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ABSTRACT 

Product performance varies with respect to time and space in many engineering applications. 

This paper discusses how to measure and evaluate the robustness of a product or component when 

its quality characteristics are functions of random variables, random fields, temporal variables, and 

spatial variables. At first, the existing time-dependent robustness metric is extended to the present 

time- and space-dependent problem. The robustness metric is derived using the extreme value of 

the quality characteristics with respect to temporal and spatial variables for the nominal-the-better 

type quality characteristics. Then a metamodel-based numerical procedure is developed to evaluate 

the new robustness metric. The procedure employs a Gaussian Process regression method to 

estimate the expected quality loss that involves the extreme quality characteristics. The expected 

quality loss is obtained directly during the regression model building process. Three examples are 

used to demonstrate the robustness analysis method. The proposed method can be used for 

robustness analysis during robust design optimization under time- and space-dependent 

uncertainty. 
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1. INTRODUCTION 

Robust design optimization (RDO) [1] is an optimization design methodology for improving 

the quality of a product through minimizing the effect of the causes of variation without 

eliminating the causes [2]. It allows for the use of low grade materials and reduces labor and 

material cost while improving reliability and reducing operating cost [2]. RDO has been used to 

improve product quality in industrial applications [3, 4]. Over the last three decades, it has gained 

much attention from many research fields, such as operations research [5-7], aerospace [8, 9], 

structural mechanics [10, 11], vibration control [12, 13],  automobile [14-16], and fatigue analysis 

[17, 18]. Methods to solve RDO can be roughly grouped into three categories: probabilistic 

methods [19-21], deterministic methods [22-26], and metamodel-based methods [27-32]. 

Probabilistic methods perform the robust optimization using the probability distributions of 

random variables. Deterministic methods incorporate a non-statistical index, such as the gradient 

of a response, into the optimization problem to obtain a robust optimum [32]. Metamodel-based 

methods employ computationally cheap surrogate models to improve the efficiency of RDO.  

Robustness analysis, which evaluates and predicts the robustness of a design, is repeated for 

a number of times during RDO. Many metrics that measure the robustness exist in literature. The 

most common metric is the Taguchi’s quality loss function (QLF) [2]. This metric measures not 

only the distance between the average quality characteristics (QCs) and their targets, but also the 

variation in the QCs [33]. There are also other robustness metrics, such as the signal-to-noise ratio 

[2], the percentile difference [34], and the worst-case QCs [35]. 

Most of the above robustness metrics are defined for static QCs that do not change over time 

and space. Some of the metrics could be used for dynamics problems, but they are only applicable 

for situations where the targets of QCs vary with signals [36, 37], instead of with time. To deal 
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with problems involving time-dependent QCs, Goethals et al. [38] proposed to use the weighted 

sum of mean values of a QLF at discretized time instances to measure the robustness. The 

weighted-sum method, however, does not take into consideration of the autocorrelation of the 

time-dependent QLF, which is modeled as a stochastic process. To overcome this drawback, Du 

[33] proposed to use the maximum value of the time-dependent QLF to measure the time-

dependent robustness. 

In addition to the above static and time-dependent problems, more general is the time- and 

space-dependent (TSD) problem [39]. In many engineering applications, QCs vary with both time 

and space. There are at least two reasons for the TSD QCs. (1) A QC is a function of TSD variables, 

such as the wind load and road conditions. (2) The QC itself is a function of temporal and spatial 

variables. A typical example is a wind turbine. Since the wind speed varies with time and location, 

it is usually modeled as a TSD random field, subjected to which, the QC of the turbine is hence 

TSD.  

There is a need to define a new robustness metric for the optimization involving TSD problems. 

The object of this work is to derive a robustness metric for TSD problems and develop a numerical 

method to evaluate it. We use the expectation of the maximum value of a TSD QLF to measure 

the robustness. For the former, we employ the same strategy in [33], and for the latter we use a 

metamodeling method to manage the computational efficiency because of the involvement of the 

expensive multidimensional global optimization [40-43] with respect to temporal and spatial 

parameters. An efficient method based on the Gaussian process model [44-47] is then proposed. 

The contributions of this work are twofold. First, a TSD robustness metric is defined. It can take 

into consideration of all information of the TSD QLF, including its autocorrelation. Therefore, it 
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is mathematically a rigorous metric for the TSD problems. Second, a Gaussian process based 

method is developed to effectively compute the TSD robustness metric.  

