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Abstract—Structured convex optimization problems in
image recovery typically involve a mix of smooth and
nonsmooth functions. The common practice is to activate
the smooth functions via their gradient and the nonsmooth
ones via their proximity operator. We show that, although
intuitively natural, this approach is not necessarily the most
efficient numerically and that, in particular, activating all
the functions proximally may be advantageous. To make
this viewpoint viable computationally, we derive a number
of new examples of proximity operators of smooth convex
functions arising in applications.

Index Terms—convex optimization, image recovery, nons-
mooth optimization, proximal splitting algorithm, proximity
operator

I. INTRODUCTION

Splitting in convex optimization methods for image re-

covery can be traced back to the influential work of Youla
[18], [19]. The convex feasibility framework he proposed

consists in formulating the image recovery problem as
that of finding an image in a Euclidean space H satisfying

m constraints derived from a priori knowledge and the

observed data. The constraints are represented by closed
convex sets (Ci)16i6m and the problem is therefore to

find x ∈
m⋂

i=1

Ci. (1)

Now, for every i ∈ {1, . . . ,m}, let projCi
be the projection

operator onto Ci, which maps each point x ∈ H to its

unique closest point in Ci. The methodology of projection
methods is to split the problem of finding a point in⋂m

i=1
Ci into a sequence of simpler problems involving

the sets (Ci)16i6m individually [10]. For instance, the
POCS (Projection Onto Convex Sets) algorithm advocated

in [19] is governed by the updating rule

(∀n ∈ N) xn+1 = (projC1
◦ · · · ◦ projCm

)xn. (2)

Projection operators are of limited use beyond feasibility

and best approximation problems. Modern image recov-
ery convex variational formulations have a complex struc-

ture that requires sophisticated analysis tools and solution
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methods. To solve such formulations while preserving the
spirit of splitting methods in feasibility problems, one

approach is to use an extended notion of a projection

operator. In [14] it was suggested to use Moreau’s notion
of a proximity operator [15] for this purpose. Recall that

the proximity operator of a proper lower semicontinuous
convex function ϕ : H → ]−∞,+∞] is

proxϕ : H → H : x 7→ argmin
y∈H

(
ϕ(y) +

1

2
‖x− y‖2

)
, (3)

and that it reduces to projCi
when ϕ = ιCi

, the indicator
function of Ci. We refer the reader to [3, Chapter 24] for a

detailed account of the properties of proximity operators

with various examples, to [12] for a tutorial on proximal
methods in signal processing, and to [2], [7], [9], [16],

[17] for specific applications to image recovery.
A prevalent viewpoint in modern proximal splitting

algorithms is that to activate each function ϕ appearing in
the model there are two options: if ϕ is smooth, i.e., real-

valued and differentiable everywhere with a Lipschitzian
gradient, then use ∇ϕ; otherwise, use ϕ proximally, i.e.,

via its proximity operator (3).
We propose a more nuanced viewpoint and submit

that, when ϕ is smooth, it may be computationally ad-
vantageous to activate it proximally when its proximity

operator can be implemented. To motivate this viewpoint,

let us first observe that a tight Lipschitz constant for the
gradient of ϕ may not be easy to estimate (see, e.g.,

[1], [4], [5]), which limits the range of the proximal
parameters and may have a detrimental incidence on

the speed of convergence. Our second observation is that

proximal steps behave numerically quite differently from
gradient steps, which may have a positive impact on the

asymptotic behavior of the algorithm (see Fig. 1).
The paper is organized as follows. Section II provides

explicit expressions for proximity operators of smooth
convex functions commonly encountered in image re-

covery. Image recovery applications are presented in
Sections III and IV. Numerical comparisons between

the forward-backward method and the Douglas-Rachford

method are presented in Section III. Next, numerical com-
parisons between splitting algorithms in which smooth

2019 27th European Signal Processing Conference (EUSIPCO)

978-9-0827-9703-9/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Centrale Supelec. Downloaded on June 20,2020 at 13:23:46 UTC from IEEE Xplore.  Restrictions apply. 



