
 1 © 2019 by ASME 

 

Proceedings of the ASME 2019  
International Design Engineering Technical Conferences 

and Computers and Information in Engineering Conference 
IDETC/CIE2019 

August 18-21, 2019, Anaheim, CA, USA 
 
 

IDETC2019-97611 

A NEW ROBUSTNESS METRIC FOR ROBUST DESIGN OPTIMIZATION UNDER TIME- AND 
SPACE-DEPENDENT UNCERTAINTY THROUGH METAMODELING  

 

 

Xinpeng Wei 
Department of Mechanical and Aerospace Engineering 

Missouri University of Science & Technology 
Rolla, MO, USA 

Xiaoping Du1 
Department of Mechanical and Energy Engineering 
Indiana University – Purdue University Indianapolis 

Indianapolis, IN, USA 
 

ABSTRACT 
Product performance varies with respect to time and space 

in many engineering applications. This work discusses how to 

measure and evaluate the robustness of a product or component 

when its quality characteristics are functions of random 

variables, random fields, temporal variables, and spatial 

variables. At first, the existing time-dependent robustness metric 

is extended to the present time- and space-dependent problem. 

The robustness metric is derived using the extreme value of the 

quality characteristics with respect to temporal and spatial 

variables for the nominal-the-better type quality characteristics. 

Then a metamodel-based numerical procedure is developed to 

evaluate the new robustness metric. The procedure employs a 

Gaussian Process regression method to estimate the expected 

quality loss that involves the extreme quality characteristics. The 

expected quality loss is obtained directly during the regression 

model building process. Three examples are used to demonstrate 

the robustness analysis method. The proposed method can be 

used for robustness assessment during robust design 

optimization under time- and space-dependent uncertainty. 

 

1. INTRODUCTION 
Robust design [1] is an optimization design methodology for 

improving the quality of a product through minimizing the effect 

of the causes of variation without eliminating the causes [2]. It 

allows for the use of low grade materials, reduces labor and 

material cost while improving reliability and reducing operating 

cost [2].  

Robustness analysis, which evaluates and predicts the 

robustness of a design, is repeated for a number of times during 

robust design optimization. Many metrics that measure the 

robustness exist in literature. The most common metric is the 

Taguchi’s quality loss function (QLF) [2]. This metric measures 

not only the distance between the average quality characteristics 
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(QCs) and their targets, but also the variation in the QCs [3]. 

There are also other robustness metrics, such as the signal-to-

noise ratio [2], the percentile difference [4], and the worst-case 

QCs [5]. 

Most of the above robustness metrics are defined for static 

QCs that do not change over time and space. Some of the metrics 

could be used for dynamics problems, but they are only 

applicable for situations where the targets of QCs vary with 

signals [6, 7], instead of with time. To deal with problems 

involving time-dependent QCs, Goethals et al. [8] proposed to 

use the weighted sum of mean values of a QLF at discretized 

time instances to measure the robustness. The weighted-sum 

method, however, does not take into consideration of the 

autocorrelation of the time-dependent QLF, which is modeled as 

a stochastic process. To overcome this drawback, Du [3] 

proposed to use the maximal value of the time-dependent QLF 

to measure the time-dependent robustness. 

In addition to the above static and time-dependent problems, 

more general is the time- and space-dependent (TSD) problem 

[9]. In many engineering applications, QCs vary with both time 

and space. There are at least two reasons for the TSD QCs. (1) A 

QC is a function of TSD variables, such as wind load and road 

conditions. (2) The QC itself is a function of temporal and spatial 

variables. A typical example is a wind turbine. Since the wind 

speed varies with time and location, it is usually modeled as a 

TSD random field, subjected to which, the QC of the turbine is 

hence TSD.  

There is a research need for measuring robustness for 

optimization involving TSD problems. The object of this work 

is to develop a robustness metric for those problems and propose 

corresponding numerical procedure for evaluating the metric. 

We use the expectation of the maximum value of a TSD QLF as 

the robustness metric. The Gaussian process model [10-16] is 

employed to efficiently obtain the maximal value of the TSD 
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QLF. The contributions of this work are threefold. First, a TSD 

robustness metric is defined. It can take into consideration of all 

information of the TSD QLF, including its autocorrelation. 

Therefore, it is mathematically a rigorous metric for the TSD 

problems. Second, a Gaussian process based method is 

developed to effectively compute the TSD metric. Third, two 

stopping criteria are proposed to effectively train the Gaussian 

process model, leading to accurate and efficient results.  

