In the practical implementation of the Metropolis–Hasting
algorithm, we draw a new candidate Fnew

τ from a proposal
density. Here, a Bingham-von Mises-Fisher distribution with
parameter Z∗

τ�
−1
i,τ �τ is employed for the proposal density.

We refer to Hoff (2009) for generating a random matrix from
Bingham–von Mises-Fisher distribution.

Remark 4. One can assume that εit,τ = yit−x′
itbi,τ −ηit,τ follows

the asymmetric Laplace distribution or its variants, including
Kozumi and Kobayashi (2011) and Yan and Kottas (2015). How-
ever, we show that it is possible to estimate the unknown param-
eters without imposing any probability distribution on εit,τ .

3.2.2. Prior Specification and Posterior Analysis of Bτ and �τ

Here, we specify the prior densities on Bτ and �τ and derive
their conditional posterior distributions, given Fτ and �τ . For
simplicity of notation, we first express the loss contribution of
observation yit as

exp
(−{|yit − x′

itbi,τ − f ′
t,τλi,τ | + (2τ − 1)

{yit − x′
itbi,τ − f ′

t,τλi,τ }}
)

∝
∫ ∞

0
exp

{
−{zit,τ − v′

it,τγ i,τ }2

2ωit,τ

}

exp{−2τ(1 − τ)ωit,τ }dωit,τ ,

where vit,τ = (x′
it , f ′

t,τ )
′, and γ i,τ = (b′

i,τ , λ′
i,τ )

′.
We recall that the first rτ factor loading vectors λi,τ cor-

respond to the invertible lower triangular matrix �1,τ , which
comes from the identification restriction. If some elements of
λi,τ must be zero for identification purposes, we can ignore these
elements in the estimation and denote the nonzero elements of
(b′

i,τ , λ′
i,τ )

′ as γ i,τ . For these nonzero elements, we simply use the
diffuse prior π(γ i,τ ) ∝ Const. Then, the conditional posterior
density of γ i,τ is

π(γ i|Y , X, Fτ , B−i,τ , �−i,τ , �τ ) ∝ exp
{
−1

2
(zi,τ − Wi,τγ i,τ )

′

×�−1
i,τ (zi,τ − Wi,τγ i,τ )

}
,

where Wi,τ = (Xi, Fτ ) is the design matrix, B−i,τ =
(b1,τ , . . . , bi−1,τ , bi+1,τ , . . . , bN,τ )

′ and �−i,τ = (λ1,τ , . . . ,
λi−1,τ , λi+1,τ , . . . , λN , τ)′. This implies that the conditional
posterior density of γ i,τ is the multivariate normal density with
mean (W′

i,τ�
−1
i,τ Wi,τ )−1W′

i,τ�
−1
i,τ zi,τ and variance-covariance

matrix (W′
i,τ�

−1
i,τ Wi,τ )−1.

Remark 5. When the dimension of xit is large, one can also use
a shrinkage prior on γ i,τ , including the lasso prior (Park and
Casella 2008) and the adaptive lasso prior (Leng et al. 2014).
We can easily derive a conditional posterior distribution of γ i,τ
based on these previous results. Or, one may also consider using
a procedure for variable screening (He, Wang, and Hong 2013)
before applying our data augmentation procedure. However,
these directions are outside the scope of this article.
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3.2.3. Prior Specification and Posterior Analysis of ωit,τ
We reexpress the loss contribution of observation yit as

exp
(−{|yit − x′

itbi,τ − f ′
t,τλi,τ |/2 + (τ − 1/2)

{yit − x′
itbi,τ − f ′

t,τλi,τ }}
)

∝
∫ ∞

0
exp

{
−{ait,τ − (1 − 2τ)ωit,τ }2

2ωit,τ

}
exp{−2τ(1 − τ)ωit,τ }dωit,τ ,

where ait,τ = yit − x′
itbi,τ − f ′

t,τλi,τ .
Under the uniform prior ωit,τ ∝ Const., the conditional

posterior density of ωit,τ is

π(ωit,τ |Y , X, Bτ , Fτ , �τ , �−ωit,τ ,τ ) ∝ exp

{
− a2

it,τ
2ωit,τ

− ωit,τ
2

}
,

which is the generalized inverse-Gaussian distribution with
parameter (1, ait,τ , 1). Thus, we can easily draw a posterior
sample of ωit,τ using the Gibbs sampler.

