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ABSTRACT

Product performance varies with respect to time and space
in many engineering applications. This work discusses how to
measure and evaluate the robustness of a product or component
when its quality characteristics are functions of random
variables, random fields, temporal variables, and spatial
variables. At first, the existing time-dependent robustness metric
is extended to the present time- and space-dependent problem.
The robustness metric is derived using the extreme value of the
quality characteristics with respect to temporal and spatial
variables for the nominal-the-better type quality characteristics.
Then a metamodel-based numerical procedure is developed to
evaluate the new robustness metric. The procedure employs a
Gaussian Process regression method to estimate the expected
quality loss that involves the extreme quality characteristics. The
expected quality loss is obtained directly during the regression
model building process. Three examples are used to demonstrate
the robustness analysis method. The proposed method can be
used for robustness assessment during robust design
optimization under time- and space-dependent uncertainty.

1. INTRODUCTION

Robust design [1] is an optimization design methodology for
improving the quality of a product through minimizing the effect
of the causes of variation without eliminating the causes [2]. It
allows for the use of low grade materials, reduces labor and
material cost while improving reliability and reducing operating
cost [2].

Robustness analysis, which evaluates and predicts the
robustness of a design, is repeated for a number of times during
robust design optimization. Many metrics that measure the
robustness exist in literature. The most common metric is the
Taguchi’s quality loss function (QLF) [2]. This metric measures
not only the distance between the average quality characteristics
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(QCs) and their targets, but also the variation in the QCs [3].
There are also other robustness metrics, such as the signal-to-
noise ratio [2], the percentile difference [4], and the worst-case
QCs [5].

Most of the above robustness metrics are defined for static
QCs that do not change over time and space. Some of the metrics
could be used for dynamics problems, but they are only
applicable for situations where the targets of QCs vary with
signals [6, 7], instead of with time. To deal with problems
involving time-dependent QCs, Goethals et al. [8] proposed to
use the weighted sum of mean values of a QLF at discretized
time instances to measure the robustness. The weighted-sum
method, however, does not take into consideration of the
autocorrelation of the time-dependent QLF, which is modeled as
a stochastic process. To overcome this drawback, Du [3]
proposed to use the maximal value of the time-dependent QLF
to measure the time-dependent robustness.

In addition to the above static and time-dependent problems,
more general is the time- and space-dependent (TSD) problem
[9]. In many engineering applications, QCs vary with both time
and space. There are at least two reasons for the TSD QCs. (1) A
QC is a function of TSD variables, such as wind load and road
conditions. (2) The QC itself'is a function of temporal and spatial
variables. A typical example is a wind turbine. Since the wind
speed varies with time and location, it is usually modeled as a
TSD random field, subjected to which, the QC of the turbine is
hence TSD.

There is a research need for measuring robustness for
optimization involving TSD problems. The object of this work
is to develop a robustness metric for those problems and propose
corresponding numerical procedure for evaluating the metric.
We use the expectation of the maximum value of a TSD QLF as
the robustness metric. The Gaussian process model [10-16] is
employed to efficiently obtain the maximal value of the TSD
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QLF. The contributions of this work are threefold. First, a TSD
robustness metric is defined. It can take into consideration of all
information of the TSD QLF, including its autocorrelation.
Therefore, it is mathematically a rigorous metric for the TSD
problems. Second, a Gaussian process based method is
developed to effectively compute the TSD metric. Third, two
stopping criteria are proposed to effectively train the Gaussian
process model, leading to accurate and efficient results.

The paper is organized as follows. Section 2 briefly reviews
the time-dependent robustness metric, whose extension to TSD
problems is discussed with a new robustness metric in Section 3,
followed by a meta-modeling numerical procedure for the new
metric in Section 4. Three examples are given in Section 5, and
conclusions are provided in Section 6.

2. REVIEW OF STATIC AND TIME-DEPENDENT
ROBUSTNESS METRICS
Nominal-the-best, smaller-the-better, and larger-the-better
are three types of QCs [3]. In this work, we only focus on the
nominal-the-best type. The discussions, however, can be
extended to the other two types.

