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1 Introduction

High-dimensional factor models assume that a small number of factors can capture the common
driving forces of a large number of economic variables. This method of dimension reduction is
a powerful statistical tool and has been found useful in forecasting (Stock and Watson, 2002),
structural factor-augmented VAR analysis (Bernanke, Boivin, and Eliasz, 2005), reducing the num-
ber of instruments (Bai and Ng, 2010), and constructing dynamic stochastic general equilibrium
(DSGE) models (Boivin and Giannoni, 2006). The method has also been applied to estimate high-
dimensional variance-covariance matrices (Fan, Liao and Mincheva, 2011, 2013) and to measure the
average treatment effects of policy interventions (Hsiao, Ching and Wan, 2012). While factor models
are useful, practitioners have to be cautious about potential structural changes in high-dimensional
data sets. This concern is empirically relevant because parameter instability is a pervasive phe-
nomenon in time series data (Stock and Watson, 1996; see also Banerjee and Marcellino, 2008 and
Yamamoto, 2016).

Recent studies have developed tests for structural changes in factor models (Stock and Watson,
2008; Breitung and Eickmeier, 2011; Chen et al. , 2014; Corradi and Swanson, 2014; Han and
Inoue, 2015; Tanaka and Yamamoto, 2015; and Su and Wang, 2015). Most of these studies focus
on testing whether the factor loadings have a structural break at a common date.1 The rejection of
the null hypothesis of no structural breaks naturally leads to the next question of when the break
occurred. Estimating the break point in factor models is more challenging than in standard time
series regressions because the factors are not observed. Even the consistency of the estimated break
fraction (i.e., the break date divided by sample size) was not established until recently. Cheng et al.
(2016) develop a shrinkage method that can consistently estimate the break fraction. Chen (2015)
considers a least squares (LS) estimator of break points and proves the consistency of estimated
break fractions. Baltagi, Kao, and Wang (2017) propose an estimator and show that the distance
between the estimated and true break dates is stochastically bounded. For the consistency of the
estimated break point, Massacci (2017) studies the LS estimation of structural changes in factor
loadings under a threshold model setup. His convergence rate of the estimated break fraction implies
the consistency of the estimated break date. In addition, Ma and Su (2018) develop an adaptive
fused group Lasso method to consistently estimate all break points under a multi-break setup.
Yet, almost all of these papers consider large breaks, and none of them establishes the limiting
distribution of the estimated break point.

In an influential study in this area, Bates et al. (2013) show that when the magnitudes of
breaks are small, the estimated factors and factor loadings have the same rate of convergence as
the case without breaks, even when the breaks are ignored. This result may have the unintended
consequence of making researchers think they do not have to explore small changes. However, there
are several advantages in studying small breaks. One is that actual changes may indeed be small, or

1Su and Wang (2015) do not assume a common break date; instead, they consider smooth changes in the loadings.
See Bai and Han (2016) for a detailed survey on these tests.
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that only a small portion of series have undergone changes. Second, under large breaks, asymptotic
theory implies an exact estimation of the break points as both N and T (the cross-section and time
dimensions) go to infinity. In practice, we have only moderate sample sizes, so exact estimation
does not hold. Small breaks imply randomness of the estimated breaks even in the limit, providing
a way to characterize the uncertainty about the estimated break points.

In this paper, we contribute to the literature mainly in two ways. First, we establish the
consistency of the break date estimated by the LS under both large and small breaks. We consider
two types of small breaks: (1) the magnitude of the change in each variable’s factor loadings is of
order N

α−1
2 for some 0 < α ≤ 1, where N is the total number of variables, and (2) the magnitude of

the change is fixed but only O(Nα) variables have structural changes for some 0 < α ≤ 1. When α =
1, these two setups coincide. Almost all existing studies require α = 1 to establish the consistency
of either the break fraction or the break date. An exception is the work by Massacci (2017), who
proves the consistency of the break date estimated by the LS when O(Nα) many variables have
breaks for 0.5 < α ≤ 1. In contrast, we establish the consistency of the estimated break date under
both cases (1) and (2) for 0 < α ≤ 1 if N1−α log log T/T → 0 and log log(NT )/min(N,T ) → 0
as N,T → ∞. This is a much stronger result than those in the literature. It implies that the
LS estimator can accurately estimate the break date even when either the break magnitude or the
number of variables with breaks is small.

The second major contribution of this paper is that we establish the asymptotic distribution of
the break date estimated by LS. We show that the difference between the estimated and true break
dates is Op(1) for α = 0 in both cases (1) and (2) addressed in the previous paragraph. In addition,
we derive the asymptotic distribution of the estimated break date under case (1) for α = 0. The
asymptotic distribution would be the same as that obtained by Bai (2010) if the factors were always
equal to one for all periods. In general, the distribution of the estimated break date depends on
the generating processes of the unobserved factors. Thus, we propose a bootstrap procedure to
construct confidence intervals for the estimated break date. The simulation results show that our
bootstrap method has good coverage probabilities in finite samples.

To establish the consistency and distribution results, we have to resolve the challenge that
factors are estimated by principal components (PCs) rather than observed. Note that Bai (2010)
also establishes the consistency and asymptotic distribution of the LS break date estimator with
observed regressors. However, the proofs become much more difficult with estimated factors for
several reasons. First, when the breaks are large, comparing the sums of squared residuals computed
using estimated factors is asymptotically equivalent to comparing those computed based on the true
factors. This trick is commonly used in the literature (e.g., Chen, 2015). However, it does not work
when the breaks are small. The detailed technical reason is explained in the first two paragraphs
of Section 3.2. Second, the factors are estimated by subsample PCs given a potential break date k,
so the estimated factors depend on not only time index t but also the split date k. In contrast, the
values of the observed regressors in Bai (2010) depend only on time index t regardless of the value
of k. Thus, it is more difficult to compare the sums of squared residuals at different split dates
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with estimated factors. In addition, when the split date is not equal to the true break date, the
structural change affects the properties of the factors estimated from the subsample that contains
the break point. Lastly, the PC estimation can only identify the factors up to some rotation, which
again depends on the split date. In this paper, we resolve all of these challenges and substantially
generalize Bai’s (2010) results.

In addition to Bai (2010), other researchers study the change point estimation for large panels.
Kim (2011) generalizes Bai’s (2010) result by allowing structural changes in both deterministic
trends and means. Kim (2014) generalizes Kim (2011) by allowing a factor structure in the error
terms of the large panel. Baltagi, Kao, and Liu (2017) extend Bai’s (2010) work by allowing
nonstationary regressors and error terms. Baltagi, Feng, and Kao (2016) show the consistency
of the LS break date estimator in Pesaran’s (2006) common correlated effects (CCE) model with
structural changes on regression coefficients. Baltagi, Kao, and Wang (2015) allow structural breaks
in a heterogeneous large panel with interactive fixed effects (Bai, 2009). They obtain the consistency
of the estimated break fraction and break date under some conditions. Li et al. (2016) consider
the same interactive fixed-effect panel but with multiple breaks on the regression coefficients. To
the best of our knowledge, although some studies allow for an unobserved factor structure in large
panels, they focus only on structural changes in the coefficients on the observed regressors, and do
not consider break point estimation for the factor loadings.

This paper is organized as follows. Section 2 sets up the factor model with a single break on
the factor loading matrix and describes the LS estimator for the break date. Section 3 provides the
assumptions and establishes the consistency and asymptotic distribution of the break date estimator.
A bootstrap procedure for constructing the confidence intervals is also proposed. Section 4 conducts
Monte Carlo simulations and shows that the estimator performs well in finite samples. Section 5
presents two empirical applications. Section 6 concludes the paper.

2 High-Dimensional Factor Models with Structural Breaks

Consider the model for i = 1, ..., N ,

xit =

λ
′
i1ft + eit for t = 1, 2, ..., k0(T )

λ′i2ft + eit for t = k0 + 1, k0(T ) + 2, ..., T,
(2.1)

where ft is the r-dimensional vector of unobserved common factors, k0(T ) is the unknown break
date, λi1 and λi2 are the pre- and post-break factor loadings, respectively, and eit is the idiosyncratic
error. Let xt = [x1t, ..., xNt]′, et = [e1t, ..., eNt]′, Λ1 = [λ11, ..., λN1]′, and Λ2 = [λ12, ..., λN2]′. The
vector representation of (2.1) is

xt =

Λ1ft + et for t = 1, 2, ..., k0(T )

Λ2ft + et for t = k0 + 1, k0(T ) + 2, ..., T.
(2.2)
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In our asymptotic setup, we set k0(T ) as a sequence depending on T such that

k0(T ) = [Tτ0], (2.3)

where τ0 ∈ (0, 1) is a fixed constant and [.] denotes the integer part of a real number. Hence, the
ratio k0(T )/T is held constant as T →∞. The theory in this paper is developed under (2.3), which
is commonly used in the structural break literature (e.g., Bai, 2010). The dependence of k0 on T is
suppressed for notational simplicity in the rest of the paper, unless otherwise specified.

For any given k = 1, ..., T − 1, we define X(1)
k = [x1, x2, ..., xk]′ and X

(2)
k = [xk+1, xk+2, ..., xT ]′.

Thus, the subscript k denotes the date to split the sample, and the superscripts (1) and (2) denote
the pre- and post-k data, respectively. Similarly, we define

F
(1)
k = [f1, ..., fk]′, F

(2)
k = [fk+1, ..., fT ]′,

e(1)
k = [e1, ..., ek]′, e(2)

k = [ek+1, ..., eT ]′. (2.4)

To simplify the notation, we use F (1) and F (2) to denote F (1)
k0

and F (2)
k0

, respectively. Hence, (2.1)
can be rewritten in the following matrix format X

(1)
k0

X
(2)
k0

 =
[

F (1) 0k0×r

0(T−k0)×r F (2)

] [
Λ′1
Λ′2

]
+

 e(1)
k0

e(2)
k0

 ,
= GΘ′ + e (2.5)

where

G =
[

F (1) 0k0×r

0(T−k0)×r F (2)

]
, Θ = [Λ1,Λ2], and e =

 e(1)
k0

e(2)
k0

 .
Thus, (2.5) is an observationally equivalent factor model, where the number of factors is doubled
and the factor loadings are time invariant. In this setup, the factor process ft can be viewed as
having a structural change. Baltagi, Kao, and Wang (2017) use this view to estimate the break
date.

2.1 Estimation of the break point

Let τ1 > 0 and τ2 < 1 be a priori lower and upper bounds for τ0, so that 0 < τ1 ≤ τ0 ≤ τ2 < 1.
The estimation of the break point involves the estimation of unobserved factors. Consider a given
date τ1T ≤ k ≤ τ2T . The factors are estimated via PCs. Let F̃ (1)

k denote
√
k times the first r

eigenvectors of X(1)
k X

(1)′
k and F̃ (2)

k denote
√
T − k times the first r eigenvectors of X(2)

k X
(2)′
k , so we

have

1
kN

X
(1)
k X

(1)′
k F̃

(1)
k = F̃

(1)
k Ṽ

(1)
k ,
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1
(T − k)NX

(2)
k X

(2)′
k F̃

(2)
k = F̃

(2)
k Ṽ

(2)
k , (2.6)

where Ṽ (1)
k and Ṽ (2)

k are r×r diagonal matrices consisting of the first r eigenvalues of X(1)
k X

(1)′
k /kN

and X(1)
k X

(1)′
k /(T − k)N , respectively.

If k = k0, we define

V̂ (1) ≡ Ṽ (1)
k0
, F̂ (1) ≡ F̃ (1)

k0
,

V̂ (2) ≡ Ṽ (2)
k0
, F̂ (2) ≡ F̃ (2)

k0
, (2.7)

so that the “hat” denotes the case where the break date is correctly specified. Let f̃t and f̂t denote
the transpose of the t-th row of F̃ =

[
F̃

(1)′
k , F̃

(2)′
k

]′
and F̂ =

[
F̂ (1)′ , F̂ (2)′

]′
, respectively. Given the

estimator f̃t, the pre- and post-k factor loading matrices can be estimated using OLS, i.e.,

λ̃i1 =
F̃

(1)′
k X

(1)
k,i

k
, λ̃i2 =

F̃
(2)′
k X

(2)
k,i

T − k
, (2.8)

where X(1)
k,i = [xi1, xi2, ..., xik]′, X

(2)
k,i = [xik+1, xik+2, ..., xiT ]′. It is important to note that f̃t, λ̃i1,

and λ̃i2 depend on k; however, for notational simplicity, their dependence on k is suppressed. For
a given k, define the sum of squared residuals as

SSR(k, F̃ ) ≡
N∑
i=1

k∑
t=1

(
xit − f̃ ′tλ̃i1

)2
+

N∑
i=1

T∑
t=k+1

(
xit − f̃ ′tλ̃i2

)2
. (2.9)

The estimated break date is given by

k̃ = arg min
τ1T≤k≤τ2T

SSR(k, F̃ ). (2.10)

The estimation of k̃ jointly utilizes the information from all N variables. We expect that k̃ benefits
from the large N setup and is more accurate than estimators obtained using information from a
fixed number of cross-sections.

When k = k0, we use λ̂i1 and λ̂i2 to denote the estimated pre- and post-break factor loadings,
i.e.,

λ̂i1 =
F̂ (1)′X

(1)
k0,i

k0
, λ̂i2 =

F̂ (2)′X
(2)
k0,i

T − k0
, (2.11)

so the sum of squared residuals for k = k0 is defined as

SSR(k0, F̂ ) =
N∑
i=1

k0∑
t=1

(
xit − f̂ ′tλ̂i1

)2
+

N∑
i=1

T∑
t=k0+1

(
xit − f̂ ′tλ̂i2

)2
.

These notations are useful for analyzing the asymptotic properties of k̃.
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In a strict factor model where the error terms are i.i.d. Gaussian with cross-sectionally homo-
geneous variances, minimizing the sum of squared residuals follows from the maximum likelihood
principle. Under our approximate factor model setup with weakly correlated, heteroskedastic and
non-Gaussian errors, k̃ defined in (2.10) can be viewed as a quasi-maximum likelihood (QML) esti-
mator. The factors estimated by PCs are not efficient for approximate factor models, but Bai and
Li (2012) provide simulation evidence that the efficiency loss of the PC estimator, relative to the
maximum likelihood estimator, is vanishing as N and T diverge. Hence, we expect the LS estimator
k̃ to be increasingly accurate as N and T diverge. The large sample theory for k̃ is presented in the
next section.

3 Theory

3.1 Assumptions

Let k be a sequence that depends on T , i.e.,

k = k(T ), and T →∞. (3.1)

For notational simplicity, we suppress its dependence on T and use k to represent the sequence
k(T ). This notation is maintained throughout the rest of the paper unless otherwise specified.

Assumption 1 E(ftf ′t) = ΣF is positive definite, ftf ′t − ΣF =
∑∞
j=0 a

(f)
j ν

(f)
t−j, where ν

(f)
t−j is i.i.d.

over t with zero mean, E|ν(f)
t |2+ρ < ∞ for some ρ > 0, and there exists a constant M < ∞ such

that ∑∞j=0 j|a
(f)
j | ≤M .

Assumption 2 For ` = 1, 2 and i = 1, ..., N , E‖λi`‖4 < ∞, Λ′`Λ`/N − Σ` →p 0 for some r × r
positive definite matrix Σ` and Λ′1Λ2/N − Σ12 →p 0 for some nonsingular matrix Σ12.

Assumption 3 There exists M <∞ such that for all T and N ,
(a) E(eit) = 0, E |eit|8 ≤M for all i ≤ N and t ≤ T .
(b) E(e′set/N) = E(N−1∑N

i=1 eiseit) = γN (s, t), and ∑T
s=1 |γN (s, t)| ≤M for every t ≤ T .

(c) E(eitejt) = ζij,t with |ζij,t| ≤ |ζij | for some ζij and for all t. In addition, ∑N
j=1 |ζij | ≤ M for

every i ≤ N .
(d) E(eitejs) = ζij,ts, and (NT )−1∑N

i=1
∑N
j=1

∑T
s=1

∑T
t=1 |ζij,ts| ≤M .

(e) For every (t, s), E
∣∣∣N−1/2∑N

i=1[eiseit − E(eiseit)]
∣∣∣4 ≤M .

Assumption 4 (a) The errors {eit}i≤N,t≤T are independent from the factors {ft}t≤T and the load-
ings {λi1, λi2}i≤N .
(b) For each i = 1, ..., N , fteit =

∑∞
j=0 aijνi,t−j, where νi,t is i.i.d. over t with zero mean,

E|νi,t|2+ρ <∞ for some ρ > 0, and there exists a fixed constant M <∞ such that ∑∞j=0 j|aij | ≤M .
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Assumption 5 There exists M <∞ such that for all T and N ,
(a) For each t, E

∥∥∥ 1√
Nk0

∑k0
s=1

∑N
i=1 fs[eiseit − E(eiseit)]

∥∥∥2
≤M and E

∥∥ 1√
N(T−k0)

∑T
s=k0+1

∑N
i=1

fs[eiseit − E(eiseit)]
∥∥2 ≤M .

(b) For ` = 1, 2, E
∥∥∥ 1√

Nk0

∑k0
t=1

∑N
i=1 ftλ

′
i`eit

∥∥∥2
≤ M and E

∥∥∥∥ 1√
N(T−k0)

∑T
t=k0+1

∑N
i=1 ftλ

′
i`eit

∥∥∥∥2
≤

M .
(c) For each i and ` = 1, 2, E

∥∥∥ 1√
Nk0

∑k0
s=1

∑N
j=1 λj`[ejseis − E(ejseis)]

∥∥∥2
≤M and

E

∥∥∥∥ 1√
N(T−k0)

∑T
s=k0+1

∑N
j=1 λj`[ejseis − E(ejseis)]

∥∥∥∥2
≤M .

Assumption 6 There exists M <∞ such that,
(a) For each t, lim sup0≤h<k0, N,h→∞

1√
N(h+1) log log(NT )

‖
∑k0
s=k0−h

∑N
i=1 fs[eiseit − E(eiseit)]‖ ≤ M

almost surely (a.s.) and lim supk0<h≤T,N,h→∞
1√

N(h−k0) log log(NT )
‖
∑h
s=k0+1

∑N
i=1 fs[eiseit−

E(eiseit)]‖ ≤M a.s.
(b) For ` = 1, 2, lim sup0≤h<k0, N,h→∞

1√
N(h+1) log log(NT )

‖
∑k0
t=k0−h

∑N
i=1 ftλ

′
i`eit‖ ≤ M a.s. and

lim supk0<h≤T,N,h→∞
1√

N(h−k0) log log(NT )
‖
∑h
t=k0+1

∑N
i=1 ftλ

′
i`eit‖ ≤M a.s.

(c) For each i and ` = 1, 2, lim sup0≤h<k0, N,h→∞
1√

N(h+1) log log(NT )
‖
∑k0
s=k0−h

∑N
j=1 λj`[ejseis−

E(ejseis)]‖ ≤M a.s. and lim supk0<h≤T,N,h→∞
1√

N(h−k0) log log(NT )
‖
∑h
s=k0+1

∑N
j=1 λj`[ejseis−

E(ejseis)]‖ ≤M a.s.

Assumption 7 The eigenvalues of r × r matrix (Σ`ΣF ) are distinct for ` = 1, 2.

Assumptions 1–5 are standard in the factor model literature. Assumptions 1 is a strengthened
version of Assumption A of Bai (2003). It implies that E‖ft‖4 < ∞ and ftf ′t is strictly stationary
and ergodic (Proposition 6.1(d) of Hayashi, 2000), so T−1∑T

t=1 ftf
′
t →p ΣF based on the Ergodic

Theorem (Theorem 9.5.5 of Karlin and Taylor, 1975). The linear process setup and summability
condition are sufficient to ensure the applicability of the Law of the Iterated Logarithm (LIL)
on ftf

′
t − ΣF by Theorem 3.3 of Phillips and Solo (1992).2 Namely, Assumption 1 implies that

lim supk0<k≤T, k→∞
1√

(k−k0) log log T

∑k
t=k0+1(ftf ′t −ΣF ) is bounded almost surely. This is applied to

provide a uniform bound for the term (k − k0)−1/2∑k
t=k0+1(ftf ′t − ΣF ).