The paper is organized as follows. Section 2 briefly reviews 

the time-dependent robustness metric, whose extension to TSD 

problems is discussed with a new robustness metric in Section 3, 

followed by a meta-modeling numerical procedure for the new 

metric in Section 4. Three examples are given in Section 5, and 

conclusions are provided in Section 6. 

 
2. REVIEW OF STATIC AND TIME-DEPENDENT 

ROBUSTNESS METRICS 
Nominal-the-best, smaller-the-better, and larger-the-better 

are three types of QCs [3]. In this work, we only focus on the 

nominal-the-best type. The discussions, however, can be 

extended to the other two types. 

2.1 Static robustness metric 
The most common robustness metric is the QLF. Let a QC 

be defined as 

 Y =                      (1) 

 

where  = ,  … ,   are   input random variables 

whose supports are  = Θ, Θ … , Θ. Then the QLF is 

  =  −                   (2) 

 

where   is the target value of  , and   is a constant 

determined by a monetary loss. The robustness is measured by 

the expectation, or the mean  of , which is calculated by 

  =  −  +              (3) 

 

where  and  are the mean and standard deviation of , 

respectively. The smaller is  , the better is the robustness 

because  (the average QC) is closer to the target  and  

(variation of the QC) is smaller.   

 

2.2 Time-dependent robustness metric 
A time-dependent QC is given by 

  = ,                   (4) 

 

Note that the input of ∙ may also include random processes, 

which can be transformed into functions with respect to random 

variables and  [17]. Thus Eq. (4) does not lose generality. At 

instant , the QLF is given as 

  =  −  = ,  −     (5)    

 can measure only the quality loss at a specific time instant   and is thus called point quality loss function (P-QLF). To 

measure the quality loss of a product over a time interval , , 
Du [3] proposed to use the extreme value or the worst-case value 

of   over ,  . The worst-case quality loss is called 

interval quality loss function (I-QLF) and is given by 

 ,  = max∈,,  −       (6) 

 

Note that ,  is a random variable while  is a random 

process. Like static problems, the expectation ,   of ,   is also used as the time-dependent robustness metric 

given by 

 ,  = E,                (7) 

where E∙  represents expectation over  . Minimizing 

,  reduces both the deviation of the QC from its target and 

the variation in the QC over time interval , .  

 

3. A NEW ROBUSTNESS METRIC FOR TIME- AND 
SPACE-DEPENDENT QCS 
In TSD problems, in addition to random variables and 

random processes, static random fields and time-dependent 

random fields are also involved. For convenience, we do not 

distinguish random processes, static random fields or time-

dependent random fields. In this paper, we generally call them 

random fields. Let  = S, S, S,  be the vector comprising 

the three spatial parameters (x-, y-, and z-coordinates) and the 

time. Note that for problems in one-dimensional and two-

dimensional space,  = S,   and  = S, S,  , 

respectively. Note that random fields can be transformed into 

functions with respect to random variables and  [17]. With 

loss of generality, a TSD QC is then given by  

  = ,                   (8) 

 

With the TSD QC, the corresponding QLF is given as 

 ,  =  −  = ,  −  (9) 

 ,  measures the qualify loss at any specific point  ∈ , 

where  is the domain of , and we call it the point qualify loss 

function (P-QLF).  

Before defining the TSD robustness metric, we propose 

some criteria of robustness metrics for the TSD problems, 

inspired by the criteria of the robustness metrics for time-

dependent problems given in [3]. The criteria are as follows: 

(a) A metric must represent the maximal quality loss over . 

The maximal quality loss means that a product is in its worst 

situation where the product may suffer a significant failure. 

Therefore, engineers must take the maximal quality loss into 

consideration at the design stage of the product. 
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(b) The metric should increase (or at least stay the same) with 

, given that other conditions stay unchanged. The reason 

is that when a product involves a larger space and/or is put 

into service for a longer time interval, the robustness should 

be worse (or at least the same). 

(c) The metric should capture the autocorrelation of the P-QLF ,   over  . Since ,   is a random field, its 

autocorrelation is an important property. Two different 

random fields with the same marginal distribution at any 

point may have very different performances if they do not 

share the same autocorrelation.  

(d) Minimizing the metric will lead to optimizing the mean QCs 

and minimizing the variations of the QCs over  . This 

criterion comes from the purpose of the robust optimization 

[18]. 

