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Abstract— As an increasing amount of data is gathered
nowadays and stored in databases, the question arises of how
to protect the privacy of individual records in a database even
while providing accurate answers to queries on the database.
Differential Privacy (DP) has gained acceptance as a framework
to quantify vulnerability of algorithms to privacy breaches.
We consider the problem of how to sanitize an entire database
via a DP mechanism, on which unlimited further querying is
performed. While protecting privacy, it is important that the
sanitized database still provide accurate responses to queries. The
central contribution of this work is to characterize the amount
of information preserved in an optimal DP database sanitizing
mechanism (DSM). We precisely characterize the utility-privacy
trade-off of mechanisms that sanitize databases in the asymptotic
regime of large databases. We study this in an information-
theoretic framework by modeling a generic distribution on the
data, and a measure of fidelity between the histograms of
the original and sanitized databases. We consider the popular
L1−distortion metric, i.e., the total variation norm that leads to
the formulation as a linear program (LP). This optimization prob-
lem is prohibitive in complexity with the number of constraints
growing exponentially in the parameters of the problem. Our
focus on the asymptotic regime enables us characterize precisely,
the limit of the sequence of solutions to this optimization problem.
Leveraging tools from discrete geometry, analytic combinatorics,
and duality theorems of optimization, we fully characterize this
limit in terms of a power series whose coefficients are the
number of integer points on a multidimensional convex cross-
polytope studied by Ehrhart in 1967. Employing Ehrhart theory,
we determine a simple closed form computable expression for
the asymptotic growth of the optimal privacy-fidelity trade-off to
infinite precision. At the heart of the findings is a deep connection
between the minimum expected distortion and a fundamental
construct in Ehrhart theory - Ehrhart series of an integral convex
polytope.

Index Terms— Differential privacy, fidelity, distortion, infor-
mation theory, linear programming optimization, ehrhart theory,
discrete geometry, dual LP, analytic combinatorics.
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I. INTRODUCTION : MOTIVATION, CONTRIBUTION

AND SIGNIFICANCE

NOWADAYS, fine grained and high-dimensional
data containing information about their preferences/

characteristics is being increasingly gathered from subjects.
The data is stored in modern databases (DBs) that permit
unrestrained and continuous querying. It is then mined
for social, scientific, commercial and economic benefits.
Dependencies discovered via such querying, among attributes
previously not known to be related, can lead to significant
scientific breakthroughs and/or commercial benefits. Due
to their value, DBs are therefore being traded among
corporations and governmental agencies to facilitate informed
policy making. However, such trading of DBs containing
private information, amongst untrusted agencies, and their
unrestrained querying, results in catastrophic loss of subject
privacy [1], [2].

To protect privacy, data needs to be somehow obfuscated,
but the utility of the database for statistical inference degrades
with increasing obfuscation. It has therefore become imper-
ative to determine what to store in a DB so that it simul-
taneously 1) permits unrestrained querying and 2) provides
acceptably accurate responses, even while 3) providing prov-
able guarantees against privacy breaches. What is the precise
utility-privacy trade-off, and what should be the mechanism
by which the data is obfuscated? A precise information-
theoretic study of the utility-privacy trade-off is the subject
of this paper. The need to quantify vulnerability of a DB
sanitizing mechanism (DSM) to privacy violation has led to
the notion of differential privacy (DP) [3], [4]. DP models
a DSM, and more generally a query-response mechanism,
as a randomized algorithm and quantifies the vulnerability
of the latter via its sensitivity to individual records. Let r
denote a DB, and N the set of all ordered pairs (r, r̂) of
DBs that differ in a single record. Consider a probabilistic
mechanism, that when asked a certain query about a database
r, randomly outputs a response y with a probability W(y|r).
The random response can be regarded as adding noise to
the answer of the query, though more randomization than
mere addition is allowed. Such a mechanism M is θ−DP for
θ ∈ [0, 1], if

θ ≤ max
(r,r̂)∈N

max
y∈Y

WM (y|r)
WM (y|r̂) ≤ 1

θ
.

Larger values of θ correspond to less vulnerable mecha-
nisms, but this increased protection is achieved at the cost
of reduced accuracy of the query response. The key properties
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Fig. 1. Differentially Private Database Sanitizing Mechanism. The original
database is sanitized and then destroyed. All subsequent querying, unlimited
in any way, is subsequently performed only on the sanitized database.

of DP - composition [5, Section 3.5], [6] and post-processing
[5, Proposition 2.1] - have motivated its adoption as a measure
of privacy. In particular, the “post-processing” property states
that querying a DB sanitized via θ−DP DSM is, irrespective
of the query and the querying mechanism, at least as robust as
a θ−DP mechanism. In other words, sanitizing a DB via a DP
mechanism provides an impermeable firewall against privacy
breaches.

This architecture (Fig. 1) has been referred to in the litera-
ture as non-interactive mechanisms. We reduce the case of per-
sistent querying to the non-interactive case by considering how
the entire database can be sanitized and exported. We address
the following central questions that govern the same. Firstly,
how does one quantify the amount of information preserved
in a DB sanitizing mechanism (DSM)? Any such metric must
be representative of the accuracy of responses provided to
canonical DB queries. A higher accuracy of responses must
be reflected by a larger amount of information preserved. Sec-
ondly, among all DSMs subject to a DP constraint θ ∈ (0, 1),
henceforth referred to as a θ−DP DSM, which of them is
optimal, and how much information is preserved?

Taking a cue from rate-distortion theory, we quantify the
information preserved between the information source (origi-
nal DB) and its representation (sanitized DBs) via a measure
of fidelity. Most statistical, machine learning queries aim to
glean at correlations across attributes. The quintessential object
of interest is the histogram of the DB, referred to as type [7,
Chap. 2], [8], [9]. We therefore characterize fidelity between
the original and sanitized DBs via a distortion between their
corresponding histograms. Measures of divergence between
probability distributions such as total variation (TV), Kullbach-
Leibler, Csiszár f−divergences [10], [11] serve as good
choices for measure of distortion. Here we focus on the TV
distance. Simple and yet popular, this choice provides us with
an elegant case to present fundamental connections between
DP and discrete geometry, combinatorics.

Having quantified privacy via the DP parameter θ ∈ [0, 1]
and fidelity via the TV metric, it is now relevant to ask the
following question. In what size of databases is the study of
the privacy-fidelity trade-off informative? Since the accuracy
of inference and/or learning algorithms improve with the
size of the database, statisticians and curators continually
aim to gather information from as large a subject pool as
possible. It is therefore natural to seek how much information

Fig. 2. Counts of the number of integer points in the t−th dilation of a
polytope. The dots represent integer points. There are 6, 12 and 24 integer
points in the 1st, 2nd and 4th dilation of the innermost convex polytope.

can be preserved in the limit as the database size grows.
Secondly, common intuition suggests that protecting privacy
of individuals in a small DB requires greater distortion of the
latter. Therefore, the study of the privacy-fidelity trade-off in
the asymptotic regime of large databases throws light on what
is the minimal distortion that a database is to be subject to,
in order to satisfy certain privacy requirements. Thirdly, as we
shall see, this choice on the one hand enables us bring to light
interesting connections, while on other, permits tractability of
the optimum we seek.

We therefore focus on characterizing precisely the minimum
expected distortion between histograms of the original and
sanitized DBs, of an optimal θ−DP DSM, in the asymptotic
regime of large DBs. Section II contains a mathematical for-
mulation of this problem. The latter reduces to a prohibitively
complex optimization problem (Remark 2) with an exponential
number of constraints. Seeking to identify the structure of the
optimal mechanism, we consider the L1 measure, in which
case the objective function is linear, thereby resulting in a
linear program (LP). We are thus confronted with the task
of identifying the limit of solutions to a sequence of LPs,
each of which is subject to exponentially many constraints
(Remark 2). One of our main contributions is a precise
characterization of this limit, and hence the minimum expected
L1−distortion of a θ−DP DSM, in the limit of large DBs.
At this point, we also highlight that the L1−distortion on
the space of histograms, when normalized, corresponds to
the TV divergence measure - a popular metric for probability
distributions.

Our solution is built on the fundamental connections we
discover between DP and Ehrhart theory [12]. Ehrhart theory
concerns integer-point enumeration of polytopes. The counts
of the number of integer points in the t−th dilation of a poly-
tope (Fig. 2) - the Ehrhart polynomial of the polytope - and
the associated generating function - the Ehrhart series of the
polytope - are fundamental constructs in Ehrhart theory. As we
describe below, they will play a central role in characterizing
the limit we seek.

Our crucial first step of visualizing the LP through a graph
paves the way to developing these connections with discrete
geometry. In particular, we relate the objective and constraints
of the LP with the distance distribution of vertices in this
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graph. This relationship enables us to glean the structure of
an optimal solution to our LP. Identifying symmetry prop-
erties of the graph, we make the key observation that its
distance distribution can be obtained via the Ehrhart poly-
nomial of a suitably defined convex polytope. Leveraging
these insights, we identify a sequence of truncated geomet-
ric θ−DP mechanisms, which are indeed feasible solutions
to the sequence of LPs. We characterize the limit of the
corresponding sequence of expected L1−fidelities through a
simple functional of the Ehrhart series of the above mentioned
convex polytope, a significant finding. We then employ tools
from analytic combinatorics and provide a simple computable
closed form expression to the above functional, thereby further
characterizing explicitly the limit of the sequence of expected
L1−distortions.

The above mentioned expression is a limit of the objective
values corresponding to a sequence of feasible solutions,
and hence serves as an upper bound on the limit we seek.
We leverage weak duality of LP to identify a lower bound.
Note that every feasible solution to the dual of the above
LP evaluates to a lower bound on the minimum expected
distortion. We therefore consider the sequence of dual LPs
and identify a sequence of feasible solutions for the same.
We prove that these feasible solutions evaluate to, in the
limit, the same functional as obtained in the upper bound.
This enables us to conclude that the Ehrhart series of the
above mentioned convex integral polytope yields the minimum
expected L1−distortion of a θ−DP DSM, thereby establishing
a connection between objects of fundamental interest in the
two disciplines/areas.

In addition to proving that the sequence of truncated geo-
metric mechanisms1 is optimal in the limit, the findings high-
light a useful and interesting property analogous to universal
optimality [15]. Given any distribution (pmf) on the set of
records, we prove that this truncated geometric mechanism
W

n(·|·) can be realized as a cascade of two mechanisms
U

n(·|·), Vn(·|·). See Figure 8. The first mechanism U
n(·|·)

is a pure θ−DP geometric mechanism that is invariant with
the distribution on the set of records. The second mechanism
V

n(·|·) is a truncation that is centered at the histogram corre-
sponding to the distribution. The invariance of U

n(·|·) lends
utility to this cascade mechanism. Specifically, a data gatherer
who is oblivious to the true distribution on the set of records
can sanitize the original DB through U

n(·|·) and generate an
intermediate DB that is guaranteed to protect privacy while
not compromising on utility. Indeed, any entity or enterprise
with an accurate knowledge of the underlying distribution can
post-process the intermediate database with the corresponding
mechanism V

n(·|·) to obtain a DB with least distortion.
In essence, this property permits distributed implementation of
an optimal mechanism. This leads us to the notion of universal
optimality [15]. Ghosh, Roughgarden and Sundararajan [15]
have studied the particular setting of a count query, i.e.,

1The geometric mechanism is a ‘discrete counterpart’ of the exponen-
tial/Laplacian mechanism. The latter mechanism and its variants [13], [14]
have been extensively studied in the DP literature and are proven to be optimal
in several scenarios [15].

a database whose records can take one among two possibil-
ities. They prove that the truncated geometric mechanism is
universally optimal for any size of the database for a fairly
general class of utility functions. Brenner and Nissim [16]
prove that such universal optimal mechanisms do not exist if
the records can take more than two possibilities. Our findings
bring to light a relaxed notion of universal optimality that
is useful, and which circumvents the impossibility results
proven in [16]. Specifically, we seek optimality only for the
family of multinomial distributions on the space of histograms.
As the reader will note, this is sufficiently general. Secondly,
we seek optimality in the limit of large databases. These
two relaxations of universal optimality, both in the spirit of
information theory, enable us prove positive existence results
and are useful in the light of [16].

While DP [5] has been a subject of intense research,
the problem of identifying optimal mechanisms and charac-
terizing the privacy-fidelity trade-off in the expected sense
has received much less attention. This, as we state in
Remarks 2 and 3, is due to the complexity of the resulting opti-
mization problem. Ghosh Roughgarden and Sundararajan [15]
focus attention on a single count query and prove universal
optimality of the geometric mechanism for a fairly general
class of utility measures. It may be however noted that
their finding only provides structural properties of an optimal
mechanism leaving the precise characterization of an opti-
mal mechanism and the maximum utility open. Our findings
answer this question in the asymptotic limit of large databases,
and moreover for a multi-dimensional count query. In our
work, we provide a solution to the original optimization
problem without resorting to relaxation or continuous exten-
sions, in spite of its hardness. This is, in spirit similar to the
work of Geng and Viswanath [14], [17], wherein staircase
mechanisms [13] are proven to be the optimal noise adding
mechanisms for a general class of convex utility functions,
albeit in the minimax setting. Specifically, [14] employs func-
tional analytic arguments to characterize the density function
of an optimal noise adding mechanism. We note that Kairouz,
Oh and Viswanath [18] also employ strong duality for deriving
lower bounds in the context of local DP.