Assumption 1 also requires E(ftf ′t) to be constant over time. As both factors and loadings are
unobserved, a factor model with a change in the second moment of ft is observationally equivalent
to a model with constant E(ftf ′t), but with a change in the loading matrix (see, for example, the
survey by Bai and Han, 2016). Thus, it is common to assume a time-invariant second moment of
ft for identification purposes in the literature of factor models with structural breaks (e.g., Cheng
et al., 2016; Han and Inoue, 2015).

2The conditions in Assumption 1 are sufficient but not necessary for the LIL. Alternatively, one can assume ftf ′t
to be strong mixing with certain summability condition on the mixing coefficients to ensure the applicability of the
LIL. See, for example, Theorem 5 of Oodaira and Yoshihara (1971).
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Assumption 2 is similar to Assumption B of Bai (2003). Assumption 3 is a combination of
Assumptions C and E of Bai (2003). We show in Theorem 1 that the consistency of k̃ holds when
the errors are weakly correlated in both time and cross-sectional dimensions.

Assumption 4(a) is a slightly relaxed version of Assumption D of Bai and Ng (2004). Although
the errors are assumed to be independent from factors and loadings, we allow for dependence
within each group and dependence between {ft}t≤T and {λi1, λi2}i≤N . Hence, the structural change
λi2− λi1 does not have to be independent of the factors. Also, eit can be weakly correlated in both
cross-sectional and time dimensions. The independence condition in Assumption 4(a) is sufficient
but not necessary, and our theory still holds under weaker conditions. Assumption 4(b) implies
that the LIL can be applied to bound the term (k − k0)−1/2∑k

t=k0+1 fteit and the Central Limit
Theorem (CLT) holds for the term k

−1/2
0

∑k0
t=1 fteit by Theorems 3.3 and 3.4 of Phillips and Solo

(1992).
Assumption 5 is a modified version of Assumption F of Bai (2003). Note that all of the summands

in Assumption 5 have zero mean. The inequalities in Assumption 5 are implications of the CLT,
which holds under general conditions for a wide range of stationary mixing random fields.3 Also,
Jenish and Prucha (2009) establish CLT for mixing random fields without imposing stationarity.

The limsup bounds in Assumption 6 follow from the LIL, which can be established under more
primitive assumptions for random fields. For example, Wichura (1973) and Li and Wu (1989) es-
tablish the LIL with multiple indices for i.i.d. variables under certain moment conditions. For
dependence cases, Theorem 1 of Jiang (1999) shows that the LIL holds for ergodic and strictly
stationary martingale differences with a bounded (2 + ρ)-th moment for some ρ > 0.4 In addi-
tion, Schmuland and Sun (2004) establish the LIL for random fields with exponentially decaying
correlations. As the conventional LIL (with a single summation) has been well studied for depen-
dent variables (e.g., Oodaira and Yoshihara, 1971; Petrov, 1984; Phillips and Solo, 1992; Zhao and
Woodroofe, 2008), the LIL for random fields should continue to hold under quite general weak
dependence structures; thus, we make this high-level assumption about LIL.

Assumption 7 is closely related to Assumption G of Bai (2003). It ensures the existence of the
probability limit of the rotation matrix introduced by PC estimation.

We make the following assumptions about the magnitude of breaks, which include both large
and small breaks.

Assumption 8 Let α ∈ [0, 1] and 0 < M < ∞ be a constant that does not depend on N and T .
The breaks take either of the following forms:
(1) For i = 1, ..., N ,

λi2 − λi1 = δi

N
1−α

2
for i = 1, ...N, (3.2)

where M−1 ≤ E‖δi‖4 ≤M and E‖N−1/2∑N
i=1 λi`δ

′
i‖ ≤M for either ` = 1 or 2.

3For stationary random fields, the detailed technical conditions for the CLT can be found in Nahapetian (1980),
Bolthausen (1982), and El Machkouri et al. (2013).

4For the definitions of ergodicity and martingale differences with two indices, see Jiang (1999) for details.
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(2) For i = 1, ..., N ,

λi2 − λi1 =

βi for i = 1, ..., [mNα],

0 for i = [mNα] + 1, ..., N,
(3.3)

whereM−1 ≤ E‖βi‖4 ≤M and m is a fixed constant satisfying 0 < m <∞ if α > 0 and 1 ≤ m <∞
if α = 0.

Assumption 9 There exists M <∞ such that for all T and N ,
If the breaks take the form in (3.2), then E

(
supk0+u≤k≤k0+s |

∑k
t=k0+u

∑N
i=1 f

′
tδieit|2

)
≤ MN(s −

u + 1) for each u, s with 1 ≤ u ≤ s ≤ T − k0 and E
(

supk0−s≤k≤k0−u |
∑k+1
t=k0−s+1

∑N
i=1 f

′
tδieit|2

)
≤

MN(s− u+ 1) for each u, s with 1 ≤ u ≤ s ≤ k0;
If the breaks take the form in (3.3), then E

(
supk0+u≤k≤k0+s |

∑k
t=k0+u

∑[mNα]
i=1 f ′tβieit|2

)
≤MNα(s−

u+ 1) for each u, s with 1 ≤ u ≤ s ≤ T − k0 and E
(

supk0−s≤k≤k0−u |
∑k+1
t=k0−s+1

∑[mNα]
i=1

f ′tβieit|2
)
≤MNα(s− u+ 1)for each u, s with 1 ≤ u ≤ s ≤ k0.

Assumption 10 Let A = (Λ′1Λ1)−1Λ′1Λ2. There exists a constant c > 0 such that

lim
N→∞

P

(
1
Nα

N∑
i=1

(λi2 − A′λi1)′(λi2 − A′λi1) > c

)
= 1 (3.4)

and
lim
N→∞

P

(
f ′t

[ 1
Nα

(Λ2 − Λ1A)′(Λ2 − Λ1A)
]
ft > 0

)
= 1 (3.5)

for t = k0 and k0 + 1, where α is defined in Assumption 8.

The parameter α in Assumption 8 controls the magnitude of the breaks. When α = 1, the setup
is the same as in the literature on the large breaks in factor models (e.g., Chen et al., 2014; Han
and Inoue, 2015; Cheng et al., 2016). When α < 1, the breaks in (3.2) and (3.3) are of different
formats: the size of the breaks is shrinking as N →∞ for all i = 1, ..., N in (3.2), whereas the size
of the breaks is fixed for a small portion of variables in (3.3), and the majority of variables do not
have breaks. Note that the fraction of variables that have breaks is vanishing as N →∞ for α < 1
in (3.3). In this sense, the setup in (3.3) also captures a kind of small break.

The condition that E‖N−1/2∑N
i=1 λi`δ

′
i‖ ≤ M for either ` = 1 or 2 can be satisfied under

various circumstances, e.g., δi has zero mean and is uncorrelated with either λi1 or λi2. This
condition ensures that Θ′(Λ1 − Λ2) = Op(Nα) for α < 1 (Lemma 1(a) in the appendix), where Θ
is defined in (2.5).5 This condition is not necessary and can be relaxed for the consistency of k̃ for
0 < α ≤ 1, but it is needed to obtain the stochastic boundedness and asymptotic distribution of
k̃ − k0 for α = 0 in Theorems 2 and 3, which require a sharper bound for the difference between
two rotation matrices caused by the PC estimation (see Lemma 2(c)).

The conditions in Assumption 9 are referred to as the second Kolmogorov type maximal in-
equality for moments in Fazekas (2014). This assumption ensures the applicability of Hájek-Rényi

5Note that Θ′(Λ1 − Λ2) = Op(N) automatically holds for α = 1 under Assumption 2.
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type inequality (see Theorem 2.3 of Fazekas, 2014; see also Lemma 1(d) and its proof in the sup-
plementary appendix). The inequalities in Assumption 9 can be established for weakly dependent
random fields under more primitive conditions (see, for example, Lemma 3 of Móricz et al., 2008).

The matrix A in Assumption 10 is crucial to guaranteeing the identifiability of the break point
by (2.10). For example, if Λ2 = Λ1A for some nonsingular matrix A, then (2.5) can be rewritten as X

(1)
k0

X
(2)
k0

 =
[

F (1)

F (2)A

]
Λ′1 +

 e(1)
k0

e(2)
k0

 , (3.6)

which is an observationally equivalent model with constant factor loadings. Consider k > k0 and
the pre-k subsample. We can represent X(1)

k as

X
(1)
k =

[
F (1)

Fk0+1:kA

]
Λ′1 + e(1)

k .

where Fk0+1:k = [fk0+1, ..., fk]′. Let
[

F (1)

Fk0+1:kA

]
≡ G(1)

k . Hence, the PCs extracted from the pre-k

subsample are just an estimator for G(1)
k up to some rotation. The residuals from the regression of

X
(1)
k on G(1)

k will be consistent for the pre-k idiosyncratic errors. Also, the post-k subsample does
not have a break for k > k0, so the post-k residuals are consistently estimated by the OLS regression
of X(2)

k (i.e., the post-k data) on the post-k PC estimators. Thus, the break date is not identifiable6

by minimizing (2.9) for data generated by (3.6). We need Assumption 10 to rule out the breaks of
the format in (3.6). This is the price to pay due to the unobservability and multiplicative structure
of factors and loadings. Equation (3.4) ensures that the difference between λi1 and λi2 defined in
Assumption 8 is genuine in the sense that the sum of squared differences between λi1 and λi2 is of
order Nα even if we account for the possible rotation of Λ2.

Equation (3.4) ensures that the dominant positive term in SSR(k, F̃ ) − SSR(k0, F̂ ) diverges
at the rate (k − k0)Nα if k − k0 is unbounded as N,T → ∞. This condition is applied in the
proof of Theorem 1 to show that k̃ − k0 must be stochastically bounded for α > 0. Equation
(3.5) allows us to show that the dominant positive term in SSR(k, F̃ ) − SSR(k0, F̂ ) is bounded
away from zero when k 6= k0 and k − k0 is bounded as N,T → ∞. It is applied to establish the
consistency result that P (k̃ − k0 6= 0) → 0 in the proof of Theorem 1. The intuition is that it
ensures SSR(k, F̃ )− SSR(k0, F̂ ) to be positive even if k has a small deviation from the true break
point k0, so that k̃ has to equal k0 to minimize SSR(k, F̃ ) − SSR(k0, F̂ ). Equation (3.5) is not
required in Bai (2010) because he considers a constant scalar factor, i.e., ft = 1. We need (3.5) due
to the randomness of factors in our setup, but it is flexible enough to allow various data generating
processes for ft. For example, if fk0 and fk0+1 have continuous cumulative distribution functions,
then the probability that either fk0 or fk0+1 is in the null space of N−α(Λ2 − Λ1A)′(Λ2 − Λ1A) is

6Simulation confirms that k̃ is inconsistent under (3.6) and the results are available upon requests.
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zero, given that N−α(Λ2 − Λ1A)′(Λ2 − Λ1A) is positive semi-definite and its rank is no less than
one.

3.2 Asymptotic properties of k̃

Before establishing the consistency of k̃ for α > 0, we point out several important technical chal-
lenges. First, a commonly used trick in the factor model literature is to show the asymptotic
equivalence between SSR(k, F̃ ) and SSR(k, F ), where SSR(k, F ) is the sum of squared residuals
computed using the unobserved (infeasible) ft. This trick has been applied by Chen (2015) to show
the consistency of the estimated break fraction τ̂ . However, it cannot be applied in the context of
small breaks. Note that the consistency of k̃ for k0 requires us to show

P (min
k 6=k0

SSR(k, F̃ )− SSR(k0, F̂ ) > 0)→ 1

as N,T →∞. The conventional method is based on rewriting

SSR(k, F̃ )− SSR(k0, F̂ ) =
(
SSR(k, F̃ )− SSR(k, F )

)
+ (SSR(k, F )− SSR(k0, F ))

+
(
SSR(k0, F )− SSR(k0, F̂ )

)
. (3.7)

The usual analysis would then proceed to show that the first and third terms on the right-hand side
are negligible in comparison with the middle term.

However, for an α close to zero and a k close to k0, f̃t and f̂t are so close to each other that
the left-hand side is much smaller than the first and third terms on the right-hand side of (3.7).7

That is, the usual argument does not work, and we have to directly compare the objective functions
computed based on the estimated factors.

Second, when k 6= k0, say k > k0, the estimator F̃ (1)
k is computed using the pre-k subsample

that contains a structural break at k0. This will affect the properties of PC estimators. We show
in Lemma 2 (see the appendix) that f̃t is a consistent estimator of ft subject to different rotation
matrices for t ≤ k0 and k0 < t ≤ k. In addition, the estimated factors f̃t depend on the split
date k, so f̃t and f̂t are numerically different even for the same t. This causes another layer of
technical challenge when we compare SSR(k, F̃ ) and SSR(k0, F̂ ). These problems do not arise
in the conventional setup (e.g., Bai, 2010), where the regressors ft are observed. The following
proposition establishes the result for the difference between f̃t and f̂t.

Proposition 1 Let δ2
NT = min(N,T ). Without loss of generality, consider any k(T ) satisfying

k0(T ) < k(T ) ≤ τ2T for all T , where k0 and k are sequences defined in (2.3) and (3.1), respectively.
7Under the framework of no structural breaks, Lemma 2 of Bai and Ng (2002) shows that the difference SSR(F̃ )−

SSR(F ) is Op(δ−1
NTNT ), where SSR(F̃ ) and SSR(F ) denote the sum of squared residuals based on estimated and

true factors, respectively, and δ2
NT = min(N,T ). Our theoretical derivation shows that SSR(k, F̃ ) − SSR(k0, F̂ ) =

Op(Nα(k − k0)) which can be much smaller than Op(δ−1
NTNT ) for small α and k − k0.
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If Assumptions 1–8 hold, then for t ≤ k0 and t > k

Rkf̃t − f̂t =
√
k − k0Op

(√
log(log T )

T

)
+ (k − k0)Op

( 1
TN1−α

)
+Op

(√
log log(NT )
δ2
NT

)
, (3.8)

and

1
k0

k0∑
t=1
‖Rkf̃t − f̂t‖2 = (k − k0)Op

( log(log T )
T 2

)
+ (k − k0)2Op

( 1
T 2N2−2α

)
+Op

(
log log(NT )

δ4
NT

)
,

(3.9)
where f̃t and f̂t denote the PC estimators for ft at a given sample-split date k and the true break
date k0, respectively; Rk is a diagonal matrix consisting of either +1 or −1; and the Op terms in
(3.8) and (3.9) are uniform in k.

The result in Proposition 1 shows that the distance between Rkf̃t and f̂t depends on both the
break magnitude (i.e., α) and the extent to which the break date is misspecified (i.e., |k − k0|).
Since the rotation matrix does not affect the sum of squared residuals, we assume that the signs
of f̃t are properly chosen such that Rk = Ir for notational simplicity in the rest of the paper.
Suppose that both log log T/N → 0 and log logN/T → 0, so the third term in (3.8) is op(δ−1

NT ).
When α = 1 and |k − k0| ∝ T , (3.8) implies that f̃t − f̂t = Op(1), i.e., f̃t and f̂t are generally
different even for large N and T . When either α < 1 or |k − k0|/T → 0, the term k−k0

TN1−α → 0
as N,T → ∞, and f̃t − f̂t = op(1). In the case of large break (α = 1), for example, we can have

f̃t − f̂t = Op(T−1√log log T ) +Op

(√
log log(NT )
δ2
NT

)
if |k − k0| is a fixed number as T →∞. It is well

known that the distance between the PC estimator f̂t and ft, up to some rotation, is Op(δ−1
NT ) (see

Theorem 1 of Bai, 2003). Thus, Proposition 1 implies that f̃t can be in a much closer neighborhood
of f̂t than the true factor ft (up to some rotation) when the break date is slightly misspecified or
the break size is small (i.e., either |k − k0| or α is small). This again illustrates that one cannot
apply the usual trick that replaces f̃t and f̂t with the infeasible ft to establish the consistency of k̃
for an α close to zero.

Theorem 1 Suppose that Assumptions 1–10 hold and 0 < α ≤ 1. If

N1−α log log T
T

→ 0, (3.10)

N−1 log log T → 0, T−1 log logN → 0 (3.11)

as N,T →∞, then
lim

N,T→∞
Pr(k̃ = k0) = 1.

We compare the consistency of k̃ for α > 0 in Theorem 1 with Bai’s (2010) result. Under the
condition T−1N log log T → 0, Bai (2010) shows the consistency of k̃ in a large panel setup with
observed regressors/factors for α > 0. Compared with Bai’s condition, the rate in (3.10) is less
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restrictive and allows a larger N/T ratio when α > 0. The condition in (3.11) is new compared with
that in Bai (2010); it makes the estimation errors of factors negligible uniformly in the split date k.
Condition (3.11) is rather flexible and likely to hold in most economic data for factor analysis. It
is also remarkable that if α = 1, then (3.10) is always satisfied and k̃ is consistent as long as (3.11)
holds.8 Thus, even if N is larger than T in practice, k̃ is still an accurate estimator as long as the
break size is large. Theorem 1 is a substantial extension of Bai’s (2010) result to the scenario with
unobserved factors.
Remark 1: In a conventional time series setup with a fixed N and a large T , it is well known that
k̃ is inconsistent and k̃ − k0 = Op(1) even if α = 1 (see, for example, Bai, 1997a). Baltagi, Kao,
and Wang (2017) develop an estimator, denoted as k̃BKW , using the full-sample PC estimator of F .
Specifically, they estimate the break point in the factor process F . Due to the fixed cross-sectional
dimension of F , k̃BKW is subject to the same problem as the conventional break point estimator in
a small N setup, i.e., k̃BKW − k0 is only stochastically bounded but does not converge to zero for
large breaks (i.e., α = 1). In contrast, our estimator is constructed based on the sum of squared
residuals of the entire large panel. The consistency of our k̃ benefits from the large N setup, and it
holds for both small and large breaks (i.e., 0 < α ≤ 1).
Remark 2: An important contribution of this paper is the consistency under small breaks. The
literature shows that the asymptotic properties of the PC estimator of factors depend on whether
the breaks are large or small (see the survey by Bai and Han, 2016). Most studies have focused
on large breaks in factor models (α = 1) (e.g., Breitung and Eickmeier, 2011; Chen et al., 2014;
Han and Inoue, 2015; Baltagi, Kao, and Wang, 2017). The large breaks in factor loadings lead
to an augmented factor space estimated by PC. For small breaks, Bates et al. (2013) show that
under (3.3) with 0 < α ≤ 0.5, the first r PCs converge to the true factors (up to some rotation)
at the same standard rate as in Bai (2003), even if the breaks are ignored in the estimation.
Thus, the convergence rate does not slow down, and the factor space is not augmented under (3.3)
with 0 < α ≤ 0.5. This implies that it is challenging to detect the break date for small breaks.
However, the finding of Bates et al. does not imply that the break point cannot be identified for
0 < α ≤ 0.5.9 Theorem 1 shows that our k̃ is consistent for k when 0 < α ≤ 1, regardless of the
asymptotic properties of the PC estimator for F . Hence, our estimator provides a unified framework
to consistently estimate the break date for both large and small breaks.

When the breaks are small enough, ignoring the break may lead to better estimation results
under some circumstances (e.g., forecasting) due to the bias-variance tradeoff. However, the small
break setup has the advantage that it implies randomness of the estimated break point even in the

8Bai (2010) shows that k̃ is consistent for α > 0.5 in large panel models with observed regressors regardless of the
N/T ratio. Theorem 1 imposes a restriction on the relative rate between N and T for 0.5 < α < 1. This difference is
due to the estimation of unobserved factors in our setup.

9In a recent study, Massacci (2017) shows the consistency of the LS estimator under small breaks as described by
(3.3) with the restriction α > 0.5. By the result of Bates et al., such a restriction ensures that enough series experience
a regime shift so that ignoring the break is consequential. In contrast, our consistency result under (3.3) only requires
α > 0 and is thus much stronger.
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limit, so that it allows us to analyze the non-degenerate asymptotic distribution of the estimated
break point.

Before we establish the asymptotic distribution of k̃, we present the following theorem to show
that k̃ − k0 is stochastically bounded when α = 0.

Theorem 2 If Assumptions 1–10 hold, α = 0, T−1(N log log T ) → 0 and N−1 log log T → 0 as
N,T →∞, then

k̃ − k0 = Op(1),

where α is defined in Assumption 8.

