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Abstract—Consider a multiple-input, multiple-output, per-
fectly observed linear dynamical system containing an arbitrary
set of malicious sensors, and at most one malicious actuator.
The malicious sensors need not report their measurements
truthfully and a malicious actuator may not apply inputs in
accordance with the control law. The honest actuators in the
system, if there are any, employ Dynamic Watermarking in
order to detect the presence of malicious nodes. The state
space of such a system can be decomposed into two orthogonal
subspaces, called the watermark-securable and the watermark-
unsecurable subspaces, such that the malicious sensors and
actuators cannot degrade the state estimation performance of
the honest sensors and actuators along the watermark-securable
subspace if they wish to remain undetected. This paper presents
a precise characterization of the watermark-securable subspace
for any system containing at most one malicious actuator.

Index Terms—Cyber-Physical Systems, Security, Securable
Subspace, Unsecurable Subspace, Dynamic Watermarking.

I. INTRODUCTION

Cyber-Physical Systems (CPS) can potentially play an in-
dispensable role in confronting some of the major challenges
that societies face in areas such as energy, water, heath-
care, manufacturing, and transportation [1]. Examples include
increasing the penetration of renewable energy, sustaining
water and other natural resources for a growing population,
automating transportation systems to improve their safety and
efficiency, etc. However, one of the foremost impediments
to the rapid proliferation of CPSs is their vulnerability to
cyber attacks. Many instances of attacks on real-world cyber-
physical systems in the past, such as the Stuxnet attack [2]
and the Maroochy-Shire incident [3], reaffirm this concern.
Unless provable security guarantees are provided for cyber-
physical systems, there will be resistance to their large-scale
adoption, especially in sectors such as energy or transporta-
tion where a security breach could result in severe economic
consequences or even loss of life.

The approach of Dynamic Watermarking [4]–[8] provides
provable security guarantees to control systems against arbi-
trary attack strategies. Most prior works on this topic have
addressed the scenario where an arbitrary combination of
sensors could be malicious, but all actuators are honest.
Another line of work [9]–[11] studies the setting where an
arbitrary combination of both sensors and actuators could be
malicious, but wherein the honest actuators do not employ
Dynamic Watermarking for defense. The notions of securable
and unsecurable subspaces of a linear system were introduced
in this context [9], and their operational significance estab-
lished [9]–[11]. In this paper, we go beyond these two settings

and consider a system where in addition to an arbitrary
combination of sensors being malicious, at most one arbitrary
actuator could also be malicious, and the honest actuators, if
there are any, employ Dynamic Watermarking to detect the
presence of adversarial sensors and actuators. For any such
system, we (i) show that its state space can be decomposed
into two orthogonal subspaces, called the watemark-securable
and the watermark-unsecurable subspaces, such that the
malicious sensors and actuators cannot degrade the state
estimation performance of the honest sensors and actuators
along the watermark-securable subspace if they wish to
remain undetected, and (ii) present a precise characterization
of the watermark-securable and the watermark-unsecurable
subspaces.

The rest of the paper is organized as follows. Section II
describes some related work on the topic of CPS security.
Section III formulates the problem that is addressed in the
paper. Section IV contains the main result of the paper, viz.,
a characterization of the watermark-securable subspace of
a linear system containing at most one malicious actuator.
Section V concludes the paper.
Notation: The following notation is used throughout the
paper. Given a vector v, we denote by vi the ith component
of v, and by vTT the matrix vvT . Given a sequence {v}, we
denote by vt the sequence {v[0], . . . ,v[t]}. Given a vector v
and a subspace S, we denote by vS the orthogonal projection
of v on the subspace S. Given a subspace S, S⊥ denotes
the orthogonal complement of S and PS denotes the matrix
that projects a vector right-multiplying it onto the subspace
S. Given two subspaces X and Y, X ⊕Y denotes their span,
and XY denotes the projection of subspace X on subspace
Y. Given a matrix A, we denote by R(A) its range space.