−−4

−4

−
2

−−2

|

2

|
4

|
−6

|
6

|
−2

|
−4

ξ1

ξ2

d2

•x1

• x2

•x3

•
x4

•
x5

•x6

• x1

d1

•x2

•x3

•
x4

•
x5

•
x6

•
x0

•x1

d1

•
x2

Fig. 1. Comparison of the gradient method xn+1 = xn − γ∇ϕ(xn)
(in green) and of the proximal point algorithm xn+1 = prox

γϕ
xn (in

red) in H = R2 for ϕ : (ξ1, ξ2) 7→ 9ξ2
1
− 14ξ1ξ2 + 9ξ2

2
. The gradient

method is implemented with γ = 1.8/β as this choice gave rise to the
fastest convergence. On the other hand, the proximal point algorithm
is implemented with the default choice γ = 1 (larger values gave even
faster convergence). The two algorithms behave quite differently, both
in terms of directions of movement and of trajectories. At iteration n,
call dn = ∇ϕ(xn)/‖∇ϕ(xn)‖ the normalized gradient at xn. Consider
the action of the gradient, say at iteration n = 2. The next iterate x3

is obtained by moving from x2 in the direction opposite to the gradient
at x2. By contrast, consider the action of the proximal point algorithm,
say at iteration n = 0. The next iterate x1 satisfies the implicit equation
x0 − x1 = γ∇ϕ(x1), which means that x1 is obtained by moving from
x0 in the direction opposite to the gradient at x1. Finally, we include the
orbit (in blue) of the inertial version of the gradient method obtained by
setting f = 0 and h = ϕ in algorithm (5), and choosing the parameters
α = 2.01 and γ = 1/β, which gave the fastest convergence.

functions are activated via gradient steps and those in

which all functions are activated via their proximity op-

erators are conducted. More extensive experiments on
various problems with additional algorithms can be found

in [11]. While no universal conclusion may be drawn from
these experiments, they suggest that fully proximal split-

ting algorithms deserve to be given serious consideration

in applications.

Notation. The notation follows that of [3]. Throughout,

H, G, and Gk are real Euclidean spaces and B (H,G) is
the space of linear operators from H to G.

II. PROXIMITY OPERATORS OF SMOOTH CONVEX

FUNCTIONS

We show that a broad range of smooth convex functions

encountered in signal recovery actually have an explicit
proximity operator. The proof of the following results will

be found in [11].

Example II.1 Let I be a nonempty finite set. For every i ∈
I, let Gi be a real Hilbert space, let Vi be a closed vector
subspace of Gi, let ri ∈ Gi, let Li ∈ B (H,Gi), and let αi ∈
]0,+∞[. Set h : H → R : x 7→ (1/2)

∑
i∈I αid

2
Vi
(Lix − ri)

and Q = (Id +γ
∑

i∈I αiL
∗
i projV ⊥

i

Li)
−1. Let γ ∈ ]0,+∞[,

set β =
∑

i∈I αi‖Li‖
2, and let x ∈ H. Then h : H → R is

convex and differentiable with a β-Lipschitzian gradient,

∇h(x) =
∑

i∈I αiL
∗
i projV ⊥

i

(
Lix − ri

)
, and proxγhx =

Q(x+ γ
∑

i∈I αiL
∗
i projV ⊥

i

ri).

In many digital image recovery applications, the opera-
tors (Li)i∈I are representable by block-circulant matrices

and the computation of Q in Example II.1 is therefore

straightforward. If not, note that Q is computable effi-
ciently as the inverse of a positive definite symmetric

matrix; by contrast β is much more expensive to com-
pute. The next construction, which involves the distance

function dC to a convex set C, captures a broad range of

functions of interest.

Example II.2 Let C be a nonempty closed convex subset

of H, let β ∈ ]0,+∞[, let φ : R → R be even, convex,
and differentiable with a β-Lipschitzian derivative, and set

h = φ◦dC . Let γ ∈ ]0,+∞[ and x ∈ H. Then h : H → R is

convex and differentiable with a β-Lipschitzian gradient,

∇h(x) =





φ′
(
dC(x)

)

dC(x)

(
x− projCx

)
, if x /∈ C;

0, if x ∈ C,

and proxγhx =




projCx+
proxγφdC(x)

dC(x)
(x− projCx), if x /∈ C;

x, if x ∈ C.