The stochastic boundedness of k̃ − k0 for α = 0 in Theorem 2 is a strong result. Under (3.3),
only m variables have structural changes for α = 0. Even if m is fixed and N → ∞, k̃ − k0 is still
stochastically bounded as long as N and T satisfy the conditions in Theorem 2. To confirm this
theoretical result, we conduct a simulation with a two-factor model where only one variable has
structural changes with λ12 − λ11 = 12×1, N = 100, T = 2000, and k0 = T/2. The factors, the
pre-break loadings, and the errors are generated in the same way as in (4.1). Figure 1 presents the
distribution of k̃− k0. The simulation result shows that 95% of the mass of |k̃− k0| is less than 20,
which is a quite narrow band compared with the sample size T = 2000.

Insert Figure 1 about here

Next, we present a result for the limiting distribution for the estimated break point. We impose
additional conditions, which are not needed for consistency and the rate of convergence. Also, we
only consider the type of small breaks in (3.2).

Theorem 3 Let ∑N
i=1 δiδ

′
i/N →p Σδ and ΦN = N−1∑N

i=1E(δiδ′i)σ2
i → Φ with σ2

i = E(e2
it). Under

Assumptions 1–7, 9, and 10, if ft is strictly stationary, eit has no serial correlation, the breaks take
the form specified in (3.2) with α = 0, N−1/2∑N

i=1 δieit →d N(0,Φ), T−1(N · log log T ) → 0 and
N−1 log log T → 0 as N,T →∞, then

k̃ − k0 →d arg min
`
W ∗(`),

where W ∗(0) = 0, W ∗(`) = W1(`) for ` > 0 and W ∗(`) = W2(`) for ` < 0, with

W1(`) = tr
(∑̀
t=1

ftf
′
t · Σδ

)
+ 2

∑̀
t=1

f ′tZt, ` = 1, 2, 3, ...

W2(`) = tr

 0∑
t=`+1

ftf
′
t · Σδ

+ 2
0∑

t=`+1
f ′tZt, ` = −1,−2,−3, ... (3.12)

and Zt’s are i.i.d. N(0,Φ) random variables.
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Note that the rotation caused by PC estimation does not show up in (3.12). The normality of Zt
is from the CLT over the cross-sections due to the use of panel data. The asymptotic distribution of
k̃−k0 is the same as what we would obtain if ft were observable. Theorem 3 extends the distribution
result of Bai (2010) to a factor model with unobserved factors. Under Bai’s (2010) setup, where he
considers changes in the mean of a large panel with ft = 1, δi reduces to a scalar and the distribution
in Theorem 3 reduces to

k̃ − k0 →d arg min
`

[|`|Σδ + 2
√

ΦU(`)], (3.13)

where U(0) = 0, U(`) =
∑`
t=1 Zt for ` = 1, 2, 3, ..., U(`) =

∑0
t=`+1 Zt for ` = −1,−2,−3, ..., and

Zt’s are i.i.d. standard normal random variables. Compared with Bai’s (2010) result in (3.13), our
result in (3.12) depends on the distribution of ft as we consider random common factors in general.

Theorem 3 focuses on the breaks as specified in (3.2), which is similar to Bai’s (2010) setup for
obtaining the asymptotic distribution of the break date estimator. The large N setup yields the
result that Zt follows a normal distribution rather than the distribution of idiosyncratic noises. If
eit is serially correlated, then the result in Theorem 3 still holds except that the normal random
variables Zt are serially correlated. If eit has cross-sectional correlation, then we need to include
the covariance terms E(δiδ′j)E(eitejt) in Φ.

This result shows that the estimated break point can have a non-degenerate limiting distribution.
It provides theoretical basis for constructing confidence intervals for the true break point.

3.3 Confidence bands of k̃

Using the distribution in (3.12) for inference requires a consistent estimator for Σδ. Unlike the
conventional panel regressions with observed regressors in Bai (2010), it is challenging to estimate
δi =

√
N(λi1 − λi2) due to the rotations caused by PC estimation. In general, the pre- and post-

break loadings are rotated by different matrices in finite samples even if there is no break. Taking
the difference between

√
Nλ̃i1 and

√
Nλ̃i2 tends to overestimate δi due to the different rotations in

finite samples. In addition, the asymptotic distribution of k̃ depends on the data-generating process
of ft, which is unknown in practice. To circumvent these issues, we propose the following bootstrap
procedure.

Algorithm 1 (1) For a given data set, we estimate the change point k̃ using the LS method and
obtain F̃ (1)

k̃
, F̃ (2)

k̃
, λ̃i1, λ̃i2, and the estimated error ẽi = (ẽi1, ..., ẽiT ).

(2) For i = 1, ..., N , draw the T -dimensional vector e∗i randomly from (ẽ1, ..., ẽN ) with replacement.
Generate the bootstrap data

x∗it =

f̃
′
tλ̃i1 + e∗it for t = 1, ..., k̃

f̃ ′tλ̃i2 + e∗it for t = k̃ + 1, ..., T

for i = 1, ..., N . Estimate the break date k̃∗ using the bootstrap data x∗it.
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(3) Repeat step (2) B times. Obtain the critical values at a desired level from the sorted values of
k̃∗.

The bootstrap procedure in Algorithm 1 requires neither an estimator for Σδ nor the distribution
of ft. In addition, the procedure can be applied not only for the case of α = 0 but also for the case of
α > 0. Resampling the entire T -dimensional vector ei can maintain the serial correlation structure
in the error terms, so this procedure should be robust to limited serial correlation in the errors. The
limitation of this resampling procedure is the lack of robustness to the cross-sectional correlation in
eit. The theoretical validity of this bootstrap procedure is not established and requires a nontrivial
amount of work, so we leave it for future research. The finite-sample performance of Algorithm 1
in simulation is reasonably good and presented in the next section.

There are other resampling schemes in the literature. For example, practitioners may consider
the wild bootstrap developed by Gonçalves and Perron (2014) to obtain e∗it. A grid bootstrap that
imposes the null hypothesis k0 = k̄0 across values of k̄0 is another potential option. We do not
consider the grid bootstrap method due to its high computational costs. The theoretical properties
of these resampling schemes are interesting but beyond the scope of this paper. We leave them as
topics for future research.

4 Monte Carlo Simulation

In this section, we conduct Monte Carlo simulations to evaluate the performance of the LS method
in finite samples. For the consistency results, we consider the following data generating processes
(DGPs):

xit =

λ
′
i1ft + eit for t = 1, 2, . . . , k0

λ′i2ft + eit for t = k0 + 1, k0 + 2, ..., T
(4.1)

where each factor follows an AR(1) process with unity variance and the AR coefficient is equal to
0.5, λi1 ∼ i.i.d. N(0, Ir), and eit ∼ i.i.d. N(0, r).10 The post-break loadings λi2 are generated using
two different setups:
DGP1: λi2 = λi1 + δi/N

(1−α)/2, where δi ∼ i.i.d. N(0, Ir).
DGP2: λi2 = λi1 +βi for i = 1, ..., dNαe, where βi ∼ i.i.d. N(0, Ir); λi2 = λi1 for i = dNαe+1, ..., N ,
and de denotes the ceiling of a real number.

We set k0 = T/2 and r = 2, 3, 4. Each experiment is repeated 1000 times. Let k̃(s) denote the
estimated break date for the s-th repetition. We define the root mean square errors of the estimated
change point as follows:

RMSE =

√√√√ 1
1000

1000∑
s=1

(
k̃(s) − k0

)2
.

10We also conduct simulations with cross-sectionally correlated error terms. The detailed results are reported in
Tables 4A and 4B in the supplementary appendix.
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We compare our estimator with three other estimators. First, Baltagi, Kao, and Wang (2017)
propose an estimator k̃BKW , which converts the estimation of the change point in factor loadings
into the estimation of the change point in the second moments of estimated factors. They show
that k̃BKW − k0 = Op(1) for large breaks (i.e., α = 1). The number of factors is set equal to r̂ in
the estimation of k̃BKW , where r̂ is estimated by applying Bai and Ng’s (2002) ICp1 to the entire
sample. In addition, to make our test comparable with k̃BKW under the case where r is unknown,
we compute our estimator using r̂ − 1 factors, following the suggestion of Chen (2014). We denote
this estimator as k̃r̂−1.

The third estimator to compare with is computed based on the model selection method proposed
by Cheng et al. (2016). Their method can consistently estimate the numbers of pre- and post-break
factors and determine the stability of factor loadings if the number of factors does not change.
Given the selected model, Cheng et al. (2016) use the same LS break point estimator defined in
(2.10) except that r is replaced with r̂1 (r̂2) for the pre-k (post-k) subsamples, where r̂1 and r̂2 are
the estimated numbers of pre- and post-break factors by their shrinkage method. We denote this
estimator as k̃CLS , which is an alternative to k̃r̂−1 when the number of factors is unknown.

Remark 3: Although Cheng et al. (2016) consider the LS break point estimator, our theoretical
work is substantially different from theirs in the following aspects. First, Cheng et al. (2016) mainly
focus on the selection consistency of their shrinkage method, and they only show the consistency
of the estimated break fraction, given their model selection result. In contrast, we establish the
consistency of the LS break point estimator. Second, Cheng et al. (2016) consider the large break
setup, i.e., α = 1. We establish the consistency of k̃ for both small and large breaks. Note that
the penalty terms in Cheng et al. (2016) are not designed for the small break setup. When α is
close to zero, their shrinkage method cannot detect the instability, in which case their break point
estimator is unavailable. To make a fair comparison, we compute k̃CLS under the assumption that
the existence of break is known. In other words, the method of Cheng et al. provides an alternative
way to determine how many factors to use when computing the LS break point estimator. The
finite-sample performance of k̃CLS is studied in our simulation. Its large sample theory for α < 1 is
beyond the scope of this paper and left for future research.

Table 1A reports the RMSEs of different estimators under DGP1. For large breaks (α = 1),
the LS estimator k̃ has much smaller RMSEs than k̃BKW for N ≤ 100 and T ≤ 200. The result
confirms the consistency of k̃ and that k̃BKW − k0 = Op(1). The RMSEs of the LS estimator based
on r̂− 1 factors are greater than those of k̃ but still smaller than those of k̃BKW for small N and T .
For smaller breaks with α ≤ 0.75, the advantage of k̃ over k̃BKW is more evident. The RMSEs of k̃
shrink as N and T increase.11 In contrast, k̃BKW is not consistent and its RMSEs increase with N

11The results in Table 1A show a pattern that the RMSE of k̃ tends to substantially decrease with a fixed N and
an increasing T for α < 1. For example, when α = 0.25 and r = 2, the RMSE of k̃ decreases from 10.4 to 5.65 as T
increases from 100 to 200 and N is fixed at 50. However, this pattern does not imply that we can obtain a consistent
estimate by fixing N and increasing T only. Additional simulations show that the RMSE of k̃ approximately stays at
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and T for α ≤ 0.5, which implies that k̃BKW − k0 is not stochastically bounded. In addition, the
RMSEs of k̃r̂−1 are much larger than k̃ but still smaller than k̃BKW . For α ≤ 0.5, it turns out that
Bai and Ng’s (2002) estimator r̂ is almost always equal to r (i.e., the factor space is not augmented
by the small breaks), so using r̂−1 factors means that one factor is missing from the regression and
treated as part of the error terms. The missing factor contributes to the less accurate estimation
by k̃r̂−1. Finally, k̃CLS performs well in most cases. For α < 1 and large samples (N ≥ 100 and
T ≥ 200), its RMSEs are very close to those of k̃ and much smaller than those of k̃k̂−1. This means
that the shrinkage method of Cheng et al. (2016) can provide the correct estimate for r (in large
samples) even if the break size is small. For small samples with N = 50, k̃k̂−1 sometimes has smaller
RMSEs than k̃CLS . For example, the RMSE of k̃CLS is 28.63 and the RMSE of k̃r̂−1 is 23.50 when
r = 2, α = 0.25, N = 50, and T = 100. Our simulation shows that Cheng et al’s method tends
to overfit the number of factors when N = 50 and α < 1, which may cause the deterioration in
performance of k̃CLS . The overall performance of k̃CLS implies that the shrinkage method of Cheng
et al. (2016) provides a good estimate for the number of factors to compute the LS break point
estimator in large samples.

Table 1B presents the probabilities of correct estimation of the break date. The results are
consistent with those in Table 1A: the LS estimator k̃ can detect the true break date with higher
probabilities than the other three estimators regardless of the value of α. The probabilities are
increasing with α and the sample size N and T . Even for α = 0.25, k̃ can still detect the true
break date with a moderate probability. For example, the probability of k̃ = k0 is about 1/4 for
r = 3, N = 100, and T = 200. Furthermore, for α ≤ 0.75, the probability of correction estimation
by k̃BKW is close to zero and consistent with the large RMSEs of k̃BKW shown in Table 1A. In
addition, the performance of k̃r̂−1 is again between k̃ and k̃BKW . The low probabilities of k̃r̂−1 for
α = 0.25 are due to the same reason discussed in the previous paragraph. Moreover, the probability
of correction estimation by k̃CLS is lower than k̃ but higher than k̃r̂−1. The advantage of k̃CLS over
k̃r̂−1 is more pronounced for α < 1. These findings are consistent with the results in Table 1A.

Table 2A reports the RMSEs of the three estimators under DGP2. The pattern of the results is
similar to that of Table 1A. For large breaks (α = 1), the RMSEs of k̃ are always less than one, even
for the case with (N,T ) = (50, 100). Under DGP2, Bates et al. (2013) show that if α ≤ 0.5, the PC
estimators for the factors and factor loadings ignoring the breaks achieve the same convergence rate
as in Bai (2003). However, such a result does not imply that the break date cannot be identified
for α ≤ 0.5. The consistency of k̃ for α ≤ 0.5 is confirmed by our simulation results. Note that
the number of variables with breaks is in fact quite small for α = 0.25 in our experiments. For
example, when r = 2 and (N,T ) = (100, 500), the RMSE of k̃ is equal to 4.84 with only 4 (out
of 100) variables12 with structural breaks, and the probability of correction estimation is 0.39 (see
Table 2B). This shows that k̃ can detect the break date with high accuracy even when only a small

the same level and does not converge to zero if we further increase T and keep N fixed. The consistency of k̃ requires
both N and T to diverge.

12Note that both the ceilings of 1000.25 and 2000.25 are equal to 4.
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fraction of the variables have undergone structural breaks. The patterns of the results for k̃BKW ,
k̃r̂−1 and k̃CLS are similar to those in Table 1A.

Figure 2 shows the distribution of k̃ − k0 under DGP1 and DGP2 for r = 2, N = 100, and
T = 500. It is evident that the variation of |k̃−k0| decreases as α increases under both DGPs. This
pattern is consistent with the prediction of our theory.

Table 2B summarizes the probabilities of correct estimation under DGP2. The probabilities of k̃
are increasing with the sample size and the value of α. For α = 0.25, r = 2, and (N,T ) = (200, 500),
the probability of correct estimation by k̃ is 0.34, given that only 4 = d2000.25e variables have
breaks. Our simulation also shows that this probability increases to 0.45 (not reported in the table)
for (N,T ) = (400, 2000), given that d4000.25e = 5 variables have breaks. Thus, this confirms the
consistency of k̃ under DGP2 for α ≤ 0.5.

Remark 4: Our theory for k̃ is based on the assumption that r is known. For unknown r, our
simulation results show that k̃r̂−1 outperforms k̃BKW in terms of both RMSEs and the probabilities
of correct estimation, especially for α ≥ 0.5. The theory of k̃r̂−1 is beyond the scope of this paper
and an open question left for future research.

Remark 5: For the case of unknown r, using r̂ − 1 is not the only choice. If all of the factors
undergo large breaks in their loadings, then the number of factors estimated by full-sample PC
tends to be doubled, i.e., P (r̂ = 2r) → 1 as N,T → ∞ (see Breitung and Eickmeier, 2011). Thus,
an alternative choice is to use r̂/2 factors in the estimation of k̃. Which one of these two options
performs better depends on which is closer to the true value of r. The motivation of r̂/2 suggests
that it should be a better option when all factors undergo large breaks and r ≥ 2. If fewer than r
factors have breaks in their loadings, then r̂ tends to a value less than 2r in large samples. Also,
if the breaks are small enough (i.e., α ≤ 0.5), then the number of estimated factors by PC is not
inflated, i.e., P (r̂ = r) → 1, by the results of Bates et al. (2013). Under these scenarios, r̂ − 1
can be a better choice than r̂/2. We conduct simulations to compare the performance of k̃ using
r̂ − 1 and r̂/2 (rounded to the nearest integer) factors. Neither of these two choices dominates the
other. Here, r̂/2 tends to perform better when α = 1 and N and T are large, whereas r̂ − 1 tends
to produce more accurate estimators for α < 1 or small N and T . For more details about the
simulation results, see Table 5 in the supplementary appendix.

Next, we investigate the coverage probability of the confidence intervals for k̃ obtained from our
bootstrap procedure. The data are generated by DGP1 for α = 0, 0.25, and 0.5. Each experiment
is repeated 500 times, and for each simulated data set the resampling is repeated 1000 times. The
effective coverage probabilities are reported in Table 3. For α = 0, the length of the confidence
intervals tends to be underestimated, but the coverage probabilities approach the nominal levels asN
and T increase. For α = 0.25 and α = 0.5, the coverage probabilities are better than those obtained
under α = 0. This is because the break date can be estimated more accurately for larger breaks.
For a larger sample size and α, the estimated break date tends to have a degenerate distribution,
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and thus the coverage probabilities are higher than the nominal levels (i.e., the confidence intervals
become more conservative), especially for the case of α = 0.5.

4.1 Multiple breaks

In this subsection, we investigate the performance of k̃ in the presence of multiple breaks. We
consider two setups, both of which may occur in practice. The first setup studies the case where the
entire factor loading matrix undergoes two breaks. The data are generated by the following DGP:

xit =


λ′i1ft + eit for t = 1, 2, . . . , [T/3]

λ′i2ft + eit for t = [T/3] + 1, ..., [2T/3]

λ′i3ft + eit for t = [2T/3] + 1, ..., T,

(4.2)

where ft, λi1, and eit are generated in the same way as in (4.1), λi2 is generated in the same way
as in DGP1, and λi3 = λi2 + δi2/N

(1−α)/2, where δi2 ∼ i.i.d. N(0, Ir). It is expected that k̃ can
detect one of the common break dates. Indeed, simulation shows that k̃ tends to equal either [T/3]
or [2T/3] as N and T grow. This is similar to Bai’s (1997b) result that the LS estimator can be
applied to detect one of the break points even if the number of breaks is misspecified in a fixed
N and large T linear regression context. Thus, we expect that P (k̃ = [T/3] or [2T/3]) → 1 as
N,T → ∞ under DGP (4.2). Large sample theory for k̃ in factor models with multiple breaks is
challenging and beyond the scope of this paper. We leave it for future research. For simulation
results under (4.2), please see Table 6A in the supplementary appendix.

The second setup studies the case where different groups of variables undergo structural breaks
in different periods. The data are generated by the following DGP:

xit =

λ
′
i1ft + eit for t = 1, 2, . . . , (k0 − 3 + b(i))

λ′i2ft + eit for t = (k0 − 2 + b(i)), ..., T,
(4.3)

where ft, λi1, and eit are generated in the same way as in (4.1); λi2 is generated in the same way
as in DGP1; and b(i) = i − 5 · [i/5] + 1 for i = 1, ..., N , so b(i) ∈ {1, 2, 3, 4, 5}. Under this setup,
N variables are divided into five groups. Each group contains one fifth of the variables, and the
b(i)-th group undergoes a break at k0 − 3 + b(i). Hence, the second group undergoes a break one
period later than the first group, and so on. This setup is motivated by the structural breaks in
some variables potentially causing a structural break in other variables a few periods later. Note
that (4.3) can be represented by a factor model with a common break date k0 by redefining the
error terms, i.e., for i = 1, ..., N ,

xit =

λ
′
i1ft + uit for t = 1, 2, . . . , k0

λ′i2ft + vit for t = k0 + 1, ..., T,
(4.4)
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where uit = eit−(λi1−λi2)′ft·1{k0−3+b(i) < t ≤ k0}, vit = eit−(λi2−λi1)′ft·1{k0 < t ≤ k0−3+b(i)}
and 1{.} denotes the indicator function. In fact, the common break date can be specified as any
integer in [k0 − 2, k0 + 2] by redefining the error terms. Apparently, the redefined error terms in
(4.4) do not satisfy Assumption 3 because E(uit) 6= 0 and

∑N
j=1 |E(uitujt)| is not bounded for some

t. Hence, the probability of k̃ 6= k0 does not tend to zero as N,T → ∞. In fact, simulation shows
that k̃ could equal any of the break dates from k0−2 to k0 +2, and that the probability |k̃−k0| > 2
tends to zero as N and T diverge. This implies that k̃ seems able to detect one of the break dates
even when multiple break points are close to each other. The theoretical properties of k̃ under (4.3)
are left as a future research topic. The simulation results under (4.3) are summarized by Table 6B
in the supplementary appendix.