II. RELATED WORK

Three classes of attack detectors for CPS, namely, static
detectors, dynamic detectors and active detectors, have been
defined in [12]. Limitations on what attacks can be de-
tected by each of these classes of attack detectors are also
derived. The problem of estimating the state of a system
in the presence of adversarial sensors is addressed in [13],
[14]. The problem of designing systems that are robust to
stealthy attacks is addressed in [15], and bounds on the state
estimation error that an adversarial actuator can introduce
while remaining stealthy are derived in [16]. Reference [4]
introduces the idea of Physical Watermarking to detect replay
attacks in a control system, and [17] shows how it can aid in
detecting a more sophisticated attack. However, as shown in
[7], there exist attacks that cannot be detected by the attack
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detectors proposed in [4], [17] and related works. Conse-
quently, it is shown in [6], [7] that by a careful design of
tests for attack detection, Dynamic Watermarking can serve
as a common defense strategy against not just specific attacks,
but arbitrary attacks which introduce “significant” distortion.
The security guarantee provided by Dynamic Watermarking
for more general systems is presented in [18]. These tests are
presented in an asymptotic form, and a finite-time statistical
version of these tests is presented in [19] and its efficacy
demonstrated. Necessary and sufficient conditions for design-
ing security-guaranteeing dynamic watermarks for systems
affected by arbitrarily distributed noise is addressed in [20].
A demonstration of the efficacy of Dynamic Watermarking
in securing real-world cyberphysical systems are reported in
[19], [21].

III. PROBLEM SETUP

Consider a multiple-input, multiple-output, stochastic lin-
ear dynamical system described by

x[t+ 1] = Ax[t] +Bu[t] + w[t+ 1],

y[t+ 1] = Cx[t+ 1], (1)

where x[t] ∈ Rp is the state of the system at time t,
u[t] ∈ Rm is the input applied to the system at time t, {w}
is the process noise sequence, independent and identically
distributed (i.i.d.) across time with w[1] ∼ N (0, σ2

W I),
and A,B and C are matrices of appropriate dimensions.
We restrict attention to perfectly-observed systems in this
paper, and therefore, the measurement matrix C is simply
the identity matrix of size p.

The setting that we consider in this paper is one where
an arbitrary subset of sensors and at most one arbitrary
actuator1 could be malicious in system (1). Henceforth, by
“node,” we refer to a sensor or an actuator. We allow for
the malicious nodes know the identity of all other malicious
nodes in the system. On the other hand, the honest nodes
do not know which other nodes are honest or malicious, or
even if there are any malicious nodes present in the system.
We also suppose that there is an underlying communication
network connecting all the nodes using which the malicious
nodes can exchange information among themselves if they
wish to do so, and carry out coordinated attacks.

A malicious sensor may not report the measurements that
it observes in a truthful manner. Instead, it could distort its
measurements in an arbitrary manner and report the distorted
measurements to the honest nodes. We denote by z[t] the
measurements that the sensors report at time t to the honest
nodes in the system. If sensor i, i ∈ {1, . . . , p}, is honest,
then zi[t] = xi[t] for all t. While the malicious sensors
can report different measurements to different nodes, the
fact that nodes can exchange the reported measurements
among themselves to check for consistency of the reported

1More generally, the results of this paper hold as long as the columns
of the matrix B corresponding to malicious actuators span a subspace of
dimension no more than one.

measurements constrains the malicious sensors to report the
same values to all honest nodes in the system. The malicious
nodes, however, can exchange the true measurements among
themselves, so that they have the knowledge of both the true
measurements as well as the measurements that the malicious
nodes have reported to the honest nodes in the system.