2.1 Static robustness metric

The most common robustness metric is the QLF. Let a QC
be defined as

Y=g9X) )

where X = (X{,X,..,Xy) are N input random variables
whose supports are @ = (0,0, ...,0y). Then the QLF is

L =AY —m)? ©)

where m is the target value of Y, and A is a constant
determined by a monetary loss. The robustness is measured by
the expectation, or the mean E; of L, which is calculated by

E, = Al(uy — m)? + U};] (€))

where py and oy are the mean and standard deviation of Y,
respectively. The smaller is E;, the better is the robustness
because uy (the average QC) is closer to the target m and oy
(variation of the QC) is smaller.

2.2 Time-dependent robustness metric
A time-dependent QC is given by

Y =gX1t) )

Note that the input of g(-) may also include random processes,
which can be transformed into functions with respect to random
variables and t [17]. Thus Eq. (4) does not lose generality. At
instant t, the QLF is given as

L@®) =AY -m@®]* = AO[gX ) —m@®]*  (5)

L(t) can measure only the quality loss at a specific time instant
t and is thus called point quality loss function (P-QLF). To
measure the quality loss of a product over a time interval [g, f],
Du [3] proposed to use the extreme value or the worst-case value
of L(t) over [g, f] . The worst-case quality loss is called
interval quality loss function (I-QLF) and is given by

L(t7) = trg[?g]{fl(t) [9(X, ) —m(D)]*} (6)

Note that L(g, f) is a random variable while L(t) is a random
process. Like static problems, the expectation EL(g,f) of
L(g, f) is also used as the time-dependent robustness metric
given by

£ ) = EL( )] )
where g(-) represents expectation over © . Minimizing

E; (g, f) reduces both the deviation of the QC from its target and
the variation in the QC over time interval [5, f].

3. A NEW ROBUSTNESS METRIC FOR TIME- AND

SPACE-DEPENDENT QCS

In TSD problems, in addition to random variables and
random processes, static random fields and time-dependent
random fields are also involved. For convenience, we do not
distinguish random processes, static random fields or time-
dependent random fields. In this paper, we generally call them
random fields. Let Z = (S;,S,,S3,t) be the vector comprising
the three spatial parameters (x-, y-, and z-coordinates) and the
time. Note that for problems in one-dimensional and two-
dimensional space, Z=(S;,t) and Z=(5,,S,¢t) ,
respectively. Note that random fields can be transformed into
functions with respect to random variables and Z [17]. With
loss of generality, a TSD QC is then given by

Y=9(X17) ®)
With the TSD QC, the corresponding QLF is given as
LX,2) = A@)[Y - m@D)]* = ADIgX,Z) — m(D)]* (9)

L(X,Z) measures the qualify loss at any specific point z € Q,
where Q is the domain of Z, and we call it the point qualify loss
function (P-QLF).

Before defining the TSD robustness metric, we propose
some criteria of robustness metrics for the TSD problems,
inspired by the criteria of the robustness metrics for time-
dependent problems given in [3]. The criteria are as follows:

(a) A metric must represent the maximal quality loss over Q.
The maximal quality loss means that a product is in its worst
situation where the product may suffer a significant failure.
Therefore, engineers must take the maximal quality loss into
consideration at the design stage of the product.
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(b) The metric should increase (or at least stay the same) with
Q, given that other conditions stay unchanged. The reason
is that when a product involves a larger space and/or is put
into service for a longer time interval, the robustness should
be worse (or at least the same).

(¢) The metric should capture the autocorrelation of the P-QLF
L(X,Z) over Q. Since L(X,Z) is a random field, its
autocorrelation is an important property. Two different
random fields with the same marginal distribution at any
point may have very different performances if they do not
share the same autocorrelation.

(d) Minimizing the metric will lead to optimizing the mean QCs
and minimizing the variations of the QCs over Q. This
criterion comes from the purpose of the robust optimization
[18].