5 Empirical Applications

5.1 Financial asset returns

The first empirical application uses monthly return data for stocks traded on the NYSE, AMEX,
and NASDAQ between January 2005 and December 2012. After deleting all of the missing data,
the sample size is T = 96 and N = 3716. Bai and Ng’s (2002) ICp1 detects r̂ = 2 for this sample
period. To apply our LS method, we set the number of factors equal to r̂−1. The estimated change
point is 2009:03. This result is consistent with most major market indexes (such as the SP500, the
Dow 30, and the NASDAQ composite) reaching their troughs on March 9, 2009 for the post-2005
sample period. The 99% bootstrap confidence interval is a singleton that consists of the estimated
break point. Thus, the estimation uncertainty is considerably small for k̃ in this sample, which
implies that the magnitude of the break is large.

5.2 Macroeconomic data

Our second empirical application focuses on estimating the break date of the U.S. macroeconomy
during the recent financial crisis. We use the data set adopted by Cheng et al. (2016), which
consists of monthly observations of 102 U.S. macroeconomic variables. Since the data are likely to
have multiple breaks, we focus on the subsample period between 2001:12 and 2013:01 (T = 134, N =
102)13.

Cheng et al. (2016) find that 2007:12 is the break date, that the pre-break subsample has one
factor, and that the post-break subsample has two factors. We follow their estimation result and
set the number of factors equal to two in our LS estimation. We search the break date between 20%
and 80% of the full sample (i.e., between 2004:01 and 2010:11) and the result is k̃ = 2008 : 12. The
bootstrap confidence intervals are [2008 : 11, 2009 : 01], [2008 : 11, 2009 : 01], [2008 : 09, 2009 : 06]
at the 90%, 95%, and 99% levels, respectively. Note that the upper bound of the 99% level confidence

13Note that 2001:11 is the NBER trough date for the early 2000s recession, so we focus on the data after this trough
date.
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interval is the same as the NBER trough date of the Great Recession. Our estimation result indicates
that the break did not occur immediately after 2007:12 (the NBER beginning date of the Great
Recession), yet the break date is close to the end of the Great Recession. Thus, it seems that the
factor loading matrix changed to a new regime after the 2008 financial crisis.

6 Conclusion

In this paper, we develop an asymptotic theory for the LS estimator of the break point in high-
dimensional factor models where the unobserved factors are estimated by PCA. We establish the
conditions under which the LS estimator is consistent for the break point and show that the consis-
tency holds even if the breaks are small. The asymptotic distribution of the estimated break point
depends on the data-generating process of the factors. Thus, we propose a bootstrap procedure
to construct the confidence intervals for the estimated break date. The simulation results confirm
that the break date can be accurately estimated for small breaks. The coverage probabilities of the
bootstrap confidence intervals approach the nominal levels as N and T increase. We conduct two
empirical applications with U.S. stock return and macroeconomic data. The estimated break date
is 2009:04 for the stock market, whereas the estimated break date is 2008:12 for the macroeconomic
data.
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Appendix

A Lemmas

The detailed proofs for Lemmas 1 to 8 are provided in the supplementary appendix.

Lemma 1 Under Assumptions 1–4, 8 and 9,
(a) Θ′(Λ2 − Λ1) = Op(Nα);
(b) There exists M1 <∞ such that for all T and N , E

∥∥∥ 1√
N

∑N
i=1 λi`eit

∥∥∥2
≤M1 for t = 1, ..., T and

` = 1, 2;
(c) For all T and N and t = 1, ..., T , e′t(Λ2 − Λ1) = Op(Nα/2);
(d) There exists 0 < C1 <∞ such that for all T and N , E

(
supk≥k0+s | 1

k−k0

∑k
t=k0+1

∑N
i=1 f

′
t(λi1 −

λi2)eit|2
)
≤ s−1C1MNα and E

(
supk≤k0−s |

1
k0−k

∑k0
t=k+1

∑N
i=1 f

′
t(λi1 − λi2)eit|2

)
≤ s−1C1MNα.

A.1 Properties of f̃t

This subsection provides several useful lemmas about the properties of the estimated factors f̃t
when k > k0. The case where k < k0 is symmetric and hence omitted.

Consider the pre- and post-k subsamples for k > k0:

X
(1)
k = G

(1)
k Θ′ + e(1)

k ,

X
(2)
k = F

(2)
k Λ′2 + e(2)

k (A.1)

where G(1)
k denotes the first k rows of G. Expanding (2.6) yields

1
kN

(
G

(1)
k Θ′ΘG(1)′

k F̃
(1)
k +G

(1)
k Θ′e(1)′

k F̃
(1)
k + e(1)

k ΘG(1)′
k F̃

(1)
k + e(1)

k e(1)′
k F̃

(1)
k

)
= F̃

(1)
k Ṽ

(1)
k

1
(T − k)N

(
F

(2)
k Λ′2Λ2F

(2)′
k F̃

(2)
k + F

(2)
k Λ′2e(2)′

k F̃
(2)
k + e(2)

k Λ2F
(2)′
k F̃

(2)
k + e(2)

k e(2)′
k F̃

(2)
k

)
= F̃

(2)
k Ṽ

(2)
k .

(A.2)

We will show that f̃t consistently estimates ft up to some rotation, which depends on whether
t ≤ k0, k0 < t ≤ k or t > k (see Lemma 2 below).

For each 1 ≤ t ≤ k0, (A.2) implies

1
kN

(
f ′tΛ′1ΘG(1)′

k F̃
(1)
k + f ′tΛ′1e(1)′

k F̃
(1)
k + e′tΘG

(1)′
k F̃

(1)
k + e′te

(1)′
k F̃

(1)
k

)
= f̃ ′tṼ

(1)
k . (A.3)

For each k0 + 1 ≤ t ≤ k, (A.2) implies

1
kN

(
f ′tΛ′2ΘG(1)′

k F̃
(1)
k + f ′tΛ′2e(1)′

k F̃
(1)
k + e′tΘG

(1)′
k F̃

(1)
k + e′te

(1)′
k F̃

(1)
k

)
= f̃ ′tṼ

(1)
k . (A.4)
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For each t ≥ k, (A.2) implies

1
(T − k)N

(
f ′tΛ′2Λ2F

(2)′
k F̃

(2)
k + f ′tΛ′2e(2)′

k F̃
(2)
k + e′tΛ2F

(2)′
k F̃

(2)
k + e′te

(2)′
k F̃

(2)
k

)
= f̃ ′tṼ

(2)
k . (A.5)

Let

H
(1)
k,1 = 1

kN
Λ′1ΘG(1)′

k F̃
(1)
k Ṽ

(1)−1

k ,

H
(1)
k,2 = 1

kN
Λ′2ΘG(1)′

k F̃
(1)
k Ṽ

(1)−1

k ,

H
(2)
k = 1

(T − k)N Λ′2Λ2F
(2)′
k F̃

(2)
k Ṽ

(2)−1

k . (A.6)

Lemma 2 Under Assumptions 1–5 and 8, the following results hold uniformly in k ∈ [τ1T, τ2T ].
(a) k−1

0
∑k0
t=1 ‖f̃t −H

(1)′
k,1 ft‖2 = Op(δ−2

NT ) and (T − k)−1∑T
t=k+1 ‖f̃t −H

(2)′
k ft‖2 = Op(δ−2

NT );
(b) (k − k0)−1∑k

t=k0+1 ‖f̃t −H
(1)′
k,2 ft‖2 = Op(δ−2

NT );
(c) H(1)

k,1 −H
(1)
k,2 = Op

(
Nα−1).

For notational simplicity, we define

L2NT = log log(NT ). (A.7)

Lemma 3 If Assumptions 1–6 hold, then the following results hold uniformly in k ∈ [τ1T, τ2T ] and
k > k0.
(a) ∑N

i=1
∑k
t=1 λi`eitf̃

′
t/kN = Op(L1/2

2NT δ
−1
NTN

−1/2) for ` = 1, 2;
(b) For each t, ∑k

s=1 e
′
tesf̃

′
s/kN = Op(L1/2

2NT δ
−2
NT ).

For k > k0, let F̃ (1)
1 and F̃ (1)

2 denote the first k0 and last k − k0 rows of F̃ (1)
k , i.e.,

F̃
(1)
k =

 F̃
(1)
1
F̃

(1)
2

 . (A.8)

The following lemma extends Bai’s (2003) Lemma B2. Note that our rate in Lemma 4(a) is slowed
down by a factor L1/2

2NT compared to Bai (2003) because our bound is uniform in k ∈ [τ1T, τ2T ]. If k
is fixed at k0, then Lemma 4(a) reduces to Bai’s (2003) Lemma B2 for the setup without structural
breaks.

Lemma 4 If Assumptions 1–6 hold, k > k0 and k ∈ [τ1T, τ2T ], then
(a) k−1

0 F (1)′
(
F̃

(1)
1 − F (1)H

(1)
k,1

)
= Op(L1/2

2NT δ
−2
NT ); and (T−k)−1F

(2)′
k

(
F̃

(2)
k − F (2)

k H
(2)
k

)
= Op(L1/2

2NT δ
−2
NT );

(b) (k − k0)−1∑k
t=k0+1 ft(f̃ ′t − f ′tH

(1)
k,2) = Op(L1/2

2NT δ
−2
NT ) + (k − k0)−1/2Op

(
L

1/2
2NT δ

−1
NT

)
;

(c) (k − k0)−1∑k
t=k0+1(f̃tf̃ ′t − H

(1)′
k,2 ftf

′
tH

(1)
k,2) = Op(L1/2

2NT δ
−2
NT ) + (k − k0)−1/2Op

(
L

1/2
2NT δ

−1
NT

)
and

k−1
0 (F̃ (1)′

1 F̃
(1)
1 −H(1)′

k,1 F
(1)′F (1)H

(1)
k,1) = Op(L1/2

2NT δ
−2
NT ), where the Op terms in parts (a)-(c) are uni-

form in k.
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Lemma 5 below extends Bai’s (2003) Lemma B1. Note that our rate in Lemma 5(a) is slowed
down by a factor L1/2

2NT compared to Bai (2003) because our bound is uniform in k ∈ [τ1T, τ2T ]. If
k is fixed at k0, then Lemma 5(a) reduces to Bai’s (2003) Lemma B1.

Lemma 5 If Assumptions 1–6 hold, k > k0 and k ∈ [τ1T, τ2T ], then for each i,
(a) k−1

0 e
(1)′
k0,i

(
F̃

(1)
1 − F (1)H

(1)
k,1

)
= Op(L1/2

2NT δ
−2
NT ); and (T−k)−1e

(2)
k,i

(
F̃

(2)
k − F (2)

k H
(2)
k

)
= Op(L1/2

2NT δ
−2
NT ),

where e(1)
k0,i

= [ei1, ..., eik0 ]′ and e(2)
k,i = [eik+1, ..., eiT ]′;

(b) (k−k0)−1∑k
t=k0+1 eit(f̃ ′t − f ′tH

(1)
k,2) = Op(L1/2

2NT δ
−2
NT ) + (k−k0)−1/2Op

(
L

1/2
2NT δ

−1
NT

)
, where the Op

terms in parts (a)-(b) are uniform in k.

In the next lemma, we will show that if the signs of columns in F̃ (1) are properly assigned, then

F (1)′(F̃ (1)
1 − F̂ (1))
k0

=
√
k − k0Op

(√
log(log T )

T

)
+(k−k0)Op

( 1
TN (1−α)

)
+Op

(√
L2NT
δ2
NT

)
, (A.9)

where the Op(T−1√log(log T )), Op(T−1Nα−1) and Op(L1/2
2NT δ

−2
NT ) terms are all uniform in k. The

bound in (A.9) is useful to prove Proposition 1. To simplify the notation, we use Op(ΠNT,k) to
denote the bound for k−1

0 F (1)′(F̃ (1)
1 − F̂ (1)) on the left-hand side of (A.9), i.e.,

ΠNT,k =
√

(k − k0) log(log T )
T

+ k − k0
TN (1−α) +

√
L2NT
δ2
NT

. (A.10)

Lemma 6 Under Assumptions 1–8 and for k > k0,

(a) F
(1)′
k

F̃
(1)
k

k − F (1)′ F̃
(1)
1

k0
= Op(ΠNT,k) and Λ′1Θ

N

G
(1)′
k

F̃
(1)
k

k − Λ′1Λ1
N

F (1)′ F̃
(1)
1

k0
= Op(ΠNT,k);

(b) F̃
(1)′
1 F (1)

k0

Λ′1Λ1
N

F (1)′ F̃
(1)
1

k0
− Ṽ (1)

k = Op(ΠNT,k);
(c) Ṽ (1)

k − V̂ (1) = Op(ΠNT,k);
(d) if the signs of columns in F̃ (1) are properly assigned, then k−1

0 F (1)′(F̃ (1)
1 − F̂ (1)) = Op(ΠNT,k),

where F̃ (1)
1 denotes the first k0 rows of F̃ (1)

k .

Lemma 6 has some implications on H
(1)
k,1 , H

(1)
k,2 , and H

(2)
k . When α = 1, Chen (2015) has

established the consistency of the estimated break fraction and showed that k̃/T − τ0 = Op(δ−1
NT ),

i.e., k̃ − k0 = Op(max[
√
T , T√

N
]). Hence, for any m > 0, |k̃ − k0| ≤ m · max(T 3/4, T/N1/4) for all

large N and T with probability approaching one. In the proofs for consistency, it is sufficient to
consider k ∈ DNT for the case of α = 1, where DNT = {k, |k − k0| ≤ m0 · max(T 3/4, T/N1/4)}
for some m0 > 0. Note that supk∈DNT ΠNT,k, → 0 as N,T → ∞, so Lemmas 6(a)–6(c) imply

that Λ′1Λ1
N

F (1)′ F̃
(1)
1

k0
and Λ′1Θ

N

G
(1)′
k

F̃
(1)
k

k are nonsingular uniformly in k ∈ DNT as N,T →∞ (i.e., their
singular values are uniformly bounded away from zero for all k ∈ DNT as N,T →∞). Thus, when
α = 1, H(1)

k,1 defined in (A.6) is uniformly nonsingular for all k ∈ DNT as N,T →∞. Similarly, H(1)
k,2

is also nonsingular because

Λ′2Θ
N

G
(1)′
k F̃

(1)
k

k
Ṽ

(1)−1

k = Λ′2Λ1
N

F (1)′F̃
(1)
1

k
Ṽ

(1)−1

k + Λ′2Λ2
N

∑k
t=k0+1 ftf̃

′
t

k
Ṽ

(1)−1

k ,
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where the second term is op(1) uniformly in k ∈ DNT and the first term is nonsingular under
Assumption 2.

When 0 ≤ α < 1, ΠNT,k, → 0 always holds under (3.11), so H(1)
k,1 is nonsingular uniformly in

k ∈ [τ1T, τ2T ] as N,T →∞ Lemmas 6(a)–6(c). Also, Lemma 2(c) implies that H(1)
k,2 is nonsingular

for all k ∈ [τ1T, τ2T ] as N →∞ when α < 1.
Lastly, note that the post-k subsample does not undergo a break, H(2)

k is nonsingular uniformly
in k0 ≤ k ≤ τ2T by Proposition 1 of Bai (2003).

Lemma 7 Under Assumptions 1–8,

1
k

N∑
i=1

k0∑
s=1

(f̃s −H(1)′
k,1 fs)eiseit = Op

(√
N

T

)
+Op

(√
log log T

N

)
+Op

(
N
√

log logN
T
√
T

)
1
k

N∑
i=1

k∑
s=k0+1

(f̃s −H(1)′
k,2 fs)eiseit = Op

(√
L2NTN√

T

)
+ +Op

(√
log log T

N

)
+Op

(
N
√

log logN
T
√
T

)

uniformly in k ∈ [τ1T, τ2T ] and k > k0.

Proof of Proposition 1:
Let the signs of columns in F̃ (1) be properly assigned so that Rk = Ir. For t ≤ k0, (A.3) implies

that

1
kN

(
f ′tΛ′1ΘG(1)′

k F̃
(1)
k + f ′tΛ′1e(1)′

k F̃
(1)
k + e′tΘG

(1)′
k F̃

(1)
k + e′te

(1)′
k F̃

(1)
k

)
= f̃ ′tṼ

(1)
k ,

1
k0N

(
f ′tΛ′1Λ1F

(1)′F̂ (1) + f ′tΛ′1e(1)′
k0
F̂ (1) + e′tΛ1F

(1)′F̂ (1) + e′te
(1)′
k0
F̂ (1)

)
= f̂ ′tV̂

(1). (A.11)

Note that∥∥∥(f̃ ′t − f̂ ′t)Ṽ (1)
k

∥∥∥ =
∥∥∥f̃ ′tṼ (1)

k − f̂ ′tV̂ (1) − f̂tṼ (1)
k + f̂tV̂

(1)
∥∥∥ ≤ ∥∥∥f̃ ′tṼ (1)

k − f̂ ′tV̂ (1)
∥∥∥+ ‖f̂t‖

∥∥∥Ṽ (1)
k − V̂ (1)

∥∥∥ .
Note that Ṽ (1)

k is nonsingular for all k ∈ [τ1T, τ2T ] as N,T → ∞ because the number of nonzero
eigenvalues of X(1)

k X
(1)′
k /TN as N,T →∞ is always no less than r by our step. Recall that Ṽ (1)

k −
V̂ (1) = Op(ΠNT,k) by Lemma 6(c), so it is sufficient to show that f̃ ′tṼ

(1)
k − f̂ ′tV̂ (1) = Op(ΠNT,k). To

show k−1
0
∑k0
t=1 ‖f̃t−f̂t‖2 = Op(Π2

NT,k), it is sufficient to show that k−1
0
∑k0
t=1 ‖f ′t(Λ′1ΘG(1)′

k F̃
(1)
k /kN−

Λ′1Λ1F
(1)′F̂ (1)/k0N)‖2, k−1

0
∑k0
t=1 ‖f ′t(Λ′1e(1)′

k F̃
(1)
k /kN−Λ′1e(1)′

k0
F̂ (1)/k0N)‖2, k−1

0
∑k0
t=1 ‖e′t(ΘG

(1)′
k F̃

(1)
k /kN−

Λ1F
(1)′F̂ (1)/k0N)‖2, and k−1

0
∑k0
t=1 ‖e′t(e

(1)′
k F̃

(1)
k /kN − e(1)′

k0
F̂ (1)/k0N)‖2 are all equal to Op(Π2

NT,k).
We consider the terms on the LHS of (A.11). First, by Lemmas 6(a) and 6(d), we have

f ′t

Λ′1Θ
N

G
(1)′
k F̃

(1)
k

k
− Λ′1Λ1

N

F (1)′F̂ (1)

k0

 = f ′tOp(ΠNT,k), (A.12)

where the Op(ΠNT,k) term does not depend on t.
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Second, Lemma 3(a) implies that

1
kN

f ′tΛ′1e(1)′
k F̃

(1)
k = f ′tOp(L

1/2
2NT δ

−2
NT ), 1

k0N
f ′tΛ′1e(1)′

k0
F̂ (1) = f ′tOp(δ−2

NT ), (A.13)

so f ′t(Λ′1e(1)′
k F̃

(1)
k /kN − Λ′1e(1)′

k0
F̂ (1)/k0N) = Op(L1/2

2NT δ
−2
NT ) uniformly in k and

1
k0

k0∑
t=1

∥∥f ′t (Λ′1e(1)′
k F̃

(1)
k /KN − Λ′1e(1)′

k0
F̂ (1)/k0N

) ∥∥2

≤ 2
k0

k0∑
t=1
‖ft‖2

∥∥Λ′1e(1)′
k F̃

(1)
k

kN

∥∥2 +
∥∥Λ′1e(1)′

k0
F̂ (1)

k0N

∥∥2

 = Op(L2NT δ
−4
NT ).