The honest actuators employ Dynamic Watermarking in
order to detect the presence of adversarial nodes in the
system. The approach involves the honest actuators super-
imposing on their control policy-specified input a random
signal known as the private excitation or “watermark,” and
conducting certain tests to detect the presence of malicious
sensors. To elaborate, denote by gi,t : Rp×(t+1) → R the
arbitrary and possibly history-dependent control policy that
actuator i, i ∈ {1, . . . ,m}, is supposed to employ at time t,
so that gi,t(zt) is the control policy-specified input of actuator
i at time t (recall the notation zt from Section I). Each honest
actuator i, i ∈ {1, . . . ,m}, chooses a private excitation ei[t]
at time t according to the distribution N (0, σ2

e), independent
of all other random variables realized until that time, and
superimposes it on its control policy-specified input. While
the control policy-specified input of actuator i as well as the
statistics of its private excitation sequence are known to all
nodes in the system, including the malicious nodes, actuator
i does not reveal the actual realization of its private excitation
sequence to any other node in the system. As shown in prior
works [6]–[8], it is this concealment of private excitation that
bestows upon an honest actuator the ability to diagnose the
system and detect the presence of malicious nodes. The net
input applied by actuator i at time t is therefore

ui[t] = gi,t(z
t) + ei[t].

A malicious actuator can apply its inputs in an arbitrary
fashion. Recall that in this paper, we restrict attention to the
case where there could be at most one malicious actuator.
We suppose without any loss of generality that it is actuator
m that could be malicious, since the actuators can always be
relabelled so that the malicious actuator, if there is one, is
indexed m. Define

em[t] := um[t]− gm,t(z
t).

Since actuator m could be malicious, the statistics of the
sequence {em} need not be equal to the statistics that is
prescribed for the private excitation sequence, viz., i.i.d.
normal with variance σ2

e and at each time, independent of
all other random variables realized until that time.

The system (1) evolves in closed loop as

x[t+ 1] = Ax[t] +Bgt(z
t) +BHeH [t]+BMem[t]

+ w[t+ 1], (2)

where the vector eH [t] := [e1[t] . . . em−1[t]]T , the vector
gt(z

t) := [g1,t(z
t) . . . gm,t(z

t)]T , BH is the sub-matrix of B
formed by its columns corresponding to the honest actuators,
and BM is the sub-matrix of B formed by its column
corresponding to the malicious actuator. We always regard
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BM as a column vector, and so the case when there are no
malicious actuators is thought of as there being an artificial
malicious actuator with BM = 0. We will also assume
throughout this paper thatR(BM )∩ U = {0}, where U is the
unsecurable subspace of system (2) and R(BM ) denotes the
range space of the matrix BM . The unsecurable subspace
is defined in [9]–[11] and also recapitulated in Section IV
below.

In order to check whether or not there are any malicious
nodes in (2), the following two tests are conducted by the
honest nodes.
Test 1: Each honest actuator i checks if

lim
T→∞

1

T

T−1∑
k=0

ei[k](z[k + 1]−Az[k]−Bgk(zk)) = B·iσ
2
e ,

(3)

where B·i denotes the ith column of the matrix B.
Test 2: Each honest node checks if

lim
T→∞

1

T

T−1∑
k=0

(z[k + 1]−Az[k]−Bgk(zk))TT

= BBTσ2
e + σ2

W I. (4)

The notation (·)TT in the above equality can be recalled from
Section I.

If and only if either of these tests fail does an honest node
declare the presence of adversarial nodes in the system. Note
that if all nodes in the system are honest, then both the
tests are passed by the reported measurements {z} almost
surely. Even though these tests are presented as asymptotic
tests, as shown in [19], they can be converted into finite-time
statistical tests with desired detection delays and false alarm
rates using standard approaches.