Based on the above criteria, we define the TSD robustness
metric E;(Q) as

E, (Q) = g[l’max(x' Q)] (10)
where
Lmax (X, Q) = meagL(X' z) (11)

is the maximum value of L(X,Z) and is called domain quality
loss function (D-QLF). The definition of L.,,,(X,Q) let
E;(Q) meet Criterion (a) naturally. Let Q c Q, then it is
obvious that

Linax (% Q) < Lipax(x,Q), VX € © (12)

and hence that E;(Q) < E, (Q) . Therefore, E,(Q) meets
Criterion (b). Since Lp.(X,Q) is the maximum value
distribution [19, 20] of L(X,Z), the autocorrelation of L(X,Z)
is necessary for computing Lp.(X,Q) Different
autocorrelation functions of L(X,Z) will lead to different
distributions of Ly, (X, Q), and hence E,(Q) can capture the
autocorrelation of L(X,Z) , indicating that E;(Q) meets
Criterion (c). Since L(X,Z), and hence L, ,.(X,Q) and
E, (Q), are nonnegative, minimizing E; () requires that the
QC g(X,Z) gets close to its target m(Z) as much as possible.
Therefore, E,(Q) also meets Criterion (d).

4. A META-MODLING APPROACH TO ROBUSTNESS
ASSESSMENT

4.1 Overview of the proposed robustness analysis

The main idea of the proposed robustness analysis method
is to train a Gaussian process model L(X,Z) for L(X,Z).
Replacing L(X,Z) in Eq. (11) with L(X,Z), we can
approximate L., (X, Q) with L..(X,Q)

Lypax(X, Q) = max L(X, z) (13)
ZEQ

Then MCS is used to compute E; (Q2) through
1 ~ .
EL(Q) = — TIMES I nax (P, Q) (14)

where nycs is the sample size, and x® represents the i-th
sample of X. Since L(X,Z) is computationally much cheaper
than L(X, Z), the proposed method can significantly improve the
efficiency. Generally, the more samples of L(X,Z) are used, the
more accurate L(X,Z) we obtain. The evaluation of L(X,Z),
however, is usually expansive, because in engineering problems,
L(X,Z) is usually a black-box function whose evaluation needs
the expensive numerical procedures or simulations [21].

To balance the accuracy and the efficiency, we do not
require L(X,Z) to be accurate globally. Instead, we only need it
to be locally accurate so that L(X,Z) is accurate only at samples
of X in Eq. (14). To this end, we employ the efficient global
optimization (EGO) [12, 22] to adaptively add samples to update
L(X, 7).

Step 1
Randomly generate samples of X for MCS.

4
Step 2

Generate initial samples of (X, Z)and compute

corresponding initial samples of L(X,Z).

Step 4
If L has been

well trained

Step 5
Add a sample to the

initial sample set.

Step 6
Compute £, (€2) with MCS.

Step 8
Add samples to the
MCS sample set of X.

Return £, (Q2).

FIGURE 1: SIMPLIFIED FLOWCHART

To have a quick overview to the proposed method, we give
a simplified version of the flowchart in Fig. 1. There are in total
eight steps in the proposed method. Details of Step 2 will be
given in Subsection 4.2. The EGO, which comprises Steps 3-5,
will be detailed in Subsection 4.3. We propose two stopping
criteria in Step 4 and Step 7. Detailed information is given in
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Subsection 4.4. The implementation of the whole algorithm and
a detailed version of the flowchart will be given in Subsection
4.5. In Subsection 4.6, we discuss how to deal with a more
general problem that involves random fields.

4.2 Initial samples

The principle of generating initial samples for building a
Gaussian process model is to spread the initial samples evenly.
Commonly used sampling methods include random sampling,
Latin hypercube sampling and Hammersley sampling [23]. In
this study, we employ the Hammersley sampling method
because it performs better in providing uniformity properties
over a multidimensional space [24].

Since the dimension of the entire input vector (X,Z) is
N + Ny, where Ny is the dimension of Z, the Hammersley
sampling method generates initial samples in a hypercube
[0,1]V*Nz, To get initial samples of X, we can simply use the
inverse probability method to transform the samples from the
hypercube space to X space. As for the initial samples of Z, we
treat Z as if it was a uniformly distributed random vector and
then also use the inverse probability method to transform the
samples from the hypercube space to the Z space.