Finally, we highlight certain additional aspects of our work.
By considering an arbitrary distribution for entries in the DB,
we enable a generic information theoretic study (Remark 1).
Secondly, in our general formulation, a standard geometric
mechanism is not optimal; in fact it is non-trivial to identify an
optimal one (Remark 8). However, by identifying an optimal
sequence of mechanisms we also design an efficient shaping
of the geometric mechanism that renders it both feasible and
optimal. Thirdly, we prove this sequence of mechanisms to
be asymptotically universally optimal [15], thereby potentially
supporting its adoption (Remark 9). We remark that the choice
of L1−fidelity ‘aligns well’ with the notion of neighborhood
databases enabling us to derive a sharp characterization of
the privacy-L1−fidelity trade-off. As we remark in the con-
clusion, it is interesting to study whether other choices for
fidelity permits a similar sharp characterization via Ehrhart
theory or otherwise.
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Fig. 3. The DB corresponding to Ex. 1.

II. PRELIMINARIES: NOTATION, PROBLEM STATEMENT

Notation will be introduced as and when necessary. A sum-
mary is provided in Table I in Appendix A.

Problem Formulation : Consider a DB with n subjects. Each
subject is identified with a record which stores his or her
preferences and/or characteristics. We let R = {a1, · · · , aK}
denote the set of possible records. K can be arbitrary, but will
remain fixed throughout our study. We let r : = (r1, · · · , rn) ∈
Rn denote a generic DB with n records.

Example 1. Consider the DB in Fig. 3 containing records
of n = 6 subjects. Each records contains 5 attributes -
zip-code, ethnicity, income, health and average-monthly-
expenditure. The database stores subject information with
respect to 5 attributes - zipcode, ethnicity, income, health
and average-monthly-expenditure. Let A1 = {47906, 47907,
77840, 77841},A2 = {asian, caucasian, hispanic},A3 =
{50000, 55000, · · · , 300000},A4 = {heart-ailment, no-heart-
ailment},A5 = {500, 600, · · · , 4000} denote the preferences
corresponding to the attributes. The set of records is R =
A1 × · · · × A5, and K = |R| = 4 · 3 · 51 · 2 · 36 = 44064.

The histogram of a DB plays a key role in our study.
For a DB r ∈ Rn and a record ak ∈ R, we let h(r)k =∑n

i=1 1{ri=ak} denote the number of subjects with record
ak, and h(r) : = (h(r)1, · · · ,h(r)K) denote the histogram
corresponding to DB r ∈ Rn. Let

Hn : = {(h1, · · · , hK) ∈ Z
K : hi ≥ 0,

∑K
k=1 hk = n} (1)

denote the collection of histograms. When K is set to a
particular value, we let Hn

K denote Hn.
We measure fidelity between a pair of histograms through

a distortion measure F : Hn × Hn → [0,∞). Typical dis-
tortion measures include L1, L2−norms, divergence between
probability distributions, such as Csiszár f−divergences [10],
Wasserstein distance etc. For histograms s, t ∈ Hn, F(s, t) is
a proxy for the useful information of s contained in t and vice
versa.

In order to protect privacy, we employ a DP database
sanitizing mechanism (DSM) to output a random sanitized DB.
A DP mechanism is a randomized algorithm and we introduce
the necessary notation. A mechanism (randomized algorithm)

M : A ⇒ B with set A of inputs and set B of outputs is a
map WM : A → P(B) where P(B) is the set of probability
distributions on B. When input a ∈ A, the mechanism M
produces the output b ∈ B with probability WM (b|a). Since
M : A ⇒ B is uniquely characterized by the corresponding
collection (WM (·|a) : a ∈ A)) of probability distributions,
we refer to it either as WM : A → P(B) or WM : A ⇒ B.

A pair r, r̂ ∈ Rn of DBs is neighboring if r and r̂ differ in
exactly one entry. Note that r, r̂ ∈ Rn are neighboring if and
only if |h(r) − h(r̂)|1 = 2. We also say a pair of histograms
h ∈ Hn and ĥ ∈ Hn is neighboring if |h − ĥ|1 = 2.

Definition 1. Consider the space Rn of DBs with n subjects.
A DSM, M : Rn ⇒ Rn is θ−DP (0 < θ < 1) if for every
pair of neighboring DBs r, r̂ and every DB s ∈ Rn, we have
θ WM (s|r) ≤ WM (s|r̂) ≤ θ−1

WM (s|r).
We formulate the problem of characterizing the minimum

expected distortion of a θ−DP DSM. Towards that end, we
model a distribution on the space of DBs. For a record ak ∈ R,
let p(ak) > 0 denote the probability that a subject’s record
is ak. The n records that make up the DB are independently
and identically distributed with pmf p : = (p(ak) : ak ∈ R).
The probability of the gathered DB being r = (r1, · · · , rn) is∏n

i=1 p(ri) where ri is the record of the i-th subject.

Remark 1. We do not assume any restriction on p, allowing
a generic information theoretic study, as we further elaborate
below by showing that the problem can be mapped into the
class of histograms. In particular, since we do not assume
pk factorizes across attribute fields, as for example a uniform
distribution would, the model permits arbitrary correlation
across attributes.

The expected distortion of a DSM (WM (·|r) : r ∈ Rn) is
defined as

Dn(WM , p,F): = EM {F(h(R),h(S))}

: =
∑

r∈Rn

∑
s∈Rn

n∏
i=1

p(ri)WM (s|r)F(h(r),h(s)).

We now provide a formulation of the problem: We seek to
characterize

D∗
K(θ, p,F) : = lim

n→∞Dn
∗ (θ, p,F), where

Dn
∗ (θ, p,F)

(a)
: = min

W(·|·)is a
θ−DP DSM

Dn(W, p,F). (2)

Dn∗ (θ, p,F) is the minimum expected distortion corresponding
to a DB with n records. Characterizing D∗

K(θ, p,F) precisely,
as well as a sequence of optimal mechanisms is the main goal
of the study.

III. MAIN RESULTS : PRECISE CHARACTERIZATION

OF D∗
K(θ, p, | · |1) AND ESSENTIAL

UNIVERSAL OPTIMALITY

First, we provide a simpler equivalent formulation of prob-
lem (2) with an exponentially smaller number of decision
variables. As we will note, even this simplified formulation
is quite involved.
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Equivalent formulation of Dn
∗ (θ, p,F) via sufficiency of

histogram sanitization: Viewing the DB through its his-
togram enables us to simplify (2)(a). We make two obser-
vations. (i) The distortion between the original and sanitized
DBs is a function only of their histograms, and (ii) the DP
constraints are related only through the histograms of the DBs.
These observations enable us to restrict attention to mecha-
nisms that identically randomize DBs with the same histogram.
For such a mechanism M , we have (WM (s|r) : s ∈ Rn) =
(WM (s|r̃) : s ∈ Rn) whenever h(r) = h(r̃). In Appendix B,
we prove that this restriction does not entail any loss in
optimality. The first observation enables us to go further. It lets
us conclude that the expected distortion of a mechanism does
not depend on how it distributes the probability among DBs
with the same histogram. Formally, the expected distortions of
two DSMs M, M̃ are identical if

∑
s∈Rn:h(s)=h WM (s|r) =∑

s∈Rn:h(s)=h WM̃ (s|r) for all h ∈ Hn and for all r ∈ Rn.
These enable us to shift our viewpoint from DB sanitization to
histogram sanitization. We define a θ−DP histogram sanitizing
mechanism (HSM) as follows:

Definition 2. A pair h, ĥ ∈ Hn of histograms is neighboring
if |h − ĥ|1 = 2. A histogram sanitizing mechanism (HSM)
M : Hn ⇒ Hn is θ−DP (0 < θ < 1) if for every pair
h, ĥ ∈ Hn of neighboring histograms and every histogram
g ∈ Hn, we have θ WM (g|h) ≤ WM (g|ĥ) ≤ θ−1

WM (g|h).

We now describe our problem (2) from the histogram
sanitization viewpoint. A random DB R ∈ Rn is chosen with
distribution as modeled earlier. Its histogram h(R) is input to a
HSM M : Hn ⇒ Hn. Let G ∈ Hn denote the random output
histogram. Any DB S ∈ Rn, whose histogram h(S) = G can
be considered as the sanitized DB. Our goal is to find a θ−DP
HSM M that minimizes

EM{F(h(R),h(S))} = EM{F(h(R), G)}
=
∑

h∈Hn

∑
g∈Hn

P (h(R) = h)WM (g|h)F(g, h).

We note that the distribution P (h(R) = h) of the ran-
dom histogram is given by P (R = r) =

∏n
i=1 p(ri) =∏K

k=1 p(ak)h(r)k . Henceforth, we let pk : = p(ak) and ph :
=
∏K

k=1 phk

k . With these, we have P (R = r) = ph(r). This
leads to

P (h(R) = h) =
∑

r∈Rn:h(r)=h

P (R = r)

=
∑

r∈Rn:h(r)=h

ph(r) =
(

n

h

)
ph, (3)

where (3) follows from the fact that the number of DBs
whose histogram is h ∈ Hn is the multinomial coefficient(
n
h

)
: =

(
n

h1···hK

)
. We note that the multinomial distribution

(3) with a generic distribution p on the set of records is indeed
the most generic distribution on the space of histograms.
Throughout, we make no assumption on p, resulting in a fairly
generic study.

Equation (3) lets us explicitly state our equivalent simplified
problem as follows. Given a privacy budget θ > 0, our goal is

to characterize D∗
K(θ, p,F) : = limn→∞ Dn

∗ (θ, p,F), where

Dn
∗ (θ, p,F) : = min

W(·|·)
Dn(W, p,F), with

Dn(W, p,F) : =
∑

h∈Hn

∑
g∈Hn

(
n

h

)
ph

W(g|h)F(h, g), subject to

W(g|h) ≥ 0 for every pair (g, h) ∈Hn×Hn,∑
g∈Hn

W(g|h)
(a)
= 1 for every h ∈ Hn,

W(g|h) − θ W(g|ĥ)
(b)

≥ 0 for every pair of histograms
(h, ĥ) ∈ Hn ×Hn for which
|h − ĥ|1 = 2 and every g ∈ Hn.

(4)

In going from (2) to (4), we have replaced the collection
(W(s|r) : h(s) = h) by a single decision variable W(h|h(r))
and set W(·|r) = W(·|r̃) whenever h(r) = h(r̃). Constraints
(4) and (2) are specified by |Hn|2 =

(
n+K−1

K−1

)2 ∼ (n +
1)2K and K2n decision variables, respectively. With K fixed,
the former is exponentially smaller. This simplification is not
a result of any assumption. Dn∗ (θ, p,F) defined in (4) and
(2)(a) are proven to be equal in Appendix B.

Remark 2. The optimization problem (4) has (n + 1)2K

decision variables. For every choice (h, ĥ) of neighboring
histograms and every g ∈ Hn, the LP imposes two types
of constraints. There are O(k2|Hn|2) = O(k2(n + 1)2(k−1))
constraints2 of the form (4)(b). For any practical values of K
and n, it is intractable to obtain a solution via computation.
In fact, we are unaware of a solution of this LP even for the
case K = 2. While [15] proves the optimal mechanism can
be achieved by a post-processing remapping of the geometric
mechanism, for any user preference an optimal mechanism
and the corresponding utility remain unknown.

Notwithstanding this difficulty, one can obtain a precise
characterization of D∗

K(θ, p,F) by leveraging rich tools from
discrete geometry and LP theory.

Statement of the Main Result : We restate our problem in the
context of the L1−distance measure. We aim to characterize
D∗

K(θ, p, | · |1) : = limn→∞ Dn∗ (θ, p, | · |1), where

Dn
∗ (θ, p, | · |1) : = min Dn(W, p, | · |1)

subject to the constraints in (4), where

Dn(W, p, | · |1) : =
∑

h∈Hn

∑
g∈Hn

(
n

h

)
ph

W(g|h)|h − g|1. (5)

Since we restrict attention to | · |1, we let Dn
∗ (θ, p) and

D∗
K(θ, p) denote Dn∗ (θ, p, | · |1) and D∗

K(θ, p, | · |1) in the
sequel. Theorem 1 is our main result and provides a simple
computable closed form expression for D∗

K(θ, p). In particular,
we provide three characterizations of D∗

K(θ, p). The first one
expresses D∗

K(θ, p) in terms of the Ehrhart series of a suit-
ably defined convex polytope, thereby establishing connection

2For every h ∈ Hn except those for which one or more of the coordinates
are 0, we have |{t̂ ∈ Hn : |h − t̂|1 = 2}| = k(k − 1). Also, |Hn| =�n+k−1

k−1

� ∼ (n + 1)k−1 [8, Lemma II.1], [7, Chap 2, Lemma1].
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between DP and Ehrhart theory. The second employs simple
combinatorial arguments to characterize the resulting power
series explicitly. The third exploits analytic combinatorial
techniques to express this power series in terms of a hyper-
geometric series. The latter encapsulates the entire information
from a power series and provides a computable expression.
The result also shows that the limiting minimum distortion is
not dependent on p.