Third,

e′tΘ
N

G
(1)′
k F̃

(1)
k

k
− e′tΛ1

N

F (1)′F̂ (1)

k0
= 1
kN

e′tΛ1F
(1)′F̃

(1)
1 + e′tΛ2

k∑
s=k0+1

fsf̃
′
s

− 1
k0N

e′tΛ1F
(1)′F̂ (1)

=e′tΛ1
N

F (1)′
k F̃

(1)
k

k
− F (1)′F̃

(1)
1

k0
+ F (1)′F̃

(1)
1

k0
− F (1)′F̂ (1)

k0

+ 1
kN

e′t(Λ2 − Λ1)
k∑

s=k0+1
fsf̃
′
s

=Op
( 1√

N

)
Op(ΠNT,k) +Op

( 1
N1−α/2

)
O

(
k − k0
T

)
= op(ΠNT,k) (A.14)

where the last line uses Lemmas 1(c), 6(a), 6(d), and the fact that Op
(

k−k0
TN1−α/2

)
is dominated by

Op
(

k−k0
TN1−α

)
. The derivation in (A.14) also implies k−1

0
∑k0
t=1 ‖e′tΘG

(1)′
k F̃

(1)
k /kN−e′tΛ1F

(1)′F̂ (1)/k0N‖2 =
op(Π2

NT,k).
Lastly,

1
kN

e′te
(1)′
k F̃

(1)
k = Op(L1/2

2NT δ
−2
NT ) for each t,

1
k0

k0∑
t=1
‖e′te

(1)′
k F̃

(1)
k /kN‖2 = Op(L2NT δ

−4
NT ), (A.15)

by Lemma 3(b) and similar results hold for e′te
(1)′
k0
F̂ (1)/k0N . Combining (A.12), (A.13), (A.14), and

(A.15), we obtain the desired results.
Q.E.D.

B Proofs for Consistency

We focus on the case k > k0 and the proof for the case k < k0 is the same due to the symmetry.
Let X(1)

k,i = [xi1, ..., xik]′ and X
(2)
k,i = [xik+1, ..., xiT ]′ for k > k0. We can decompose SSR(k, F̃ ) −
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SSR(k0, F̂ ) into 3 terms:

SSR(k, F̃ )− SSR(k0, F̂ ) =
N∑
i=1

k0∑
t=1

[(
xit − f̃tλ̃i1

)2
−
(
xit − f̂ ′tλ̂i1

)2
]

+
N∑
i=1

T∑
t=k+1

[(
xit − f̃ ′tλ̃i2

)2
−
(
xit − f̂ ′tλ̂i2

)2
]

+
N∑
i=1

k∑
t=k0+1

[(
xit − f̃ ′tλ̃i1

)2
−
(
xit − f̂ ′tλ̂i2

)2
]

= I + II + III. (B.1)

The dependence of terms I, II, and III on k is suppressed in notation. We show that III is positive
and dominates the other two terms uniformly in k under certain conditions presented below. The
following two lemmas provide useful results: Lemma 8 obtains the rates for terms I and II; Lemma
9 analyzes the rate for term III.

Lemma 8 Suppose Assumptions 1–8 and (3.11) hold.
(a) Let Ai(k, k0) =

(
F̃

(1)′
k F̃

(1)
k

)−1
F̃

(1)′
k X

(1)
k,i −

(
F̃

(1)′
1 F̃

(1)
1

)−1
F̃

(1)′
1 X

(1)
k0,i

. Then term I can be repre-
sented as

I =
N∑
i=1

Ai(k, k0)′F̃ (1)′
1 F̃

(1)
1 Ai(k, k0) + (k − k0)Op

(√
N + N

δNT

)
Op(Π̄NT ),

where∑N
i=1Ai(k, k0)′F̃ (1)′

1 F̃
(1)
1 Ai(k, k0) = (k−k0) [op(1) +Op (N log(log T )/T )]+(k−k0)2Op(Nα/T ),

the op and Op terms are uniform in k, and

Π̄NT ≡

√
log(log T )

T
+ 1
N1−α +

√
L2NT
δ2
NT

. (B.2)

(b) Let F̂ (2)
2 denote the last T−k rows of F̂ (2) and let Bi(k, k0) =

(
F̂ (2)′F̂ (2)

)−1
F̂ (2)′X

(2)
k0,i
−(

F̂
(2)′
2 F̂

(2)
2

)−1
F̂

(2)′
2 X

(2)
k,i . Then term II can be represented as

II = −
N∑
i=1

Bi(k, k0)′F̂ (2)′
2 F̂

(2)
2 Bi(k, k0) + (k − k0)Op

(√
N + N

δNT

)
Op(Π̄NT ),

where ∑N
i=1Bi(k, k0)′F̂ (2)′

2 F̂
(2)
2 Bi(k, k0) = (k − k0) [op(1) +Op (N log(log T )/T )] and the op and Op

terms are uniform in k.
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Next, we consider term III in (B.1). Note that by Lemma 2 we have

xit =


f̃ ′tH

(1)−1

k,1 λi1 + eit +
(
f ′tλi1 − f̃ ′tH

(1)−1

k,1 λi1
)

if t ≤ k0

f̃ ′tH
(1)−1

k,2 λi2 + eit +
(
f ′tλi2 − f̃ ′tH

(1)−1

k,2 λi2
)

if k0 ≤ t ≤ k

f̂ ′tH
(2)−1

k0
λi2 + eit +

(
f ′tλi2 − f̂ ′tH

(2)−1

k0
λi2
)

if t ≥ k0,

(B.3)

where H(2)
k0

is the rotation matrix for the post-break subsample when we set k = k0, i.e.,

H
(2)
k0

= Λ′2Λ2F
(2)′F̂ (2)V̂ (2)−1

/N(T − k0). (B.4)

For each i,

k∑
t=k0+1

[(
xit − f̃ ′tλ̃i1

)2
−
(
xit − f̂ ′tλ̂i2

)2
]

=
k∑

t=k0+1

[
f ′tλi2 − f̃ ′tλ̃i1 + eit

]2
−

k∑
t=k0+1

[
f ′tλi2 − f̂ ′tλ̂i2 + eit

]2
=z1i − z2i − 2z3i (B.5)

where z1i =
∑k
t=k0+1

(
f̃ ′tλ̃i1 − f ′tλi2

)2
, z2i =

∑k
t=k0+1(f̂ ′tλ̂i2−f ′tλi2)2, z3i =

∑k
t=k0+1 eit

(
f̃ ′tλ̃i1 − f̂ ′tλ̂i2

)
.

To prove the consistency of k̃, the following lemma obtains the stochastic bounds of
∑N
i=1 z1i,∑N

i=1 z2i, and
∑N
i=1 z3i.

Lemma 9 Under Assumptions 1–10 and (3.11),
(a) ∑N

i=1 z1i ≤ (k−k0)
[
Op(1) +Op

(√
NL

1/2
2NT

δ2
NT

)
+Op

(
log(log T )N

T

)]
+ 4

∑N
i=1

∑k
t=k0+1 d

2
2it, where the

Op terms are uniform in k, d2it = f̃ ′tF̃
(1)′
1 F̃

(1)
1 (H(1)−1

k,1 λi1 − H
(1)−1

k,2 λi2)/k and ∑N
i=1

∑k
t=k0+1 d

2
2it

diverges at the rate Nα(k−k0) if k−k0 →∞ as N,T →∞ and at the rate Nα if k−k0 is bounded
as N,T →∞.
(b) ∑N

i=1 z2i = (k − k0)
[
Op(1) +Op

(
N
T

)
+Op

(√
N
T

)]
, where the Op terms are uniform in k.

(c) ∑N
i=1 z3i = (k−k0)

[
Op(1)+Op

(
L

1/2
2NT
√
N

δ2
NT

)
+Op

(
Nα

N1/2

)
+Op

(
Nα/2

δNT

)
+Op

(√
NL2NT

T

)
+Op

(
N
T

)
+op(Nα)

]
, where the Op and op terms are uniform in k.

Proof :
(a) Since λ̃i1 = F̃

(1)′
k X

(1)
k,i /k, we can rewrite f̃ ′tλ̃i1 − f ′tλi2 as

f̃ ′t

(
F̃

(1)′
1 F (1)λi1 +

∑k
s=k0+1 f̃sf

′
sλi2

)
+ f̃ ′tF̃

(1)′
k e

(1)
k,i

k
− f ′tλi2

=
f̃ ′t

(
F̃

(1)′
1 F̃

(1)
1 H

(1)−1

k,1 λi1 +
∑k
s=k0+1 f̃sf̃

′
sH

(1)−1

k,2 λi2
)

k
+
f̃ ′tF̃

(1)′
k e

(1)
k,i

k
− f ′tλi2
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+ f̃ ′t
F̃

(1)′
1 (F (1) − F̃ (1)

1 H
(1)−1

k,1 )
k︸ ︷︷ ︸

Op(L1/2
2NT δ

−2
NT )

λi1 + f̃ ′t

∑k
s=k0+1 f̃s

(
f ′s − f̃ ′sH

(1)−1

k,2

)
k︸ ︷︷ ︸

Op(L1/2
2NT δ

−2
NT )

λi2

=

 f̃ ′tF̃ (1)′
k F̃

(1)
k H

(1)−1

k,2 λi2

k
− f ′tλi2


︸ ︷︷ ︸

d1it

+
f̃ ′tF̃

(1)′
1 F̃

(1)
1 (H(1)−1

k,1 λi1 −H(1)−1

k,2 λi2)
k︸ ︷︷ ︸
d2it

+
f̃ ′tF̃

(1)′
k e

(1)
k,i

k︸ ︷︷ ︸
d3it

+ [f̃ ′tOp(L
1/2
2NT δ

−2
NT )λi1 + f̃ ′tOp(L

1/2
2NT δ

−2
NT )λi2]︸ ︷︷ ︸

d4it

, (B.6)

where the Op(L1/2
2NT δ

−2
NT ) terms are uniform in k by Lemmas 2 and 4 and do not depend on i or

t. Note that
∑N
i=1 z1i is bounded by 4

∑N
i=1

∑k
t=k0+1(d2

1it + d2
2it + d2

3it + d2
4it), so we will obtain the

bounds for
∑N
i=1

∑k
t=k0+1 d

2
jit for j = 1, 2, 3, 4. Our analysis below shows that

∑N
i=1

∑k
t=k0+1 d

2
2it is

the dominant term and determines the divergence rate of
∑N
i=1 z1i.

Since F̃ (1)′
k F̃

(1)
k /k = Ir, the term d1it in (B.6) reduces to (f̃ ′tH

(1)−1

k,2 − f ′t)λi2. Recall that

f̃ ′t − f ′tH
(1)
k,2 = 1

kN
e′tΘG

(1)′
k F̃

(1)
k Ṽ

(1)−1

k + ψ1t,

where ψ1t = f ′tΛ′2e(1)′
k F̃

(1)
k Ṽ

(1)−1

k /kN+e′te
(1)′
k F̃

(1)
k Ṽ

(1)−1

k /kN = Op(L1/2
2NT δ

−2
NT ) uniformly in k follows

from Lemma 3. Thus, d1it can be represented as

d1it = (f̃ ′t − f ′tH
(1)
k,2)H(1)−1

k,2 λi2 = 1
kN

e′tΘG
(1)′
k F̃

(1)
k Ṽ

(1)−1

k H
(1)−1

k,2 λi2 + ψ1tH
(1)−1

k,2 λi2

= Op

( 1√
N

)
λi2 +Op(L1/2

2NT δ
−2
NT )λi2 uniformly in k. (B.7)

Thus,
∑N
i=1

∑k
t=k0+1 d

2
1it can be bounded by

k∑
t=k0+1

N∑
i=1

{[
e′tΘ
N

Zkλi2

]2
+ 2

∥∥∥∥e′tΘN
∥∥∥∥ ‖Zk‖‖ψ1t‖‖λi2‖2‖H(1)−1

k,2 ‖+ ‖ψ1t‖2‖λi2‖2‖H(1)−1

k,2 ‖2
}

=(k − k0)
[
Op(1) +Op

(√
NL

1/2
2NT

δ2
NT

)
+Op

(
NL2NT
δ4
NT

)]
, (B.8)

where Zk ≡ k−1G
(1)′
k F̃

(1)
k Ṽ

(1)−1
k H

(1)−1

k,2 = Op(1) and the Op terms in the square brackets are uniform
in k. We can use the definition of H(1)

k,2 in (A.6) to further simplify the first term in (B.7) as follows:

e′tΘ
N

G
(1)′
k F̃

(1)
k

k
Ṽ

(1)−1
k H

(1)−1

k,2 λi2 = e′tΘG
(1)′
k F̃

(1)
k

Nk

Λ′2ΘG(1)′
k F̃

(1)
k

Nk

−1

λi2
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=

e′tΛ1F
(1)′
k F̃

(1)
k

Nk︸ ︷︷ ︸
Op(N−1/2)

+ e′t(Λ2 − Λ1)
N︸ ︷︷ ︸

Op(N−1+α/2)

∑k
s=k0+1 fsf̃

′
s

k︸ ︷︷ ︸
Op(1)

×
Λ′2Λ1F

(1)′
k F̃

(1)
k

Nk︸ ︷︷ ︸
Op(1)

+ Λ′2(Λ2 − Λ1)
N︸ ︷︷ ︸

Op(N−1+α)

∑k
s=k0+1 fsf̃

′
s

k


−1

λi2

=
[
e′tΛ1
N

(Λ′2Λ1
N

)−1
+Op

( 1
N1−α/2

)]
λi2, (B.9)

where the Op(N−1+α/2) term and Op(N−1+α) term in the second equality follow from Lemma 1.
The term d3it can be represented as

f̃ ′tF̃
(1)′
k e

(1)
k,i

k
=
f̃ ′t

(
F̃

(1)′
1 e

(1)
k0,i

+
∑k
s=k0+1 f̃seis

)
k

=f̃ ′t

H(1)′
k,1 F

(1)′e
(1)
k0,i

+
∑k
s=k0+1H

(1)′
k,2 fseis

k


+ f̃ ′t


(
F̃

(1)
1 − F (1)H

(1)
k,1

)′
e

(1)
k0,i

+
∑k
s=k0+1(f̃s −H(1)′

k,2 fs)eis
k


=f̃ ′tH

(1)′
k,1

F
(1)′
k e

(1)
k,i

k
+ f̃ ′t

∑k
s=k0+1

(
H

(1)
k,2 −H

(1)
k,1

)′
fseis

k
+ f̃ ′tOp(L

1/2
2NT δ

−2
NT ) (B.10)

where the Op(L1/2
2NT δ

−2
NT ) term follows from Lemma 5 and the fact that

k − k0

k

(
1

k − k0

k∑
t=k0+1

(f̃t −H(1)′
k,2 ft)eit

)
= k − k0

k

[
Op

(
L

1/2
2NT
δ2
NT

)
+ 1

(k − k0)1/2Op

(
L

1/2
2NT
δNT

)]
= Op

(
L

1/2
2NT
δ2
NT

)
.

The uniform bound for term f̃ ′tH
(1)′
k,1 F

(1)′
k e

(1)
k,i/k in (B.10) is f̃tOp

(√
log(log T )

T

)
by the LIL under As-

sumption 4(b). The term
∑k
s=k0+1

(
H

(1)
k,2 −H

(1)
k,1

)′
fseis/k = Op

(√
(k−k0) log(log T )

TN1−α

)
= Op

(√
log(log T )√
TN1−α

)
uniformly in k by Lemma 2(c), the LIL and the fact that |k − k0| ≤ T . Thus,

k∑
t=k0+1

N∑
i=1

d2
3it = (k − k0)

[
Op

( log(log T )N
T

)
+Op

( log log(T )
TN1−2α

)
+Op

(
L2NTN

δ4
NT

)]
, (B.11)

where the Op terms in the square brackets are uniform in k.
In addition,

∑N
i=1

∑k
t=k0+1 d

2
4it can be bounded by

N∑
i=1

k∑
t=k0+1

[
f̃ ′tOp(L

1/2
2NT δ

−2
NT )λi1 + f̃ ′tOp(L

1/2
2NT δ

−2
NT )λi2

]2
= (k − k0)Op

(
NL2NT
δ4
NT

)
. (B.12)
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Combining the results in (B.8), (B.11), and (B.12), we obtain

N∑
i=1

k∑
t=k0+1

d2
1it + d2

3it + d2
4it = (k − k0)

[
Op(1) +Op

(√
NL

1/2
2NT

δ2
NT

)
+Op

( log(log T )N
T

)]
, (B.13)

becauseOp
(

log log(T )
TN1−2α

)
is always dominated byOp

(
T−1 log(log T )N

)
for α ∈ [0, 1], andOp

(
L2NTNδ

−4
NT

)
is dominated by Op(1) for N ≤ T by (3.11) and dominated by Op

(
T−1N log(log T )

)
for T ≤ N by

(3.11).
Next, we analyze the divergence rate of

∑N
i=1

∑k
t=k0+1 d

2
2it. Rewrite

∑N
i=1

∑k
t=k0+1 d

2
2it as

N∑
i=1

k∑
t=k0+1

[
f̃ ′t
F̃

(1)′
1 F̃

(1)
1

k
H

(1)−1

k,2 (H(1)
k,2H

(1)−1

k,1 λi1 − λi2)
]2

=
N∑
i=1

k∑
t=k0+1

[
[f ′tH

(1)
k,2 +Op(δ−1

NT )] F̃
(1)′
1 F̃

(1)
1

k
H

(1)−1

k,2 (H(1)
k,2H

(1)−1

k,1 λi1 − λi2)
]2

=
N∑
i=1

k∑
t=k0+1

(H(1)
k,2H

(1)−1

k,1 λi1 − λi2)′B′kftf ′tBk(H
(1)
k,2H

(1)−1

k,1 λi1 − λi2) + smaller order, (B.14)

where Bk = H
(1)
k,2F̃

(1)′
1 F̃

(1)
1 H

(1)−1

k,2 /k and there exists b1 > 0 such that limN,T→∞ ρmin(BkB′k) ≥ b1

for all k considered in the arguments below Lemma 6. Note that the leading term in (B.14) is
Op((k − k0)Nα) because

N∑
i=1

k∑
t=k0+1

(
f ′tBkH

(1)
k,2 [H(1)−1

k,1 (λi1 − λi2) + (H(1)−1

k,1 −H(1)−1

k,2 )λi2]
)2

≤2
k∑

t=k0+1
‖H(1)−1′

k,1 H
(1)′
k,2 B

′
kftf

′
tBkH

(1)
k,2H

(1)−1

k,1 ‖
N∑
i=1
‖λi1 − λi2‖2

+2
k∑

t=k0+1
‖H(1)′

k,2 B
′
kftf

′
tBkH

(1)
k,2‖ · ‖H

(1)−1

k,1 −H(1)−1

k,2 ‖2
N∑
i=1
‖λi2‖2

=(k − k0)Op(Nα) + (k − k0)Op(N−1+2α) (B.15)

by Assumption 8 and the fact that H(1)−1

k,1 −H(1)−1

k,2 = Op(N−1+α) by Lemma 2(c). For the lower
bound, the dominant term in (B.14) reduces to

Nα(k − k0)tr
{
B′k

(
1

k − k0

k∑
t=k0+1

ftf
′
t

)
Bk

[
1
Nα

N∑
i=1

(H(1)
k,2H

(1)−1

k,1 λi1 − λi2)(H(1)
k,2H

(1)−1

k,1 λi1 − λi2)′
]}

≥Nα(k − k0)ρmin

[
B′k

(
1

k − k0

k∑
t=k0+1

ftf
′
t

)
Bk

]
tr
{[

1
Nα

N∑
i=1

(λi2 −H(1)
k,2H

(1)−1

k,1 λi1)(λi2 −H(1)
k,2H

(1)−1

k,1 λi1)′
]}

≥Nα(k − k0)ρmin

(
1

k − k0

k∑
t=k0+1

ftf
′
t

)
ρmin(BkB′k)

[
1
Nα

N∑
i=1

(λi2 − A′λi1)′(λi2 − A′λi1)
]
, (B.16)
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where ρmin denotes the smallest eigenvalue, the second line uses the inequality that tr(Y Z) ≥
ρmin(Y )tr(Z) for positive semi-definite matrices Y and Z, and the last line follows from the fact
that ‖Λ2 − Λ1A‖2 ≤‖Λ2 − Λ1A‖2 =

∑N
i=1(λi2 −A′λi1)′(λi2 −A′λi1) for any A by the definition of

A.
If k is a sequence such that k − k0 → ∞ as T → ∞, then (k − k0)−1∑k

t=k0+1 ftf
′
t converges to

ΣF a.s. by the Strong Law of Large Numbers (Theorem 3.1, Phillips and Solo, 1992). Thus, for
any ε > 0, there exists M0 > 0 such that P

{
supk>k0+M0

∣∣ρmin ((k − k0)−1∑k
t=k0+1 ftf

′
t

)
−

ρmin(ΣF )
∣∣ < 1

2ρmin(ΣF )
}
> 1− ε, which implies that

P

 inf
k>k0+M0

ρmin

 1
k − k0

k∑
t=k0+1

ftf
′
t

 >
1
2ρmin(ΣF )

 > 1− ε and

P

(
inf

k>k0+M0

[
ρmin

(∑k
t=k0+1 ftf

′
t

k − k0

)
ρmin(BkB′k)

]
·

[
1
Nα

N∑
i=1

(λi2 − A′λi1)′(λi2 − A′λi1)
]
≥ c1

)
> 1− ε

(B.17)
for N and T large enough, where c1 = ρmin(ΣF ) · b1c/2. Hence, there exists c1 > 0 such that
the leading term in (B.14) is greater than Nα(k − k0)c1 for large enough k − k0 with probability
approaching one as N,T →∞.