In this paper, when variables are assembled into a vector,
we use a row vector, while samples of the vector are arranged
lengthwise to form a matrix. For example, the initial samples x"

of X = (X, X, ..., Xy) are
. (1)
[ (1) (1) wxy ]
N
X2
| : : . i
lx Nin) (nm) x[ilnin)J

where n;, represents the total number of initial samples. With
x'™ and the initial samples z™ of Z .We then obtain
corresponding initial samples 1" of L(X,Z) through Eq. (9).

4.3 Employment of EGO

EGO is based on the Gaussian process model. with x', z
and 1™ we can build L(X,Z). Because only a limit number of
samples, ie. (x",z™1™), are used, L(X,Z) has model
uncertainty (or epistemic uncertainty), which is measured by
(X, 7).

Practically, when L(X,Z) is available, we need to
discretize Q to compute the maximal value Ly, (X, Q)
through Eq. (13). If we discretize Z;, the j-th element of Z, into
m; points, then Q will be discretized into ng = ]_[L 1My
points. For convenience, we denote the domain the ng points

of Z as z, whose dimension is ng X N;. Then Eq. (13) is
rewritten as

in

Limax(X, Q) = max L(X, z) (16)
z€z®

Since Lyqx(X, Q) may not be the exact global maximum,
we need to add samples of (X,Z,L) to update L(X,Z) so that
the L. (X, Q) will be accurate. To determine how to add the
training sample, we use the well-known expected improvement
(EI) learning function [22], which is given by

BI(x,2) = (L~ Lnan) @ (50225) + 0%, ) (5222) (17)
where L =L(x,2) and L. = Lyax (X, Q);  ®() and ¢(°)
are the cumulative distribution function and probability density
function of a standard Gaussian variable, respectively. EI(X,z)
means that the exact Lp.4(X,Q) is expected to be EI(x,z)
larger than the current L., (X, Q). In other words, if we add a
sample at (x,z) to update L(X,Z), we expect to update current
Lnax(%, Q) to Lk (%, Q) + EI(x,z). In principle, we should
update L,..(X, Q) by a step size as large as possible so that the
algorithm converges quickly. Therefore, we determine the next
training point (x(°xV,z(MeXV) through

(x(mexV), zmexV) = argmax  EI(x,z) (18)

xexMCS, 720

where xMCS represents the MCS population of X. With Eq. (9),
we can obtain the next sample 1Y of L(X,Z). Then the
initial sample set (x",z™", 1) is updated through

in _ xin
x" = [X(next)]
in _ zin
z" = [Z(next)] (19)
lin — lin
t - l(next)

The updated initial sample set (x'™,z", 1) is used to
update L(X,Z). Then L,.,(X,Q) in Eq. (16), and hence
E () in Eq. (14), will also be updated. With similar
procedures, training samples are iteratively added and E;(QQ) is
updated iteratively until a stopping criterion is satisfied.

4.4 Stopping criteria

In this subsection, we discuss two stopping criteria in Steps
4 and 7.

The task of the stopping criterion in Step 4 is to judge
whether more training samples are necessary to update L(X,Z).
A straightforward stopping criterion is

|El(x 2)/Loax (X, Q)| <c (20)

xExMCS, z€z9?

where c¢ is a threshold, which usually takes a small positive
number, such as 0.005. This stopping criterion guarantees that
for any x € xM®S | the absolute value of the expected
improvement rate of L, (x,Q) is small enough. In other
words, this stopping criterion guarantees that the nycg samples
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of Loax(X,Q) are all accurate enough so that E;(Q)
accurate enough. If ¢ is too small, however, it may result in
unnecessary iterations and hence an unnecessary computational
cost. Besides, the ¢ does not directly measure the accuracy of
E.(Q). As a result, it is hard to determine a proper value for c.
To resolve this problem, we propose a new stopping criterion

{mean [max El(x, z)]}/EL(Q)| <d 21

xexMCS Lz¢7Q

where d is another threshold, which usually takes a small
positive number, such as 0.005. Since maéEI(x,z) is the
ZEZ

Zmax (X: Q) >

mean [max EI(x, Z)] is the expected maximal improvement of
xexMCS lze20

E, (Q) . Then, W is the absolute value of the expected
improvement rate of E;(Q2). W directly measures the accuracy
of E,(Q), and so we can set the value of d according to
specific engineering requirement. For example, if we set d =
1%, the program will stop adding training samples once it
realizes that adding more training samples will not update the
current E;(Q) by more than 1%.