Theorem 1. (a) The minimum expected L1−distortion of a
θ−DP HSM is given by

D∗
K(θ, p) =

2θ

EhrP(θ)
dEhrP(θ)

dθ
− 2θ

1 − θ
, where

EhrP(z) : = 1 +
∞∑

d=1

LP(d)zd (6)

is the Ehrhart series of the cross-polytope whose d−th dilation
is given by

Pd = {(x1, · · · , xK) ∈ R
K :

K∑
k=1

xk = 0,

K∑
k=1

|xk| ≤ 2d}, (7)

and LP(d) is the number of points in Pd with integer
co-ordinates. D∗

K(θ, p) does not depend on p and hence
does not depend on the multinomial distribution. (b) We
have

EhrP(θ) =
1 + GK(θ)

1 − θ
where

GK(θ)=
∞∑

d=1

{
K−1∑
r=1

(
K

r

)(
d + r − 1

r − 1

)(
d − 1

K − r − 1

)}
θd. (8)

(c)

D∗
K(θ, p) = 2θ

{
K − 1
1 − θ

+
S�

K−1(θ)
SK−1(θ)

}
, where

SK−1(θ) =
K−1∑
j=0

θj

[(
K − 1

j

)]2
(9)

with S�
K−1(θ) : = d

dθSK−1(θ). An optimal HSM is obtained
as a truncation of a geometric mechanism W

∗(g|h) = (1 −
θ)−1EhrP(θ)−1θ

|g−h|1
2 , where EhrP(θ) is defined in (8).

Below, we express D∗
K(θ, p) in terms of another important

construct in analysis - the Legendre polynomial. We note
that SK−1(θ) = (1 − θ)K−1LK−1(1+θ

1−θ ) [19, Pg. 86, Prob.
85], where Ln(x) : = 1

2nn!
dn

dxn (x2 − 1)n is the Legendre
polynomial of degree n defined in [19, Pg. 147, Prob. 219].
This leads to the following important characterization.

Corollary 1. The minimum expected L1−distortion of a
θ−DP HSM is given by

D∗
K(θ, p) = K

{
1 + θ

1 − θ
+

LK(y)
LK−1(y)

}
, where y =

1 + θ

1 − θ
.

(10)

In particular for K = 2, the limit D∗
2(θ, p) =

limn→∞ Dn
∗ (θ, p) = 4θ

1−θ2 .

Fig. 4. The solid line corresponds to plot of D∗
K(θ, p) for the specified

values of K . The dotted line corresponds to plot of 2θ(K−1)
1−θ

for the specified
values of K .

The proof is based on the identity SK−1(θ) = (1 − θ)K−1

LK−1(y) and the recurrence relation (1 − y2)L�
K−1(y) =

KyLK−1(y) − KLK(y). We provide the details in
Appendix C.

Remark 3. We emphasize that (9) and (10) provide an exact
computable closed form expression for D∗

K(θ, p). Owing to
the complexity of the resulting optimization problem, study
of the privacy-distortion trade-off for the expected distortion,
which is the common object of interest in information theory,
is very limited. While a lot more is known in the minimax
setting, most of these results are only up to an order. The
reader will note that the tools we employ in proving Thm. 1
are also applicable for the minimax setting. A similar analysis
can throw more light on the latter setting. In the interest of
brevity, we reserve this for future work.

Remark 4. One may recover problem formulations studied
in [15], [21], among others, by an appropriate choice of
the distortion measure F(·, ·) in (4). In particular Ghosh,
Roughgarden and Sundararajan [15] study the K = 2 case
for a fairly generic distortion measure, and prove structural
properties of an optimal mechanism. While these hold for
each n, they do not pin down an optimal mechanism, leaving
D∗

2(θ, p) unknown. On the one hand, [22] studies a min-max
problem setting. Secondly, their continuous extension results
in a larger constraint set, lending the lower bounds developed
therein invalid for the original discrete problem setting.

Remark 5. Refer to Fig. 5 for a plot of D∗
K(θ, p) as a function

of θ. It is of interest to study the contribution of the two
terms in (9) that make up D∗

K(θ, p). As depicted in Fig. 4,

the leading term in D∗
K(θ, p) is indeed 2θ(K−1)

1−θ .

Remark 6. It can be verified that

D∗
K(θ, p) ≈ 2θ

{
K − 1
1 − θ

+
2[1 + (K − 1)2θ]

(K − 1)2[2 + (K − 2)2θ]

}

in the low privacy regime, i.e., as θ → 0, and

D∗
K(θ, p) ≈ 2K−2

log( 1
θ )

in the high privacy regime, i.e., as θ → 1.

(11)

The latter can also be verified through Fig. 7. Fig. 6 illustrates
the sensitivity of the distortion to θ. The value of θ greatly
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Fig. 5. Plots of D∗
K(θ, p) as a function of θ for three values of K .

Fig. 6. Plot of D∗
75(θ, p).

Fig. 7. Plots of (i) D∗
K(θ, p) as a function of θ for K = 50, 75, 100 and

(ii) 2(K−1)

log( 1
θ
)

for K = 100, 75.

influences the outcome. Small value of θ leave the database
unperturbed, while values of θ > 0.8 dramatically distorts
the database. In fact, the notion of approximate DP [23] was
motivated by this observation. If we now focus on the values
of θ > 0.8, Fig. 7 illustrates the dependence on K . The dotted
lines in Fig. 7 also confirm (11). In DP parlance θ corresponds
to e−� and we therefore have D∗

K(θ, p) ≈ 2d
� , where d = K−1

is the dimensionality of the space of histogram. This maybe
contrasted with [22], wherein the minimax L2−distortion for
d−linear queries on the histogram is proven to scale as

O(min{ d
� ,

√
d log( n

d )

� }) in the high privacy regime, where n
denotes the dimensionality of the space of databases. As a
consequence of our discrete Bayesian formulation with focus
on L1−distortion of the histogram-releasing query, we note
that our findings are not directly comparable with other
works.

Fig. 8. W
n(·|·) realized as a cascade mechanism.

A striking aspect of (6) is the invariance of D∗
K(θ, p) with

p as noted above. Why is this true? For large n,
(
n
h

)
ph

approximates a pmf that is ‘relatively flat’ [24] on the set
of histograms within an L1−ball of radius O(

√
n) centered at

(np1, · · · , npK). This radius being sub-linear, for any p with
positive entries, the L1−ball that contains most of the mass
is eventually supported on the set of histograms. Since we are
concerned only in the eventual limit, the effect of p is only a
shift of the center of this L1−ball containing a ‘relatively flat’
pmf. This leads us to the following question. Can we design
a sequence W

n : Hn ⇒ Hn : n ∈ N of mechanisms that is in
the limit optimal, where each W

n can be realized as a cascade
of U

n : Hn ⇒ Y and V
n : Y ⇒ Hn, where U

n is θ−DP and
is invariant with p? As the informed reader will recognize, this
is related to the notion of universal optimality [15]. We define
the related notion of essential universal optimality.

Definition 3. A sequence W
n : Hn ⇒ Hn : n ∈ N of θ−DP

HSMs are essentially universally optimal (Ess-Univ-Opt) if
for each n ∈ N, W

n can be realized as a cascade U
n :

Hn → Hn
ext , V

n : Hn
ext → Hn, i.e. (see Figure 8),

W
n(g|h) =

∑
b∈Hn

ext
U

n(b|h)Vn(g|b) for every g, h ∈ Hn,
where Hn

ext is any (not necessarily finite) set, such that
(i) limn→∞ Dn(Wn, p) = D∗

K(θ, p) for every pmf p on a
set of K elements, and (ii) U

n : Hn → Hn
ext is θ−DP and

invariant with p.

Remark 7. Ess-Univ-Opt is a relaxed/weaker form of universal
optimality [15] in two respects. Firstly, we restrict the class
of pmfs on histograms to multinomial pmfs. Indeed, our defi-
nition of Dn

∗ (θ, p) in (5) is wrt
(
n
h

)
ph. Secondly, we only ask

for asymptotic optimality of the sequence of mechanisms. This
relaxed notion is of interest for the following reasons. Firstly,
we operate with large databases. For sufficiently large n the
distortion of an Ess-Univ-Opt sequence of mechanisms might
be sufficiently close to the true optimum for that n. Secondly,
as the reader will note, it suffices to consider multinomial pmfs
on Hn. In the light of non-existence of ‘strict’ universally
optimal mechanisms [16], it is worth pursuing this relaxed
notion.

As mentioned in [15], the existence of Ess-Univ-Opt is
noteworthy. The proof of our main result will bring to light a
sequence of Ess-Univ-Opt mechanisms.

Theorem 2. Ess-Univ-Opt mechanisms for histogram saniti-
zation wrt L1−distortion exist.

The proof of Thm. 2 follows from the proof of Thm. 1
wherein a sequence of truncated geometric mechanisms are

Authorized licensed use limited to: Texas A M University. Downloaded on June 20,2020 at 21:37:44 UTC from IEEE Xplore.  Restrictions apply. 



2556 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 4, APRIL 2020

Fig. 9. Privacy-constraint graph for K = 2 and general n. The vertices are
labeled by the corresponding histogram. Two vertices are connected by an
edge if their corresponding histograms are at an L1−distance 2.

Fig. 10. Privacy-constraint graph for k = 3, n = 5.

proven to be Ess-Univ-Opt. The following section details the
proof of Theorem 1.

IV. ANALYSIS AND PROOFS

The proof of Theorem 1 involves two parts - establishing
the upper bound and the lower bound. The lower bound is
via the weak duality theorem and is detailed in Section IV-B.
The upper bound leverages tools from Ehrhart theory and
is provided in Section IV-A. Before we provide a proof of
the upper bound, we introduce the necessary constructs from
Ehrhart theory and describe how and why they are related
to D∗

K(θ, p) and the LP (5) studied here. The following
description serves as a road map of the proof.

D∗
K(θ, p) is the limit of solutions to a sequence of LPs (5).

These LPs are involved. We begin with the privacy-constraint
(PC) graph [16] which greatly aids in visualization and nat-
urally leads us into Ehrhart theory. Consider a graph G =
(V, E) with vertex set V = Hn and an edge set E ={
(h, ĥ) ∈ Hn ×Hn : |h − ĥ|1 = 2

}
. Figures 9, 10 provide

the PC graph for (K = 2, n), (K = 3, n = 5) respectively.
For every vertex h ∈ V , visualize the sub-collection (W(g|h) :
g ∈ Hn) of decision variables as a function of V , i.e., as values
lying on V , corresponding to h ∈ V (See Fig. 11). The values
(W(g|h) : g ∈ Hn) and (W(g|ĥ) : g ∈ Hn) corresponding to
two neighboring vertices h, ĥ have to be within θ and 1

θ of each
other everywhere, i.e., at every g (see Fig. 11). In addition,
the values corresponding to any node must be non-negative and
sum to 1. The PC graph also provides a visualization of the
objective function. |g−h|1 is exactly twice dG(g, h) (proof in
Lemma 3(ii), Appendix D). Two useful consequences follow.
Firstly, the values corresponding to a node, say h, that are
equidistant from h, are multiplied by identical coefficients in
the objective function. Formally,

(
n
h

)|g̃−h|1 =
(
n
h

)|g−h|1 iff
dG(g̃, h) = dG(g, h). Here and henceforth, dG(v1, v2) denotes
the length of a shortest path from v1 ∈ V to v2 ∈ V in
graph G = (V, E). Secondly, coefficients associated with
the values increase with their distance from h. Formally,
if dG(g̃, h) > dG(g, h), then

(
n
h

)|g̃ − h|1 >
(
n
h

)|g − h|1.

Fig. 11. The PC graphs for K = 3, N = 2 are depicted. The decision
variables (W(g|(1, 0, 1)) : g ∈ H2

3) are associated with the nodes of the
graph on the left. On the right, the decision variables (W(g|(1, 1, 0)) : g ∈
H2

3) are associated with the nodes of the graph. Since (1, 1, 0) and (1, 0, 1)
are neighbors, at every node, the two values have to be within θ and 1

θ
of

each other.

These observations let us restate our objective function (5) as

Dn(W, p)
(a)
=
∑

h∈Hn

n∑
d=1

∑
g∈Hn:

|g−h|1=2d

(
n

h

)
ph

W(g|h)2d

=
∑

h∈Hn

(
n

h

)
ph

n∑
d=1

2d
∑

g∈Hn:

dG(g,h)=d

W(g|h). (12)

In arriving at (12)(a), we used the fact that for any g, h ∈
Hn, we have |g − h|1 is an even integer and at most 2n.
This is proven in Lemma 3(i), Appendix D. Consider a HSM
M : Hn ⇒ Hn for which W(g|h) = f(h, |g − h|1) is a
function only of the distance between the vertices. In the
sequel, we will prove this sub-collection contains a mechanism
that is optimal in the limit n → ∞. For such a HSM, (12)
reduces to

Dn(W, p) =
∑

h∈Hn

(
n

h

)
ph

n∑
d=1

2dNd(h)f(h, 2d),

where Nd(h) = |{g ∈ Hn : dG(g, h) = d
} | (13)

is the number of vertices at graph distance d from h. To evalu-
ate the RHS of Dn(W, p) above, we will need to characterize
the sum

∑n
d=1 dNd(h)f(h, d). Let us consider the sequence

N1(h), N2(h), · · · , Nn(h) which may be regarded as the
distance distribution of the vertex h ∈ V = Hn. Consider
Fig. 12 and two sequences (Nd(h) : d = 1, 2, · · · ) and
(Nd(h̃) : d = 1, 2, · · · ) for any pair h, h̃ ∈ V within the
dotted circle. These sequences agree on the initial few terms,
henceforth referred to as the head, and disagree in a few
subsequent terms due to the presence of the boundary. As the
boundary recedes (i.e., n → ∞), the first term of disagreement
recedes, and the head elongates. Alternatively stated, the heads
of the sequences (Nd(h) : d = 1, 2, · · · ) for h within the
dotted circle become invariant with h. Formally, there exists
a distance r ∈ N such that, for every h in the dotted circle,
Nd(h) → Nd for all d = 1, 2, · · · , r − 1. Moreover r → ∞
as the boundary recedes, i.e., n → ∞. We characterize Nd by
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Fig. 12. The dotted circle within which the distance distribution of nodes is
considered.

considering c : = np. Observe that

Nd(c) = |{g ∈ Hn : dG(g, c) = d
} |

= |{z ∈ Z
K : c + z ∈ Hn, |z|1 = 2d

} |
= |{z ∈ Z

K: ci + zi ≥ 0,
K∑

i=1

ci + zi = n, |z|1 = 2d}|

= |{z ∈ Z
K: zi ≥ −npi,

K∑
i=1

zi = 0, |z|1 = 2d}|.