Next, we consider the case where k−k0 is bounded as T →∞. Since F̃ (1)′
k F̃

(1)
k /k = Ir, it follows

that Bk = Ir + Op(T−1) as k − k0 is bounded as T → ∞. The dominant term in (B.14) can be
represented as

k∑
t=k0+1

f ′t

[
N∑
i=1

(H(1)
k,2H

(1)−1

k,1 λi1 − λi2)(H(1)
k,2H

(1)−1

k,1 λi1 − λi2)′
]
ft

≥f ′k0+1

[
(Λ2 − Λ1H

(1)−1′

k,1 H
(1)′
k,2 )′(Λ2 − Λ1H

(1)−1′

k,1 H
(1)′
k,2 )

]
fk0+1

≥(Λ2fk0+1 − Λ1Afk0+1)′(Λ2fk0+1 − Λ1Afk0+1)

=Nαf ′k0+1

[ 1
Nα

(Λ2 − Λ1A)′(Λ2 − Λ1A)
]
fk0+1, (B.18)

where the second inequality uses the fact that ‖Λ2fk0+1 − Λ1A‖2 is minimized by setting A =
(Λ′1Λ1)−1Λ′1Λ2fk0+1 = Afk0+1. Hence, for a bounded k − k0, (B.18) is of order no smaller than
Op(Nα) by (3.5) as N,T →∞.

(b) Since f̂t and λ̂i2 are standard PC estimators using the post-k0 data, the analysis of the
asymptotics of f̂ ′tλ̂i2 − f ′tλi2 is standard. For t ≥ k0, we have

f̂ ′tλ̂i2 − f ′tλi2 = (f̂ ′t − f ′tH
(2)
k0

)H(2)−1

k0
λi2 + f̂ ′t(λ̂i2 −H

(2)−1

k0
λi2).
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By (2.6) and Theorem 1 of Bai (2003), we obtain for t > k0

f̂ ′t − f ′tH
(2)
k0

= e′tΛ2F
(2)′F̂ (2)

(T − k0)N V̂ (2)−1 + ψ2t, (B.19)

where ψ2t =
(
f ′tΛ′2e(2)′

k0
F̂ (2)V̂ (2)−1 + e′te

(2)′
k0
F̂ (2)V̂ (2)−1

)
/(T − k0)N = Op(δ−2

NT ) uniformly in k by
similar arguments in (A.13) and (A.15). (The uniform bound here does not need to be scaled by
L

1/2
2NT because the split date is fixed at k0). For λ̂i2, we have

λ̂i2 =
F̂ (2)′X

(2)
k0,i

T − k0
=
F̂ (2)′

[
F̂ (2)H

(2)−1

k0
λi2 + e

(2)
k0,i

+
(
F (2) − F̂ (2)H

(2)−1

k0

)
λi2
]

T − k0

= H
(2)−1

k0
λi2 +

F̂ (2)′e
(2)
k0,i

T − k0
+ ψ3λi2, (B.20)

where ψ3 = F̂ (2)′(F (2) − F̂ (2)H
(2)−1

k0
)/(T − k0) = Op(δ−2

NT ) uniformly in k by Lemma B3 of Bai
(2003). Thus, combining (B.19) and (B.20) yields

f̂ ′tλ̂i2 − f ′tλi2 = e′tΛ2
N

(Λ′2Λ2
N

)−1
λi2 +

f̂ ′tF̂
(2)′e

(2)
k0,i

T − k0
+ ψ2tH

(2)−1

k0
λi2 + f̂ ′tψ3λi2 (B.21)

where we use the definition of H(2)
k0

in (B.4). Note that e′tΛ2/N = Op(N−1/2) by Lemma 1(b) and

F̂ (2)′e
(2)
k0,i

T − k0
=
H

(2)′
k0

F (2)′e
(2)
k0,i

+ (F̂ (2) − F (2)H
(2)
k0

)′e(2)
k0,i

T − k0
=
H

(2)′
k0

F (2)′e
(2)
k0,i

T − k0
+Op(δ−2

NT ),

where the Op(δ−2
NT ) term is uniform in k and follows from Lemma B1 of Bai (2003). Thus,

N∑
i=1

k∑
t=k0+1

(f̂ ′tλ̂i2 − f ′tλi2)2 =
N∑
i=1

k∑
t=k0+1

(
e′tΛ2

N

(
Λ′2Λ2

N

)−1
λi2 +

f̂ ′tF̂
(2)′e

(2)
k0,i

T − k0
+ (ψ2tH

(2)−1

k0
+ f̂ ′tψ3)λi2

)2

=
N∑
i=1

k∑
t=k0+1

[
e′tΛ2

N

(
Λ′2Λ2

N

)−1
λi2

]2

+
N∑
i=1

k∑
t=k0+1

 f̂ ′tH(2)′
k0

F (2)′e
(2)
k0,i

T − k0

2

+ 2
N∑
i=1

k∑
t=k0+1

(
e′tΛ2

N

(
Λ′2Λ2

N

)−1
λi2

) f̂ ′tH(2)′
k0

F (2)′e
(2)
k0,i

T − k0

+ (k − k0)Op
(
N

δ3
NT

)

=
N∑
i=1

k∑
t=k0+1

[
e′tΛ2

N

(
Λ′2Λ2

N

)−1
λi2

]2

+ (k − k0)
[
Op

(
N

T

)
+Op

(√
N√
T

)
+Op

(
N

δ3
NT

)]
, (B.22)

where the first term is (k−k0)Op(1) and the Op
(

N
δ3
NT

)
term follows from C-S inequality and the facts

that ‖N−1e′tΛ2‖ = Op(N−1/2), ψ2t in (B.19) isOp(δ−2
NT ) for each t, ‖F (2)′e

(2)
k0,i

/(T−k0)‖ = Op(T−1/2),
(F̂ (2) − F (2)H

(2)
k0

)′e(2)
k0,i

/(T − k0) = Op(δ−2
NT ) for each i, and ψ3 defined in (B.20) is Op(δ−2

NT ).
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(c) Consider term
∑N
i=1 z3i in (B.5).

N∑
i=1

z3i =
N∑
i=1

k∑
t=k0+1

eit

f̃ ′t F̃ (1)′
k X

(1)
k,i

k
− f̂ ′t

F̂ (2)′X
(2)
k0,i

T − k0


=

N∑
i=1

k∑
t=k0+1

eit

f̃ ′t F̃ (1)′
k X

(1)
k,i

k
− f ′tλi2

−
f̂ ′t F̂ (2)′X

(2)
k0,i

T − k0
− f ′tλi2

 . (B.23)

The first term in
∑N
i=1 z3i can rewritten as

N∑
i=1

k∑
t=k0+1

eit

f̃ ′t F̃ (1)′
k X

(1)
k,i

k
− f ′tλi2


=

N∑
i=1

k∑
t=k0+1

eit

 f̃ ′t
(
F̃

(1)′
1 F (1)λi1 +

∑k
s=k0+1 f̃sf

′
sλi2

)
+ f̃ ′tF̃

(1)′
k e

(1)
k,i

k
− f ′tλi2


=

N∑
i=1

k∑
t=k0+1

eit

 f̃ ′t
(
F̃

(1)′
1 F̃

(1)
1 H

(1)−1

k,1 λi1 +
∑k
s=k0+1 f̃sf̃

′
sH

(1)−1

k,2 λi2
)

k
+
f̃ ′tF̃

(1)′
k e

(1)
k,i

k
− f ′tλi2



+
k∑

t=k0+1

f̃
′
t

F̃
(1)′
1 (F (1) − F̃ (1)

1 H
(1)−1

k,1 )
k︸ ︷︷ ︸

Op(L1/2
2NT δ

−2
NT )

N∑
i=1

λi1eit︸ ︷︷ ︸
Op(
√
N)

+f̃ ′t

∑k
s=k0+1 f̃s

(
f ′s − f̃ ′sH

(1)−1

k,2

)
k︸ ︷︷ ︸

Op(L1/2
2NT δ

−2
NT )

N∑
i=1

λi2eit︸ ︷︷ ︸
Op(
√
N)


=

N∑
i=1

k∑
t=k0+1

eit

 f̃ ′tF̃ (1)′
k F̃

(1)
k H

(1)−1

k,2 λi2

k
− f ′tλi2

+
f̃ ′tF̃

(1)′
1 F̃

(1)
1 (H(1)−1

k,1 λi1 −H(1)−1

k,2 λi2)
k


+

N∑
i=1

k∑
t=k0+1

eit
f̃ ′tF̃

(1)′
k e

(1)
k,i

k
+ (k − k0)Op

(
L

1/2
2NT
√
N

δ2
NT

)
, (B.24)

where the Op
(
L

1/2
2NT
√
N

δ2
NT

)
term is uniform in k by Lemmas 1(b), 4, and C-S inequality. Since

F̃
(1)′
k F̃

(1)
k /k = Ir, the first term in (B.24) becomes

k∑
t=k0+1

[(
f̃ ′t − f ′tH

(1)
k,2

)
H

(1)−1

k,2

N∑
i=1

eitλi2

]

=
k∑

t=k0+1

e′tΛ1
N

(Λ′2Λ1
N

)−1 N∑
i=1

eitλi2︸ ︷︷ ︸
Op(1)

+(k − k0)
[
Op

( 1
N1/2−α/2

)
+Op

(
L

1/2
2NT
√
N

δ2
NT

)]
︸ ︷︷ ︸

uniform in k

(B.25)
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by (B.7), (B.9) and Lemma 1(b). The second term in (B.24) is equal to

N∑
i=1

k∑
t=k0+1

 f̃ ′tF̃ (1)′
1 F̃

(1)
1 (H(1)−1

k,1 −H(1)−1

k,2 )λi1eit
k

+
f̃ ′tF̃

(1)′
1 F̃

(1)
1 H

(1)−1

k,2 (λi1 − λi2)eit
k


=(k − k0)Op

( 1
N1/2−α

)
+

N∑
i=1

k∑
t=k0+1

(
f̃ ′t − f ′tH

(1)
k,2

)
F̃

(1)′
1 F̃

(1)
1 H

(1)−1

k,2 (λi1 − λi2)eit
k

+
N∑
i=1

k∑
t=k0+1

f ′tH
(1)
k,2F̃

(1)′
1 F̃

(1)
1 H

(1)−1

k,2 (λi1 − λi2)eit
k

, (B.26)

where the Op
(

1
N1/2−α

)
term is uniform in k and follows from Lemmas 1(b) and 2(c). Note that the

second term in (B.26) can be bounded by

k∑
t=k0+1

(
f̃ ′t − f ′tH

(1)
k,2

) F̃ (1)′
1 F̃

(1)
1

k
H

(1)−1

k,2

N∑
i=1

(λi1 − λi2)eit = (k − k0)Op

(
Nα/2

δNT

)
, (B.27)

where the Op(δ−1
NTN

α/2) term is uniform in k by Lemmas 1(c), 2, and C-S inequality. For the third
term in (B.26), let

ξt =
N∑
i=1

f ′t(λi1 − λi2)eit. (B.28)

Lemma 1(d) implies that E
(
supk≥k0+1

∣∣ 1
k−k0

∑k
t=k0+1 ξt

∣∣2) ≤ C1MNα for some 0 < C1 <∞. Thus,
for any small ε > 0

P

(
sup

k≥k0+1

∣∣∑k
t=k0+1 ξt

k − k0

∣∣ ≥ εNα

)
= P

(
sup

k≥k0+1

∣∣∑k
t=k0+1 ξt

k − k0

∣∣2 ≥ ε2N2α
)

≤ C1MNα

ε2N2α = O

( 1
Nα

)
→ 0 (B.29)

for α > 0 by Markov inequality, so
∑k
t=k0+1 ξt is uniformly dominated by ε(k− k0)Nα for arbitrary

small ε > 0 as N → ∞, which means that (k − k0)−1∑k
t=k0+1 ξt is op(Nα) uniformly in k. Note

that F̃ (1)′
1 F̃

(1)
1 /k, H(1)

k,2 and H(1)−1

k,2 are uniformly Op(1). Thus, Dk is also (k − k0)op(Nα) for α > 0
and the op(Nα) term is uniform in k, where

Dk = tr

[H(1)
k,2

(
F̃

(1)′
1 F̃

(1)
1

k

)
H

(1)−1

k,2

]
N∑
i=1

k∑
t=k0+1

(λi1 − λi2)eitf ′t

 . (B.30)

In addition, the third term of (B.24),
∑N
i=1

∑k
t=k0+1 eitf̃

′
tF̃

(1)′
k e

(1)
k,i/k, can be rewritten as

1
k

k∑
t=k0+1

f̃ ′t

N∑
i=1

k∑
s=1

H
(1)′
k,1 fseiseit + 1

k

k∑
t=k0+1

N∑
i=1

f̃ ′t

k∑
s=k0+1

(
H

(1)
k,2 −H

(1)
k,1

)
fseiseit
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+ 1
k

k∑
t=k0+1

N∑
i=1

f̃ ′t

k0∑
s=1

(f̃s −H(1)′
k,1 fs)eiseit + 1

k

k∑
t=k0+1

N∑
i=1

f̃ ′t

k∑
s=k0+1

(f̃s −H(1)′
k,2 fs)eiseit

=ω1 + ω2 + ω3 + ω4 (B.31)

Term ω1 can be represented as

ω1 =
k∑

t=k0+1
f̃ ′tH

(1)′
k,1

1
k

N∑
i=1

k∑
s=1

fs[eiseit − E(eiseit)] +
k∑

t=k0+1
f̃ ′t

1
k

N∑
i=1

k∑
s=1

H
(1)′
k,1 fsE(eiseit)

=(k − k0)

Op
√N

T

+Op

(
N

T

) , (B.32)

where the Op
(√

N
T

)
term is uniform in k and follows from Assumption 5(a) and k/T ∈ [τ1, τ2], and

the Op
(
N
T

)
term is uniform in k and follows from the fact that k−1E‖

∑N
i=1

∑k
s=1 fsE(eiseit)‖ ≤

k−1N(
∑k
s=1 |γN (s, t)|)E‖fs‖ = O(N/T ). Term ω2 can be represented as

ω2 = 1
k

k∑
t=k0+1

f̃ ′t

(
H

(1)
k,2 −H

(1)
k,1

) N∑
i=1

k∑
s=k0+1

{fs[eiseit − E(eiseit)] + fsE(eiseit)}.

The term k−1∑N
i=1

∑k
s=k0+1 fs[eiseit−E(eiseit)] = Op

(√
N(k−k0)L2NT

T

)
uniformly in k by Assump-

tion 6(a). The term k−1∑N
i=1

∑k
s=k0+1 fsE(eiseit) = Op(N/T ) uniformly in k by the same argument

as the second term in (B.32). Since H(1)
k,2 −H

(1)
k,1 = Op(Nα−1) by Lemma 2(c) and k/T ∈ [τ1, τ2], we

obtain
ω2 = (k − k0)

[
Op

(√
NL2NT√
TN1−α

)
+Op

(
N

TN1−α

)]
, (B.33)

where the Op terms in (B.33) are uniform in k. Next, term ω3 can be bounded by∥∥∥∥∥∥
k∑

t=k0+1
f̃ ′t

1
k

N∑
i=1

k0∑
s=1

(f̃s −H(1)′
k,1 fs)eiseit

∥∥∥∥∥∥
≤(k − k0)

 1
k − k0

k∑
t=k0+1

‖f̃t‖2
1/2

 1
k − k0

k∑
t=k0+1

∥∥∥∥∥∥1
k

N∑
i=1

k0∑
s=1

(f̃s −H(1)′
k,1 fs)eiseit

∥∥∥∥∥∥
2


1/2

=(k − k0)

Op
√N

T

+Op

√ log log T
N

+Op

(
N
√

log logN
T
√
T

) , (B.34)

where the Op terms in (B.34) are uniform in k by Lemma 7. The Op
(
N
√

log logN
T
√
T

)
term in (B.34) is

38



dominated by Op(N/T ) in (B.32) under (3.11). By similar arguments to ω3, it follows that

ω4 = (k − k0)

Op
(√

L2NTN√
T

)
+Op

√ log log T
N

+Op

(
N
√

log logN
T
√
T

) (B.35)

by Lemma 7. The last term in (B.35) is also dominated by (B.32) by (3.11). The Op
(√

log log T
N

)
term in (B.34) and (B.35) is dominated by Op

(
N
√

log logN
T
√
T

)
for T < N and has the same rate

as the Op
(√

N ·L2NT
δ2
NT

)
term in (B.24) for T ≥ N . By (B.32)–(B.35), we can bound (B.31) as

(k − k0)[Op(N/T ) +Op(
√
L2NTN/T ) +Op(δ−2

NT

√
N · L2NT )].

Lastly, the second term in (B.23) can be rewritten as

N∑
i=1

k∑
t=k0+1

eit
(
f̂ ′tλ̂i2 − f ′tλi2

)
=

N∑
i=1

k∑
t=k0+1

[
(f̂ ′t − f ′tH

(2)
k0

)H(2)−1

k0
λi2eit + f̂ ′t(λ̂i2 −H

(2)−1

k0
λi2)eit

]
(B.36)

The term
∑N
i=1

∑k
t=k0+1(f̂ ′t − f ′tH

(2)
k0

)H(2)−1

k0
λi2eit can be represented as

k∑
t=k0+1


[
e′tΛ2
N

(Λ′2Λ2
N

)−1
+ ψ2tH

(2)−1

k0

]
N∑
i=1

λi2eit︸ ︷︷ ︸
Op(
√
N)


=

k∑
t=k0+1

e′tΛ2
N

(Λ′2Λ2
N

)−1 N∑
i=1

λi2eit︸ ︷︷ ︸
Op(1)

+(k − k0)Op

(√
N

δ2
NT

)
︸ ︷︷ ︸
uniform in k

, (B.37)

by Lemma 1(b), (B.19) and the definition ofH(2)
k0

in (B.4). By (B.20), the term
∑N
i=1

∑k
t=k0+1 f̂

′
t(λ̂i2−

H
(2)−1

k0
λi2)eit can be rewritten as

N∑
i=1

k∑
t=k0+1

f̂ ′t

 F̂ (2)′e
(2)
k0,i

T − k0
+ ψ3λi2

 eit =
N∑
i=1

k∑
t=k0+1

f̂ ′tF̂
(2)′e

(2)
k0,i

eit

T − k0
+ (k − k0)Op

(√
N

δ2
NT

)
︸ ︷︷ ︸
uniform in k

, (B.38)

where ψ3 = Op(δ−2
NT ) uniformly in k is defined in (B.20) and we use Lemma 1(b).