Example II.3 (abstract smooth Vapnik loss function)
Let ε ∈ ]0,+∞[, let β ∈ ]0,+∞[, let φ : R → R be

even, convex, and differentiable with a β-Lipschitzian

derivative, let ϑ : ξ 7→ max(| · | − ε, 0) be the standard
Vapnik loss function, and set h = φ ◦ ϑ ◦ ‖ · ‖. Let

γ ∈ ]0,+∞[ and x ∈ H. Then h : H → R is convex and
differentiable with a β-Lipschitzian gradient,

∇h(x) =





φ′
(
‖x‖ − ε

)

‖x‖
x, if ‖x‖ > ε;

0, if ‖x‖ 6 ε,

and

proxγhx =





ε+ proxγφ(‖x‖ − ε)

‖x‖
x, if ‖x‖ > ε;

x, if ‖x‖ 6 ε.

Example II.4 (abstract Huber function) Let C be a
nonempty closed convex subset of H, let ρ ∈ ]0,+∞[,
and set

h : H → R : x 7→





ρdC(x)− ρ2/2, if dC(x) > ρ;

dC(x)
2/2, if dC(x) 6 ρ.

(4)

Let γ ∈ ]0,+∞[ and x ∈ H. Then h : H → R is convex

and differentiable with a nonexpansive gradient,

∇h(x) =





ρ

dC(x)

(
x− projCx

)
, if dC(x) > ρ;

x− projCx, if dC(x) 6 ρ,
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and proxγhx =





x+
γρ

dC(x)
(projCx− x), if dC(x) > (γ + 1)ρ;

1

γ + 1

(
x+ γprojCx

)
, if dC(x) 6 (γ + 1)ρ.

The following extension of Example II.2 involves a

composition with a linear operator.

Example II.5 Let M ∈ B (H,G) be such that MM∗ =
θ Id for some θ ∈ ]0,+∞[. Let D be a nonempty closed

convex subset of G, let µ ∈ ]0,+∞[, let φ : R → R

be even, convex, and differentiable with a µ-Lipschitzian

derivative, and set h = φ ◦ dD ◦ M and β = µ‖M‖2.
Let γ ∈ ]0,+∞[ and x ∈ H. Then h : H → R is convex

and differentiable with a β-Lipschitzian gradient, and

proxγhx =





x+
θ−1

(
dD(Mx)− proxγθφdD(Mx)

)

dD(Mx)

×M∗
(
projD(Mx)−Mx

)
, if Mx /∈ D;

x, if Mx ∈ D.

The condition MM∗ = θ Id used in Example II.5
arises in particular in problems involving tight frame

representations [8]. When it is not satisfied, one can
still deal with smooth functions of the type φ ◦ dC ◦ M
in modern structured proximal splitting techniques by

activating proxφ◦dC
and M separately.

Example II.6 Suppose that H is separable and that ∅ 6=
K ⊂ N, and let (ek)k∈K be an orthonormal basis of H. For
every k ∈ K, let βk ∈ ]0,+∞[ and let φk : R → R be a

differentiable convex function such that φk > φk(0) = 0
and φ′

k is βk-Lipschitzian. Suppose that β = supk∈K
βk <

+∞ and define (∀x ∈ H) h(x) =
∑

k∈K
φk(〈x | ek〉). Let

γ ∈ ]0,+∞[. Then h : H → R is convex and differentiable
with a β-Lipschitzian gradient,

(∀x ∈ H) ∇h(x) =
∑

k∈K

φ′
k(〈x | ek〉)ek,

and (∀x ∈ H) proxγhx =
∑

k∈K

(
proxγφk

〈x | ek〉
)
ek.

III. FORWARD-BACKWARD VERSUS DOUGLAS-RACHFORD

SPLITTING

We compare the numerical behavior of the forward-

backward algorithm (we choose the inertial implementa-
tion of [6]) with that of the Douglas-Rachford algorithm,

which is a fully proximal method.