Note that this parameter ωit,τ is not included in the model
(1). However, by introducing ωit,τ in our MCMC posterior sam-
pling, we obtained the conditional posterior of Bτ and �τ ana-
lytically. This allows us to use Gibbs sampling, which improves
the efficiency of the MCMC algorithm.

3.2.4. Posterior Sampling Scheme
Due to the non-smoothness of the objective function, it was
difficult to obtain the conditional posterior of Bτ and �τ ana-
lytically without the data augmentation approach. Thanks to
the data augmentation approach, we can analytically obtain the
conditional posterior distributions of Bτ , �τ , and �τ . There-
fore, we can easily draw the posterior samples by implementing
the Gibbs sampling algorithm. To draw Fτ , we can use the
Metropolis–Hastings algorithm. We now summarize our data-
augmentation strategy (given values of τ and the number of
common factors rτ ) as follows.

Posterior Sampling Algorithm:
Step 1. Initialize the parameters.
Step 2. Sample Fτ from π(Fτ |Y , X, Bτ , �τ , �τ ).
Step 3. Sample γ i,τ from π(γ i,τ |Y , X, Fτ , B−i,τ , �−i,τ , �τ ) for
i = 1, . . . , N.
Step 4. Sample ωit,τ from π(ωit,τ |Y , X, Fτ , Bτ , �τ , �−ωit,τ ,τ ) for
i = 1, . . . , N and t = 1, . . . , T.
Step 5. Repeat Step 2 to Step 4 for a sufficiently large number of
iterations.

To check MCMC convergence, several approaches were pre-
viously proposed (see, e.g., Robert and Casella 2004, chap. 12).
In this article, we follow Gerlach, Chen, and Chan (2011) by
examining trace plots from the MCMC sampler (For more
details, see the simulation study in the online supplementary
materials). Because the number of parameters is large, a good
starting point is helpful for implementing MCMC. Otherwise,
the number of MCMC iterations, H, may need to be large
so that the MCMC chain gets close to the samples from the
posterior distribution. To avoid this computational burden, we
use the frequentist estimator in Section 3.1. This allows us to
start MCMC from the Bayesian maximum a posteriori.

The outcomes of the above algorithm can be regarded as a
random sample from the joint posterior density function after
a burn-in period (see, e.g., Ando 2010). We then obtain a set of
H posterior samples {B(k)

τ , F(k)
τ , �(k)

τ ; k = 1, . . . , H}, which can
be employed for conducting Bayesian analysis numerically. For
example, the Bayesian maximum a posteriori is approximately
given as

{B̃τ , F̃τ , �̃τ } = argmax{B(k)
τ ,F(k)

τ ,�(k)
τ };k=1,...,H

× L(Y|X, B(k)
τ , F(k)

τ , �(k)
τ )π(B(k)

τ , F(k)
τ , �(k)

τ ),
(8)

which is an approximated solution as the maximizer of
L(Y|X, Bτ , Fτ , �τ )π(Bτ , Fτ , �τ ). In practice, the number of
MCMC iterations is finite, and thus the Monte Carlo error (the
difference between the exact maximizer and its approximated
solution in (8)) exists. However, this Monte Carlo error will
converge to zero as H → ∞. Regarding the Monte Carlo error
of MCMC, we refer to Doss et al. (2014), Jones (2004), and
references therein.

3.3. Relationship Between the Frequentist Estimator and
Bayesian Approach

In Section 3.2, the identification restrictions on Fτ and �τ are
accommodated in the prior distribution of Fτ and �τ . Recall,
also, that the diffuse prior was used for γ τ . In this case, the
Bayesian maximum a posteriori in Equation (8) coincides with
the frequentist estimator given in Section 3.1. The above priors
were used for illustrating the core idea of our data-augmentation
strategy. Even under a different prior specification (e.g., the
lasso prior on bi,τ ), one can obtain the Bayesian maximum a
posteriori in Equation (8) by modifying our proposed posterior
sampling algorithm. In this case, the Bayesian maximum pos-
teriori in Equation (8) no longer coincides with the frequentist
estimator.