As n → ∞, the lower bound on zi vanishes (becomes
redundant), and we have

Nd(c) → Nd : = |{z ∈ Z
k :

K∑
k=1

zk = 0, |z|1 = 2d}|. (14)

Nd is the number of integer points on the face of the integral
convex polytope

Pd = {(x1, · · · , xK) ∈ R
K :

K∑
k=1

xk = 0,

K∑
k=1

|xk| ≤ 2d}. (15)

Indeed, if LP(d) : = |ZK ∩ Pd|, then Nd = LP(d) − LP
(d−1).3 Notice that LP(d) is the number of integral points in
the d−th dilation of the integral convex polytope P : = P1.
LP(d) and its generating function play a central role in this
paper. Ehrhart theory concerns the enumeration of integer
points in a integral convex polytope and the objects associated
with these counts. We present the foundational results in
Ehrhart theory that we will have opportunity to use. The reader
is referred to [12] for a beautiful exposition of Ehrhart theory.

A convex l−polytope is a convex polytope of dimen-
sion l. A convex l−polytope whose vertices have integral
co-ordinates is an integral convex l−polytope. LP(d) is the
number of integral points in the d−th dilation of the integral
convex l−polytope (Fig. 2). Our pursuit of LP(d) and the
associated objects is aided by the following fundamental
theorem of Ehrhart. Ehrhart’s theorem states that if P is an
integral convex l−polytope, then LP(d) is a polynomial in
d of degree l. We refer to LP(d) as Ehrhart’s polynomial.

3If (x1, · · · , xK) ∈ ZK and
�K

k=1 xk = 0, then
�K

k=1 |xk| is an even
integer. This follows in a straightforward manner from Lemma 3(i), Appendix
D. Therefore, if (x1, · · · , xK) ∈ Z

K ∩ Pd and
�K

k=1 |xk| < 2d, then�K
k=1 |xk| ≤ 2(d − 1).

We will identify Nd, and hence LP(d), precisely in our proof.
As evidenced by (6), we will have opportunity to study the
generating function of the counts LP(d) : d ∈ N. We refer to
the formal power series

EhrP(z) = 1 +
∞∑

d=1

LP(d)zd as the Ehrhart series of P ,

and let EP,f(z) : = (1 − z)Ehr(z). (16)

Since Nd = LP(d) − LP(d − 1), we have EP,f(θ) =

(1 − θ)EhrP(θ) = 1 +
∞∑

d=1

Ndθd.

Having introduced the tools, we now sketch the main
elements of the proof. In this section, we first argue that the
RHS of (6) is an upper bound on D∗

K(θ, p).

A. Upper bound

Suppose one were to consider the popular Laplace/
geometric/staircase mechanism G : Hn ⇒ Hn and charac-
terize its distortion. In that case,

WG (g|h) ∝ θ
|g−h|1

2 and hence WG (g|h) =
θdG(g,h)

Eh(θ)
,

where Eh(θ) = 1 +
n∑

d=1

Nd(h)θd (17)

is a normalizing constant chosen to ensure
∑

g∈Hn WG

(g|h) = 1. It will be apparent that WG (·|h) is θ−DP only
if Eh(θ) is invariant with h. For any (finite) n ∈ N this is
not true, leading to obstacles in defining a feasible θ−DP
HSM analog to the geometric mechanism. We overcome this
by considering a cascade mechanism. See Figure 8. U

n is
analogous to the geometric mechanism WG and outputs a
‘histogram’ in an ‘extended set of histograms’. This over-
comes the issue of Eh(θ) being variant with h. An ‘extended
histogram’ is then remapped back to a histogram h ∈ Hn

via the truncation mechanism V
n. V

n(·|·) is so chosen such
that effective expected L1−distortion does not increase, in the
limit. Reserving these elements to the proof, we put forth
a heuristic limiting argument that explains the effective dis-
tortion of the cascade mechanism in Figure 8. As n → ∞,
we noted that Nd(h) → Nd and becomes invariant with h,
and hence it is plausible that (i) Eh(θ) → EP,f(θ), where

EP,f(θ) : = 1+
∞∑

d=1

Ndθ
d = (1−θ)EhrP , and (ii) WG (g|h) →

(EP,f(θ))−1θdG(g,h). We substitute this in the RHS of (12),
to obtain

lim
n→∞Dn(WG , p)= lim

n→∞

∑
h∈Hn

(
n

h

)
ph
∑
d≥1

2d
∑

g∈Hn:

dG(g,h)=d

θdG(g,h)

EP,f(θ)

= lim
n→∞

∑
h∈Hn

(
n

h

)
ph
∑
d≥1

2dNdθ
d

EP,f(θ)

= lim
n→∞

∑
h∈Hn

(
n

h

)
ph 2θ

EP,f(θ)
dEP,f(θ)

dθ
(18)
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= lim
n→∞

2θ

EP,f (θ)
dEP,f(θ)

dθ
,

=
2θ

EP,f(θ)
dEP,f (θ)

dθ
=

2θ

EhrP(θ)
dEhrP(θ)

dθ
− 2θ

1 − θ
, (19)

and the latter quantity is invariant with n, enabling us to
conclude that

lim
n→∞Dn(WG , p) =

2θ

EP,f (θ)
dEP,f (θ)

dθ

=
2θ

EhrP(θ)
dEhrP(θ)

dθ
− 2θ

1 − θ
. (20)

In arriving at (18), we used the fact that dEP,f (θ)
dθ =∑

d≥1

dNdθ
d−1, and in arriving at (19) we used EP,f (θ) : = 1+

∞∑
d=1

Ndθ
d = (1 − θ)EhrP . These informal arguments provide

a heuristic explanation for (6) and leaves certain interesting
and non-trivial elements, that are addressed in Section IV-A.

Remark 8. We side-stepped the question of identifying a
θ−DP mechanism for any n ∈ N. Characterizing a (truncated)
geometric θ−DP mechanism for a general K is non-trivial
owing to the presence of multiple boundary vertices, the
involved geometry of the PC graph, and lack of an expression
for the ‘tail’ sum.4 It is also worth noting that the often
used technique of enlarging the output space to be continuous
followed by a heuristic map does not permit a precise perfor-
mance characterization. Moreover, as we note in the following
proof, we are required to shape the geometric mechanism
appropriately to minimize expected distortion.

Next, we show (8). Towards that end, we characterize Nd

explicitly. We recognize that an explicit characterization for
Nd or LP(d) will enable us to express the power series in (20).
In general, characterizing the Ehrhart polynomial of a convex
polytope is involved (see [12]). However, in our case we are
able to characterize Nd for the cross-polytope Pd in (7). Recall
Nd = |Sd|, where

Sd : = Z
K∩ Pd =

{
(x1, · · · , xK)

∈ Z
K :

K∑
k=1

xk = 0,
K∑

k=1

|xk| ≤ 2d

}
.

Sd can be partitioned into disjoint sets based on the coordi-
nates (in set A|P | below) corresponding to its non-negative
indices. Let

An : =

{
(a1, · · · , an) ∈ Z

n : ai ≥ 0,
n∑

i=1

ai = d

}
,

Bm =

⎧⎨
⎩(b1, · · · , bm) ∈ Z

m : bj < 0, −
m∑

j=1

bi = d

⎫⎬
⎭

=

⎧⎨
⎩(b1, · · · , bm) ∈ Z

m : bj > 0
m∑

j=1

bi = d

⎫⎬
⎭ .

4The reader is encouraged to construct, via a truncation or otherwise,
a θ−DP mechanism analogous to the geometric mechanism, for the case
of K = 3 and n = 5 depicted in Fig. 10, to recognize the non-triviality.

It can be verified that,

Sd =
⋃

P⊆[K]

A|P | × BK−|P | =
⋃

P⊆[K]

AK−|P | × B|P |.

We can now compute |A|P || and |B|P ||. Since

|An| =
(

d + n − 1
n − 1

)
, |Bm| =

(
d − 1
m − 1

)
, we have

Nd =
K−1∑
r=1

(
K

r

)(
d + r − 1

r − 1

)(
d − 1

K − r − 1

)

=
K−1∑
r=1

(
K

r

)(
d + K − r − 1

K − r − 1

)(
d − 1
r − 1

)
,

where the running variable r denotes the cardinality of the
(running set) P ⊆ [K]. An alternate count can be obtained
by explicitly considering the set of zero coordinates. Suppose
0 ≤ z ≤ K − 1 denotes the number of 0−coordinates, and p
the number of positive co-ordinates, then, for d ≥ 1, it can be
verified that

Sd =
⋃

Z⊆[K]:|Z|
≤K−2

⋃
P⊆[K]\Z:

1≤|P |
≤K−Z−1

B|P | × BK−|P |−|Z|, and hence

Nd =
K−2∑
z=0

K−z−1∑
p=1

(
K

z

)(
K − z

p

)(
d − 1
p − 1

)(
d − 1

K − z − p − 1

)
.

So, we conclude

EP,f(θ)= 1+
∞∑

d=1

{
K−1∑
r=1

(
K

r

)(
d + r − 1

r − 1

)(
d − 1

K − r − 1

)}
θd

(21)

= 1+
∞∑

d=1

{
K−1∑
r=1

(
K

r

)(
d + K − r − 1

K − r − 1

)(
d − 1
r − 1

)}
θd

= 1+
∞∑

d=1

K−2∑
z=0

K−z−1∑
p=1

(
K

z

)(
K − z

p

)(
d − 1
p − 1

)(
d−1

K−z−p−1

)
θd.

Finally, we show (9). We refer to [25, Eqn (3.8)] for an
alternate characterization for Nd. It may be verified that
points on the root lattice AK−1 at fractional height d in [25]
correspond to vertices on the face of Pd in (15). [25] also
refers to these vertices as being at a distance d or d bonds
away. From [25, Eqn (3.8)], we have

Nd =
K−1∑
r=1

(
K

r

)(
d + r − 1

r − 1

)(
d − 1

K − r − 1

)

=
K−1∑
j=0

[(
K − 1

j

)]2 (
d + K − j − 2

K − 2

)

=
K−1∑
j=0

[(
K − 1

j

)]2 (
d + K − j − 2

d − j

)
. (22)
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We now use RHS of (22) to conclude

EP,f(θ) = 1 +
∑
d≥1

θd

⎧⎨
⎩

K−1∑
j=1

(
K

j

)(
d + j − 1

j − 1

)(
d − 1

K − j − 1

)⎫⎬
⎭

=
∑
l≥0

θl

⎧⎨
⎩

k−1∑
j=0

(
l − j + K − 2

l − j

)[(
K − 1

j

)]2⎫⎬
⎭

=
∑
l≥0

(
l + K − 2

l

)⎧⎨
⎩

K−1∑
j=0

[(
K − 1

j

)]2
θj+l

⎫⎬
⎭

=

∑K−1
j=0

[(
K−1

j

)]2
θj

(1 − θ)K−1
=

SK−1(θ)
(1 − θ)K−1

. (23)

Substituting (23) in (20), we obtain (9).
We identify a sequence of upper bounds Du

n(θ) ≥
Dn

∗ (θ, p) : n ∈ N and characterize the corresponding limit
limn→∞ Du

n(θ) to obtain an upper bound on D∗
K(θ, p). For

this, we identify a sequence W
n :Hn ⇒ Hn :n ∈ N of θ−DP

HSMs and let Du
n(θ) : = D(Wn, p).

In view of Remark 8, we propose W
n : Hn ⇒ Hn

as a cascade of mechanisms U
n : Hn ⇒ Hn

ext and V
n :

Hn
ext ⇒ Hn. See Figure 8. U

n is a geometric mechanism
and outputs ‘histograms’ from an ‘enlarged set of histograms’.
This overcomes technical obstacles mentioned in Remark 8.
V

n takes as input only the output of U
n, and remaps Hn

ext

to Hn. More importantly, it shapes the joint distribution to
minimize the expected distortion. Since a geometric mecha-
nism is, in general, optimal in most DP settings, and V

n is
carefully shaped, we obtain a reasonably good sequence W

n

of mechanisms that is, in the limit, optimal.
In establishing the upper bound, we first specify mecha-

nisms U
n, V

n and characterize the distortion D(Un) of U
n.