Proposition III.1 (inertial forward-backward) Let β ∈
]0,+∞[ , let f ∈ Γ0(H), let h : H → R be convex and dif-
ferentiable with a β-Lipschitzian gradient, let γ ∈ ]0, 1/β],

let α ∈ ]2,+∞[, and suppose that Argmin(f + h) 6= ∅. Let

x0 = x−1 ∈ H and iterate for n = 0, 1, . . .


zn = xn +

n− 1

n+ α
(xn − xn−1)

yn = zn − γ∇h(zn)
xn+1 = proxγfyn.

(5)

Then there exists x ∈ Argmin(f + h) such that xn → x.

Proposition III.2 (Douglas-Rachford) [3, Cor. 28.3] Let

f and g be functions in Γ0(H) such that Argmin(f+g) 6= ∅

and the relative interiors of dom f and dom g intersect, let

γ ∈ ]0,+∞[, and let (λn)n∈N be sequence in [0, 2] such

that
∑

n∈N
λn(2 − λn) = +∞. Let y0 ∈ H and iterate for

n = 0, 1, . . .


zn = proxγgyn
xn = proxγf (2zn − yn)
yn+1 = yn + λn(xn − zn).

(6)

Then there exists x ∈ Argmin(f + g) such that xn → x.

We consider a digital image restoration problem. All

images have 128×128 pixels and therefore the underlying

Euclidean space is H = R
N (N = 1282) equipped with

the standard Euclidean norm ‖ · ‖2. We have run many

instances of each problem under various configurations,

and the limited numerical results we present here are
representative of the behavior one can expect. Note that

the results are given in terms of iteration numbers as
the algorithms compared in each experiment have similar

execution time per iteration.

The original image is x and the degraded image is
y = Hx + w, where H models a convolution with a

uniform rectangular kernel of size 15 × 5 and w is a
Gaussian white noise realization (see Fig. 2(a)–(b)). The

blurred image-to-noise-ratio is 15.5 dB. Since each pixel

value is known to be in [0, 255], we use the hard constraint

set C = [0, 255]
N

. As is customary, the natural sparsity of

x is promoted using the function ‖ · ‖1. Altogether, the
problem is

min
x∈C

‖x‖1 +
1

2
‖Hx− y‖22. (7)

Now set f = ‖ · ‖1 + ιC and h = ‖H · −y‖22/2, and let

γ ∈ ]0,+∞[. Then f ∈ Γ0(H) has an explicit proximity
operator proxγf = projC ◦ softγ , where softγ is the soft

thresholder on [−γ, γ]. Furthermore, h is smooth and its

proximity operator is provided by Example II.1. We solve
(7) both with (5) and (6). The algorithms have similar

iteration complexity. The algorithms are initialized at zero
and implemented with parameters for which they perform

better, that is, γ = 1/β and α = 3 for (5), and γ = 30 and

λn ≡ 1.9 for (6). The results of Figs. 2–3 show a superior
performance for the fully proximal algorithm (6).
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. (a) Original image x. (b) Degraded image y. (c) Image restored
by (5) after 50 iterations. (d) Image restored by (6) after 50 iterations.
(e) Image restored by (5). (f) Image restored by (6).
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−60
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−40
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−10
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Inertial forward-backward
Douglas-Rachford

Fig. 3. Normalized distance in dB to the asymptotic image produced by
each algorithm versus execution time in seconds.

IV. FORWARD-BACKWARD-FORWARD SPLITTING

Problem IV.1 Let I and J be disjoint finite subsets of

N such that K = I ∪ J 6= ∅ and let f ∈ Γ0(H). For

every k ∈ K, suppose that 0 6= Lk ∈ B (H,Gk) and let
rk ∈ Gk. For every i ∈ I, let gi ∈ Γ0(Gi) and, for every

j ∈ J , let µj ∈ ]0,+∞[ and let hj : Gj → R be convex

and differentiable with a µj-Lipschitzian gradient. Assume
that

0 ∈ range

(
∂f +

∑

i∈I

L∗
i ∂giLi +

∑

j∈J

L∗
j∇hjLj

)
.

The goal is to solve

min
x∈H

f(x) +
∑

i∈I

gi(Lix) +
∑

j∈J

hj(Ljx). (8)

Problem IV.1 can be solved by the following algorithm,

which is an implementation of the forward-backward-
forward algorithm in a primal-dual space [13] (we state

only the primal convergence result for brevity).