Based on the above criteria, we define the TSD robustness 

metric  as 

  = E,              (10) 

 

where  

 , = max ∈ ,             (11) 

 

is the maximum value of ,  and is called domain quality 

loss function (D-QLF). The definition of ,  let   meet Criterion (a) naturally. Let Ω ⊂ Ω , then it is 

obvious that 

 ,  ≤ ,, ∀ ∈           (12) 

 

and hence that   ≤  . Therefore,   meets 

Criterion (b). Since ,  is the maximum value 

distribution [19, 20] of , , the autocorrelation of ,  

is necessary for computing , . Different 

autocorrelation functions of ,   will lead to different 

distributions of ,, and hence  can capture the 

autocorrelation of ,  , indicating that   meets 

Criterion (c). Since ,  , and hence ,  and  , are nonnegative, minimizing   requires that the 

QC ,  gets close to its target  as much as possible. 

Therefore,  also meets Criterion (d). 

 

4. A META-MODLING APPROACH TO ROBUSTNESS 
ASSESSMENT 

 
4.1 Overview of the proposed robustness analysis  

The main idea of the proposed robustness analysis method 

is to train a Gaussian process model ,   for ,  . 

Replacing ,   in Eq. (11) with ,  , we can 

approximate , with , 

 , = max ∈ ,               (13) 

 

Then MCS is used to compute  through 

  = 
 ∑ ,         (14) 

 

where   is the sample size, and 
 represents the i-th 

sample of . Since ,  is computationally much cheaper 

than , , the proposed method can significantly improve the 

efficiency. Generally, the more samples of ,  are used, the 

more accurate ,  we obtain. The evaluation of , , 

however, is usually expansive, because in engineering problems, ,  is usually a black-box function whose evaluation needs 

the expensive numerical procedures or simulations [21].  

To balance the accuracy and the efficiency, we do not 

require ,  to be accurate globally. Instead, we only need it 

to be locally accurate so that ,  is accurate only at samples 

of  in Eq. (14). To this end, we employ the efficient global 

optimization (EGO) [12, 22] to adaptively add samples to update , . 

 
FIGURE 1: SIMPLIFIED FLOWCHART 

 

To have a quick overview to the proposed method, we give 

a simplified version of the flowchart in Fig. 1. There are in total 

eight steps in the proposed method. Details of Step 2 will be 

given in Subsection 4.2. The EGO, which comprises Steps 3-5, 

will be detailed in Subsection 4.3. We propose two stopping 

criteria in Step 4 and Step 7. Detailed information is given in 
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Subsection 4.4. The implementation of the whole algorithm and 

a detailed version of the flowchart will be given in Subsection 

4.5. In Subsection 4.6, we discuss how to deal with a more 

general problem that involves random fields. 

 

4.2 Initial samples 
The principle of generating initial samples for building a 

Gaussian process model is to spread the initial samples evenly. 

Commonly used sampling methods include random sampling, 

Latin hypercube sampling and Hammersley sampling [23]. In 

this study, we employ the Hammersley sampling method 

because it performs better in providing uniformity properties 

over a multidimensional space [24].  

Since the dimension of the entire input vector ,  is  +  , where   is the dimension of  , the Hammersley 

sampling method generates initial samples in a hypercube 0,1. To get initial samples of , we can simply use the 

inverse probability method to transform the samples from the 

hypercube space to  space. As for the initial samples of , we 

treat  as if it was a uniformly distributed random vector and 

then also use the inverse probability method to transform the 

samples from the hypercube space to the  space.  

In this paper, when variables are assembled into a vector, 

we use a row vector, while samples of the vector are arranged 

lengthwise to form a matrix. For example, the initial samples 
 

of  = ,  … ,  are 

 

 =
⎣⎢
⎢⎢
⎡   ⋱ 

  ⋱ 
⋮ ⋮ ⋱⋱ ⋮⎦⎥

⎥⎥
⎤
       (15) 

 

where  represents the total number of initial samples. With 
 and the initial samples 

 of  .We then obtain 

corresponding initial samples 
 of ,  through Eq. (9).  

 

4.3 Employment of EGO 

EGO is based on the Gaussian process model. with ,  
 

and  we can build , . Because only a limit number of 

samples, i.e. , ,  , are used, ,   has model 

uncertainty (or epistemic uncertainty), which is measured by σ, .  