The proposed TSD robustness metric is actually an extension of the time-dependent robustness 

metric proposed in [33]. The similarity is that both the proposed TSD robustness metric and the 

time-dependent robustness metric use the maximum value of the QLF to measure the robustness. 

However, this study deals with a more general and complicate problem because the time-

dependent problem is only a special case of the TSD problem. From the perspective of 

mathematical models, the new robustness metric needs the multidimensional global optimization 

with respect to both temporal and spatial parameters, while the time-dependent one involves 

unidimensional global optimizations with respect to only a temporal parameter. In addition, the 

new QLF may include random fields in its input. 

The paper is organized as follows. Section 2 briefly reviews the time-dependent robustness 

metric, whose extension to TSD problems is discussed with a new robustness metric in Section 3, 

followed by a meta-modeling numerical procedure for the new metric in Section 4. Four examples 

are given in Section 5, and conclusions are provided in Section 6. 

2. REVIEW OF STATIC AND TIME-DEPENDENT ROBUSTNESS METRICS 

Nominal-the-best, smaller-the-better, and larger-the-better are three types of QCs [33]. In this 

work, we only focus on the nominal-the-best type. The discussions, however, can be extended to 

the other two types. 

2.1. Static robustness metric 

The most common robustness metric is the QLF. Let a QC be defined as 

 =                                                                         (1) 
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where  = ,  … ,  are  input random variables. Then the QLF is 

 =  −                                                                   (2) 

where   is the target value of  , and   is a constant determined by a monetary loss. The 

robustness is measured by the expectation, or the mean  of , which is calculated by 

 =  −  +                                                            (3) 

where  and  are the mean and standard deviation of , respectively. The smaller is , the 

better is the robustness because  (the average QC) is closer to the target  and  (variation of 

the QC) is smaller.   

2.2. Time-dependent robustness metric 

A time-dependent QC is given by 

 = ,                                                                        (4) 

Note that the input of ∙ may also include random processes, which can be transformed into 

functions with respect to random variables and  [48]. Thus Eq. (4) does not lose generality. At 

instant , the QLF is given as 

 =  −  = ,  −                                    (5)    

 can measure only the quality loss at a specific time instant  and is thus called point quality 

loss function (P-QLF). To measure the quality loss of a product over a time interval , , Du [33] 

proposed to use the extreme value or the worst-case value of  over , . The worst-case 

quality loss is called interval quality loss function (I-QLF) and is given by 

,  = max∈,  = max∈,,  −                                (6) 
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Note that ,  is a random variable while  is a random process. Like static problems, the 

expectation ,  of ,  is also used as the time-dependent robustness metric given by 

,  = E,                                                              (7) 

where E∙ stands for expectation. Minimizing ,  reduces both the deviation of the QC from 

its target and the variation in the QC over time interval , . When  is fixed to a specific 

realization , Eq. (6) actually shows a unidimensional global optimization problem. Multiple 

samples of ,   are necessary to calculate ,   using Eq. (7), and hence multiple 

unidimensional global optimizations is required to obtain , . 

3. A NEW ROBUSTNESS METRIC FOR TIME- AND SPACE-DEPENDENT QCS 

In TSD problems, in addition to random variables and random processes, static random fields 

and time-dependent random fields are also involved. For convenience, we do not distinguish 

random processes, static random fields or time-dependent random fields. In this paper, we 

generally call them random fields. Let  = S, S, S,  be the vector comprising the three spatial 

parameters (x-, y-, and z-coordinates) and the time. Note that for problems in one-dimensional and 

two-dimensional space,  = S,  and  = S, S, , respectively. Also note that random fields 

can be transformed into functions with respect to random variables and  [48]. Without loss of 

generality, a TSD QC is then given by  

 = ,                                                                         (8) 

With the TSD QC, the QLF is given by 

,  =  −  = ,  −                             (9) 
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,  measures the qualify loss at any specific point  ∈ , where  is the domain of , and it 

is also a P-QLF.  

Before defining the TSD robustness metric, we propose some criteria of robustness metrics for 

the TSD problems, inspired by the criteria of the robustness metrics for time-dependent problems 

given in [33]. The criteria are as follows: 

(a) The metric must represent the maximum quality loss over . This reflects the fact that the 

quality loss is not reversible. If a quality loss, including the maximum quality loss, has 

occurred, there is no way to turn back. 