Proposition IV.2 [13] Consider the setting of Prob-
lem IV.1. Set β =

√∑
i∈I ‖Li‖2 +

∑
j∈J µj‖Lj‖

2, let ε ∈
]0, 1/(β + 1)[, let (γn)n∈N be a sequence in [ε, (1− ε)/β],
and let (∀i ∈ I) v∗i,0 ∈ Gi. Let x0 ∈ H and iterate

for n = 0, 1, . . .

y1,n = xn − γn

(∑

i∈I

L∗
i v

∗
i,n +

∑

j∈J

L∗
j

(
∇hj(Ljxn)

))

pn = proxγnf
y1,n

for every i ∈ I

y2,i,n = v∗i,n + γnLixn

p2,i,n = proxγng
∗

i

y2,i,n
q2,i,n = p2,i,n + γnLipn
v∗i,n+1 = v∗i,n − y2,i,n + q2,i,n

q1,n = pn − γn

(∑

i∈I

L∗
i p2,i,n +

∑

j∈J

L∗
j

(
∇hj(Ljpn)

))

xn+1 = xn − y1,n + q1,n.
(9)

Then there exists a solution x to (8) such that xn → x.

We consider the restoration of an N = 128× 128 image

x from observations (see Fig. 4(a)–(c)) y1 = H1x+w1 and
y2 = H2x+w2. Here H1 and H2 model convolution blurs

with kernels of size 3×11 and of 7×5, respectively, and w1

and w2 are Gaussian white noise realizations. The blurred
image-to-noise-ratios are 27.3 dB and 35.4 dB, respec-

tively. We use C = [0, 255]
N

as a hard constraint set. The
diffraction of x has been observed over some frequency

range R, possibly with measurement errors. This infor-

mation is associated with the soft constraint penalty dE ,
where (x̂ denotes the two-dimensional discrete Fourier

transform (DFT)) E =
{
x ∈ R

N
∣∣ (∀k ∈ R) x̂(k) = x̂(k)

}
,

with R contains the frequencies in {0, . . . , 15}2 as well
as those resulting from the symmetry properties of the

DFT. Finally, we use the total variation penalty to control
oscillations. This leads to the formulation

min
x∈C

1

2
dE(x)+

2

5
h(Dx)+

3

4
‖H1x−y1‖

2
2+

3

4
‖H2x−y2‖

2
2,

(10)
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(a) (b)

(c) (d)

Fig. 4. (a) Original image x. (b) Degraded image y1. (c) Degraded
image y2. (d) Restored image.

where D : RN → R
N × R

N : x 7→ (G1x,G2x), G1 and

G2 being horizontal and vertical discrete difference op-

erators, and where (∀(y1, y2) ∈ R
N × R

N ) h(y1, y2) =∑N

k=1
φ(‖(η1,k, η2,k)‖2), φ being the standard Huber func-

tion (i.e., H = R and C = {0} in (4)) with parameter

ρ = 2. We derive from (10) two versions of Problem IV.1.

Problem IV.3 In Problem IV.1, set f = ιC , I = {1}, g1 =
0.5dE, L1 = Id , J = {2, 3, 4}, h2 = 0.4h, L2 = D, h3 =
0.75‖ · −y1‖

2
2, L3 = H1, h4 = 0.75‖ · −y2‖

2
2, and L4 = H2.

Problem IV.4 (fully proximal) In Problem IV.1, set f =
ιC , I = {1, 2, 3, 4}, J = ∅, g1 = 0.5dE, L1 = Id , g2 = 0.4h,
L2 = D, g3 = 0.75‖H1 · −y1‖

2
2, L3 = Id , g4 = 0.75‖H2 ·

−y2‖
2
2, and L4 = Id .

We consider an implementation of (9) for each problem
such that the algorithms are initialized at zero and im-

plemented with the parameter (γn)n∈N for which they

seem to perform better: γn ≡ 0.99/β. The results shown
in Figs. 4 and 5 illustrate the better numerical behavior

of the fully proximal implementation.
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