Suppose that the reported measurements pass tests (3) and
(4) so that the malicious nodes, if there are any, remain
undetected. In that case, the honest nodes do not have any
reason to suspect that there is any malicious node in the
system, and consequently, their estimate of the system’s state
at time t is simply z[t]. The actual state of the system at time
t, however, is x[t], which may or may not be equal to z[t].
Define the state estimation error incurred by the honest nodes
at time t as

m[t] := z[t]− x[t]. (5)

The question that we address in the paper is this: What is
the largest subspace WS of the state space such that if the
reported measurements {z} pass Tests (3) and (4), then, the
projection of the state estimation error {m} onto the subspace
WS is of zero power? I.e., what is the largest subspace WS
such that

lim
T→∞

1

T

T−1∑
k=0

||mWS [k]||2 = 0. (6)

This subspace is termed the “watermark-securable subspace”
of system (2). Whatever attack strategy the malicious sensors

and actuators employ, they cannot degrade the state estima-
tion performance of the honest nodes along the watermark-
securable subspace if they wish to remain undetected. The
next section presents a precise characterization of this sub-
space.

IV. THE WATERMARK-SECURABLE SUBSPACE OF A
LINEAR SYSTEM CONTAINING A SINGLE MALICIOUS

ACTUATOR

In this section, we characterize the watermark-securable
subspace of system (2). A few definitions are in order before
presenting the result. We first recall from [9] the notions of
securable and unsecurable subspaces of a linear system. Let
CH be the sub-matrix of C formed by its rows corresponding
to the honest sensors.

Definition 1 ( [9]). The Unsecurable subspace of system (2)
is the maximal subspace U ⊆ Rp such that for all u ∈ U ,

1) CHu = 0, and
2) there exists d such that Au +BMd ∈ U .

Definition 2 ( [9]). The Securable subspace S of system (2)
is the orthogonal compliment of its unsecurable subspace.
I.e.,

S := U⊥.

Recall from Section III the assumption that R(BM )∩U =
{0}. From this assumption and the fact that BM is a column
vector, it follows that there exists a matrix MS→R(BM ) such
that MS→R(BM )[B

Mx]S = BMx for all x ∈ R. We define
the noise-securable subspace in terms of this matrix.

Definition 3. The Noise-securable subspace NS of system
(2) is the largest subspace of the state space such that

NS ⊆ U , (7)

and for every r ∈ R⊥(BH),

PNSMS→R(BM )PSr = PNSr. (8)

It is a simple exercise to verify that the set of subspaces
that satisfy (7) and (8) is closed under the operation of span,
so that if Y1 and Y2 are two subspaces that satisfy (7) and (8),
then Y1⊕Y2 also satisfies (7) and (8). Consequently, the term
“largest” is well-defined in the above definition; the noise-
securable subspace is essentially the span of all subspaces
that satisfy (7) and (8).

Definition 4. The Noise-unsecurable subspace NU of sys-
tem (2) is the orthogonal complement of the noise-securable
subspace that is contained in the unsecurable subspace. I.e.,

NU := NS⊥ ∩ U . (9)

That R(BM ) ∩ U = {0} also implies that for every
vector m ∈ U , there exists a unique vector BMdU such
that −Am + BMdU ∈ U . To see this, suppose that BMd1

and BMd2 are two vectors such that −Am + BMd1 ∈ U
and −Am + BMd2 ∈ U . Then, the difference of these two
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vectors must also belong to U , i.e., BM (d1−d2) ∈ U . Hence,
BM (d1 − d2) ∈ R(BM ) ∩ U = {0}, which in turn implies
that BMd1 = BMd2. If BM 6= 0, this in turn implies that
there exists a unique input dU that the malicious actuator can
apply such that −Am+BMdU ∈ U . It can also be shown that
there exists a matrix F ∈ R1×p such that for every m ∈ U ,
the unique vector BMdU such that −Am + BMdU ∈ U is
BMFm [22]. We define the subspace WS1 in terms of this
matrix F.