As an advantage of the Bayesian MCMC procedure, one can
construct a Bayesian credible interval for the parameters even
when N or T (or both) are small, while the asymptotic theory
of the proposed frequentist estimator (see Section 5) relies on
the large N and T. An online supplementary materials compares
the Bayesian estimators (the posterior mean, mode, median)
and frequentist estimators under a small panel. While Bayesian
estimators provided smaller estimation errors under a small
panel, Bayesian estimators and the frequentist estimator are
asymptotically equivalent. This is because the prior information
is dominated by the pseudo likelihood L(Y|X, Fτ , �τ , Bτ ). The
performance of the Bayesian estimators and the frequentist esti-
mator became very similar as the panel size increased. Details
are given in Section G.3 in the online supplementary materials.

4. Model Selection

In practice, we have to determine the dimension of the interac-
tive effects, rτ . Although several methods have been proposed to
select the number of factors (e.g., Bai and Ng 2002; Amengual
and Watson 2007; Hallin and Liška 2007; and Lam and Yao
2012), these methods are fundamentally constructed for mean
factor models, not quantile regression models.
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One might think that cross-validation can be used for this
purpose. However, as described in Ando and Bai (2018), it is
not easy to apply cross-validation because of the existence of the
factor structure. The reason is as follows. Consider leave-one-
individual-out cross-validation. Based on the training sample,
we can estimate the regression coefficients and the factor struc-
tures by using the algorithm in Section 3. However, it is not
possible to obtain the factor loadings of the validation sample
(deleted units) because the factor loadings are unit dependent.
Instead, one may consider estimating the model based on the
information observed up to time t − 1 and then forecast the
responses of each unit at time t. However, the factor structure at
time t is not available to make a forecast. Thus, the pure cross-
validation procedure is not easy to apply directly.

In this article, we propose a novel information criterion.
The number of common factors is selected by minimizing the
following information criterion

ICτ (r) = log

[
1

NT

T∑
t=1

N∑
i=1

ρτ

×
(

yit − x′
itb̂i,τ (r) − f̂ t,τ (r)′λ̂i,τ (r)

)]
+r × q(N, T), (9)

where b̂i,τ (r), λ̂i,τ (r), and f̂ t,τ (r) is the estimated model param-
eters given the number of common factors r. The function
q(N, T) is a penalty on the dimension of interactive effects. In
numerical study, we specify the function as

q(N, T) = log
(

NT
N + T

) (
N + T

NT

)
. (10)

The asymptotic performance of ICτ (r) in Equation (9) is inves-
tigated in the next section.

5. Asymptotic Theory

Because our modeling procedure is new, it is ideal to investigate
its theoretical properties. In this section, we first provide the
consistency of the proposed estimator F̂τ , B̂τ , and �̂τ . Here,
the true parameter value {F0,τ , B0,τ , �0,τ } is defined as the min-
imizer of the expected quantile loss function

�0,τ (Y|X, Bτ , Fτ , �τ ) = E

[ N∑
i=1

T∑
t=1

ρτ (yit − x′
itbi,τ − f ′

t,τλi,τ )

]

(11)

subject to the identification restriction on Fτ and �τ . Here,
the expectation is taken with respect to the true conditional
distribution of {yit : i = 1, . . . , N, t = 1, . . . , T} conditional
on X, F0,τ and �0,τ . The following proposition provides the
average consistency of γ̂ i,τ = (b̂

′
i,τ , λ̂′

i,τ )
′ and f̂ t,τ . In gen-

eral, f̂ t,τ and λ̂i,τ are estimating a rotation of the true factors
and factor loadings unless the latter satisfies the identification
restrictions stated in the beginning of Section 3.1 (see also Bai
and Ng 2013). For simplicity of notation, we drop the rotation
matrix.