The term
∑N
i=1

∑k
t=k0+1 f̂

′
tF̂

(2)′e
(2)
k0,i

eit/(T − k0) in (B.38) can be represented as

1
T − k0

N∑
i=1

k∑
t=k0+1

f̂ ′tH
(2)′
k0

F (2)′e
(2)
k0,i

eit + 1
T − k0

N∑
i=1

k∑
t=k0+1

f̂ ′t

(
F̂ (2) − F (2)H

(2)
k0

)
e

(2)
k0,i

eit

=(k − k0)

Op
√N

T

+Op

(
N

T

)
+Op

( 1√
N

) (B.39)
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The proof for (B.39) is the same as ω1 in (B.32) and ω3 in (B.34). (The uniform bound here does
not involve L1/2

2NT because the split date is fixed at k0 for the estimation of f̂t). Thus, combining
the results in (B.24), (B.25), (B.26), (B.27), (B.29), (B.31), (B.32), (B.33), (B.34), (B.35), (B.37),
(B.38), and (B.39), we obtain the bound for

∑N
i=1 z3i.

Q.E.D.

Proof of Theorem 1:
By (B.1) and (B.5), we have

1
k − k0

[SSR(k, F̃ )− SSR(k0, F̂ )] = 1
k − k0

(
I + II +

N∑
i=1

z1i −
N∑
i=1

z2i − 2
N∑
i=1

z3i

)
, (B.40)

where
∑N
i=1 z1i =

∑N
i=1

∑k
t=k0+1(d1it + d2it + d3it + d4it)2 by (B.6). First, we will show that (k −

k0)−1∑N
i=1

∑k
t=k0+1 d

2
jit for j = 1, 3, 4, (k − k0)−1∑N

i=1 z2i, (k − k0)−1∑N
i=1 z3i, and the terms in

(k − k0)−1I and (k − k0)−1II are op(Nα) uniformly in k.
We focus on the case of k > k0 without loss of generality. Note that the term

∑N
i=1Ai(k, k0)′

F̃
(1)′
1 F̃

(1)
1 Ai(k, k0) defined in part (a) of Lemma 8 is always non-negative, so we only need to show

that the remaining terms in I of Lemma 8(a) are (k − k0)op(Nα) and the op(Nα) term is uniform
in k. The remaining term in I is (k − k0)Op

(√
NΠ̄NT + NΠ̄NT

δNT

)
and the Op terms are uniform in

k by Lemma 8(a). The Op
(
Π̄NT

√
N
)
term is equal to Op

(√
N log(log T )

T +
√
N

N1−α +
√
NL2NT
δ2
NT

)
. Note

that
√
N log(log T )√

TNα
= N(1−α)/2√log log T√

T
N−α/2 → 0 by (3.10) and

√
N

N1−α /N
α = N−1/2 → 0. For the

term Op

(√
NL2NT
δ2
NT

)
, it follows that

√
NL2NT
δ2
NTN

α
≤ N1−α

T

√
log(2 logN)

N
→ 0, if N > T

√
NL2NT
δ2
NTN

α
≤
√

log(2 log T )
N1/2+α → 0, if N ≤ T (B.41)

by (3.10) and (3.11). Thus, the Op
(
Π̄NT

√
N
)
term is uniformly op(Nα). The Op

(
Π̄NTN
δNT

)
term is

the same as the Op
(
Π̄NT

√
N
)
term for N ≤ T . For N > T , it reduces to

Op

(
N
√

log(log T )
T

+ N√
TN1−α

+ N
√
L2NT

T 3/2

)

≤Op

N√log(log T )
T

+ Nα

√
T

+ N

T

√
log(2 logN)

T

 ,
which is uniformly op(Nα) by (3.10) and (3.11).

The analysis for term II is almost the same as that for term I except that II has a non-
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positive term −
∑N
i=1Bi(k, k0)′F̂ (2)′

2 F̂
(2)
2 Bi(k, k0), which is (k− k0) [op(1) +Op (N log(log T )/T )] by

Lemma 8(b). Since N log(log T )/T is dominated by Nα by (3.10) as N,T → ∞, it follows that
−(k − k0)−1∑N

i=1Bi(k, k0)′F̂ (2)′
2 F̂

(2)
2 Bi(k, k0) is uniformly op(Nα). Thus, the non-positive terms of

(k − k0)−1I and (k − k0)−1II in Lemma 8 are op(Nα) uniformly in k.
Next, the stochastic bounds of

∑N
i=1

∑k
t=k0+1 d

2
jit for j = 1, 3, 4,

∑N
i=1 z2i,

∑N
i=1 z3i are given

in parts (a)–(c) of Lemma 9 for α > 0. It is sufficient to show that all these bounds in Lemma
9 are (k − k0)op(Nα) and the op(Nα) term is uniform in k. By checking the terms in part (a)
of Lemma 9, it is straightforward that (k − k0)Op(1) is uniformly dominated by Nα(k − k0) for

α > 0. The Op
(√

NL2NT
δ2
NT

)
term is op(Nα) uniformly in k by (B.41). Under the condition (3.10),

the Op
(
N log(log T )

T

)
term in Lemma 9 is also op(Nα).

Also,
∑N
i=1 z2i is always dominated by

∑N
i=1 z3i by Lemma 9, so the rest of the proofs will only

focus on
∑N
i=1 z3i. The terms Op

(
Nα

N1/2

)
and Op

(
Nα/2

δNT

)
are always op(Nα) for α ∈ [0, 1]. The

Op
(√

NL2NT√
T

)
term is op(Nα) because for α > 0

√
NL2NT

Nα
√
T
≤


1

Nα/2

√
N1−α log(2 log T )

T → 0, for T ≥ N ;√
log(2 logN)

Nα

√
N1−α

T → 0, for T < N

by (3.10). The term (k − k0)Op
(
N
T

)
is uniformly (k − k0)op(Nα) by (3.10).

Based on the above results, the term in the right-hand side of (B.40) can be rewritten as

I + II +
N∑
i=1

z1i −
N∑
i=1

z2i − 2
N∑
i=1

z3i

=Qk +
N∑
i=1

k∑
t=k0+1

d2
2it + (I −Qk) + II −

N∑
i=1

z2i − 2
N∑
i=1

z3i

+
N∑
i=1

k∑
t=k0+1

(d1it + d3it + d4it)2 + 2
N∑
i=1

k∑
t=k0+1

d2it(d1it + d3it + d4it) (B.42)

where Qk =
∑N
i=1Ai(k, k0)′F̃ (1)′

1 F̃
(1)
1 Ai(k, k0) ≥ 0. We have shown that (k−k0)−1∑N

i=1
∑k
t=k0+1 d

2
jit

for j = 1, 3, 4, (k− k0)−1∑N
i=1 z2i, (k− k0)−1∑N

i=1 z3i, and (k− k0)−1(I −Qk) and (k− k0)−1II are
op(Nα) uniformly in k for α > 0. In conjunction with (B.15), it follows that the last term in (B.42)
is (k − k0)op(Nα) by C-S inequality and the op term is uniform in k.

Given the above results, we next prove that k̃ − k0 = Op(1). We need to show that for any
ε0 > 0, there exists M > 0, n > 0 and S > 0 such that P (k̃ − k0 > M) < ε0, ∀N ≥ n and ∀T ≥ S

(note that k̃ depends on N and T ). It is equivalent to show that

P

(
min

k>k0+M
SSR(k, F̃ )− SSR(k0, F̂ ) ≤ 0

)
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=P
(

min
k>k0+M

[I + II +
N∑
i=1

z1i −
N∑
i=1

z2i − 2
N∑
i=1

z3i] ≤ 0
)
< ε0, ∀N ≥ n, ∀T ≥ S (B.43)

Recall the results in Eq.(B.16) and (B.17) for the leading term in (k − k0)−1∑N
i=1

∑k
t=k0+1 d

2
2it.

Specifically, there exists k − k0 = Mε > 0 and n0 and S0 > 0, such that

P

 inf
k>k0+Mε

1
k − k0

N∑
i=1

k∑
t=k0+1

d2
2it < Nαc1

 ≤ ε0
2 , ∀N ≥ n0, ∀T ≥ S0, (B.44)

where c1 is defined below (B.17).
Also, let Wk,NT = (I − Qk) + II −

∑N
i=1 z2i − 2

∑N
i=1 z3i+

∑N
i=1

∑k
t=k0+1(d1it + d3it + d4it)2 +

2
∑N
i=1

∑k
t=k0+1d2it(d1it + d3it + d4it). We have shown that (k− k0)−1Wk,NT is op(Nα) uniformly in

k. Thus, there exists n1 and S1 > 0 such that

P

(
sup

k0<k≤τ2T

1
k − k0

|Wk,NT | ≥ c2N
α

)
<
ε0
2 , ∀N ≥ n1, ∀T ≥ S1 (B.45)

and for arbitrarily small c2 > 0. It is sufficient to set c2 = c1/2 for our purpose. Let M = M0,
n = max(n0, n1), S = max(S0, S1) and

k̆ = arg min
k>k0+M

(
SSR(k, F̃ )− SSR(k0, F̂ )

)
,

so k̆−k0 > M by its definition. Hence, for any N ≥ n and T ≥ S, the probability in (B.43) becomes

P

(
min

k>k0+M
[I + II +

N∑
i=1

z1i −
N∑
i=1

z2i − 2
N∑
i=1

z3i] ≤ 0

)
= P

{
min

k>k0+M

(
Qk +

N∑
i=1

k∑
t=k0+1

d2
2it +Wk,NT

)
≤ 0

}

≤P

 min
k>k0+M

(
Qk +

N∑
i=1

k∑
t=k0+1

d2
2it +Wk,NT

)
≤ 0, 1

k̆ − k0

N∑
i=1

k̆∑
t=k0+1

d2
2it ≥ Nαc1

+ ε0
2

<P

 min
k>k0+M

(
Qk +

N∑
i=1

k∑
t=k0+1

d2
2it +Wk,NT

)
≤ 0, 1

k̆ − k0

N∑
i=1

k̆∑
t=k0+1

d2
2it ≥ Nαc1, sup

k0<k≤τ2T

|Wk,NT |
k − k0

< c2N
α

+ ε0

<P

 min
k>k0+M

(
Qk +

N∑
i=1

k∑
t=k0+1

d2
2it +Wk,NT

)
≤ 0, 1

k̆ − k0

N∑
i=1

k̆∑
t=k0+1

d2
2it ≥ Nαc1, inf

k0<k≤τ2T

Wk,NT

k − k0
≥ −c2Nα

+ ε0

<P

 min
k>k0+M

(
Qk +

N∑
i=1

k∑
t=k0+1

d2
2it +Wk,NT

)
≤ 0, 1

k̆ − k0

N∑
i=1

k̆∑
t=k0+1

d2
2it ≥ Nαc1,

1
k̆ − k0

Wk̆,NT ≥ −c2N
α

+ ε0

≤P

 min
k>k0+M

(
Qk +

N∑
i=1

k∑
t=k0+1

d2
2it +Wk,NT

)
≤ 0, 1

k̆ − k0

 N∑
i=1

k̆∑
t=k0+1

d2
2it +Wk̆,NT

 ≥ 1
2N

αc1

+ ε0

=ε0,

where the second line uses (B.44), the third line uses (B.45) with c2 = c1/2, and the last line follows
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from the fact that the probability of the event in the large brackets is zero by the definition of k̆.
This completes the proof for k̃ − k0 = Op(1).

Lastly, we show that P (k̃ = k0) → 1 as N,T → ∞, based on the result that k̃ − k0 = Op(1).
Recall that SSR(k, F̃ )− SSR(k0, F̂ ) = Qk +

∑N
i=1

∑k
t=k0+1 d

2
2it +Wk,NT for k > k0, so

P (k̃ > k0) = P

Qk̆ +
N∑
i=1

k̃∑
t=k0+1

d2
2it +Wk̃,NT ≤ 0

 , (B.46)

whereQk̆ isQk evaluated at k̆. By similar arguments for (B.45),Wk̃,NT is less than c3N
α for arbitrar-

ily small c3 > 0 as N,T →∞, given that k̃− k0 = Op(1). Also, Qk ≥ 0 and N−α
∑N
i=1

∑k̃
t=k0+1 d

2
2it

is greater than f ′k0+1

[
limN→∞

1
Nα (Λ2 − Λ1A)′(Λ2 − Λ1A)

]
fk0+1 > 0 as N,T → ∞ by (3.5) and

(B.18). Thus,
∑N
i=1

∑k̃
t=k0+1 d

2
2it dominates Wk̃,NT and the probability in (B.46) tends to zero as

N,T →∞.
Q.E.D.

C Proofs for the asymptotics of k̃ − k0 when α = 0

Proof of Theorem 2:
To show that k̃− k0 is Op(1) when α = 0, it is sufficient to show that for any ε > 0, there exists

S <∞ such that

P

([
min

|k−k0|>S
SSR(k, F̃ )− SSR(k0, F̂ )

]
≤ 0

)
< ε

for all large N , T with T−1(N log log T )→ 0 and N−1 log log T → 0. We will show that SSR(k, F̃ )−
SSR(k0, F̂ ) > 0 for all |k−k0| > S and k ∈ [τ1T, τ2T ]. Note that the leading term

∑N
i=1

∑k
t=k0+1 d

2
2it

in (B.42) is no smaller than Op(k − k0) by (B.16) and (B.18) for α = 0. Also, the term Qk =∑N
i=1Ai(k, k0)′F̃ (1)′

1 F̃
(1)
1 Ai(k, k0) is always non-negative. The terms in I −Qk and II in (B.42) are

(k − k0)op(1) for α = 0 by the same arguments in the proof of Theorem 1.

We use Lemma 9 to bound
∑N
i=1 zji for j = 1, 2, 3 in (B.42). The Op

(√
NL

1/2
2NT

δ2
NT

)
, Op

(
log(log T )N

T

)
,

Op
(
N
T

)
, Op

(√
NL2NT√

T

)
, Op

(
1

N1/2−α

)
, and Op

(
Nα/2

δNT

)
terms in Lemma 9 are all op(1) for α = 0 under

the condition that N log log(T )/T → 0 (which implies N < T ) and log log T/N → 0. By summariz-
ing the results from (B.6) to (B.39), only the following terms are (k−k0)Op(1):

∑N
i=1

∑k
t=k0+1 d

2
1it in

(B.8),
∑N
i=1

∑k
t=k0+1 d1itd2it in (B.42),14 the leading term

∑N
i=1

∑k
t=k0+1

[
N−1e′tΛ2(Λ′2Λ2/N)−1λi2

]2
in (B.22),

∑k
t=k0+1(e′tΛ1/N)(Λ′2Λ1/N)−1∑N

i=1 eitλi2 in (B.25),
∑k
t=k0+1(e′tΛ2/N)(Λ′2Λ2/N)−1∑N

i=1 λi2eit

in (B.37), and the third term of (B.26).
First, we show that

∑N
i=1

∑k
t=k0+1 d1itd2it can be further bounded by (k − k0)op(1). By the

14All other cross-products are op(k − k0) by C-S inequality due to the fact that
∑N

i=1

∑k

t=k0+1(d2
3it + d2

4it) =
op(k − k0).
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definitions of d1it and d2it in (B.6),
∑N
i=1

∑k
t=k0+1 d1itd2it can be represented as

N∑
i=1

k∑
t=k0+1

[(f̃ ′tH
(1)−1

k,2 − f ′t)λi2]
[
(H(1)−1

k,1 λi1 −H(1)−1

k,2 λi2)′
(
F̃

(1)′
1 F̃

(1)
1 /k

)
f̃t

]

=
k∑

t=k0+1
(f̃ ′tH

(1)−1

k,2 − f ′t)︸ ︷︷ ︸
Op(N−1/2)

(
N∑
i=1

λi2λ
′
i1

)
︸ ︷︷ ︸

Op(N)

(H(1)−1

k,1 −H(1)−1

k,2︸ ︷︷ ︸
Op(N−1)

)′
(
F̃

(1)′
1 F̃

(1)
1

k

)
f̃t

+
k∑

t=k0+1
(f̃ ′tH

(1)−1

k,2 − f ′t)︸ ︷︷ ︸
Op(N−1/2)

[
N∑
i=1

λi2(λi1 − λi2)′
]

︸ ︷︷ ︸
Op(1)

H
(1)−1′

k,2

(
F̃

(1)′
1 F̃

(1)
1

k

)
f̃t

=(k − k0)Op
(

1√
N

)
, (C.1)

where the Op terms are uniform in k, the Op(N−1/2) term in the second line follows from (B.7),
the Op(N−1) term follows from Lemma 2(c) for α = 0, and the Op(1) term follows from Lemma
1(a) for α = 0.

Next, note that the (k − k0)Op(1) term in
∑N
i=1

∑k
t=k0+1 d

2
1it and term

∑N
i=1

∑k
t=k0+1[N−1e′tΛ2

(Λ′2Λ2/N)−1λi2]2 in (B.22) are of the opposite signs. We show that the difference between them is
(k−k0)op(1). Note that the (k−k0)Op(1) term in

∑N
i=1

∑k
t=k0+1 d

2
1it is

∑N
i=1

∑k
t=k0+1

[
N−1e′tΛ1 (Λ′2Λ1/N)−1 λi2

]2
by (B.9). Thus, the difference of these two terms is given by

N∑
i=1

k∑
t=k0+1

[e′tΛ1
N

(Λ′2Λ1
N

)−1
λi2

]2

−
[
e′tΛ2
N

(Λ′2Λ2
N

)−1
λi2

]2


=
N∑
i=1

k∑
t=k0+1

[(
e′tΛ1
N

(Λ′2Λ1
N

)−1
− e′tΛ2

N

(Λ′2Λ2
N

)−1)
λi2

]2

︸ ︷︷ ︸
Op(N−2) uniform in k

+

+2
k∑

t=k0+1

[
e′tΛ2
N

(Λ′2Λ2
N

)−1 N∑
i=1

λi2λ
′
i2

(
e′tΛ1
N

(Λ′2Λ1
N

)−1
− e′tΛ2

N

(Λ′2Λ2
N

)−1)′]

=(k − k0)Op
( 1√

N

)
,

where we use the fact that e′tΛ2/N = Op(N1/2) by Lemma 1(b) and the fact that

e′tΛ1
N

(Λ′2Λ1
N

)−1
− e′tΛ2

N

(Λ′2Λ2
N

)−1
= Op(N−1) (C.2)

because e′t(Λ1−Λ2)/N = Op(N−1), Λ′2(Λ1−Λ2)/N = Op(N−1) by Lemma 1 for α = 0 and Λ′2Λ2/N

is asymptotically nonsingular by Assumption 2.
Similarly, the difference between terms

∑k
t=k0+1(e′tΛ1/N)(Λ′2Λ1/N)−1∑N

i=1 λi2eit in (B.25) and∑k
t=k0+1(e′tΛ2/N)(Λ′2Λ2/N)−1∑N

i=1 λi2eit in (B.37) is also (k−k0)op(1) uniformly in k by (C.2) and
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Lemma 1. Hence, except the third term of (B.26), all above terms are (k− k0)op(1) and dominated
by
∑N
i=1

∑k
t=k0+1 d

2
2it.