Step 7 mainly deals with the following question: How many
samples of L,.,(X,Q) are enough to obtain accurate E; (Q)?
Since L. (X, Q) is a random variable, the sample size, which
is needed to estimate its mean value E; (Q), is dependent on the
standard deviation o(Q) of Ly .x(X, Q). If the sample size is
Nycs, the deviation coefficient y of E (Q) is

maximal  expected improvement of

o(QY)

- EL(Q)ynMmcs (22)

where E;(Q) is estimated by Eq. (14), and o(Q) is estimated
by

SO Lanax(x©,Q) = B, (@] (23)

1
Q)= [——
o(®) \/ nmcs—1
Eq. (22) shows that the larger is nys, the smaller y will we
obtain. A smaller y means that the estimated E, () is more
accurate. Therefore, we use the following stopping criterion in
Step 7:

y<k (24)

where k is a threshold, which usually takes a small positive
number, such as 0.005.

If the stopping criterion in Eq. (24) is not satisfied, how
many samples do we need to add to the current sample set xM¢S?
Combining Eq. (22) and Eq. (24), we have

o(Q)
nwcs 2 [ (25)

It means that to meet the stopping criterion in Eq. (24), the
o(Q)

(Q)k] For convemence let

sample size should be at least [

o(Q)
ng = round{[EL(Q)k

operation to get the nearest integer. Then the number n,4q of

samples we should add to the current sample set xM¢S is

2
]} where round(-) represents the

Nadd = Mo — Nmcs (26)

However, when L(X,Z) is too rough at the first several training
iterations, both E;(Q) and oj(xq) have very poor accuracy.
Asaresult, n,qq determined by Eq. (26) may be misleading. To
resolve this problem, we set a threshold 7i,qq for n,qq. Then
Naqq 18 modified to

fladd, if o — Nycs > Aladd

. 2
ny, — Nycs, otherwise 27)

Nada = {

4.5 Implementation of the proposed method

In this subsection, we give the detailed procedure of the
proposed method. The detailed version of the flowchart is shown
in Fig. 2. We have labeled the number of function evaluations in
Eq. (9). The total number n.,;; of function evaluations in Eq.
(9) is used to measure the main computational cost of the
proposed method, because Eq. (9) involves the computation of
an expensive black-box function.

4.6 Extension to problems with input random fields

When the TSD QC g(+) involves input random fields, it is
straightforward to use the series expansion of the random fields
so that the above implementation of the proposed method still
holds. For example, a QC is given as

Y =g(X,H(2),7) (28)

where H(Z) is a vector of random fields. To easily present the
idea, we assume there is only one random filed, given by H(Z).
The series expansion of a random field H(Z) is denoted as
H(E,Z) where & isa vector of random variables. Then Eq. (28)
is rewritten as

Y =g[X H(E Z),Z] (29)

or equivalently as

=9l X),Z] (30)

Treating (&, X) as the total input random variables, then Eq. (30)
shares the same format with Eq. (8), and so the above
implementation in Subsection 4.5 also holds.

In this way, the proposed method, however, may suffer
from the curse of dimensionality. Since many random variables,
i.e. &, are in the series expansion H(&,Z), the dimension of &,
and hence of g[(§,X),Z], is high. As a result, the dimension of
the surrogate model L[(%,X),Z] is high. The high-dimensional
surrogate model has as least two drawbacks. First, it is not cheap
anymore, losing its expected advantages.
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MCS
|Generate X randomlyl

Generate (x‘“,zi“ ) using the == ————
171, times of |

in

Hammersley sampling method

L]