Proposition 1. Under Assumptions A–D, the following results
hold:

N−1
N∑

i=1
‖γ̂ i,τ − γ i,0,τ‖2 = op(1),

T−1‖F̂τ − F0,τ‖2 = T−1
T∑

t=1
‖f̂ t,τ − f t,0,τ‖2 = op(1),

where γ i,0,τ = (b′
i,0,τ , λ′

i,0,τ )
′.

The proof of Proposition 1 is given in an online supplemen-
tary materials. The result ‖F̂τ − F0,τ‖/T1/2 = op(1) implies
that the space spanned by F0,τ and the space spanned by the
estimated factors F̂τ are asymptotically the same. We also prove
the consistency of the estimators in the sense that b̂i,τ and λ̂i,τ
converge in probability to bi,0,τ λi,0,τ and uniformly over 1 ≤ i ≤
N. In addition, f̂ t,τ converges in probability to f t,0,τ uniformly
over 1 ≤ t ≤ T.

Theorem 1. Suppose Assumptions A–D, log(T)/N1/2 → 0
and log(N)/T1/2 → 0 hold. Then, b̂i,τ and λ̂i,τ are uniformly
consistent

max
1≤i≤N

‖b̂i,τ − bi,0,τ‖ = op(1), (12)

max
1≤i≤N

‖λ̂i,τ − λi,0,τ‖ = op(1). (13)

Moreover, the estimated common factor is uniformly consistent

max
1≤t≤T

‖f̂ t,τ − f t,0,τ‖ = op(1). (14)

Theorem 2 shows that the asymptotic distribution of the esti-
mated regression coefficients, γ̂ i,τ = (b̂

′
i,τ , λ̂′

i,τ )
′, is a multivari-

ate normal distribution. Similarly, the asymptotic distribution of
the estimated common factor f̂ t,τ is also a multivariate normal
distribution.

Theorem 2. Suppose that Assumptions A–D hold. Assume that
T1/2/N1−γ → 0 and N1/2/T1−γ → 0 for a small γ satis-
fying 1/16 < γ < 1/2. Then, the asymptotic distribution
of T1/2(γ̂ i,τ − γ i,0,τ ) is normal with mean zero and variance-
covariance matrix

�i,τ = τ(1 − τ)�−1
i,0,τ Vi,0,τ�

−1
i,0,τ .

Here, �i,0,τ and Vi,0,τ are given as �i,0,τ ≡ plimT→∞T−1∑T
t=1 git(0|xit , f t,0,τ , λi,0,τ )zit,0,τ z′

it,0,τ and Vi,0,τ ≡
plimT→∞T−1 ∑T

t=1 zit,0,τ z′
it,0,τ with zit,0,τ = (x′

it,τ , f ′
t,0,τ )

′.
Furthermore, the asymptotic distribution of N1/2(f̂ t,τ − f t,0,τ )
is normal with mean zero and variance-covariance matrix

�t,τ = τ(1 − τ)�−1
t,0,τ R0,τ�

−1
t,0,τ .

Here, �t,0,τ and R0,τ are given as �t,0,τ ≡ plimN→∞N−1∑N
i=1 git(0|xit , f t,0,τ , λi,0,τ )λi,0,τλ

′
i,0,τ and R0,τ ≡ plimN→∞N−1∑N

i=1 λi,0,τλ
′
i,0,τ , respectively.
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The proofs of Theorem 1 and Theorem 2 are given in the
supplementary materials. There are some studies on panel
data models with factor structures, for example, Bai (2009),
Song (2013), and Ando and Bai (2015). However, these results
cannot be transferred to our setting directly because these
methods were designed for panel “mean” regression models
with factor structures instead of panel “quantile” models.
Although Koenker (2004) and Kato, Galvao, and Montes-
Rojas (2012) investigated the asymptotic property of the
panel quantile regression models, their results are derived
from panel quantile regression models with “individual fixed
effects.” In contrast to these studies, the model (1) contains
the factor structures and heterogeneous regression coefficients.
In addition, the dimensions of the panel size N and T are
diverging. Therefore, a novel proof is developed by addressing
these technical difficulties. For the panel “mean” models, Song
(2013) and Ando and Bai (2015) imposed T1/2/N → 0 and
N1/2/T → 0 to obtain the asymptotic distribution. Because of
the non-smoothness of the objective function and nonlinearity
in terms of parameters, we need slightly stronger conditions on
T and N.