Definition 5. The subspaceWS1 is the largest subspace such
that

WS1 ⊆ NS, (10)

for every r ∈ WS⊥1 ∩ U ,

PWS1 [(A−BMF )r] = 0, (11)

and

lim
k→∞

[PWS1(A−BMF )]kWS1 = {0}. (12)

Definition 6. The watermark-securable subspace WS of
system (2) is

WS :=WS1 ⊕ S, (13)

and its watermark-unsecurable subspace WU is

WU :=WS⊥. (14)

We are now ready to present the main result of the paper.

Theorem 1. Consider system (2) and suppose that the
reported sequence of measurements {z} pass Tests (3) and
(4). Then,

lim
T→∞

1

T

T−1∑
k=0

||mWS [k + 1]||2 = 0. (15)

Proof. That limT→∞
1
T

∑T−1
k=0 ||mS [k + 1]||2 = 0 has been

established in our prior work [23, Theorem 1]. We only need
to show that limT→∞

1
T

∑T−1
k=0 ||mWS1

[k + 1]||2 = 0.
Since the sequence {z} satisfies (4), it follows that

lim
T→∞

1

T

T−1∑
k=0

(m[k + 1]−Am[k] +BHeH [k]

+BMem[k] + w[k + 1])TT
S

= PS(BBTσ2
e + σ2

wI)PT
S .

Resolving the vectors m[k] and m[k+1] into their constituent
components along subspaces S and U and simplifying, we
get

lim
T→∞

1

T

T−1∑
k=0

(mS [k + 1]−AmS [k]−AmU [k]

+BHeH [k]+BMem[k] + w[k + 1])TT
S

= PS(BBTσ2
e + σ2

wI)PT
S .
(16)

Define

ēm[k] := em[k]− dU [k] = em[k]− FmU [k]. (17)

Substituting (17) in (16) and using the fact that −AmU [k] +
BMdU [k] ∈ U , we get

lim
T→∞

1

T

T−1∑
k=0

(mS [k + 1]−AmS [k]

+BHeH [k]+BM ēm[k] + w[k + 1])TT
S

= PS(BBTσ2
e + σ2

wI)PT
S .

It follows from [23, Theorem 1] that the sequence {mS} is
of zero power. Using this, the above equality simplifies to

lim
T→∞

1

T

T−1∑
k=0

(BHeH [k]+BM ēm[k] + w[k + 1])TT
S

= PS(BBTσ2
e + σ2

wI)PT
S . (18)

Define σ-algebra Fk := σ(xk, eH
k−1

, ekm). Then, (eH [k −
1],Fk) is a martingale difference sequence, (w[k],Fk) is a
martingale difference sequence, and ēm[k] ∈ Fk. Using the
Martingale Stability Theorem (MST) [24], we have

T−1∑
k=0

w[k + 1]ēm[k] =


o(
∑T−1

k=0 ē
2
m[k])

...
o(
∑T−1

k=0 ē
2
m[k])

 , (19)

and

T−1∑
k=0

eH [k]ēm[k] =


o(
∑T−1

k=0 ē
2
m[k])

...
o(
∑T−1

k=0 ē
2
m[k])

 . (20)

Expanding the Left-Hand Side (LHS) of (18), using (19) and
(20) to simplify the result, yields

lim
T→∞

1

T

T−1∑
k=0

(BM ēm[k])TT = BM (BM )Tσ2
e . (21)

Consider first the case that BM 6= 0. Then, the above equality
implies that limT→∞

1
T

∑T−1
k=0 ē

2
m[k] = σ2

e . Multiplying and
dividing the Right Hand Side (RHS) of (19) and (20) by
the term

∑T−1
k=0 ē

2
m, dividing the two equalities by T, letting

T →∞, and using (21) implies

lim
T→∞

1

T

T−1∑
k=0

w[k + 1]ēm[k](BM )T = 0, (22)

and

lim
T→∞

1

T

T−1∑
k=0

eH [k]ēm[k](BM )T = 0. (23)

Consider next the case when BM = 0. Equalities (22) and
(23) hold trivially in that case.
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Now, since the sequence {z} satisfies (3), we have

lim
T→∞

1

T

T−1∑
k=0

eH [k](m[k + 1]−Am[k] +BHeH [k]

+BMem[k] + w[k + 1])T = σ2
e(BH)T

whence

lim
T→∞

1

T

T−1∑
k=0

eH [k](m[k + 1]−Am[k] +BMem[k])T = 0.

