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Abstract—Structured convex optimization problems in
image recovery typically involve a mix of smooth and
nonsmooth functions. The common practice is to activate
the smooth functions via their gradient and the nonsmooth
ones via their proximity operator. We show that, although
intuitively natural, this approach is not necessarily the most
efficient numerically and that, in particular, activating all
the functions proximally may be advantageous. To make
this viewpoint viable computationally, we derive a number
of new examples of proximity operators of smooth convex
functions arising in applications.

Index Terms—convex optimization, image recovery, nons-
mooth optimization, proximal splitting algorithm, proximity
operator

I. INTRODUCTION

Splitting in convex optimization methods for image re-
covery can be traced back to the influential work of Youla
[18], [19]. The convex feasibility framework he proposed
consists in formulating the image recovery problem as
that of finding an image in a Euclidean space # satisfying
m constraints derived from a priori knowledge and the
observed data. The constraints are represented by closed
convex sets (C;)1<i<m and the problem is therefore to

find z € () C:. ¢!

i=1

Now, for every i € {1,...,m}, let proj., be the projection
operator onto C;, which maps each point z € H to its
unique closest point in C;. The methodology of projection
methods is to split the problem of finding a point in
M-, C; into a sequence of simpler problems involving
the sets (C;)i<i<m individually [10]. For instance, the
POCS (Projection Onto Convex Sets) algorithm advocated
in [19] is governed by the updating rule

(2)

Projection operators are of limited use beyond feasibility
and best approximation problems. Modern image recov-
ery convex variational formulations have a complex struc-
ture that requires sophisticated analysis tools and solution

(Vn € N) 2,11 = (projg, o --- o projo ),.
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methods. To solve such formulations while preserving the
spirit of splitting methods in feasibility problems, one
approach is to use an extended notion of a projection
operator. In [14] it was suggested to use Moreau’s notion
of a proximity operator [15] for this purpose. Recall that
the proximity operator of a proper lower semicontinuous
convex function ¢: H — |—o0, +0o0] is

prox,: H — H: z ~— argmin (np(l/) + %Hx - y||2>, 3)
yeEH

and that it reduces to proj,, when ¢ = .¢,, the indicator
function of C;. We refer the reader to [3, Chapter 24] for a
detailed account of the properties of proximity operators
with various examples, to [12] for a tutorial on proximal
methods in signal processing, and to [2], [7], [9], [16],
[17] for specific applications to image recovery.

A prevalent viewpoint in modern proximal splitting
algorithms is that to activate each function ¢ appearing in
the model there are two options: if ¢ is smooth, i.e., real-
valued and differentiable everywhere with a Lipschitzian
gradient, then use Vy; otherwise, use ¢ proximally, i.e.,
via its proximity operator (3).

We propose a more nuanced viewpoint and submit
that, when ¢ is smooth, it may be computationally ad-
vantageous to activate it proximally when its proximity
operator can be implemented. To motivate this viewpoint,
let us first observe that a tight Lipschitz constant for the
gradient of ¢ may not be easy to estimate (see, e.g.,
[11, [4], [5]), which limits the range of the proximal
parameters and may have a detrimental incidence on
the speed of convergence. Our second observation is that
proximal steps behave numerically quite differently from
gradient steps, which may have a positive impact on the
asymptotic behavior of the algorithm (see Fig. 1).

The paper is organized as follows. Section II provides
explicit expressions for proximity operators of smooth
convex functions commonly encountered in image re-
covery. Image recovery applications are presented in
Sections III and IV. Numerical comparisons between
the forward-backward method and the Douglas-Rachford
method are presented in Section III. Next, numerical com-
parisons between splitting algorithms in which smooth
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Fig. 1. Comparison of the gradient method z,+1 = xn — YVe(Tn)
(in green) and of the proximal point algorithm z,,1; = PIOX,,Tn (in
red) in H = R? for ¢: (&1,&2) — 962 — 14€1 & + 9€2. The gradient
method is implemented with v = 1.8/ as this choice gave rise to the
fastest convergence. On the other hand, the proximal point algorithm
is implemented with the default choice v = 1 (larger values gave even
faster convergence). The two algorithms behave quite differently, both
in terms of directions of movement and of trajectories. At iteration n,
call d, = V(zn)/||Ve(zn )| the normalized gradient at x,,. Consider
the action of the gradient, say at iteration n = 2. The next iterate x3
is obtained by moving from z2 in the direction opposite to the gradient
at x2. By contrast, consider the action of the proximal point algorithm,
say at iteration n = 0. The next iterate z; satisfies the implicit equation
zo — x1 = 7V(x1), which means that z; is obtained by moving from
z¢ in the direction opposite to the gradient at z;. Finally, we include the
orbit (in blue) of the inertial version of the gradient method obtained by
setting f = 0 and h = ¢ in algorithm (5), and choosing the parameters
a =2.01 and v = 1/, which gave the fastest convergence.