Lastly, we show that the third term of (B.26) is also dominated by the leading positive term∑N
i=1

∑k
t=k0+1 d

2
2it for k ≥ k0 + S and for large S. By (B.44), there exists Sε > 0, Nε and Tε > 0,

such that for α = 0

P

 inf
k≥k0+Sε

1
k − k0

N∑
i=1

k∑
t=k0+1

d2
2it < c1

 ≤ ε

2 , ∀N ≥ Nε, ∀T ≥ Tε. (C.3)

Also, Lemma 1(d) implies E
(

supk≥k0+S2 |
1

k−k0

∑k
t=k0+1 ξt|2

)
≤ S−1

2 C1M for α = 0 and for some
0 < C1 <∞, where ξt is defined in (B.28). Thus, for any small ε > 0

P

(
sup

k≥k0+S2

∣∣∑k
t=k0+1 ξt

k − k0

∣∣ ≥ εc1

)
= P

(
sup

k≥k0+S2

∣∣∑k
t=k0+1 ξt

k − k0

∣∣2 ≥ ε2c2
1

)

≤ C1M

S2ε2c2
1

= O

( 1
S2

)
<
ε

2 (C.4)

as long as S2 is large enough. Define S = max(Sε, S2), so for any given ε > 0, we have

P

 sup
k≥k0+S

∣∣∑k
t=k0+1 ξt

k − k0

∣∣ ≥ inf
k≥k0+S

ε

k − k0

N∑
i=1

k∑
t=k0+1

d2
2it


=P

 sup
k≥k0+S

∣∣∑k
t=k0+1 ξt

k − k0

∣∣ ≥ εc1, sup
k≥k0+S

∣∣∑k
t=k0+1 ξt

k − k0

∣∣ ≥ inf
k≥k0+S

ε

k − k0

N∑
i=1

k∑
t=k0+1

d2
2it


+P

εc1 > sup
k≥k0+S

∣∣∑k
t=k0+1 ξt

k − k0

∣∣ ≥ inf
k≥k0+S

ε

k − k0

N∑
i=1

k∑
t=k0+1

d2
2it


≤P

(
sup

k≥k0+S

∣∣∑k
t=k0+1 ξt

k − k0

∣∣ ≥ εc1

)
+ P

 inf
k≥k0+S

1
k − k0

N∑
i=1

k∑
t=k0+1

d2
2it < c1

 ≤ ε
where the last line uses (C.3) and (C.4) and S = max(Sε, S2). Thus,

∑N
i=1

∑k
t=k0+1 f

′
t(λi1−λi2)eit is

dominated by ε
∑N
i=1

∑k
t=k0+1 d

2
2it for arbitrary small ε. Since F̃ (1)′

1 F̃
(1)
1 /k, H(1)

k,2 and H(1)−1

k,2 are all
Op(1) uniformly in k, it follows that

∑N
i=1

∑k
t=k0+1 f

′
tH

(1)
k,2(F̃ (1)′

1 F̃
(1)
1 /k)H(1)−1

k,2 (λi1−λi2)eit in (B.26)
is also dominated by

∑N
i=1

∑k
t=k0+1 d

2
2it. Since

∑N
i=1

∑k
t=k0+1 d

2
2it is positive and dominates all other

terms, SSR(k, F̃ ) − SSR(k0, F̂ ) is positive for k − k0 large enough. This completes the proof for
Theorem 2.
Q.E.D.

Proof of Theorem 3:
Under (3.2) with α = 0, we have λi2 − λi1 = δi/

√
N . Since we have shown that k̃ − k0 is Op(1)

by Theorem 2, we examine the behavior of SSR(k, F̃ ) − SSR(k0, F̂ ) for |k − k0| = Op(1). First,
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the non-negative term
∑N
i=1Ai(k, k0)′F̃ (1)′

1 F̃
(1)
1 Ai(k, k0) in Lemma 8(a) becomes op(1) because the

(k− k0)2Op(Nα/T ) term reduces to Op(T−1) as k− k0 = Op(1) and the Op[N log log T )/T ] term is
op(1) by assumption.

Next, by the proof of Theorem 2, we only need to consider two Op(k − k0) terms, the leading
term in (B.14) and the third term in (B.26). First, note that the leading term in (B.14) is Op(k−k0)
when α = 0. Since |k − k0| = Op(1), it follows that the leading term in (B.14) is also Op(1) and
F̃

(1)′
1 F̃

(1)
1 /k = Ir +Op(T−1). Thus, the leading term in (B.14) reduces to

=
N∑
i=1

k∑
t=k0+1

[
f̃ ′t
F̃

(1)′
1 F̃

(1)
1

k
H

(1)−1

k,2 (λi1 − λi2)
]2

=
N∑
i=1

k∑
t=k0+1

[
f̃ ′t [Ir +Op(T−1)]H(1)−1

k,2 (λi1 − λi2)
]2

=
N∑
i=1

k∑
t=k0+1

[
f ′t(λi1 − λi2) + (f̃ ′t − f ′tH

(1)
k,2)H(1)−1

k,2 (λi1 − λi2)
]2

+ op (1)

=
N∑
i=1

k∑
t=k0+1

[f ′t(λi1 − λi2)]2 + 2tr


k∑

t=k0+1
ft(f̃ ′t − f ′tH

(1)
k,2)

︸ ︷︷ ︸
op(1)

H
(1)−1

k,2

N∑
i=1

(λi1 − λi2)(λi1 − λi2)′



+tr


k∑

t=k0+1

(
H

(1)−1′

k,2 (f̃t −H(1)′
k,2 ft)(f̃

′
t − f ′tH

(1)
k,2)H(1)−1

k,2

)
︸ ︷︷ ︸

Op(δ−2
NT )

N∑
i=1

(λi1 − λi2)(λi1 − λi2)′

+ op(1)

→ptr

 k∑
t=k0+1

ftf
′
t · Σδ

 ,
where the op(1) term in the second line follows from the fact that 2

∑k
t=k0+1 f̃

′
tOp(T−1)H(1)−1

k,2

(N−1∑N
i=1 δiδ

′
i)H

(1)−1′

k,2 f̃t = Op(T−1) and N−1∑N
i=1

∑k
t=k0+1[f̃ ′tOp(T−1)H(1)−1

k,2 δi]2 = Op(T−2) by
(3.2) with α = 0, and the op(1) and Op(δ−2

NT ) terms in the second equality follow from Lemmas 4(b)
and 2(b), respectively.

Second, the third term in (B.26) is Op(k − k0) when α = 0. Hence, it is also Op(1) given that
k̃ − k0 = Op(1). Since F̃ (1)′

1 F̃
(1)
1 /k = Ir +Op(T−1) and N/T → 0, we have

N∑
i=1

k∑
t=k0+1

f ′tH
(1)
k,2F̃

(1)′
1 F̃

(1)
1 H

(1)−1

k,2 (λi1 − λi2)eit
k

=
N∑
i=1

k∑
t=k0+1

f ′tH
(1)
k,2 [Ir +Op(T−1)]H(1)−1

k,2 (λi1 − λi2)eit

=
N∑
i=1

k∑
t=k0+1

f ′t(λi1 − λi2)eit + op(1)
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=−
k∑

t=k0+1
f ′t

(
1√
N

N∑
i=1

δieit

)
→d

k∑
t=k0+1

f ′tZt,

where Zt ∼ N(0,Φ) and Φ = limN→∞N
−1∑N

j=1E(δjδ′j)σ2
j . Therefore, for k > k0

SSR(k, F̃ )− SSR(k0, F̂ )→d tr

 k∑
t=k0+1

ftf
′
t · Σδ

+ 2
k∑

t=k0+1
f ′tZt. (C.5)

Similarly, for k < k0,

SSR(k, F̃ )− SSR(k0, F̂ )→d tr

 k0∑
t=k+1

ftf
′
t · Σδ

+ 2
k0∑

t=k+1
f ′tZt. (C.6)

The result in Theorem 3 follows from (C.5), (C.6), and the strict stationarity of ft.
Q.E.D.
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Figure 1: The distribution of k̃ − k0 when only a single variable has a break point with N = 100
and T = 2000

Figure 2: The distribution of k̃ − k0 under DGP1 and DGP2 for N = 100 and T = 500
α α α α
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Table 1A: RMSEs under DGP1

r = 2

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 11.04 27.45 23.62 28.39 2.24 26.66 21.45 22.44 0.87 24.35 16.55 13.05 0.46 7.39 4.22 7.02
50,200 6.21 52.94 46.08 6.21 1.79 52.81 40.17 1.79 0.80 42.50 27.43 0.89 0.47 4.13 3.87 0.50
100,200 6.84 55.11 47.72 6.84 1.30 54.06 42.17 1.30 0.49 42.44 28.39 0.49 0.29 0.47 0.34 0.29
100,500 3.51 136.93 119.99 3.51 1.05 128.49 98.73 1.05 0.48 67.17 41.74 0.52 0.27 0.45 0.30 0.27
200,500 3.26 138.39 118.93 3.26 0.88 135.77 108.75 0.88 0.37 23.99 14.83 0.37 0.22 0.25 0.25 0.22

r = 3

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 13.28 28.76 21.17 8.62 3.09 28.06 16.91 4.57 0.87 25.40 9.43 1.62 0.41 13.60 3.99 0.82
50,200 8.95 55.92 42.03 8.95 1.86 52.49 30.21 3.86 0.77 43.09 13.20 3.31 0.37 13.84 2.50 2.53
100,200 9.37 56.46 41.77 9.47 1.23 54.38 34.59 1.23 0.42 47.02 16.21 0.59 0.21 1.31 0.27 0.39
100,500 3.41 137.60 106.41 3.41 1.12 126.70 66.47 1.12 0.42 85.01 18.23 0.42 0.21 0.35 0.27 0.23
200,500 3.98 140.69 112.30 3.98 0.71 134.68 88.43 0.71 0.25 96.06 23.10 0.25 0.12 0.14 0.15 0.12

r = 4

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 15.18 28.73 18.15 9.68 3.85 28.23 12.95 4.65 1.02 25.02 6.07 1.37 0.30 16.48 2.10 0.59
50,200 11.93 56.86 36.58 38.81 2.12 53.33 19.62 12.59 0.73 43.46 5.69 3.82 0.34 19.39 1.35 6.42
100,200 13.19 58.19 38.95 15.31 1.57 56.38 27.76 1.59 0.39 46.91 6.84 2.59 0.14 7.85 0.40 2.96
100,500 4.71 137.23 94.16 4.71 0.95 127.92 45.89 0.96 0.34 80.37 6.58 0.42 0.14 0.77 0.34 0.18
200,500 5.13 140.77 101.45 5.13 0.77 134.83 67.45 0.77 0.24 94.31 11.06 0.26 0.05 0.07 0.08 0.05

Note: k̃ is our LS estimator with a known r, k̃BKW is Baltagi, Kao, and Wang’s (2017) estimator with r̂ factors, k̃r̂−1 is the LS estimator using
r̂ − 1 factors, where r̂ is the full-sample estimator for r using Bai and Ng’s (2002) ICp1, and k̃CLS is the LS estimator using r̂1 pre-break factors
and r̂2 post-break factors, where r̂1 and r̂2 are determined by the method of Cheng et al. (2016).
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Table 1B: Probability of correct estimation under DGP1

r = 2

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 0.21 0.02 0.02 0.02 0.48 0.02 0.03 0.10 0.74 0.05 0.13 0.35 0.87 0.66 0.81 0.60
50,200 0.29 0.01 0.02 0.29 0.57 0.01 0.04 0.57 0.76 0.07 0.17 0.76 0.88 0.76 0.84 0.88
100,200 0.27 0.01 0.01 0.27 0.64 0.01 0.02 0.64 0.87 0.12 0.21 0.87 0.94 0.92 0.92 0.94
100,500 0.39 0.00 0.00 0.39 0.67 0.01 0.03 0.67 0.86 0.26 0.40 0.86 0.94 0.92 0.93 0.94
200,500 0.33 0.00 0.00 0.33 0.73 0.00 0.01 0.73 0.92 0.75 0.87 0.92 0.97 0.96 0.96 0.97

r = 3

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 0.17 0.01 0.03 0.10 0.48 0.01 0.08 0.30 0.75 0.04 0.27 0.60 0.90 0.42 0.74 0.80
50,200 0.24 0.00 0.02 0.24 0.55 0.01 0.08 0.55 0.79 0.05 0.30 0.78 0.91 0.55 0.80 0.86
100,200 0.22 0.00 0.01 0.22 0.66 0.01 0.03 0.66 0.88 0.03 0.23 0.86 0.96 0.88 0.94 0.90
100,500 0.35 0.00 0.01 0.35 0.68 0.01 0.06 0.68 0.90 0.04 0.29 0.90 0.96 0.94 0.94 0.96
200,500 0.34 0.00 0.00 0.34 0.77 0.00 0.02 0.77 0.94 0.06 0.27 0.94 0.99 0.98 0.98 0.99

r = 4

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 0.10 0.01 0.03 0.10 0.43 0.02 0.13 0.32 0.76 0.06 0.38 0.65 0.94 0.30 0.75 0.85
50,200 0.20 0.01 0.03 0.12 0.51 0.02 0.11 0.43 0.80 0.05 0.44 0.72 0.92 0.36 0.77 0.80
100,200 0.19 0.00 0.01 0.18 0.60 0.01 0.08 0.60 0.90 0.03 0.37 0.86 0.98 0.72 0.95 0.93
100,500 0.32 0.00 0.01 0.32 0.69 0.00 0.10 0.69 0.91 0.04 0.42 0.88 0.98 0.89 0.97 0.98
200,500 0.31 0.00 0.00 0.31 0.77 0.01 0.03 0.77 0.95 0.02 0.33 0.94 1.00 1.00 0.99 1.00

Note: k̃ is our LS estimator with a known r, k̃BKW is Baltagi, Kao, and Wang’s (2017) estimator with r̂ factors, k̃r̂−1 is the LS estimator using
r̂ − 1 factors, where r̂ is the full-sample estimator for r using Bai and Ng’s (2002) ICp1, and k̃CLS is the LS estimator using r̂1 pre-break factors
and r̂2 post-break factors, where r̂1 and r̂2 are determined by the method of Cheng et al. (2016).
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Table 2A: RMSEs under DGP2

r = 2

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 13.66 27.97 23.50 28.63 3.49 26.61 20.75 21.90 0.86 23.46 16.30 13.94 0.46 7.39 4.23 7.02
50,200 13.57 54.33 45.53 13.56 1.96 49.98 38.42 3.06 0.80 40.27 25.82 0.80 0.47 2.30 3.66 0.48
100,200 12.38 54.86 46.35 12.38 1.66 54.73 43.20 1.66 0.48 38.50 26.99 0.48 0.24 0.43 0.31 0.24
100,500 5.69 136.32 116.69 5.69 1.24 127.95 99.69 1.24 0.49 65.47 39.04 0.49 0.29 0.38 0.38 0.29
200,500 12.13 137.53 122.01 12.13 0.94 132.28 103.18 0.94 0.33 23.29 18.32 0.33 0.18 0.19 0.23 0.18

r = 3

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 14.19 28.33 20.98 8.91 3.33 26.80 15.78 4.48 0.86 24.26 9.18 1.80 0.41 13.78 4.00 0.82
50,200 14.03 55.47 38.09 14.21 2.11 51.11 27.54 3.18 0.70 42.19 12.02 2.67 0.33 11.29 3.31 0.45
100,200 10.71 56.15 40.96 10.71 1.76 55.20 33.70 1.78 0.52 44.45 13.49 0.67 0.17 0.81 0.24 0.19
100,500 6.71 137.57 98.23 6.71 1.14 124.90 66.78 1.17 0.42 85.08 19.62 0.42 0.19 0.30 0.21 0.18
200,500 10.39 138.13 109.74 10.39 0.89 133.20 84.40 0.89 0.24 83.62 21.88 0.24 0.11 0.11 0.15 0.11

r = 4

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 16.22 28.64 18.21 9.92 4.89 27.08 11.97 4.54 0.98 24.00 5.15 1.59 0.34 16.51 2.11 0.59
50,200 17.47 55.71 34.42 37.89 3.28 50.57 18.99 16.51 0.68 40.74 5.64 5.89 0.37 19.58 1.45 5.05
100,200 13.01 56.88 36.60 13.13 1.74 54.15 26.23 1.84 0.43 46.23 7.01 2.59 0.16 5.65 0.41 2.38
100,500 6.16 136.25 88.31 6.16 1.24 124.41 46.62 1.28 0.33 77.71 6.32 0.53 0.11 1.40 0.19 0.15
200,500 7.27 141.48 104.82 7.27 0.81 134.30 61.25 0.81 0.19 93.13 10.15 0.30 0.09 0.09 0.12 0.09

Note: k̃ is our LS estimator with a known r, k̃BKW is Baltagi, Kao, and Wang’s (2017) estimator with r̂ factors, k̃r̂−1 is the LS estimator using
r̂ − 1 factors, where r̂ is the full-sample estimator for r using Bai and Ng’s (2002) ICp1, and k̃CLS is the LS estimator using r̂1 pre-break factors
and r̂2 post-break factors, where r̂1 and r̂2 are determined by the method of Cheng et al. (2016).
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Table 2B: Probability of correct estimation under DGP2

r = 2

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 0.21 0.01 0.02 0.03 0.48 0.01 0.05 0.11 0.75 0.08 0.16 0.36 0.87 0.66 0.81 0.61
50,200 0.25 0.01 0.02 0.25 0.55 0.01 0.05 0.55 0.76 0.12 0.22 0.76 0.88 0.77 0.84 0.88
100,200 0.29 0.00 0.01 0.29 0.59 0.01 0.02 0.59 0.85 0.20 0.32 0.85 0.94 0.92 0.92 0.94
100,500 0.35 0.00 0.01 0.35 0.61 0.01 0.03 0.61 0.86 0.38 0.54 0.86 0.93 0.92 0.91 0.93
200,500 0.34 0.00 0.00 0.34 0.73 0.00 0.01 0.73 0.91 0.73 0.85 0.91 0.97 0.97 0.96 0.97

r = 3

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 0.19 0.02 0.03 0.13 0.46 0.02 0.10 0.29 0.73 0.05 0.25 0.54 0.90 0.41 0.73 0.80
50,200 0.25 0.01 0.03 0.25 0.54 0.03 0.10 0.54 0.80 0.06 0.29 0.79 0.92 0.57 0.82 0.88
100,200 0.29 0.01 0.01 0.29 0.58 0.01 0.06 0.57 0.87 0.06 0.28 0.84 0.98 0.89 0.96 0.97
100,500 0.36 0.00 0.02 0.36 0.68 0.01 0.05 0.68 0.89 0.08 0.32 0.89 0.97 0.94 0.96 0.97
200,500 0.32 0.00 0.01 0.32 0.76 0.00 0.02 0.76 0.95 0.21 0.43 0.95 0.99 0.99 0.98 0.99

r = 4

α = 0.25 α = 0.5 α = 0.75 α = 1
N,T k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS k̃ k̃BKW k̃r̂−1 k̃CLS

50,100 0.13 0.01 0.04 0.12 0.38 0.03 0.15 0.31 0.73 0.05 0.39 0.58 0.93 0.30 0.74 0.85
50,200 0.20 0.01 0.04 0.14 0.53 0.03 0.16 0.40 0.78 0.06 0.42 0.65 0.92 0.34 0.74 0.79
100,200 0.24 0.01 0.02 0.24 0.57 0.01 0.09 0.56 0.89 0.04 0.37 0.85 0.98 0.72 0.95 0.92
100,500 0.34 0.00 0.02 0.34 0.66 0.01 0.11 0.66 0.92 0.04 0.44 0.87 0.99 0.88 0.97 0.98
200,500 0.31 0.00 0.01 0.31 0.78 0.00 0.05 0.77 0.97 0.03 0.35 0.96 0.99 0.99 0.99 0.99

Note: k̃ is our LS estimator with a known r, k̃BKW is Baltagi, Kao, and Wang’s (2017) estimator with r̂ factors, k̃r̂−1 is the LS estimator using
r̂ − 1 factors, where r̂ is the full-sample estimator for r using Bai and Ng’s (2002) ICp1, and k̃CLS is the LS estimator using r̂1 pre-break factors
and r̂2 post-break factors, where r̂1 and r̂2 are determined by the method of Cheng et al. (2016).
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Table 3: Coverage probabilities of the bootstrap confidence intervals
r = 2

α = 0 α = 0.25 α = 0.5
N,T 90% 95% 99% 90% 95% 99% 90% 95% 99%
50,100 0.856 0.930 0.988 0.898 0.956 0.992 0.924 0.956 0.990
50,200 0.890 0.946 0.994 0.898 0.950 0.996 0.950 0.964 0.996
100,200 0.886 0.956 0.988 0.910 0.966 0.992 0.956 0.980 0.994
100,500 0.882 0.942 0.994 0.928 0.968 0.992 0.940 0.970 0.998
200,500 0.918 0.970 0.992 0.904 0.942 0.988 0.984 0.990 0.996

r = 3
α = 0 α = 0.25 α = 0.5

N,T 90% 95% 99% 90% 95% 99% 90% 95% 99%
50,100 0.742 0.856 0.968 0.814 0.888 0.978 0.898 0.950 0.992
50,200 0.822 0.924 0.984 0.868 0.934 0.986 0.926 0.958 0.998
100,200 0.840 0.926 0.992 0.850 0.950 0.992 0.950 0.968 0.994
100,500 0.862 0.932 0.986 0.914 0.958 0.996 0.936 0.978 0.994
200,500 0.868 0.936 0.992 0.928 0.962 0.992 0.958 0.984 0.992
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