Resolving the vectors m[k] and m[k+1] into their constituent
components along subspaces S and U , and using the fact that
the sequence {mS} is of zero power [23, Theorem 1], the
above equality reduces to

lim
T→∞

1

T

T−1∑
k=0

eH [k](mU [k + 1]−AmU [k]

+BMem[k])T = 0.

Substituting (17) in the above equality and right-multiplying
the resulting equality by the matrix PT

U gives

lim
T→∞

1

T

T−1∑
k=0

eH [k](mU [k + 1]−AmU [k]

+BMdU [k] +BM ēm[k])TU = 0.
(24)

Define

m̄U [k + 1] := mU [k + 1]−AmU [k] +BMdU [k]. (25)

Substituting (25) in (24) and simplifying gives

lim
T→∞

1

T

T−1∑
k=0

eH [k](m̄U [k + 1] +BM ēm[k])TU = 0,

and using (23) in the above equality yields

lim
T→∞

1

T

T−1∑
k=0

eH [k]m̄T
U [k + 1] = 0. (26)

It also follows from (4) that

lim
T→∞

1

T

T−1∑
k=0

(m[k + 1]−Am[k] +BHeH [k]

+BMem[k] + w[k + 1])TT
NS

= PNS(BBTσ2
e + σ2

wI)PT
NS .

Resolving the vectors m[k+ 1] and m[k] along subspaces S
and U and using the fact that {mS} is of zero power gives

lim
T→∞

1

T

T−1∑
k=0

(mU [k + 1]−AmU [k] +BMdU [k]

+BHeH [k] +BM ēm[k] + w[k + 1])TT
NS

= PNS(BBTσ2
e + σ2

wI)PT
NS .

Substituting (25) in the above equality and simplifying gives

lim
T→∞

1

T

T−1∑
k=0

(m̄U [k + 1] +BHeH [k]

+BM ēm[k] + w[k + 1])TT
NS

=PNS(BBTσ2
e + σ2

wI)PT
NS .

Expanding the LHS of the above equality and using (26),
(22), (23) and (21) to simplify yields

lim
T→∞

1

T

T−1∑
k=0

m̄TT
NS [k+1] + m̄NS [k + 1]ēm[k](BM

NS)T

+ m̄NS [k + 1]wT
NS [k + 1]

+BM
NS ēm[k]m̄T

NS [k + 1]

+ wNS [k + 1]m̄T
NS [k + 1] = 0.

(27)

We have from (4) that

lim
T→∞

1

T

T−1∑
k=0

(m[k + 1]−Am[k] +BHeH [k]

+BMem[k] + w[k + 1])NS

×(m[k + 1]−Am[k] +BHeH [k]

+BMem[k] + w[k + 1])TS

= PNS(BBTσ2
e + σ2

wI)PT
S .

Substituting (25) in the above equality and simplifying yields

lim
T→∞

1

T

T−1∑
k=0

(m̄U [k + 1] +BHeH [k]

+BM ēm[k] + w[k + 1])NS

×(BHeH [k] +BM ēm[k] + w[k + 1])TS

= PNS(BBTσ2
e + σ2

wI)PT
S .

Using (26), (23), (21), and (22) to further simplify the above
equality yields

lim
T→∞

1

T

T−1∑
k=0

m̄NS [k + 1](BM ēm[k] + w[k + 1])TS = 0.