Practically, when ,   is available, we need to 

discretize   to compute the maximal value , 

through Eq. (13). If we discretize , the j-th element of , into   points, then   will be discretized into  = ∏   

points. For convenience, we denote the domain the  points 

of  as  , whose dimension is  ×  . Then Eq. (13) is 

rewritten as 

 , = max ∈ ,          (16) 

 

Since , may not be the exact global maximum, 

we need to add samples of , ,  to update ,  so that 

the , will be accurate. To determine how to add the 

training sample, we use the well-known expected improvement 

(EI) learning function [22], which is given by 

 

EI,  =  − Φ  ,  + σ,   ,  (17) 

 

where  = ,  and  = ,;  Φ∙ and ∙ 

are the cumulative distribution function and probability density 

function of a standard Gaussian variable, respectively. EI,  

means that the exact ,  is expected to be EI,  

larger than the current ,. In other words, if we add a 

sample at ,  to update , , we expect to update current , to , +  EI, . In principle, we should 

update , by a step size as large as possible so that the 

algorithm converges quickly. Therefore, we determine the next 

training point ,  through 

 ,  = arg max∈ ,   ∈ EI,         (18) 

 

where 
 represents the MCS population of . With Eq. (9), 

we can obtain the next sample l
 of ,  . Then the 

initial sample set , ,  is updated through  

 

    

⎩⎪
⎨
⎪⎧ =  


 =  


 =  

l
                 (19) 

 

The updated initial sample set , ,   is used to 

update ,  . Then ,  in Eq. (16), and hence   in Eq. (14), will also be updated. With similar 

procedures, training samples are iteratively added and  is 

updated iteratively until a stopping criterion is satisfied. 

     

4.4 Stopping criteria 
In this subsection, we discuss two stopping criteria in Steps 

4 and 7.  

The task of the stopping criterion in Step 4 is to judge 

whether more training samples are necessary to update , . 

A straightforward stopping criterion is  

 max∈ ,   ∈EI, /, <           (20) 

 

where   is a threshold, which usually takes a small positive 

number, such as 0.005. This stopping criterion guarantees that 

for any  ∈  , the absolute value of the expected 

improvement rate of ,  is small enough. In other 

words, this stopping criterion guarantees that the  samples 
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of ,  are all accurate enough so that   is 

accurate enough. If  is too small, however, it may result in 

unnecessary iterations and hence an unnecessary computational 

cost. Besides, the  does not directly measure the accuracy of . As a result, it is hard to determine a proper value for . 

To resolve this problem, we propose a new stopping criterion 

  = mean∈ max∈ EI,  / ≤       (21) 

 

where   is another threshold, which usually takes a small 

positive number, such as 0.005. Since max∈ EI,   is the 

maximal expected improvement of , , mean∈ max∈ EI,  is the expected maximal improvement of 

 . Then, W is the absolute value of the expected 

improvement rate of . W directly measures the accuracy 

of  , and so we can set the value of   according to 

specific engineering requirement. For example, if we set  =1% , the program will stop adding training samples once it 

realizes that adding more training samples will not update the 

current  by more than 1%.  

Step 7 mainly deals with the following question: How many 

samples of , are enough to obtain accurate ? 

Since , is a random variable, the sample size, which 

is needed to estimate its mean value , is dependent on the 

standard deviation σ of ,. If the sample size is , the deviation coefficient γ of  is 

 γ = 
                 (22) 

 

where  is estimated by Eq. (14), and σ is estimated 

by 

 

σ =  
 ∑ , −     (23) 

 

Eq. (22) shows that the larger is , the smaller γ will we 

obtain. A smaller γ means that the estimated  is more 

accurate. Therefore, we use the following stopping criterion in 

Step 7: 
 γ ≤                     (24) 

 

where   is a threshold, which usually takes a small positive 

number, such as 0.005. 

If the stopping criterion in Eq. (24) is not satisfied, how 

many samples do we need to add to the current sample set ? 

Combining Eq. (22) and Eq. (24), we have 
 

 ≥  


                 (25) 

 

It means that to meet the stopping criterion in Eq. (24), the 

sample size should be at least  


. For convenience, let 

 = round  
  where round∙  represents the 

operation to get the nearest integer. Then the number  of 

samples we should add to the current sample set 
 is  

  =  −                (26) 

 

However, when ,  is too rough at the first several training 

iterations, both  and σ,  have very poor accuracy. 