(b) The metric should increase or at least stay the same with the expansion of , given that other 

conditions stay unchanged. The reason is that when a product involves a larger space and/or is 

put into service for a longer period of time, the robustness should be worse or at least the same. 

(c) The metric should capture the autocorrelation of the P-QLF ,  over . Since ,  is a 

random field, its autocorrelation is an important property. Two different random fields with 

the same marginal distribution at any point may have very different performances if they do 

not share the same autocorrelation.  

(d) Minimizing the metric will lead to optimizing the mean QCs and minimizing the variations of 

the QCs over . This criterion comes from the purpose of the robust optimization [49]. 

Based on the above criteria, we define the TSD robustness metric  as 

 = E,                                                         (10) 

where  

, = max ∈ ,                                                        (11) 
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is the maximum value of ,  and is called the domain quality loss function (D-QLF). The 

definition of , ensures that  meet Criterion (a) naturally. Let Ω ⊂ Ω, then it is 

obvious that 

,  ≤ ,                                                   (12) 

and hence   ≤  . Therefore,   meets Criterion (b). Since ,  is the 

maximum value distribution [50, 51] of , , the autocorrelation of ,  is necessary for 

computing , . Different autocorrelation functions of ,   will lead to different 

distributions of , , and hence   can capture the autocorrelation of ,  , 

indicating that  meets Criterion (c). Since , , and hence , and , are 

nonnegative, minimizing  requires that the QC ,  gets close to its target  as much 

as possible. Therefore,  also meets Criterion (d).  

4. A META-MODLING APPROACH TO ROBUSTNESS ANALYSIS 

The robustness metric defined in Eq. (10) involves the extreme value of a general random field. 

It is not an easy task to evaluate the robustness metric for a given design. In this section, we discuss 

our proposal numerical method for the robustness analysis. 

4.1. Overview of the proposed robustness analysis  

The main idea of the proposed robustness analysis method is to train a Gaussian process model 

,  for , . Replacing ,  in Eq. (11) with , , we can approximate , 

with , as follows: 

, = max ∈ ,                                                           (13) 

Then the Monte Carlo simulation (MCS) [52] is used to compute  by 
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 =  ∑ ,                                                  (14) 

where  is the sample size, and  is the i-th sample of . Since ,  is computationally 

much cheaper than ,  , the proposed method can significantly improve the efficiency. 

Generally, a larger number of training points of ,  is preferred to train ,  for higher 

accuracy, but the efficiency will decrease because ,  in engineering applications is often a 

black-box function whose evaluation needs expensive numerical procedures or simulations [53].  

To balance the accuracy and the efficiency, we do not require ,  to be accurate globally. 

Instead, we only need it to be locally accurate at samples of  in Eq. (14). To this end, we employ 

the efficient global optimization (EGO) [54, 55] to adaptively add training points to update , . 

To have a quick overview to the proposed method, we give a simplified flowchart in Fig. 1. 

There are in total eight steps in the proposed method. Details of Step 2 will be given in Subsection 

4.2. The EGO, which comprises Steps 3 through 5, will be detailed in Subsection 4.3. We propose 

two stopping criteria in Steps 4 and 7. Detailed information is given in Subsection 4.4. The 

implementation of the algorithm and the detailed flowchart will be given in Subsection 4.5. In 

Subsection 4.6, we discuss how to deal with a more general problem that involves random fields. 
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Fig. 1 Simplified flowchart 

4.2 Initial training set 

The principle of generating initial training set for building a Gaussian process model is to 

spread the initial training points evenly. Commonly used sampling methods include random 

sampling, Latin hypercube sampling and Hammersley sampling [56]. In this study, we employ the 
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Hammersley sampling method because it has better uniformity properties over a multidimensional 

space [57].  

Since the dimension of the entire input vector ,  is  + , where  is the dimension of 

, the Hammersley sampling method generates initial training points in a hypercube 0,1. 

To get initial training points of , we can simply use the inverse probability method to transform 

the training points from the hypercube space to the X-space. As for the initial training points of , 

we treat all components of  as if they were independent uniform random variables and then also 

use the inverse probability method to transform the training points from the hypercube space to 

the Z-space.  