(28)

Note that the malicious sensors, in addition to adapting
the measurements that they report at any time k to all
random variables whose realization they know by time k, can
also introduce additional randomization. Let θ[k] denote a
random vector that is independent of all random variables that
have been realized until time k and to which the malicious
sensors could adapt the measurements that they report at
time k. Define σ−algebra Gk := σ(xk, eH

k−2
, ek−1m ,θk).

Also define ŵ[k + 1] := E(w[k + 1]|Gk+1), ŵR(BH)[k +
1] := E(wR(BH)[k + 1]|Gk+1), and ŵR⊥(BH)[k + 1] :=
E(wR⊥(BH)[k + 1]|Gk+1). Let BH = QR be the QR-
decomposition of the matrix BH so that the columns of Q
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form an orthonormal basis for R(BH) and R is an upper-
triangular matrix with full row rank. Then, wR(BH)[k+1] =
Qwc[k + 1] for some vector wc[k + 1]. Let ŵc[k + 1] :=
E(wc[k+ 1]|Gk+1). It can be shown after some algebra that

ŵc[k + 1] = KW (ReH [k] + wc[k + 1]) (29)

where KW := σ2
w(RRTσ2

e + σ2
wI)−1. Define w̃c[k + 1] :=

wc[k + 1] − ŵc[k + 1]. Substituting for ŵc[k + 1] from
(29) and rearranging the terms gives wc[k + 1] = (I −
KW )−1KWReH [k] + (I − KW )−1w̃c[k + 1], where the
existence of the matrix (I − KW )−1 follows from the fact
that the matrix R has full row rank. Consequently,

wR(BH)[k + 1] = Qwc[k + 1]

= Q(I −KW )−1KWReH [k]

+Q(I −KW )−1w̃c[k + 1]. (30)

We have w[k + 1] = wR(BH)[k + 1] + wR⊥(BH)[k + 1].
Substituting for wR(BH)[k + 1] from (30) yields

w[k + 1] = Q(I −KW )−1KWReH [k]

+Q(I −KW )−1w̃c[k + 1]

+wR⊥(BH)[k + 1]. (31)

Substituting (31) in (28) and using (26) to simplify yields

lim
T→∞

1

T

T−1∑
k=0

m̄NS [k + 1](BM ēm[k]

+Q(I −KW )−1w̃c[k + 1]

+ wR⊥(BH)[k + 1])TS = 0.
(32)

It is straightforward to verify that (w̃c[k],Gk+1) is a mar-
tingale difference sequence, and that m̄NS [k + 1] ∈ Gk+1.
Using MST, we have

T−1∑
k=0

m̄NS [k + 1](w̃c[k + 1])T =
o(
∑T−1

k=0 m̄
2
NS1

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NS1

[k + 1])
...

. . .
...

o(
∑T−1

k=0 m̄
2
NSp

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NSp

[k + 1])

 ,
(33)

and substituting this back in (32) yields

T−1∑
k=0

m̄NS [k + 1](BM ēm[k] + wR⊥(BH)[k + 1])TS

=


o(
∑T−1

k=0 m̄
2
NS1

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NS1

[k + 1])
...

. . .
...

o(
∑T−1

k=0 m̄
2
NSp

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NSp

[k + 1])


+ [o(T )],

(34)

where [o(T )] denotes a matrix all of whose entries are
o(T ). Right multiplying (34) by (PNSMS→R(BM ))

T and
rearranging the terms gives
T−1∑
k=0

m̄NS [k + 1]ēm[k](BM )TPT
NS

= −
T−1∑
k=0

m̄NS [k + 1]wT
R⊥(BH)[k + 1]PT

S M
T
S→R(BM )P

T
NS

+


o(
∑T−1

k=0 m̄
2
NS1

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NS1

[k + 1])
...