functions are activated via gradient steps and those in
which all functions are activated via their proximity op-
erators are conducted. More extensive experiments on
various problems with additional algorithms can be found
in [11]. While no universal conclusion may be drawn from
these experiments, they suggest that fully proximal split-
ting algorithms deserve to be given serious consideration
in applications.

Notation. The notation follows that of [3]. Throughout,
H, G, and Gj are real Euclidean spaces and B (H,G) is
the space of linear operators from A to G.

II. PROXIMITY OPERATORS OF SMOOTH CONVEX
FUNCTIONS

We show that a broad range of smooth convex functions
encountered in signal recovery actually have an explicit
proximity operator. The proof of the following results will
be found in [11].

Example II.1 Let I be a nonempty finite set. For every i €
I, let G; be a real Hilbert space, let V; be a closed vector
subspace of G;, let r; € G;, let L, € B(H,G;), and let o; €
10, +o0l. Set h: H — R: z +— (1/2) Y, uidy, (Liw — 1y)
and Q = (Id +vY_,c; i L;proj, . L;) . Let v € ]0, +00],
set 8= 3,; @il Ls]|% and let # € H. Then h: H — R is

convex and differentiable with a §-Lipschitzian gradient,
Vh(z) = Y ,c;ailiprojy. (Liz — r;), and prox ,z =
QT +7D er O‘Z'L;‘ijviL i)

In many digital image recovery applications, the opera-
tors (L;);es are representable by block-circulant matrices
and the computation of ) in Example II.1 is therefore
straightforward. If not, note that @ is computable effi-
ciently as the inverse of a positive definite symmetric
matrix; by contrast § is much more expensive to com-
pute. The next construction, which involves the distance
function d¢ to a convex set C, captures a broad range of
functions of interest.

Example II.2 Let C be a nonempty closed convex subset
of H, let 8 € ]0,+c], let ¢: R — R be even, convex,
and differentiable with a 8-Lipschitzian derivative, and set
h=¢odc. Lety €]0,+o0[ and z € H. Then h: H — R is
convex and differentiable with a §-Lipschitzian gradient,

/
B
0, if zeC,
and prox. ,z =
projoz + %(z —projoz), if = ¢ C;
x, if zeC.

Example II.3 (abstract smooth Vapnik loss function)
Let ¢ € ]0,4+00[, let 8 € ]0,+00], let ¢: R — R be
even, convex, and differentiable with a S-Lipschitzian
derivative, let ¥: & — max(| - | — €,0) be the standard
Vapnik loss function, and set h = ¢ o ¥ o | - ||. Let
v € ]0,+00] and x € H. Then h: H — R is convex and
differentiable with a 3-Lipschitzian gradient,

¢ (||| — ) .
— gz, if ||z]| > €
Vh)={ e Il
0, if ||z|| <e,
and
£ -+ prox Tl — €
ool =)
prox. v — El

x, if ||z|| <e.

Example I1.4 (abstract Huber function) Let C be a
nonempty closed convex subset of H, let p € ]0,+oo],
and set

pdc(z) — p?/2, if do(z) > p;

h:H—=R:z— (4)

dc(@)?/2,
Let v € ]0,+oco[ and = € H. Then h: H — R is convex
and differentiable with a nonexpansive gradient,
0
do(x)
T — Proj,x,

if do(z) <p.

(z — projea), if do(x) > p;

Vh(z) =
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and prox. ,z =

v+ L (projoa —x), if de(x) > (v+ 1)p;

de(z)
1
v+1

(z + yprojox), if do(x) < (v+1)p.
The following extension of Example II.2 involves a
composition with a linear operator.