Next, we provide a theoretical justification for the use of IC
in Equation (9), as none of the previous studies (e.g., Bai and Ng
2002; Amengual and Watson 2007; Hallin and Liška 2007; Lam
and Yao 2012) have addressed the important question of how to
determine the number of common factors in a panel quantile
regression model with interactive fixed effects. Here, we provide
a new solution to this issue and provide a theoretical justification
for our proposed model selection criterion.

Theorem 3. Suppose that assumptions in Theorem 2 hold.
Under the model selection criterion Equation (9) with penalty
q(N, T) that satisfies

q(N, T) → 0 and CNT × q(N, T) → ∞,
where CNT = min{N, T}, we have a consistent model selector
of the true dimension of the interactive effects (i.e., the true
number of common factors) r0,τ .

As shown in Bai and Ng (2002), the penalty function Equa-
tion (10) satisfies the conditions in Theorem 3. One can also
consider an alternative penalty function. However, this is out-
side the scope of this article.

6. Empirical Results

6.1. Data and Model

We explore the quantile common factor structures of the global
financial markets around the period of the subprime crisis, the
period of the European sovereign debt crisis, and the subsequent
period. Here, we analyze the stock returns of publicly traded
firms and firms traded in over-the-counter trading markets for
over 6000 international stocks from over 100 financial markets.
To investigate the impact of the subprime crisis and European
sovereign debt crisis on the global financial industry, we analyze
individual firms’ stock returns belonging to the following indus-
tries: Banking, Life Insurance, Nonlife Insurance, Financial Ser-
vices, and Real Estate Investment and Services. We collect all
data from the Datastream database.

To study the dynamic characteristics of the global stock
market, we analyze the following three periods.

Period 1: January 1, 2007 to April 31, 2009
Period 2: September 1, 2009 to December 31, 2012
Period 3: January 1, 2013 to March 31, 2015

Period 1 contains some key events during the subprime
crisis, including the Chapter 11 bankruptcy of Lehman Brothers
in September 2008. The Dow Jones Industrial Average then
hit a bottom in the middle of 2009. Although the Dow
Jones Industrial Average had been recovering stably since
then, the long-term interest rates of Euro zone countries
(including Greece, Portugal, and Ireland) started to increase
by the end of 2009. In the middle of 2012, the long-term
interest rates of the Greece government bond reached above
30%. After the announcement by the European Central Bank
indicating free unlimited support for all Euro zone countries,
the interest rate dropped by around 10% in December, 2012.
Obviously, one could use a different specification for these
subperiods. However, similar results are obtained under a
different subperiod specification. Stocks with missing returns
and stocks with no variation are excluded from the sample used
for analysis. The final samples for each period are summarized
in Table 1 in an online supplementary materials. Finally, because
different financial markets do not have the same trading hours,
it is common to use the rolling average, and the two-day returns
of each of the firms are therefore, employed for the returns (e.g.,
Forbes and Rigobon 2002; Ando and Bai 2017). We consider
the following panel quantile regression model with a factor
structure:

Qyit (τ |xit) = αi,τ + Mktt × βMkt,i,τ + HMLt

×βHML,i,τ + SMBt × βSMB,i,τ

+RMWt × βRMW,i,τ + CMAt × βCMA,i,τ

+
11∑

k=1
LMktt,k × βLMkt,k,τ + f ′

t,τλi,τ , (15)

where Mktt , HMLt , SMBt , RMWt , and CMAt are Fama/French
global five factors at time t. Here, Mkt is the return on a
region’s value-weighted market portfolio minus the United
States one-month T-bill rate, SMB (Small Minus Big) is the
average return on the nine small stock portfolios minus the
average return on the nine big stock portfolios, HML (High
Minus Low) is the average return on the two value portfolios
minus the average return on the two growth portfolios,
RMW (Robust Minus Weak) is the average return on the
two robust operating profitability portfolios minus the average
return on the two weak operating profitability portfolios, and
CMA (Conservative Minus Aggressive) is the average return

Table 1. Estimated number of common factors rτ for the quantiles τ = 0.05 and
0.95.