Next, we relate D(Wn, p)(= Du
n(θ)) to D(Un) and thereby

characterize the former as an upper bound.
We take a clue from (17) and Remark 8. The normalizing

terms Eh(θ), Eh̃(θ) differ because the tails of the sequences

Nd(h) : d ≥ 1 and Nd(h̃) : d ≥ 1 differ. The latter is due
to the presence of the boundary of Hn (or the PC graph).
We enlarge Hn to eliminate the boundary. This we do by
getting rid of the non-negativity constraint in (1). The enlarged
‘set of histograms’ is therefore Hn

ext : = {(h1, · · · , hK) ∈
Z

K :
∑K

k=1 hk = n}. Hn
ext is isomorphic to {z ∈ Z

K :
∑K

k=1

zk = 0} and

Nd : =

∣∣∣∣∣{z ∈ Z
k :

K∑
k=1

zk = 0, |z|1 = 2d}
∣∣∣∣∣ , (24)

defined identical to (14), is the number of ‘extended his-
tograms’ at an L1 distance of 2d from any element in Hn

ext.
Nd being invariant with h, we define a θ−DP mechanism
U

n : Hn ⇒ Hn
ext analogous to the geometric mechanism in

(17) as

U
n(g|h) = (EP,f(θ))−1

θ
|g−h|1

2 , (25)

where P is the convex polytope whose dth−dilation is

Pd = {(x1, · · · , xK) ∈ R
K :

K∑
k=1

xk = 0,

K∑
k=1

|xk| ≤ 2d}.

In order to prove W
n is θ−DP, it suffices to prove U

n is θ−DP.
Indeed, by the post-processing theorem of DP, so long as V

n :
Hn

ext ⇒ Hn takes only the output of U
n as input, the cascade

mechanism W
n is θ−DP. It is straightforward to prove that

U
n is θ−DP, and the steps are provided in Appendix F.
Before we identify V

n(·|·), let us characterize the distortion
of U

n. Let

D(Un) : =
∑

h∈Hn

∑
g∈Hn

ext

(
n

h

)
ph|Un(g|h)g − h|1 (26)

denote the distortion of U
n. From (25), (26), we have

D(Un) =
∑

h∈Hn

∑
g∈Hn

ext

(
n

h

)
ph

U
n(g|h)|g − h|1

=
∑

h∈Hn

(
n

h

)
ph

∑
g∈Hn

ext

1
EP,f(θ)

θ
|g−h|1

2 |g − h|1

=
∑

h∈Hn

(
n

h

)
ph 1

EP,f (θ)

∑
d≥1

∑
g∈Hn

ext

|g−h|1=2d

2dθd

=
∑

h∈Hn

(
n

h

)
ph 1

EP,f (θ)

∑
d≥1

2dNdθ
d

=
∑

h∈Hn

(
n

h

)
ph 2θ

EP,f(θ)
dEP,f (θ)

dθ
=

2θ

EP,f(θ)
dEP,f (θ)

dθ
, (27)

where (27) follows from steps identical to those that lead
to (19).

The choice of V
n is based on the fact that the DBs whose

histograms differ widely from the mean histogram np con-
tribute an exponentially (in n) small amount to the expected
value. V

n maps the histogram outside the L1−ball of radius
Rn

2
3 centered at np to the histogram np. The histograms

within radius Rn
2
3 of np remain unchanged. Formally, let

V
n(g|h) = 1 if g = h, |h − np|1 ≤ Rn

2
3 ,

V
n(g|h) = 1 if g = np, |h − np|1 > Rn

2
3 ,

and V
n(g|h) = 0 otherwise. For completeness, we also note

W
n(g|h) =

∑
b∈Hn

ext
V

n(g|b)Un(b|h).
Does V

n output a histogram in Hn? The output of V
n is

contained within a L1−ball of radius αn = Rn
2
3 centered at

np ∈ Hn. The boundary of Hn is at a L1−distance of at
least βn = mink=1,··· ,K npk from np ∈ Hn. Since pk > 0 for
all k ∈ [K], as n → ∞, αn ≤ βn, and the range of V

n is
contained within Hn. The output of mechanism V

n is indeed
a histogram. We provide a formal proof below.

We recall V
n : Hn

ext → Hn is defined as

V
n(g|h) =

⎧⎨
⎩

1 if g = h, |h − np|1 ≤ Rn
2
3

1 if g = np, |h − np|1 > Rn
2
3 ,

0 otherwise,
and

W
n(g|h) =

∑
b∈Hn

V
n(g|b)Un(b|h),

Authorized licensed use limited to: Texas A M University. Downloaded on June 20,2020 at 21:37:44 UTC from IEEE Xplore.  Restrictions apply. 



2560 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 4, APRIL 2020

Fig. 13.

where R > 0 is any constant invariant with n. Since V
n is

a deterministic map, it can also be defined through the map
fVn : Hn

ext ⇒ Hn where

fVn(h) =

{
h if |h − np|1 ≤ Rn

2
3

np otherwise, i.e., |h − np|1 > Rn
2
3 ,

and

V
n(g|h) = 1{g=fVn (h)},

where R > 0 is a constant, invariant with n. Let us analyze
what ‘extended histograms’ are within the range of fVn . h ∈
Hn

ext falls in the range of fVn , or in other words, is output
by mechanism V

n only if |h − np| ≤ Rn
2
3 , which is true

only if |hk − npk| ≤ Rn
2
3 . The latter is equivalent to npk −

Rn
2
3 ≤ hk ≤ npk + Rn

2
3 for every k ∈ [K]. Observe that,

since we assumed pk > 0 for all k ∈ [K], the lower bound
npk − Rn

2
3 > 0 for any R > 0 and sufficiently large n. For

sufficiently large n, V
n outputs an extended histogram whose

coordinates are non-negative. From (1), and the definition Hn
ext,

the output of V
n is indeed a histogram from Hn. Observe that,

since we assumed pk > 0 for all k = 1, 2 · · · , K , we have
npi −Rn

2
3 > 0 for any R and sufficiently large n. Hence, for

sufficiently large n, the output of mechanism V
n is indeed a

histogram.
We now prove that limn→∞ D(Wn, p) ≤ limn→∞ D(Un).

We describe the arguments before we provide the mathe-
matical steps. Let Dh(Wn) =

∑
g∈Hn W

n(g|h)|g − h|1,
Dh(Un) =

∑
g∈Hn

ext
U

n(g|h)|g − h|1 denote (unweighted)
contributions of h to D(Wn, p) and D(Un) respectively. Refer
to Fig. 13. Let B(1

2 ) and B(1) be the L1−balls centered at np

of radii R
2 n

2
3 and Rn

2
3 respectively. Let Bc(1) := Hn

ext \B(1).
For each h ∈ B(1

2 ), the mechanism V
n has the effect of

decreasing h’s contribution. In other words, for any h ∈ B(1
2 ),

Dh(Wn) ≤ Dh(Un). This is because (i) V
n transfers mass

placed on g̃ ∈ Bc(1) - an element farther from np - to
np, and (ii) V

n does not alter the mass placed on elements
g ∈ B(1) (other than np).5 What about for h ∈ Bc(1

2 )?
The weights

(
n
h

)
ph associated with these elements, when

5This is made precise in the sequence of steps (52) - (54) below.

summed up, contribute an exponentially small amount. For-
mally,

∑
h∈Bc( 1

2 )

(
n
h

)
ph ≤ exp{−nα} for some α > 0. Since

|g − h|1 ≤ 2n whenever h, g inHn, we have D(Wn, h) ≤
2n exp{−αn} and hence

∑
h∈Bc( 1

2 )

(
n
h

)
phD(Wn, h) → 0 as

n → 0. We flesh out these details in Appendix G.
From (27), (19) it suffices to characterize either the Ehrhart

series EhrP(θ) or EP,f(θ), of P = P1, where Pd is the
polytope characterized in (15). From (23), we conclude

D∗
K(θ, p) ≤ 2θ

EP,f(θ)
dEP,f(θ)

dθ

= DK(θ) : = 2θ

{
K − 1
1 − θ

+
S�

K−1(θ)
SK−1(θ)

}
. (28)

Remark 9. Observe that U
n is invariant with p, and V

n is
a remapping mechanism that depends on p and reduces the
expected distortion for histograms of high probability. In order
to prove Theorem 2, it suffices to prove the lower bound,
i.e., the reverse inequality in (28).

B. Lower Bound

Our proof of the lower bound is via the weak duality
theorem. The weak duality theorem states that every feasible
solution to the dual LP evaluates to a lower bound on the
primal optimal. The reader is referred to Appendix E for
precise statement of the WDT in the context of our problem.
Consider the dual of the LP in (5). If we can identify a dual
feasible solution whose objective value evaluates to Cn

∗ and
limn→∞ Cn∗ = DK(θ) defined in (28), then we would have
proved Theorem 1. This is our approach. Towards, this end
we begin by identifying the dual of the LP in (5).

Associated to each DP constraint (4(b)), we have a non-
negative dual variable λg|(h,ĥ). Note that λg|(h,ĥ) and λg|(ĥ,h)

are distinct dual variables. Associated to each sum constraint
(4) we have a free dual variable μh. It can be verified that the
dual of (5) is

Sn
∗ (θ) : = max

∑
h∈Hn

μh subject to

(i) μh ≤
(

n

h

)
ph|h − g|1 + θ

∑
ĥ∈N (h)

λg|(ĥ,h)−
∑

h̃∈N (h)

λg|(h,h̃) for

(h, g) ∈ Hn ×Hn and (ii) λg|(ĥ,h) ≥ 0 for g ∈ Hn and

(ĥ, h) ∈ Hn ×Hn satisfying |h − ĥ|1 = 2, (29)

where N (h) : = {ĥ ∈ Hn : |h − ĥ|1 = 2} is the set of
neighbors of h ∈ Hn. We let Cn(λ, μ) =

∑
h∈Hn μh denote

the objective value corresponding to a feasible solution λ, μ,
where λ and μ represent the aggregate of λg|(ĥ,h) and μh

variables respectively.
The reader will note that each constraint in the primal LP (4)

has translated to a variable in the dual LP (29) and vice versa.
We therefore have at least O(k2|Hn|2) = O(k2(n+1)2(k−1))
variables (Remark 2). In order to describe the methodology
behind the assignment of dual variables and the evaluation of
its objective value, we first focus on the K = 2 case. For this
case, we provide a complete solution, i.e., identify a pair of
primal and dual feasible solutions that satisfy complementary
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slackness conditions. This enables us to glean the structure of
an optimal dual feasible solution. We leverage this structure in
providing an assignment for the general K case. Specifically,
we provide an interpretation of the dual feasible assignment
via shadow prices (Appendix I) which naturally leads us to
the assignment for the general K case.

The K = 2 case: We identify the histogram (i, n − i)
∈ Hn

2 with just its first co-ordinate. We also let W(n −
j|i) denote W((n − j, j)|(i, n − i)), λj|(i−1,i) denote
λ(j,n−j)|((i−1,n−i+1),(i,n−i)), and so on. With this notational
simplification, we state below the primal and dual LPs for
K = 2.

Primal LP

min
n∑

i=0

n∑
j=0

C n
i W(j|i)2|j − i|

subject to W(j|i) ≥ 0, for all 0 ≤ i, j ≤ n

∑n
j=0W(j|i) = 1 for all 0 ≤ i ≤ n

W(j|i − 1) − θW(j|i) ≥ 0 for all i, j

W(j|i + 1) − θW(j|i) ≥ 0 for all i, j,

Dual LP

max
n∑

i=0

μi

subject to μi ≤ C n
i 2|j − i|

+θλj|(i−1,i) + θλj|(i+1,i)

−λj|(i,i−1) − λj|(i,i+1)

μi is free,

λj|(i−1,i) ≥ 0, for every i, j

λj|(i+1,i) ≥ 0 for every i, j, (30)

where C n
i =

(
n
i

)
pi
1(1 − p1)n−i. We have suppressed depen-

dence of C n
i on p1. Furthermore, we let p = p1 and

p2 = 1 − p. We provide a complete solution, i.e., primal and
dual feasible solutions that satisfy complementary slackness
conditions. Recall that from complementary slackness, we
are required to prove that (i) either the primal constraint is
tight or the corresponding dual variable is 0, and (ii) either
the primal variable is 0 or the dual constraint is tight. For
ease of verification, we have stated variables and constraints
that are duals of each other on the corresponding rows of the
table in (30).

Let us begin with a primal feasible solution. Let fi =∑i
j=0 2C n

j θi−j , bi =
∑n

k=i 2C n
k θk−i, and6

An : = min
{

i ∈ [0, n] :
fk−1 − θbk ≥ 0
for every k ≥ i

}
,

Bn : = max
{

i ∈ [0, n] :
bk+1 − θfk ≥ 0
for every k ≤ i

}
. (31)

An − 1 and Bn + 1 will represent the left and right ends of
a truncated geometric mechanism which we prove is optimal.
In Appendix H, we prove that An < np1 < Bn. We use
the same in the following assignment. Consider the truncated

6We assume, without loss of generality that p1 ≤ 1
2

geometric mechanisms that are folded at An − 1 on the left
and Bn +1 on the right. Specifically, let U

n : Hn
2 ⇒ Hn

ext and
V

n : Hn
ext ⇒ Hn

2 , where Hn
ext : = {(i, n− i) : i ∈ Z}. As stated

earlier, we refer to (i, n − i) ∈ Hn
ext by its first co-ordinate i.