Example II.5 Let M € B(#,G) be such that MM* =
01d for some 0 € ]0,+oo[. Let D be a nonempty closed
convex subset of G, let 1 € ]0,4o00[, let p: R — R
be even, convex, and differentiable with a pu-Lipschitzian
derivative, and set h = ¢ odp o M and 3 = u|/M|>.
Let v € ]0,+oco[ and = € H. Then h: H — R is convex
and differentiable with a g-Lipschitzian gradient, and
Prox_,z =

0~ (dp(Mz) — prox.4,dp(M))
dD(M,T)
x M*(proj,(Mz) — Mz), if Mz ¢ D;
z, if Mx e D.

T+

The condition MM* = 6Id used in Example II.5
arises in particular in problems involving tight frame
representations [8]. When it is not satisfied, one can
still deal with smooth functions of the type ¢ o dg o M
in modern structured proximal splitting techniques by
activating prox.,, and M separately.

Example I1.6 Suppose that # is separable and that & #
K C N, and let (ex)rex be an orthonormal basis of . For
every k € K, let 8; € ]0,+oc[ and let ¢: R — R be a
differentiable convex function such that ¢, > ¢, (0) =0
and ¢ is fi-Lipschitzian. Suppose that 3 = sup,cx S <
+oo and define (Vo € H) h(z) = > cx or({(z | ex)). Let
v €]0,40c[. Then h: H — R is convex and differentiable
with a §-Lipschitzian gradient,

(Vo € H) Vh(@) =) ¢z |er)er,

keK
and (Va € H) prox,z = Y cx (Prox. 4, (x| ex))er.

III. FORWARD-BACKWARD VERSUS DOUGLAS-RACHFORD
SPLITTING

We compare the numerical behavior of the forward-
backward algorithm (we choose the inertial implementa-
tion of [6]) with that of the Douglas-Rachford algorithm,
which is a fully proximal method.

Proposition III.1 (inertial forward-backward) Let 5 €
10, +oc], let f € To(H), let h: H — R be convex and dif-
ferentiable with a B-Lipschitzian gradient, let v € ]0,1/1],

let a € ]2, +o0[, and suppose that Argmin(f + h) # @. Let
xo = x_1 € H and iterate for n =0,1,...

n—1

Zn = Tn +

Yn = 2n — VVh(Zn) )

Tp+1 = PrOX, 1Yn.

Then there exists © € Argmin(f + h) such that x,, — x.

Proposition II1.2 (Douglas-Rachford) [3, Cor. 28.3] Let
f and g be functions in T'o(H) such that Argmin(f+g) # @
and the relative interiors of dom f and dom g intersect, let
v € ]0,+0c], and let (A,)nen be sequence in [0,2] such
that ) xAn(2 — Ay) = +o00. Let yo € H and iterate for
n=20,1,...

Zn = prox'ygyn
Ty, = Prox, (22, — Yn)
Yn+1 = Yn + An (In - Zn)

(6)

Then there exists x € Argmin(f + g) such that =, — z.

We consider a digital image restoration problem. All
images have 128 x 128 pixels and therefore the underlying
Euclidean space is H = RY (IV = 1282) equipped with
the standard Euclidean norm || - ||2. We have run many
instances of each problem under various configurations,
and the limited numerical results we present here are
representative of the behavior one can expect. Note that
the results are given in terms of iteration numbers as
the algorithms compared in each experiment have similar
execution time per iteration.

The original image is 7 and the degraded image is
y = HT + w, where H models a convolution with a
uniform rectangular kernel of size 15 x 5 and w is a
Gaussian white noise realization (see Fig. 2(a)-(b)). The
blurred image-to-noise-ratio is 15.5 dB. Since each pixel
value is known to be in [0, 255], we use the hard constraint
set C' = [0,255]". As is customary, the natural sparsity of

T is promoted using the function || - ||;. Altogether, the
problem is
1
i —|Hz —ylj3.
min ||zl + S| Hz ~yll2 @)
Now set f = || - |1 + tc and h = ||H - —y|3/2, and let

v € ]0,+oc0[. Then f € I'o(H) has an explicit proximity
operator prox. ; = projc o soft., , where soft, is the soft
thresholder on [—+,~]. Furthermore, h is smooth and its
proximity operator is provided by Example II.1. We solve
(7) both with (5) and (6). The algorithms have similar
iteration complexity. The algorithms are initialized at zero
and implemented with parameters for which they perform
better, that is, v = 1/5 and «a = 3 for (5), and v = 30 and
An = 1.9 for (6). The results of Figs. 2-3 show a superior
performance for the fully proximal algorithm (6).
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Fig. 2. (a) Original image Z. (b) Degraded image y. (c) Image restored
by (5) after 50 iterations. (d) Image restored by (6) after 50 iterations.
(e) Image restored by (5). (f) Image restored by (6).
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Fig. 3. Normalized distance in dB to the asymptotic image produced by
each algorithm versus execution time in seconds.