As a result,  determined by Eq. (26) may be misleading. To 

resolve this problem, we set a threshold  for . Then  is modified to 

 

 = , if  −  >  − , otherwise          (27) 

 

4.5 Implementation of the proposed method 
    In this subsection, we give the detailed procedure of the 

proposed method. The detailed version of the flowchart is shown 

in Fig. 2. We have labeled the number of function evaluations in 

Eq. (9). The total number   of function evaluations in Eq. 

(9) is used to measure the main computational cost of the 

proposed method, because Eq. (9) involves the computation of 

an expensive black-box function. 

 

4.6 Extension to problems with input random fields 
When the TSD QC ∙ involves input random fields, it is 

straightforward to use the series expansion of the random fields 

so that the above implementation of the proposed method still 

holds. For example, a QC is given as 
  = , ,                 (28) 
 

where  is a vector of random fields. To easily present the 

idea, we assume there is only one random filed, given by . 

The series expansion of a random field   is denoted as ,  where  is a vector of random variables. Then Eq. (28) 

is rewritten as 

  = , , ,               (29) 
 

or equivalently as 

  = , ,                 (30) 

 

Treating ,  as the total input random variables, then Eq. (30) 

shares the same format with Eq. (8), and so the above 

implementation in Subsection 4.5 also holds.  

In this way, the proposed method, however, may suffer 

from the curse of dimensionality. Since many random variables, 

i.e. , are in the series expansion , , the dimension of , 

and hence of , , , is high. As a result, the dimension of 

the surrogate model , ,  is high. The high-dimensional 

surrogate model has as least two drawbacks. First, it is not cheap 

anymore, losing its expected advantages.  
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FIGURE 2: DETAILED FLOWCHART 

 

Second, more training points are needed for acceptable accuracy. 

To overcome this problem, we build a surrogate model , ,   with respect to ,   and  . Then the surrogate 

model , ,   with respect to ,   and   is obtained 

through 

 , ,  = , ,  ∘ ,  = , , ,   (31) 

 

Since the series expansion , , if truncated, has a simple 

closed-form expression, if , ,  is accurate and efficient, 

so will be , ,   in Eq. (31). Since the dimension of , ,  is  − 1, where   is the dimension of , lower 

than that of , ,  , it will be more efficient to train 

, ,   with higher accuracy. When more than one input 

random fields are involved, the procedures of building the 

surrogate model  are similar.  

     

5. NUMERICAL EXAMPLES  
In this section, we use three examples to test the proposed 

method. The direct MCS is also used to compute the TSD 

robustness. MCS calls Eq. (11), instead of Eq. (13), to compute 

the samples of ,. The sample size of MCS is set to 10. The results of MCS are treated as the exact ones for the 

accuracy comparison. The convergence thresholds  ,   and , are set to 5 × 10, 5 × 10, and 10, respectively. Both 

methods share the same discretization of .  

 

5.1 An math problem 
The QC is given as 

   = ∑  + 0.1 +  + 5sin0.1 ∏    (32) 

 

where ,  … ,   are five independent identical normal 

variables with mean and standard deviation being 1 and 0.02, 

respectively. The domain  of  = ,  is 0,2 × 0,5.  is given as 

  = 0.1 +  + 5sin0.1      (33) 

 

and  = $1000.  and  are discretized into 20 and 50 

points, respectively, so  = 10. 

The results obtained from the proposed method and MCS 

are given in Table 1. The robustness computed by the proposed 

method is $2.6592 × 10 , and the robustness by MCS is $2.6328 × 10. The proposed method is very accurate, with a 

small relative error of 1.0%. Apart from the 10 initial samples, 

43 training points are added to update the Gaussian process 

model, and the proposed method costs with a total of 53 function 

calls. MCS, however, costs 10 function calls, far larger than 

that of the proposed method. The proposed method adaptively 

increases the sample size to compute , and it can obtain 

an accurate result with only 463 samples. 