Let

U
n(k|i) = θ|k−i| 1 − θ

1 + θ
for k ∈ Z, i ∈ [0, n],

V
n(j|i) =

⎧⎪⎪⎨
⎪⎪⎩

1 if j = i, j ∈ [An − 1, Bn + 1]
1 if i ≤ An − 1, j = An − 1
1 if i ≥ Bn + 1, j = Bn + 1
0 otherwise,

(32)

and W
n(j|i) =

∑
k∈Z

U
n(k|i)Vn(j|k). It can be verified that

W
n(j|i) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θ|j−i| 1−θ
1+θ i ∈ [0, n], j ∈ [An, Bn]

θ|j−i|
1+θ j = Bn + 1, i ≤ j

or j = An − 1, i ≥ j
0 j /∈ [An − 1, Bn + 1],
1 − θAn−i

1+θ i < An − 1, j = An − 1
1 − θi−Bn

1+θ i > Bn + 1, j = Bn + 1
0 otherwise.

(33)

It can be easily verified that the above assignment satisfies the
constraints in (4). This can be done in either of two ways.
The first is just by the fact that U

n being θ−DP implies W
n

is θ−DP. The second is by verifying that W
n as assigned in

(33) satisfies (4a) and (4b). We leave this to the reader.
What are the complementary slackness conditions with

regard to the above primal feasible assignment? We make the
following observations with regard to the above assignment.
Firstly,

W
n(j|i − 1) − θW

n(j|i) > 0 if j ≤ i − 1 and

W
n(j|i + 1) − θW

n(j|i) > 0 if j ≥ i + 1. (34)

Secondly,

θ <
W(An − 1|i)

W(An − 1|i − 1)
<

1
θ

if i ≤ An and similarly

θ <
W(Bn + 1|i + 1)

W(Bn + 1|i) <
1
θ

if i ≥ Bn + 1.

Moreover, for j ∈ [An − 1, Bn + 1], we have W
n(j|i) > 0

and hence the corresponding constraints have to be met
with equality in the dual LP. Specifically, our dual feasible
assignment must satisfy

μi = 2C n
i |j − i| + θλj|(i−1,i) + θλj|(i+1,i) − λj|(i,i−1)

−λj|(i,i+1) for j ∈ [An − 1, Bn + 1]. (35)

We now provide a feasible assignment for the dual variables.
Let λAn−1|(i−1,i) = 0 for i ≤ An − 1 and λBn+1|(i+1,i) = 0
for i ≥ Bn+1. Let λj|(i−1,i) = 0 if j ≤ i−1 and λj|(i+1,i) = 0
if j ≥ i + 1.7 With this, the reader can verify that we have
handled the last three rows of (30). We are only left to provide
an assignment for the rest of the dual variables that satisfy (35).

7For the general K , we will assign λ
g|(ĥ,h)

= 0 if |g − ĥ|1 ≤ |g − h|1.
Note that this simple observation halves the number of decision variables.
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For i ∈ {1, · · · , An − 1} and j ∈ {i, · · · , An − 1}, set
λj|(i−1,i) : = 0.

For i ∈ {1, · · · , An − 1} and j ∈ {An − 1, · · · , n},
set λj|(i−1,i) : = [j − (An − 1)]fi−1.

(36)

For i ∈ [An, n] and j ∈ [i, n],
set λj|(i−1,i) : = fi−1−θbi

1−θ2 + (j − i)fi−1.
(37)

For i ∈ [Bn + 1, n − 1] and j ∈ [Bn + 1, i],
set λj|(i+1,i) : = 0.

For i ∈ [Bn + 1, n − 1] and j ∈ [0, Bn + 1],
set λj|(i+1,i) : = [(Bn + 1) − j]bi+1.

For i ∈ [0, Bn] and j ∈ [0, i],
set λj|(i+1,i) : = bi+1−θfi

1−θ2 + (i − j)bi+1.
(38)

For i < An − 1, set μi = 2C n
i |(An − 1) − i|,

and i > Bn + 1, set μi = 2C n
i |i − (Bn + 1)| (39)

For i ∈ [An − 1, Bn + 1], set μi=fi + bi − 4
(1−θ2)C

n
i

For i ∈ [An − 1, Bn + 1] verify
μi = θ(fi−1 + bi+1) − 4θ2

(1−θ2)C
n
i .

(40)

The above assignment is indeed non-trivial. We refer the reader
to Appendix I for an interpretation of the above assignment via
shadow prices. This interpretation will prove very valuable in
arriving at the dual variable assignment for the general K case
in (49). We will now use the above assignment to verify (35).

Recall C n
i =

(
n
i

)
pi(1 − p)n−i. We first prove that for any

i < An − 1, j ∈ [An − 1, Bn + 1],(
n

i

)
pi(1 − p)n−i2|j − i| + θλj|(i−1,i) + θλj|(i+1,i)

−λj|(i,i+1) − λj|(i,i−1)

=
(

n

i

)
pi(1 − p)n−i2|(An − 1) − i|. (41)

Towards that end, note that λj|(i+1,i) = λj|(i,i−1) = 0 for
the considered values for i, j. Substituting λj|(i−1,i) = [j −
(An − 1)]fi−1 from (36), we have θλj|(i−1,i) − λj|(i,i+1) =
[j − (An − 1)](θfi−1 − fi) = −[j − (An − 1)]

(
n
i

)
2pi

(1− p)n−i, and we therefore have (41). From the assignment
(38), (39), we conclude validity of (35) for i < An−1. Before
we continue, we note that

fi = θfi−1 +
(

n

i

)
2pi(1 − p)n−i, and

bi = θbi+1 +
(

n

i

)
2pi(1 − p)n−i. (42)

We now consider upper bounds on μi for the range i ∈ [A−1,
B + 1], j ∈ [i + 1, n]. Substituting (37), (38) and using (42),
one can verify that(

n

i

)
pi(1 − p)n−i2|j − i| + θλj|(i−1,i) − λj|(i,i+1)

=
(

n

i

)
pi(1 − p)n−i2|j − i| + θfi−1 − fi − θ2bi + θbi+1

1 − θ2

+ (j − i)(θfi−1 − fi) + fi

= fi + bi − 4
(1 − θ2)

(
n

i

)
pi(1 − p)n−i. (43)

Similarly, for i ∈ [A−1, B+1], j ∈ [0, i−1], one can substitute
(37), (38) and use (42) to establish

(
n

i

)
pi(1 − p)n−i2|j − i| + θλj|(i+1,i) − λj|(i,i−1)

=
(

n

i

)
pi(1 − p)n−i2|j − i| + θbi+1 − θ2fi − bi + θfi−1

1 − θ2

+ (i − j)(θbi+1 − bi) + bi

= fi + bi − 4
(1 − θ2)

(
n

i

)
pi(1 − p)n−i. (44)

Suppose i ∈ [A− 1,B +1] and j = i; the upper bound on
μi is

θλi|(i−1,i) + θλi|(i+1,i) =
θfi−1 − θ2bi + θbi+1 − θ2fi

1 − θ2

= θfi−1 + θbi+1 − 4θ2

(1 − θ2)

(
n

i

)
pi(1 − p)n−i. (45)

The expressions in (43), (44) and (45) being equal to the
assignment (40) for μi in the range i ∈ [A − 1, B + 1],
we conclude validity of (35). We are left to prove validity
of (35) for i ≥ Bn + 1. This is similar to (41). Substituting
(39), one can verify that

(
n

i

)
pi(1 − p)n−i2|j − i| + θλj|(i−1,i)

+θλj|(i+1,i) − λj|(i,i+1) − λj|(i,i−1)

=
(

n

i

)
pi(1 − p)n−i2|i − (Bn + 1)|. (46)

From the assignment for μi in (39) for i > Bn + 1, we have
the validity of (35) for i > Bn + 1. We have thus proved the
validity of (35) for all values of i and j ∈ [An − 1, Bn + 1].
The non-negativity of λj|(i−1,i) and λj|(i+1,i) follows from
(i) definition of An, Bn, and (ii) non-negativity of fi, bi.
We have thus proved that the above assignments are valid
primal and feasible assignments and satisfy complementary
slackness conditions. We only need to evaluate the objective
of one of these values and prove that it tends to 4θ

1−θ2 in the
limit n → ∞.

It is easier to evaluate the objective value of the
above feasible dual assignment. Substituting (40), (39), we
have

Cn(λ, μ) =
n∑

i=0

μi =
∑

i<An−1

(
n

i

)
pi(1 − p)n−i2|An − 1 − i|

+
Bn+1∑

i=An−1

(fi + bi) +
∑

i>Bn+1

(
n

i

)
pi(1 − p)n−i2|i − Bn − 1|

− 4
(1 − θ2)

Bn+1∑
An−1

C n
i

≥
n∑

i=0

(fi + bi) − 4
(1 − θ2)

−
An−2∑
i=0

(fi + bi) −
n∑

i=Bn+2

(fi + bi).
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We focus on the first term above:

n∑
i=0

(fi + bi) = 2
n∑

i=0

i∑
j=0

(
n

j

)
pj(1 − p)n−jθi−j

+2
n∑

i=0

n∑
k=i

(
n

k

)
pk(1 − p)n−kθk−i

= 2
n∑

j=0

n∑
i=j

(
n

j

)
pj(1 − p)n−jθi−j

+2
n∑

k=0

k∑
i=0

(
n

k

)
pk(1 − p)n−kθk−i

= 2
n∑

j=0

(
n

j

)
pj(1 − p)n−j 2 − θn−j+1 − θj+1

1 − θ

=
4

1 − θ
− 2θn+1

1 − θ
E{θ−Xn} − 2θ

1 − θ
E{θXn},

where Xn is a Bernoulli RV with parameters n, p. Since
E
{
θXn

} ∼= (pθ + (1 − p))n →
n→∞ 0, we8 have

limn→∞
∑n

i=0(fi + bi) = 4
1−θ . We therefore have

lim
n→∞Cn(λ, μ) ≥ 4θ

1 − θ2
− lim

n→∞

An−2∑
i=0

(fi + bi)

− lim
n→∞

n∑
i=Bn+2

(fi + bi) =
4θ

1 − θ2
. (47)

In arriving at (47), we have used np−An = Bn−np = O(
√

n)
and standard results in concentration of binomial probabilities.
This concludes the proof for the case K = 2. A step-by-step
proof of (47) is provided in [26].

We now leverage the shadow price interpretation provided
in Appendix I to provide an assignment for general K . The
proof of feasibility of the following assignment follows from
arguments analogous to those presented in Eqns. (41) - (45)
for the K = 2 case.

Refer to Appendix D for definition of the PC graph G and its
properties. For a ∈ Hn, let N (a) : = {â ∈ Hn : |a− â|1 = 2}
be the set of neighbors of a. For a, b ∈ Hn, let

F(b, a) : = {ã ∈ N (a) : |b − ã|1 > |b − a|1} ,

C(b, a) : = {ã ∈ N (a) : |b − ã|1 < |b − a|1}
and E(b, a) : = {ã ∈ N (a) : |b − ã|1 = |b − a|1}

be the set of histograms farther to, closer to, and at equidis-
tant from b than a respectively. Recall that 2dG(a, b) =
|a − b|1 (Lemma 3). Complementary slackness conditions
imply

λg|(h,ĥ) = 0 whenever |g − ĥ|1 > |g − h|1. (48)

8Recall that θ ∈ (0, 1).

When |g − ĥ|1 < |g − h|1, let

λg|(h,ĥ) =

∑
a∈C(h,ĥ)

2
(

n

a

)
pa θdG(a,h) − θ

∑
b∈C(ĥ,h)

2
(

n

b

)
pb θdG(ĥ,b)

1 + |C(h, ĥ)|θ2 − (K(K − 1))θ2 + θ|E(h, ĥ)|
+|g − h|1

∑
a∈C(h,ĥ)

(
n

a

)
pa θdG(a,h) (49)

μg =

θ
∑

h∈N (g)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
a∈

C(h,g)

2
(

n

a

)
pa θdG(a,h) − θ

∑
b∈

C(g,h)

2
(

n

b

)
pb θdG(h,b)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

1 + |C(h, ĥ)|θ2 − (K(K − 1))θ2 + θ|E(h, ĥ)| .

Having provided the above assignments, the natural question
that arises is whether these are feasible for (29), and if yes,
what do they evaluate to? A couple of remarks are in order.
The first term in (49) is negative if g = ĥ, |ĥ − np| >

|h−np|+2 and |ĥ−np| > Θ(
√

n). This is the case analogous
to (36). Therein, note that when i ∈ [A, B], the assignment
is (37). In fact, the fraction in (49) is analogous to the
fraction in (37). The reader will recognize E(h, ĥ) = 0 and
C(h, ĥ) = F(h, ĥ) = 1. The first term in the numerator of the
fraction in (49) is analogous to fi−1 in (37). The rest of the
terms can also be related to the assignment in (36) - (40).
The above assignment is a slightly simplified version, in the
sense that the variables corresponding to non-active constraints
have been ignored. Appendix I provides a clear interpretation
for the above assignment for K = 2. An analogous argument
to our thorough description for the K = 2 case, its feasibility
and the evaluation of its objective value completes the proof.