. . .
...

o(
∑T−1

k=0 m̄
2
NSp

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NSp

[k + 1])


+ [o(T )]. (35)

Next, substituting (31) in (27) and simplifying the resulting
equality using (26) and (33) yields

T−1∑
k=0

m̄TT
NS [k + 1] + m̄NS [k + 1]ēm[k](BM

NS)T

+m̄NS [k + 1](wR⊥(BH)[k + 1])TNS

+BM
NS ēm[k]m̄T

NS [k + 1]

+(wR⊥(BH)[k + 1])NSm̄
T
NS [k + 1]

=


o(
∑T−1

k=0 m̄
2
NS1

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NS1

[k + 1])
...

. . .
...

o(
∑T−1

k=0 m̄
2
NSp

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NSp

[k + 1])


+[o(T )].

(36)

For brevity of notation, define

ω[t+ 1] := MS→R(BM )PSwR⊥(BH)[t+ 1].

Substituting (35) in (36) yields
T−1∑
k=0

m̄TT
NS [k + 1]

+
T−1∑
k=0

m̄NS [t+ 1](PNSwR⊥(BH)[k + 1]− PNSω[t+ 1])T

+
T−1∑
k=0

(PNSwR⊥(BH)[k + 1]− PNSω[t+ 1])m̄T
NS [t+ 1]

=


o(
∑T−1

k=0 m̄
2
NS1

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NS1

[k + 1])
...

. . .
...

o(
∑T−1

k=0 m̄
2
NSp

[k + 1]) . . . o(
∑T−1

k=0 m̄
2
NSp

[k + 1])


+ [o(T )].

Since the subspace NS satisfies (8), only the first term is
nonzero in the LHS of the above equality. Dividing the
equality by T , taking the limit as T → ∞, and equating
the trace implies

lim
T→∞

1

T

T−1∑
k=0

||m̄NS [k + 1]||2 = 0. (37)

2020 12th International Conference on Communication Systems & Networks (COMSNETS)

417Authorized licensed use limited to: Texas A M University. Downloaded on June 20,2020 at 21:45:00 UTC from IEEE Xplore.  Restrictions apply. 



We have from (25) that

mU [k + 1] = (A−BMF )mU [k] + m̄NS [k + 1]

+ m̄NU [k + 1].

Let V :=WU ∩ U . The above equality implies that

mWS1
[k + 1] = PWS1

(A−BMF )mWS1
[k]

+PWS1
(A−BMF )mV [k]

+PWS1
m̄NS [k + 1]

+ PWS1
m̄NU [k + 1],

Invoking (11) implies that the second term in the RHS of
the above equality is zero. Since we have WS1 ⊆ NS from
(10), and NU ⊥ NS, the last term in the RHS of the above
equality also vanishes. We therefore obtain

mWS1
[k + 1] = PWS1

(A−BMF )mWS1
[k]

+PWS1
m̄NS [k + 1].

Invoking (37) and (12) yields

lim
T→∞

1

T

T−1∑
k=0

||mWS1 [k + 1]||2 = 0. (38)

While the above result establishes that the state estimation
error sequence {m}, when projected on the watermark-
securable subspace WS, is of zero power, it can also
be shown that for any subspace N of the watermark-
unsecurable subspace WU , there exists an attack such that
limT→∞

1
T

∑T−1
k=0 ||mN [k+1]||2 6= 0. The proof of this result

will be reported in a subsequent paper in a more general
context. The subspaceWS is therefore the maximal subspace
of the state space along which the projection of the state
estimation error of the honest nodes is of zero power.

V. CONCLUSION

In this paper, we have considered a perfectly-observed
linear stochastic system containing an arbitrary set of mali-
cious sensors and at most one malicious actuator. The honest
actuators, if there are any, employ Dynamic Watermarking
to detect whether or not there are malicious nodes present
in the system. For such a system, we have characterized
its watermark-securable subspace and have established its
operational significance. Extensions of this work include
characterizing the watermark-securable subspace for a system
containing an arbitrary number of malicious actuators, and
for partially-observed systems affected by both process and
measurement noises.
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