I .
ifunction

I

I

A . I
7 levaluations |
I

I

Compute I by substituting
. o 1n Eq. (9)
(x‘“,z‘“) mtoEq.(9) | t-—————-
*, Update
Construct L(X,Z) .
A [
llsin Xlll ’ zlﬂ i lﬂl
5 ( ) through Eq. (19)

v i

Compute L__(X.0Q) at x* through Eq. (16)

L]

|C0mpute E, (Q) through Eq. (14) ‘

|C ompute J¥ through Eq. (20) |

Find (X[ncxt)’z[uexﬂ)
through Eq. (18)

and compute 1"

Compute #,,, through Eq. (27)|

Y
Randomly generate n,, samples of X

and add them into sample set xMeS

FIGURE 2: DETAILED FLOWCHART

Second, more training points are needed for acceptable accuracy.
To overcome this problem, we build a surrogate model
L(X,H,Z) with respect to X,H and Z. Then the surrogate
model L[(% X),Z] with respect to (§,X) and Z is obtained
through

LIEX), 21 =L(X,H,2) e HE Z) = LIX HE,2),Z] (31)

Since the series expansion H(,Z), if truncated, has a simple
closed-form expression, if L(X,H,Z) is accurate and efficient,
so will be L[(§X),Z] in Eq. (31). Since the dimension of
L(X,H,Z) is (N; - 1),Where N; is the dimension of &, lower
than that of L[(§,X),Z], it will be more efficient to train

Z(x, H,Z) with higher accuracy. When more than one input
random fields are involved, the procedures of building the
surrogate model L are similar.

5. NUMERICAL EXAMPLES

In this section, we use three examples to test the proposed
method. The direct MCS is also used to compute the TSD
robustness. MCS calls Eq. (11), instead of Eq. (13), to compute
the samples of L., (X, Q). The sample size of MCS is set to
105. The results of MCS are treated as the exact ones for the
accuracy comparison. The convergence thresholds d, k and
Ny, are set to 5 X 1073, 5 x 1073, and 10, respectively. Both
methods share the same discretization of Q.

5.1 An math problem
The QC is given as

Y =37, X2+ 01(Z, + Z, + 5)%sin(0.1Z,) [[2; X; - (32)

where (X;,X,...,Xs) are five independent identical normal
variables with mean and standard deviation being 1 and 0.02,
respectively. The domain Q of Z = (Z,Z,) is [0,2] x [0,5].
m(Z) is given as

m(Z) = 0.1(Z, + Z, + 5)sin(0.1Z,) (33)

and A(Z) = $1000. Z; and Z, are discretized into 20 and 50
points, respectively, so ng = 103.

The results obtained from the proposed method and MCS
are given in Table 1. The robustness computed by the proposed
method is $2.6592 X 10*, and the robustness by MCS is
$2.6328 x 10*. The proposed method is very accurate, with a
small relative error of 1.0%. Apart from the 10 initial samples,
43 training points are added to update the Gaussian process
model, and the proposed method costs with a total of 53 function
calls. MCS, however, costs 108 function calls, far larger than
that of the proposed method. The proposed method adaptively
increases the sample size to compute E;(Q), and it can obtain
an accurate result with only 463 samples.

TABLE 1: ROBUSTNESS ANALYSIS RESULTS

Methods Proposed method MCS
E.( Q&) 2.6592 x 10* 2.6328 x 10*
Relative error (%) 1.0 -
Nucs 463 105
Nean 53 108

5.2 A slider mechanism

Shown in Fig. 3 is a slider mechanism [9]. The location or
spatial variables are the offset H and the initial angle 8, with
the following ranges: H € [14.85m,15.15m] and 6, €
[—2°,2°]. The time spanis t € [0s,0.17 s]. Then the Z vector
is (H,8,,t). The random variable vector is X = (L4, L,), which
includes two  independent random link  lengths
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L;~N(15,0.0152) m and L,~N(35,0.0352) m. The QC, or
the actual position of the slider, is

FIGURE 3: A SLIDER MECHANISM

Y = Ly cos(8y + wt) + /12 — (H + L, sin(f, + wt))? (34)

where @ = 1rad/s is the angular velocity. The target QC is

m(Z) = 15 cos(wt) + /352 — (15 + 15sin(wt))?  (35)

and A(Z) = $1000/m?. The intervals of h, 6, and t are all
evenly discretized into 20 points. Accordingly, Q=
[14.85m,15.15 m] x [-2°,2°] x [0s,0.1ms] is discretized
into ng = 20 x 20 X 20 = 8 X 103 points.