τ Period 1 Period 2 Period 3 Period 4

0.05 7 6 3 10
0.95 2 2 4 8

NOTE: Period 1 (January 1, 2007 to April 31, 2009); Period 2 (September 1, 2009
to December 31, 2012); Period 3 (January 1, 2013 to March 31, 2015); Period 4
(January 1, 2007 to March 31, 2015).
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on the two conservative investment portfolios minus the
average return on the two aggressive investment portfolios.
International tests of a five-factor asset pricing model are
studied by Fama and French (2016). Further details of these
factors and the historical data are obtained from the publicly
available Fama/French data library http://mba.tuck.dartmouth.
edu/pages/faculty/ken.french/data~library.html. A set of factors
{LMkt,k, k = 1, . . . , 11} is the average return for 11 local
stock exchange markets with more than 100 stocks in the
dataset.

6.2. Result

6.2.1. Number of Common Factors
In this article, we focus on both the upper and lower quantiles
and consider τ = 0.05 and τ = 0.95. We apply the proposed
model selection criterion, IC(rτ ) in Equation (9), to select the
number of common factors. The maximum number of common
factors is set to 12. For each period, the number of common
factors is determined as the minimizer of the IC score. After
we obtain the frequentist estimates, we also implemented the
posterior sampling procedure described in Section 3.2. The
total number of posterior samples is set at 3000. As expected,
the difference between the frequentist estimate and Bayesian
maximum a posteriori in Equation (8) was negligible. Hereafter,
we thus report the results based on the frequentist estimator
only.

The number of common factors detected is summarized in
Table 1. In this table, the number of common factors for the
τ = 0.05 quantile in Period 1 is determined to be rτ = 7 because
it achieved the smallest value of the proposed model-selection
criterion, IC. This suggests that there are rτ = 7 common factors
that explain the τ = 0.05 quantile in Period 1. The table shows
that the number of common factors in the τ = 0.95 quantile
is smaller than that in the τ = 0.05 quantile in Periods 1 and
2. This indicates that the τ = 0.05 quantile exhibits greater
variability due to the increase in the degree of complexity. As
one of the referees suggested, this difference is partially due
to differences in governments or regulations for the different
stocks.

The number of common factors for the τ = 0.05 quantile
in Period 3 is smaller than that in other periods. This implies
that the degree of market heterogeneity decreased in Period
3. In summary, the common factor structures that explain
the asset return distribution vary across quantiles. Moreover,
the common factor structures are not symmetric in the sense
that the structures in the lower tails and the upper tails are
different.

6.2.2. Common Factors for the Quantile and for the Mean
To check whether the extracted common factors for the quan-
tile function and the common factors for the mean are per-
fectly related, we implement canonical correlation analysis. Let
F̂τ be the estimated common factors of dimension rτ , which
is determined by the IC(rτ ) score. Setting the dimension of
the common factor for the mean to be identical to rτ , we
estimate the following asset pricing model with a common

Table 2. The result of canonical correlation analysis between the common factors
for quantile τ and the common factors for the mean (see Section 6.2.2).

τ Period 1 Period 2 Period 3 Period 4

0.05 6/7 5/6 3/3 10/10
0.95 1/2 2/2 4/4 7/8

NOTES: To determine the significant canonical correlation, the 5% significance level
is used. Period 1 (January 1, 2007 to April 31, 2009); Period 2 (September 1, 2009
to December 31, 2012); Period 3 (January 1, 2013 to March 31, 2015); Period 4
(January 1, 2007 to March 31, 2015).

factor structure

yit = αi + Mktt × βMkt,i + HMLt × βHML,i + SMBt × βSMB,i

+RMWt × βRMW,i

+CMAt × βCMA,i +
11∑

k=1
LMktt,k × βLMkt,k,i + f ′

tλi + εit ,

by minimizing the least-squares objective function �(B, F, �) =∑N
i=1 ‖yi − Xiβ i − Fλi‖2 subject to the constraint F′F/T =

Ir . Numerical optimization can be achieved by the iterative
optimization of B, F, � based on the previous results (see, e.g.,
Bai 2009; Song 2013; Ando and Bai 2015; Wang 2017).