IV. FORWARD-BACKWARD-FORWARD SPLITTING

Problem IV.1 Let [ and J be disjoint finite subsets of
N such that K = T UJ # @ and let f € I'y(#H). For
every k € K, suppose that 0 # Ly € B(H,Gx) and let
ri € Gi. For every i € I, let g; € T'o(G;) and, for every

j € J,let uj € 10,400 and let h;: G; — R be convex
and differentiable with a p;-Lipschitzian gradient. Assume
that

0 € range (8f + Z L;0g;L; + Z L;thLj)-
i€l jeJ

The goal is to solve

min f(z)+ Y gi(Lix) + Y hy(Ljz).

zEH - -
i€l JjeJ

©))

Problem IV.1 can be solved by the following algorithm,
which is an implementation of the forward-backward-
forward algorithm in a primal-dual space [13] (we state
only the primal convergence result for brevity).

Proposition IV.2 [13] Consider the setting of Prob-
lem IV.1. Set 8 = \/> i, 1Ll + 2250 15l L% let € €
10,1/(8+ 1), let (yn)nen be a sequence in [e, (1 —¢)/8],
and let (Vi € I) vig €G;. Let zo € H and iterate

forn=0,1,...
iel jeJ
Pn = PTOX, (Y1 n
for everyie I
Y2,in =V p + WnLiTn
P2,i;n = PIOX, o«Y2,in
G2,in = P2,in + YnLipn
Vi1 = Vi — Y2in T 2,in
di,n = Pn — In ( Z L:pQ,i,n + Z L; (th (Ljpn)))
iel jed
Tn4+1 = Tn — Yin + di,n-

9

Then there exists a solution x to (8) such that x,, — x.

We consider the restoration of an N = 128 x 128 image
T from observations (see Fig. 4(a)-(c)) y1 = H1Z+w; and
yo = HoT + wo. Here Hy and Hy model convolution blurs
with kernels of size 3x 11 and of 7 x5, respectively, and w;
and w, are Gaussian white noise realizations. The blurred
image-to-noise-ratios are 27.3 dB and 35.4 dB, respec-
tively. We use C' = [0,255]" as a hard constraint set. The
diffraction of T has been observed over some frequency
range R, possibly with measurement errors. This infor-
mation is associated with the soft constraint penalty dg,
where (z denotes the two-dimensional discrete Fourier
transform (DFT)) E = {z € RN | (Vk € R) Z(k) = T(k)},
with R contains the frequencies in {0,...,15}? as well
as those resulting from the symmetry properties of the
DFT. Finally, we use the total variation penalty to control
oscillations. This leads to the formulation

.1 2 3 3
min 5 ds(@)+=h(Da)+5 | Hio—y |3+ | Har—ys 3
(10)
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(b)

(@] (d

Fig. 4. (a) Original image =. (b) Degraded image y;. (c) Degraded
image y2. (d) Restored image.

where D: RV — RY x RN: 2 — (Gi7,Gex), G; and
G being horizontal and vertical discrete difference op-
erators, and where (V(y1,y2) € RY x RY) h(y1,p2) =
ch\;l &(1(m &, m2,6)||2), ¢ being the standard Huber func-
tion (i.e., H = R and C = {0} in (4)) with parameter
p = 2. We derive from (10) two versions of Problem IV.1.

Problem IV.3 In Problem IV.1, set f = ¢, I = {1}, g1 =
0.5dg, Ly = Id, J = {2,3,4}, hy = 0.4h, Ly = D, hy =
075” . —y1||%, L3 = Hl, h4 = 075” . —y2||%, and L4 = H2.

Problem IV.4 (fully proximal) In Problem IV.1, set f =
e, I =11,2,3,4}, J = &, g1 = 0.5dg, L1 =1d, go = 0.4h,
L2 = D, gs = 075||H1 . —y1||%, L3 = Id, gqg = 075||H2
—y2||§, and L4 =1d.

We consider an implementation of (9) for each problem
such that the algorithms are initialized at zero and im-
plemented with the parameter (v,),en for which they
seem to perform better: v, = 0.99/5. The results shown
in Figs. 4 and 5 illustrate the better numerical behavior
of the fully proximal implementation.
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