V. CONCLUDING REMARKS

Our work is aimed at initiating a systematic information
theoretic study of the fundamental trade-off between the utility
lost and the privacy preserved in any data obfuscation mech-
anism. It is addressed in the information theoretic spirit by
characterizing the expected fidelity in the asymptotic regime
of large databases. In this work, we have adopted DP as the
framework to quantify the vulnerability of the obfuscated data
to privacy breaches. Our measure of utility - the L1−distance
between the histograms - is simple and yet provides us with an
ideal setting to put forth the connections between DP, Ehrhart
theory, analytic combinatorics and linear programming.

Going further, one may ask questions at two different levels.
At a technical level, it would be interesting to build on the
following questions and provide suitable answers. Can one
derive simple closed form computable expressions character-
izing the utility-privacy trade-off for other pertinent distortion
measures? What would be the optimal sanitizing mechanisms?
We conjecture that such a study will involve enumerating
integer points on the intersection of convex polytopes.

At a more strategic level, we deem it necessary to ask
the following question. Given that we require certain util-
ity and accuracy from our data mining algorithms, can we
provide the stringent guarantees sought by DP for sanitizing
databases or responding to individual queries? Our work
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TABLE I

DESCRIPTION OF SYMBOLS USED IN THE ARTICLE

proves that the minimal distortion (9) scales linearly with
the dimensionality of the database, even if the number of
records grows unbounded. Given the fine-grained and high-
dimensional nature of our databases, is this adequate? Why
are we not able to exploit the presence of a large number of
records in our sanitization? The answer lies in the fact that DP
is attempting to be robust against an adversary that knows n−1
records perfectly. As the number of records grow, the fraction
of entries that the adversary knows increases to 1. Indeed,
this is a conservative model. Since the adversary’s ‘power’
is increasing with the size of the DB, a DP mechanism is
unable to exploit the presence of a large number of records
to ‘minimize the necessary randomization’. In other words,
it is unable to hide one subject’s record in the pool of
all records without the help of randomization. We therefore
conclude by asking the questions: Is a very low utility the
inevitable price to pay for provable guarantees on privacy for
large databases that DP promises? or, can we provide a more
realistic framework to quantify privacy and vulnerability of
query-response mechanisms?

APPENDIX A
SUMMARY OF NOTATION

See Table I.

APPENDIX B
IT SUFFICES TO FOCUS ON MECHANISMS THAT ARE

A FUNCTION ONLY OF THE HISTOGRAM

OF THE DATABASE

In our search for an optimal database sanitizing mechanism,
we prove here that we may restrict attention to mechanisms
that satisfy W(a|b) = W(a|b̃) whenever h(b) = h(b̃).

Lemma 2. Given a privacy constraint θ > 0, there exists
a mechanism (W(·|a) : a ∈ Rn) such that (i) W(·|a) =
W(·|ã) whenever h(a) = h(ã), (ii) W(b|a)

W(b|ã) ∈ [θ, 1
θ ] for every

pair a, â of neighboring databases and every database b, and
(iii) Dn(W) ≤ Dn(U) for every sanitizing mechanism U that
is θ−DP.

Proof. We prove the following statement. Given any θ−DP
database sanitizing mechanism (U(|·|a) : a ∈ Rn), there exists
a θ−DP sanitizing mechanism (W(·|a) : a ∈ Rn) that satisfies
(i) and (ii) in the theorem statement and Dn(W) ≤ Dn(U).
Towards that end, define

c∗g ∈ argd:h(d)=g min
∑

b∈Rn

F(h(b),h(d))U(b|d)

and let W(a|b) = U(a|c∗h(b)) for all a ∈ Rn, b ∈ Rn.

Suppose h(b) = h(b̃), then W(a|b) = U(a|c∗h(b)) =
U(a|c∗

h(b̃)
) = W(a|b̃). Suppose b and b̂ are neighboring

databases, then |h(b) − h(b̂)| = 2. Since c∗h(b) and c∗
h(b̂)

are
neighboring and U is θ−DP, we have

W(a|b)
W(a|b̂) =

U(a|c∗h(b))

U(a|c∗
h(b̂)

)
∈ [θ,

1
θ
] for all a ∈ Rn.

Lastly, we study Dn(W):

Dn(W) =
∑

a∈Rn

∑
b∈Rn

p(a)W(b|a)F(h(a),h(b))

=
∑

g∈Hn

∑
a∈Rn:
h(a)=g

p(a)
∑

b∈Rn

W(b|a)F(h(a),h(b))

=
∑

g∈Hn

∑
a∈Rn:
h(a)=g

p(a)
∑

b∈Rn

U(b|c∗h(a))F(h(a),h(b))

≤
∑

g∈Hn

∑
a∈Rn:
h(a)=g

p(a)
∑

b∈Rn

U(b|a)F(h(a),h(b)) = Dn(U)

Suppose U : Rn → Rn and V : Rn → Rn are DSMs such
that∑

a∈Rn:
h(a)=h

U(a|b) =
∑

c∈Rn:
h(a)=h

V(c|b) ∀h ∈ Hn, ∀b ∈ Rn, then

Dn(U) =
∑

a∈Rn

∑
b∈Rn

p(a)U(b|a)F(h(b),h(a))

=
∑

a∈Rn

∑
h∈Hn

∑
b∈Rn:
h(b)=h

p(a)U(b|a)F(h,h(a))

=
∑

a∈Rn

∑
h∈Hn

p(a)F(h,h(a))
∑

b∈Rn:
h(b)=h

U(b|a)

=
∑

a∈Rn

∑
h∈Hn

p(a)F(h,h(a))
∑

b∈Rn:
h(b)=h

V(b|a) = Dn(V).

The above discussion narrows our search to histogram sani-
tizing mechanisms W : Hn → Hn. The prior distribution on
Hn is given by (3). Our goal, is therefore to only identify a
θ−DP HSM that minimizes

Dn(W) =
∑

h∈Hn

∑
g∈Hn

(
n

h

)
ph

W(g|h)F(g, h).
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APPENDIX C
PROOF OF COROLLARY 1

We let y = 1+θ
1−θ and note dy

dθ = 2
(1−θ)2 . Observe that

S�
K−1(θ)

SK−1(θ)
=

1
(1 − θ)K−1LK−1(y)

d{(1 − θ)K−1LK−1(y)}
dθ

=
−(K − 1)
(1 − θ)

+
(1 − θ)K−1 dLK−1(y)

dθ

(1 − θ)K−1LK−1(y)

=
−(K − 1)
(1 − θ)

+
dLK−1(y)

dy
2

(1−θ)2

LK−1(y)

=
−(K − 1)
(1 − θ)

+
L�

K−1(y) 2
(1−θ)2

LK−1(y)
. (50)

We now utilize the recurrence relations (1 − y2)L�
n(y) =

nLn−1(y)−nyLn(y) for every n ≥ 2 and (m+1)Lm+1(y)−
(2m + 1)yLm(y) + mLm−1(y) = 0 for every m ≥ 1.
Substituting n = K − 1 and m = K − 1 in these relations,
we conclude (1 − y2)L�

K−1(y) = KyLK−1(y) − KLK(y),

and hence
L′

K−1(y)

LK−1(y) = Ky
(1−y2) − K

(1−y2)
LK(y)

LK−1(y) . Substituting
this in (50), one can verify

2θ

{
K − 1
1 − θ

+
S�

K−1(θ)
SK−1(θ)

}
= 2θ

{−K(1 + θ)
θ(1 − θ)

+
K

2θ

LK(y)
LK−1(y)

}

= K

{
LK(y)

LK−1(y)
+

1 + θ

1 − θ

}
,

and this concludes the proof.

APPENDIX D
PROPERTIES OF PRIVACY-CONSTRAINT GRAPH AND Hn

We list and prove some simple properties of the set of
histograms Hn and the PC graph involved in our study.

Lemma 3. Consider the set Hn
K of histograms defined in (1)

and the PC graph G = (V, E), wherein V = Hn
K and E ={

(h, ĥ) ∈ Hn ×Hn : |h − ĥ|1 = 2
}

. The following are true

(i) For any g, h ∈ Hn, |g−h|1 is an even integer and at most
2n. (ii) 2dG(g, h) = |g − h|1.

Proof. (i) For any g, h ∈ Hn, we have
∑K

k=1 gk =∑K
k=1 hk = n, and hence for any subset S ⊆ [K], we have∑
i∈S(gi − hi) =

∑
j∈[K]\S(hj − gj). Note that

|g − h|1 =
n∑

i=1

|gi − hi| =
∑

i:gi≥hi

(gi − hi) +
∑

j:hj>gj

(hj − gj)

= 2
∑

i:gi≥hi

(gi − hi),

which is an even integer. Moreover
∑

i:gi≥hi
(gi − hi) ≤∑K

i=1 gi = n, and hence |g − h|1 ≤ 2n.
(ii) We prove this by induction on K . When K = 1, we have

Hn
1 = {(n)}, and the statement is true. When K = 2, we note

that |(n − i, i) − (n − j, j)|1 = 2|i − j| and the nodes (n −
i, i), (n − j, j) are indeed |i − j| hops apart (Fig. 9). Hence
|i − j| = dG((n − i, i), (n − j, j)) and the statement is true.
We assume the truth of this statement for K = 1, · · · , L − 1
and any n. Suppose K = L and let g, h ∈ Hn

L. If for some

coordinate i, we have gi = hi, then, let g̃ : = (gj : j �= i) and
h̃ : = (hj : j �= i). We have g̃, h̃ ∈ Hn−gi

L−1 . By our induction
hypothesis, we have 2dG̃(g̃, h̃) = |g̃ − h̃| = |g − h|, where
G̃ is the PC graph corresponding to Hn−gi

L−1 . It can now be
verified that a shortest path from g to h on G corresponds to
a shortest path between g̃ to h̃ in G̃ and hence dG̃(g̃, h̃) =
dG(g, h). In fact, observe that the graph induced on the set
of vertices on a horizontal line in Fig. 10 is isomorphic to
the graph in Fig. 9 for an appropriate choice of n. Let us
now consider the alternate case where g, h ∈ Hn

L are such
that for no co-ordinate i do we have gi = hi. Without loss
of generality, assume a = g1 − h1 > 0. Let i1, · · · , iR ∈
[2, L] be coordinates such that hir > gir for r ∈ [1, R] and∑R

r=1(hir −gir) ≥ a. The existence of coordinates i1, · · · , iR
can be easily proved by using the fact that g, h ∈ Hn

L. Now,
let b1, · · · bR > 0 be integers such that hir − gir ≥ br > 0 for
r ∈ [R] and

∑R
r=1 bir = a. Now consider f ∈ Hn

L such that
f1 = g1−a, fir = gir +br and fj = gj if j /∈ {1, i1, · · · , iR}.
It can now be verified, by using the induction hypothesis on
f, h, that dG(g, h) = dG(g, f) + dG(f, h), 2dG(g, f) = |g −
f |1, 2dG(f, h) = |f −h|1, and |g− f |1 + |f −h|1 = |g−h|1,
thereby proving the statement for K = L.

APPENDIX E
THE WEAK DUALITY THEOREM OF LP

We refer the reader to [27] for a description of the dual
linear program. Following the same notation, we state WDT
below.

Weak Duality Theorem : Consider the following primal
and dual LP problems. Let A be a matrix with rows a�

i and
columns Aj .

Primal LP

Minimize c�x
subject to a�

ix ≥ bi i ∈ M1

a�
ix = bi i ∈ M3

xj ≥ 0 j ∈ N1,

Dual LP

Maximize p�b
subject to pi ≥ 0 i ∈ M1

pi free i ∈ M3

p�Aj ≤ cjj ∈ N1.

If x and p are feasible solutions to the primal and dual
problems respectively, then p�b ≤ c�x.

APPENDIX F
MECHANISM U : Hn ⇒ Hn

EXT
IS A θ−DP MECHANISM

Recall, U : Hn ⇒ Hn
ext is specified in (25), and we let

EP,f(θ) = (1 − θ)EhrP(θ) = 1 +
∞∑

d=1

Ndθd. (51)
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Clearly, U
n(g|h) ≥ 0. We note that∑

g∈Hn
ext

U
n(g|h) =

1
EP,f(θ)

∑
g∈Hn

ext

θ
|g−h|1

2

=
1

EP,f(θ)

∞∑
d=0

∑
g∈Hn

ext:

|g−h|1=2d

θ
|g−h|1

2

=
1

EP,f(θ)

∞∑
d=0

∑
g∈Hn

ext:

|g−h|1=2d

θd

=
1

EP,f(θ)

∞∑
d=0

Ndθ
d

=
1

EP,f(θ)

(
1 +

∞∑
d=1

Ndθ
d

)
= 1.

Lastly, suppose h ∈ Hn and h̃ ∈ Hn are a pair of neighboring
histograms,

U
n(g|h)/U

n(g|h̃) = θ
|g−h|1

2 /θ
|g−h̃|1

2 = θ
(|g−h|1−|g−h̃|1)

2 .

By the triangle inequality, −2 = −|h − h̃|1 ≤ |g − h̃|1 −
|g − h|1 ≤ |h − h̃|1 = 2, and we wee that the above ratio is
in [θ, 1

θ ]. U
n is therefore a θ−DP mechanism.