Let F̂ be the estimated common factors for the mean
structure. Then, we apply the canonical correlation analysis
for exploring the relationships between F̂ and F̂τ . To check
whether all the columns of F̂ and F̂τ are indeed related, we use
the significance tests for canonical correlation analysis. Wilks’
Lambda is used for this purpose. In determining the significant
canonical correlation, the 5% significance level is used. The
results are summarized in Table 2.

There is a certain degree of relatedness between the common
factor for the quantile and that for the mean. Note that 1/2 =
50% of τ = 95% quantile common factors F̂0.95 in Period
1 are related to the estimated common factors for the mean
structure F̂. Thus, it should be noted that the common factor
for the quantile and that for the mean are not always identical,
as the statistically significant canonical correlation is smaller
than the detected number of common factors for the quantiles.
This implies that the two-step procedure to estimate the model
parameters (in Section 3) will lead to inconsistent estimates of
the regression coefficients and factor loadings. Therefore, our
data-augmentation strategy is important for avoiding this issue.

6.2.3. Do the Stock Exchange and Industry Matter?
To explore the effects of stock exchanges and industries on
individual stock returns, we apply a clustering approach
to the estimated regression coefficients and factor loadings
{(b̂

′
i,τ , λ̂′

i,τ ); i = 1, . . . , N} to create a set of groups based on
the similarities in the sensitivity to the common factors. If
the source of the sensitivity to the factors (both observables
and unobservables) is solely attributable to stock exchanges,
it is expected that the two-way table of the assigned group
membership from the clustering approach against the stock
exchanges will be diagonal. To save space, clustering results are
provided in the online supplementary materials. In short, the
firm industry and the stock exchange on which a firm is listed
are important factors to be considered. However, we also note

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data~library.html
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data~library.html
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Figure 1. Link between the extracted common factors and Fama and French factors for each region (see Section 6.2.4). Each cell represents the fraction of statistical
significant common factors explained by Fama and French factors. Period 1 (January 1, 2007 to April 31, 2009); Period 2 (September 1, 2009 to December 31, 2012); Period
3 (January 1, 2013 to March 31, 2015); Period 4 (January 1, 2007 to March 31, 2015).

that these nominal factors are insufficient to fully capture the
underlying market structures.

6.2.4. Meaning of Common Factors and Regional Effects
Because the estimated common factors do not have an
immediate economic interpretation, we explore the economic
meanings of the estimated common factors. Here, we regress
the estimated common factors on Fama and French’s 5 factors
(Global, North America, Europe, and Asia Pacific). These
factors and the historical data are obtained from the publicly
available Fama/French data library. Because there are 5 factors
(Mkt, SMB, HML, RMW, and CMA) in each of the four regions,
each of the estimated common factors is regressed on the set
of 20 (Fama and French’s 5 factors × 4 regions) variables.
Mathematically, let fjt,τ be the estimated value of the jth
common factor at time t and at the τ th quantile; we then run the
following regression fjt,τ = z′

tγ j + ejt , where zt is the twenty-
dimensional vector of Fama and French’s factors. Then, we
conduct statistical significance tests of the least-squares estimate
γ̂ j.

To clearly demonstrate the regional effects, we calculate the
following. We simply count the number of statistically signif-
icant Fama and French factors for each region. For example,
in the lower quantile τ = 0.05, there are rτ = 7 common
factors in Period 1. For each of the factors, we run the following
regression: fjt,τ = z′

tγ j + ejt for j = 1, 2, . . . , rτ . To investigate
a connection to North America, we count the total sum of the
number of significant Fama and French North America 5 factors
across the seven (rτ = 7) regressions. Note that a particular
Fama and French factor may be counted multiple times across
the regressions. Because the number of common factors rτ
varies across quantiles and periods, we convert this count into
percentage terms by dividing it by 5 × rτ , which is the upper
bound of the count. For example, in the lower quantile τ = 0.05
in Period 1, the total sum of the number of significant Fama
and French North America 5 factors is divided by 5 × rτ =

5 × 7 = 35. The same operation is performed for the others,
Global, Europe and Asia Pacific.