 

TABLE 1: ROBUSTNESS ANALYSIS RESULTS 

Methods Proposed method MCS $  2.6592 × 10 2.6328 × 10 

Relative error (%) 1.0 -  463 10  53 10 

 

5.2 A slider mechanism 
Shown in Fig. 3 is a slider mechanism [9]. The location or 

spatial variables are the offset  and the initial angle  with 

the following ranges:  ∈ 14.85 m, 15.15 m  and  ∈−2°, 2°. The time span is  ∈ 0 s, 0.1 s. Then the  vector 

is , , . The random variable vector is  = , , which 

includes two independent random link lengths 
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~15, 0.015 m and ~35, 0.035 m. The QC, or 

the actual position of the slider, is 

 

 
FIGURE 3: A SLIDER MECHANISM 

  =  cos +  +  −  +  sin +      (34) 

 

where ω = 1 rad/s is the angular velocity. The target QC is 

  = 15 cos + 35 − 15 + 15 sin  (35) 

 

and  = $1000/m. The intervals of ℎ,  and  are all 

evenly discretized into 20 points. Accordingly,  =14.85 m, 15.15 m × −2°, 2° × 0s, 0.1s  is discretized 

into  = 20 × 20 × 20 = 8 × 10 points.   

The robustness analysis results are given in Table 2. The 

proposed method are accurate and efficient with 31 function 

calls.  

     

TABLE 2: ROBUSTNESS ANALYSIS RESULTS 

Methods Proposed method MCS  $ 88.4325 88.0182 

Relative error (%) 0.5 -  1492 10  31 8 × 10 

 

5.3 A cantilever beam 
Shown in Fig. 4 is a cantilever beam. Its span  = 1 m. 

Due to the machining error, the diameter of its cross section is 

not a constant. Instead, it is modeled as a one-dimensional 

stationary Gaussian random field  . The mean value  

and standard deviation   of  are 0.1 m and 0.001 m, 

respectively. Its autocorrelation coefficient function ,  

is given as 

 ,  = exp− −           (36) 

 

The beam is subjected to a torsion  and a tensile force  at the right endpoint.  is a normal variable with mean  

and standard deviation   being 10 N  and 100 N, 

respectively.  is a stationary Gaussian process with mean  and standard deviation  being 200 N ∙ m and 20 N ∙ m, 

respectively. Its autocorrelation coefficient function ,  

is given by 

    

 
 

FIGURE 4: A CANTILEVER BEAM 

 

,  = exp −            (37) 

 

Since there are one stochastic process and one random field, 

this example involves a more general problem discussed in Sec. 

4.6. 

The maximum von Misses stress of the beam is the QC and 

is given by 

 

 =  
 + 3  


       (38) 

 

The target  = 0 and  = $1000/Mpa. The domain Ω of  is 0, 1 m × 0, 5 yr and is evenly discretized into  = 20 × 50 = 1000 points. 

With ,  we can get the autocorrelation coefficient 

matrix M  of the one-dimensional random field . Since  is discretized evenly into 20 points in its interval 0,1 m, the 

dimension of M  is 20 × 20 . The most significant three 

eigenvalues of M  are 17.0693, 2.7182 and 0.2026. We use 

EOLE [17] to generate the series expansion of  and only 

keep the first three orders. Similarly, we use EOLE to generate 

the series expansion of  and only keep the first six orders. 

The robustness analysis results are given in Table 4. The 

robustness computed by the proposed method and by MCS are  $3.8701 × 10  and 3.8814 × 10 , respectively. The relative 

error of the robustness computed by the proposed method is only 

-0.3%. The proposed method calls the original quality loss 

function 11 times, showing its high efficiency. 

 

TABLE 4: ROBUSTNESS ANALYSIS RESULTS 

Methods Proposed method MCS  $ 3.8701 × 10 3.8814 × 10 
Relative error (%) -0.3 -  1000 10  11 10 
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6. CONCLUSIONS 
Existing robustness analysis methods only consider the 

static or time-dependent problems. More general are time-and 

space-dependent problems. In this paper, we propose to use the 

expectation of the maximal value of the quality loss function 

with respect to time and space to measure the time- and space-

dependent robustness. This metric can fully take into 

consideration of the autocorrelation of the time- and space-

dependent quality loss function.  

An efficient method based on the Gaussian process model 

and efficient global optimization is proposed to compute the 

time- and space-dependent robustness metric. Training points 

are adaptively added to update the Gaussian process model. A 

stopping criterion is developed to measure the expected 

improvement of the current value of the robustness metric. Since 

a sampling method is used to compute the robustness, 

uncertainty in the result is inevitable. To control the uncertainty 

and then get an accurate result, we develop an algorithm to 

adaptively increase the sample size. 

Three examples show that the proposed method can deal 

with problems with different uncertainty level. For problems 

with high uncertainty level, the proposed method automatically 

uses large sample size. The proposed method can obtain accurate 

robustness very efficiently.  
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