APPENDIX G
FOR n SUFFICIENTLY LARGE, Dn

H(Wn) ≤ D(Un)
Here we prove that the expected distortion of W

n is,
in the limit, at most that of U

n, i.e., limn→∞ D(Wn, p) ≤
limn→∞ D(Un). Towards this end, we let B(δ, h) :
=
{
g ∈ Hn : |g − h|1 ≤ δ

}
and Bc(δ, h) : = Hn \B(δ, h) its

complement. We abbreviate B(1
2 ) = B(R

2 n
2
3 , np), Bc(1

2 ) =
Bc(R

2 n
2
3 , np), B(1) = B(Rn

2
3 , np), Bc(1) = Bc(Rn

2
3 , np).

Observe that

D(Wn, p) =
∑

h∈Hn

∑
g∈Hn

(
n

h

)
ph

W
n(g|h)|g − h|1

=
∑

h∈B( 1
2 )

∑
g∈Hn

(
n

h

)
ph

W
n(g|h)|g − h|1

+
∑

h∈Bc( 1
2 )

∑
g∈Hn

(
n

h

)
ph

W
n(g|h)|g − h|1

≤
∑

h∈B( 1
2 )

∑
g∈Hn

(
n

h

)
ph

W
n(g|h)|g − h|1

+
∑

h∈Bc( 1
2 )

∑
g∈Hn

(
n

h

)
ph

W
n(g|h)2n

≤
∑

h∈B( 1
2 )

∑
g∈Hn

(
n

h

)
ph

W
n(g|h)|g − h|1

+2n
∑

h∈Bc( 1
2 )

(
n

h

)
ph.

It can be easily shown that
∑

h∈Bc( 1
2 )

(
n
h

)
ph ≤ exp {−nα},

and hence the second term above can be made arbitrarily small

by choosing n large enough. We henceforth focus on the first
term above which is given by∑
h∈B( 1

2 )

∑
g∈B(1)

(
n

h

)
ph

W
n(g|h)|g − h|1

+
∑

h∈B( 1
2 )

∑
g∈Bc(1)

(
n

h

)
ph

W
n(g|h)|g − h|1

=
∑

h∈B( 1
2 )

(
n

h

)
ph
(|np − h|1W

n(np|h)+
∑

g∈B(1)\{np}
W

n(g|h)|g − h|1)

(52)

=
∑

h∈B( 1
2 )

(
n

h

)
ph(|np − h|1[Un(np|h) +

∑
g̃∈Bc(1)

U
n(g̃|h)]

+
∑

g∈B(1)\{np}
U

n(g|h)|g − h|1) (53)

≤
∑

h∈B( 1
2 )

(
n

h

)
ph
(|np − h|1U

n(np|h)

+
∑

g̃∈Bc(1)

|g̃ − h|1U
n(g̃|h) +

∑
g∈B(1)\{np}

U
n(g|h)|g − h|1)(54)

≤
∑

h∈B( 1
2 )

(
n

h

)
ph
(|np − h|1U

n(np|h)

+
∑

g̃∈Bc(1)

|g̃ − h|1U
n(g̃|h) +

∑
g∈B(1)\{np}

U
n(g|h)|g − h|1)

=
∑

h∈B( 1
2 )

(
n

h

)
ph
∑

g∈Hn

U
n(g|h)|g − h|1 ≤ D(Un),

where (i) (52) follows from W
n(g̃|h) = 0 for g̃ ∈ Bc(1)

implying10 that the second term is zero, (ii) (53) follows from
the definition of W

n in terms of U
n, (iii) (54) is true since, for

every h ∈ B(1
2 ) and every g̃ ∈ Bc(1), |np − h|1 ≤ R

2 n
2
3 ≤

Rn
2
3 ≤ |g̃ − h|1.

APPENDIX H
CHARACTERIZATION OF An, Bn DEFINED IN (31)

An on the left and Bn on the right constitute the boundaries
of the support of the truncated geometric mechanism. It is
instructive to study An, Bn for different distributions C n

i .
Suppose one replaces C n

i by 1
n+1 - the uniform pmf on

the set of histograms Hn
2 , then simple calculation shows that

An ≤ Nθ : = min{i ∈ N : θi < 1 − θ} and Bn ≥ n −Nθ .
Since this will provide us with important intuition, we first
proceed with these steps. We recall the definitions for ease of
reference:

fi : = 2
i∑

j=0

C n
j θi−j , bi : = 2

n∑
k=i

C n
k θk−i,

An : = min
{

i ∈ [0, n] : fk−1 − θbk ≥ 0
for every k ≥ i

}
,

Bn : = max
{

i ∈ [0, n] : bk+1 − θfk ≥ 0
for every k ≤ i

}
. (55)

10Note that the range of fVn is B(1).
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Since we are interested in fi−1 − θbi and bi+1 − θfi, we will
ignore the multiplier 2 in the definitions of fi and bi. We work
out a simple case to understand the core problem. Let us begin
with the case Cn

i = 1
n+1 for i ∈ [0, n]. It can be verified that

fi−1 − θbi =
1

n + 1

⎡
⎣i−1∑

j=0

θj − θ

(
n−i∑
k=0

θk

)⎤
⎦

=
1

n + 1

[
1 − θi

1 − θ
− θ

(
1 − θn−i+1

1 − θ

)]

=
1

n + 1

[
1 − θi − θn−i+2

1 − θ

]

≥ 1
n + 1

[
1 − θi

1 − θ

]
.

Clearly, An < min{i : θi < 1 − θ}. A similar sequence
of steps leads one to conclude that Bn > max{i : θn−i <
1 − θ}. We observe An = O(1) and n − Bn = O(1). Our
characterization for An and Bn for C n

i =
(
n
i

)
pi(1 − p)n−i is

based on the above intuition. The key property of the binomial
pmf, that it is near-uniform in the window [np−O(

√
n), np+

O(
√

n)] is employed. Specifically, note that for sufficiently
large n

max
{

C n
np

C n
np−x

,
C n

np

C n
np+x

}
≤ 2 exp{ x2

2np(1 − p)
}, (56)

where (56) follows from [24, Eqn. 106].11 For x ∼
√

n
(log n)4 ,

the above ratio shrinks as 1
n4 . Note that

(
n
np

)
scales as 1√

n
.

We can use this to bound the ratio between the largest
and the smallest binomial probability masses in the range
[np −

√
n

(log n)4 , np +
√

n
(log n)4 ], and we can use the same

sequence of steps used above. It can be proved that np−An =
O(
√

n
(log n)4 ) and Bn − np = O(

√
n

(log n)4 ). The reader may

refer to [26] for a detailed proof of these claims.

APPENDIX I
INTERPRETATION OF DUAL VARIABLE

ASSIGNMENTS VIA SHADOW PRICES

We provide an interpretation for the assignments of the dual
variables in Eq. (36)-(40) via shadow prices. Assignment (37)
for j = i can be interpreted via mechanism Ŵ(·|·) defined as
Ŵ(k|j) = W(k|j) + dW(k|j), where W(·|·) is the truncated
geometric mechanism defined in (33) and

dW(k|j) =

⎧⎨
⎩

0 if k �= (i − 1), and k �= i,
−�θ|j−(i−1)| if k = (i − 1),
+�θ|j−(i−1)| if k = i.

(57)

It is straightforward to verify that Ŵ satisfies all the constraints
of a θ−DP mechanism (just as W), and more importantly,
Ŵ(i|i − 1) − θŴ(i|i) = �(1 − θ2). In fact, except for this
constraint, W and Ŵ are identical wrt all other constraints. W

and Ŵ are identical vertices in their corresponding feasible
regions, with the only difference being that Ŵ satisfies the
constraint Ŵ(i|i− 1)− θŴ(i|i) ≥ �(1− θ2). Moreover, it can

11Note that C n
i =

�n
i

�
2−nH(X)

�
p

1−p

�i−np
.

be verified that Dn
H(Ŵ)−Dn

H(W) = �(fi−1−θbi). Recognize
that

lim
�→0

Dn
H(Ŵ) − Dn

H(W)
Ŵ(i|i − 1) − θŴ(i|i) = lim

�→0

Dn(dW)
Ŵ(i|i − 1) − θŴ(i|i)

= lim
�→0

�(fi−1 − θbi)
�(1 − θ2)

= λi|(i−1,i).

These are indeed the shadow prices that we alluded to.
We continue and discuss the interpretation for the rest of the
variables. Consider assignment (37) for j > i. Consider Ŵ(·|·)
defined as Ŵ(a|b) = W(a|b) + dW(a|b), where W(·|·) is the
truncated geometric mechanism defined in (33), and dW is
now defined as

dW(a|b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a �= (i − 1), and a �= i,
and a �= j,

−�θ|b−(i−1)| if a = (i − 1),
�θ|b−(i−1)| if a = i, b ≥ i
�θ|b−(i−1)|+2 if a = i, b ≤ i − 1
�(θ|b−(i−1)|

− θ|b−(i−1)|+2) if a = j, b ≤ i − 1
0 if a = j, b ≥ i.

(58)

As earlier, it is straightforward to verify that Ŵ satisfies all
the constraints of a θ−DP mechanism (just as W), and more
importantly, Ŵ(j|i − 1) − θŴ(j|i) = �(1 − θ2). In fact,
except for this constraint, W and Ŵ are identical wrt all
other constraints. Moreover, it can be verified that Dn

H(Ŵ)−
Dn

H(W) = �(fi−1 − θbi). Recognize that

lim
�→0

Dn
H(Ŵ) − Dn

H(W)
Ŵ(j|i − 1) − θŴ(j|i) = lim

�→0

Dn(dW)
Ŵ(j|i − 1) − θŴ(j|i)

= lim
�→0

�(θ2fi−1+(j − i + 1)(1 − θ2)fi−1−θbi)
�(1 − θ2)

= λj|(i−1,i).

Now consider (38) with j = i. Analogous to (57), consider

dW(k|j) =

⎧⎨
⎩

0 if k �= (i + 1), and k �= i,

−�θ|j−(i+1)| if k = (i + 1),
+�θ|j−(i+1)| if k = i.

(59)

Following the same arguments as above, it can be verified by
straightforward substitutions that

lim
�→0

Dn
H(Ŵ) − Dn

H(W)
Ŵ(i|i + 1) − θŴ(i|i) = lim

�→0

Dn(dW)
Ŵ(i|i + 1) − θŴ(i|i)

= lim
�→0

�(bi+1 − θfi)
�(1 − θ2)

= λi|(i+1,i),

where, as before, Ŵ(·|·) defined as Ŵ(k|j) = W(k|j) +
dW(k|j), and W(·|·) is the truncated geometric mechanism.
Similarly, for j < i we can verify the assignment in (38)
through the following. Define mechanism Ŵ(·|·) = W(k|j)+
dW(k|j), where W(·|·) is the truncated geometric mechanism
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defined in (33), and

dW(a|b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a �= (i + 1), and a �= i,
and a �= j

−�θ|b−(i+1)| if a = (i + 1),
�θ|b−(i+1)| if a = i, b ≥ i

�θ|b−(i+1)|+2 if a = i, b ≥ i + 1
�(θ|b−(i+1)|

− θ|b−(i+1)|+2) if a = j, b ≥ i + 1
0 if a = j, b ≤ i.

(60)

Following the same arguments as above, it can be verified by
straightforward substitutions that

lim
�→0

Dn
H(Ŵ) − Dn

H(W)
Ŵ(j|i + 1) − θŴ(j|i) = lim

�→0

Dn(dW)
Ŵ(j|i + 1) − θŴ(j|i)

=lim
�→0

�(θ2bi+1 + (i + 1 − j)(1 − θ2)bi+1 − θfi)
�(1 − θ2)

= λj|(i+1,i),

where, as before, Ŵ(·|·) defined as Ŵ(k|j) = W(k|j) +
dW(k|j), and W(·|·) is the truncated geometric mechanism.
Finally, we explain the assignment for μi in the range [A− 1,
B + 1]. Consider Ŵ(b|a) = W(b|a) + dW(b|a) where W is
the truncated Geometric mechanism as before, and

dW(a|b)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if a �= (i − 1), and a �= i,
and a �= (i + 1)

−�θ|b−(i−1)|+1 if a = (i − 1),
−�θ|b−(i+1)|+1 if a = i + 1,
�θ|b−(i−1)|+1

+ �θ|b−(i+1)|+1 if a = i, b �= i
�(1 + θ2) if a = i, b = i

(61)

The following can be verified easily :
∑n

j=0 Ŵ(j|i) = 1 +
�− �θ2. Ŵ and W are identical with respect to the set of DP
constraints they satisfy, and

lim
�→0

Dn
H(Ŵ) − Dn

H(W)∑n
j=0 Ŵ(j|i) − 1

= lim
�→0

Dn(dW)∑n
j=0 Ŵ(j|i) − 1

= lim
�→0

�[θ(1 − θ2)(fi−1+bi+1) − 4θ2
(
n
i

)
pi(1−p)n−i]

�(1 − θ2)
= μi.

The key import of the above interpretation is the relationship
between the assignments (57)-(61). (58) can be obtained from
(57) by just shifting mass from i to j. Similarly, (60) can
be obtained from (59) by just shifting mass from i to j.
This provides an alternate proof of feasibility of this dual
variable assignment. Also note that the assignment (61) is
obtained as θ times the assignment (57) summed to θ times
the assignment (59). The feasibility of this assignment is
now an immediate consequence of these relationships. This
shadow price interpretation is the basis for (49), whose
feasibility follows immediately from the geometry of the
constraints.
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