Figure 1 summarizes the results. We see that the extracted
common factors are less connected to Fama and French’s global
factors than regional factors. This implies that the extracted
factors are more related to Fama and French’s regional factors.
We note that the Fama/French global five factors are included in
the explanatory variables Equation (15). Because the extracted
common factors are still connected to the Fama and French’s
global factors, our model is useful in treating the endogeneity
problem.

6.2.5. Discussion
The goal of our empirical analysis is to analyze the quantile
co-movement of a large number of financial time series by
investigating the quantile co-movement structure of the global
financial market. We are interested primarily in the empirical
questions described in the introduction. Here, we would like to
provide a summary of our empirical findings.

Regarding the first question; “Do the quantile common factor
structures that explain asset return distribution vary across
quantiles?,” we found that the number of common factors varies
across quantiles. The number of common factors also varies
over time. This is one of the reasons that understanding current
financial market structures is important because the market
structure changes over time.

We found empirical evidence to answer the second question.
The common factor structure is not symmetric in the sense that
the number of common factors in the lower tail τ is larger than
that in the upper tail in Periods 1 and 2. This implies that there
is greater heterogeneity in the lower tail than in the upper tail in
these two periods.

Third, Table 2 indicates that there is a fair degree of related-
ness between the common factor for the quantile and that for
the mean. However, they are not identical. Therefore, the two-
step procedure described in Section 3 would lead to inconsistent
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parameter estimation results. To avoid such undesirable results,
our initialization algorithm and data-augmentation strategy are
important.

Fourth, the stock exchange on which a firm is listed is par-
tially related to the extracted factor structures. These observable
stock characteristics are not sufficient to explain the extracted
factor structures. This implies that diversification based on the
stock exchange on which a firm is listed is inadequate, as the
common factor structures are not fully connected with these
nominal classifications.

Finally, there are special characteristics of the quantiles
of financial markets. Compared to Period 3, the number of
common factors in Periods 1 and 2 is larger. This implies
that the heterogeneity of the global financial market decreased
after Period 2. Figure 1 shows that the unobservable common
factor structures are more connected to Asia Pacific regional
factors during the subprime crisis (Period 1). This implies that
the model (15) is missing some observable factors relating
to Asia Pacific regional factors. In summary, the important
common factors that govern asset return distributions vary
across quantiles. These findings, derived from our general
procedure, offer useful insights for institutional investors and
regulators.

6.2.6. Robustness Check
For the vectors of observable factors in Equation (15), we use
Fama and French’s (2016) global five factors and a set of average
returns for 11 local stock exchange markets with more than
100 stocks in the dataset. It is also possible to implement the
proposed modeling procedure under a different specification of
the vectors of observable factors. For example, together with
Fama and French’s (2016) global five factors, one can consider
a set of average returns for local stock exchange markets with
more than 50 stocks in the dataset. However, similar results are
obtained under this specification.

The rolling two-day average of returns is used to cope with
the differences in international market trading hours. Similar
results can be obtained under daily returns instead of a two-day
rolling average.

7. Conclusion

In this article, we introduced a new panel quantile regression
model with interactive fixed effects. The model has attractive
features, including heterogeneous regression coefficients,
unobservable common factors that vary across quantiles, and
the ability to cope with endogeneity by allowing observ-
able factors depend on unobservable factors and factor
loadings.

To address endogeneity and a large number of parameters, we
proposed frequentist and Bayesian data-augmented inference
procedures. This allowed us to directly estimate the model
parameters. Theoretical properties were established for the fre-
quentist estimator. We also developed a new approach for select-
ing the number of common factors. Our empirical analysis
delivered many insightful findings, which are of interest for
investors and market regulators.

Supplementary Materials

Supplementary materials, including technical proofs and simulation results,
for this article are available online.
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