The robustness analysis results are given in Table 2. The
proposed method are accurate and efficient with 31 function
calls.

TABLE 2: ROBUSTNESS ANALYSIS RESULTS

Methods Proposed method MCS
E () (%) 88.4325 88.0182
Relative error (%) 0.5 -
NMcs 1492 10°
Nean 31 8x 108

5.3 A cantilever beam

Shown in Fig. 4 is a cantilever beam. Its span L = 1m.
Due to the machining error, the diameter of its cross section is
not a constant. Instead, it is modeled as a one-dimensional
stationary Gaussian random field D(x). The mean value p,
and standard deviation o, of D(x) are 0.1 m and 0.001 m,
respectively. Its autocorrelation coefficient function pp(x;,x,)
is given as

pp (X1, x3) = exp[—(x; — xz)z] (36)

The beam is subjected to a torsion T(t) and a tensile force
F at the right endpoint. F is a normal variable with mean pug
and standard deviation or being 103N and 100 N,
respectively. T(t) is a stationary Gaussian process with mean
ur and standard deviation oy being 200 N-m and 20 N-m,

respectively. Its autocorrelation coefficient function pr(ty,t;)
is given by

z

()_'_> X D(x)

FIGURE 4: A CANTILEVER BEAM

pr(ty,t;) = exp [_ (%)2] (37)

Since there are one stochastic process and one random field,
this example involves a more general problem discussed in Sec.
4.6.

The maximum von Misses stress of the beam is the QC and
is given by

[ Y EI E e

The target m(Z) =0 and A(Z) = $1000/Mpa. The domain
Q of Z is [0,1m] x [0,5yr] and is evenly discretized into
ng = 20 X 50 = 1000 points.

With pp(x;,x,) we can get the autocorrelation coefficient
matrix Mj of the one-dimensional random field D(x). Since
x is discretized evenly into 20 points in its interval [0,1 m], the
dimension of Mj is 20 X 20. The most significant three
eigenvalues of My are 17.0693, 2.7182 and 0.2026. We use
EOLE [17] to generate the series expansion of D(x) and only
keep the first three orders. Similarly, we use EOLE to generate
the series expansion of T'(t) and only keep the first six orders.

The robustness analysis results are given in Table 4. The
robustness computed by the proposed method and by MCS are
$3.8701 x 103 and 3.8814 X 103, respectively. The relative
error of the robustness computed by the proposed method is only
-0.3%. The proposed method calls the original quality loss
function 11 times, showing its high efficiency.

TABLE 4: ROBUSTNESS ANALYSIS RESULTS

Methods Proposed method MCS
E.(Q)($) 3.8701 x 103 3.8814 x 103
Relative error (%) -0.3 -
NMcs 1000 10°
Neall 11 108
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6. CONCLUSIONS

Existing robustness analysis methods only consider the
static or time-dependent problems. More general are time-and
space-dependent problems. In this paper, we propose to use the
expectation of the maximal value of the quality loss function
with respect to time and space to measure the time- and space-
dependent robustness. This metric can fully take into
consideration of the autocorrelation of the time- and space-
dependent quality loss function.

An efficient method based on the Gaussian process model
and efficient global optimization is proposed to compute the
time- and space-dependent robustness metric. Training points
are adaptively added to update the Gaussian process model. A
stopping criterion is developed to measure the expected
improvement of the current value of the robustness metric. Since
a sampling method is used to compute the robustness,
uncertainty in the result is inevitable. To control the uncertainty
and then get an accurate result, we develop an algorithm to
adaptively increase the sample size.

Three examples show that the proposed method can deal
with problems with different uncertainty level. For problems
with high uncertainty level, the proposed method automatically
uses large sample size. The proposed method can obtain accurate
robustness very efficiently.
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