Samples of a row random vector are assembled into a matrix. For example, the initial training 

points  of  = ,  … ,  are 

 =
⎣⎢⎢
⎢⎡   ⋱ 

  ⋱ ⋮ ⋮ ⋱⋱ ⋮⎦⎥⎥
⎥⎤
                                                   (15) 

where  is the total number of initial training points. With  and the initial training points  

of , we then obtain initial training points  of ,  by calling Eq. (9). Finally, we get the 

initial training set , ,  = , , , where the superscript trn represents training 

points.  

4.3 Employment of EGO 

EGO is based on the Gaussian process model. With the training set , ,  we can 

build ,  . Because only a limit number of training points are used, ,   has model 

uncertainty (or epistemic uncertainty), which is measured by σ, .  
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Practically, when ,  is available, we need to discretize  to compute the maximum value 

, with Eq. (13). If we discretize , the j-th element of , into  points, then  will be 

discretized into  = ∏   points. For convenience, we denote the   points of   by  , 

whose dimension is  × . Then Eq. (13) is rewritten as 

, = max ∈ ,                                                          (16) 

Since , may not be the exact global maximum, we need to add training points of 

, ,  to update ,  so that the , will be more accurate. To determine how to add 

a new training point, we use the well-known expected improvement (EI) learning function [55] 

given by 

EI,  =  − Φ ,  + σ,  ,                              (17) 

where  = ,   and  = , ;  Φ∙  and ∙  are the cumulative distribution 

function and probability density function of a standard Gaussian variable, respectively. EI,  

means that the exact , is expected to be EI,  larger than the current ,. In 

other words, if we add a training point at ,  to update , , we expect to update current 

, to , +  EI, . In principle, we should update , by a step size as 

large as possible so that the algorithm converges quickly. Therefore, we determine the next training 

point ,  by 

,  = arg max∈,   ∈ EI,                                       (18) 

where  represents the MCS population of . Eq. (18) indicates a double-layer optimization. 

The reason is that whenever we want to optimize  in Eq. (18), we must fix  to a specific 
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realization  so that Eq. (16) can be used to calculate . With Eq. (9), we can obtain the next 

training point l of , . Then the training set , ,  is updated through  

    

⎩⎪⎨
⎪⎧ =  

 =  
 =  l

                                                            (19) 

The updated training set , ,  is used to refine , . Then , in Eq. (16) 

and hence   in Eq. (14) are also updated. With similar procedures, training points are 

iteratively added into the training set, and  is updated iteratively until stopping criteria are 

satisfied. 

4.4. Stopping criteria 

In this subsection, we discuss two stopping criteria in Steps 4 and 7 shown in Fig. 1. The 

purpose of the stopping criterion in Step 4 is to judge whether more training points are necessary 

to update , . A straightforward stopping criterion is  

max∈ ,   ∈EI, /, ≤                                        (20) 

where  is a threshold, which usually takes a small positive number, such as 0.005. This stopping 

criterion guarantees that for any  ∈ , the absolute value of the expected improvement rate of 

, is small enough. In other words, this stopping criterion guarantees that the  

samples of , are all accurate enough so that  is accurate enough. The threshold , 

however, does not directly measure the accuracy of . As a result, it is hard to determine a 

proper value for . If we set a too small value to c, it may result in unnecessary iterations and hence 

an unnecessary computational cost. To resolve this problem, we propose a new stopping criterion 
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 = mean∈  max∈ EI,  / ≤                                     (21) 

where  is another threshold, which usually takes a small positive number, such as 0.005. Since 

max∈ EI,   is the maximum expected improvement of ,, mean∈  max∈ EI,  is the 

expected maximum improvement of  . Then, W is the absolute value of the expected 

improvement rate of . W directly measures the accuracy of , and so we can set the 

value of  according to specific engineering requirement. For example, if we set  = 0.005, no 

more training points will be added if adding more training points can change current  by no 

more than 0.5%. As a result, if  is sufficiently large, the relative error of the obtained  

is expected to be between −0.5% and 0.5%. 

Step 7 mainly deals with the following question: How many samples of , are enough 

to obtain accurate ? Since , is a random variable, the sample size needed to 

estimate its mean value  is dependent on the standard deviation σ of ,. Since 

the sample size is , the deviation coefficient  of  is 

  = σ 
(22) 

where  is estimated by Eq. (14), and σ is estimated by 

 σ =  1 − 1  , − 
  (23) 

Eq. (22) shows that the larger is , the smaller  will we obtain. A smaller  means that the 

estimated  is more accurate. Therefore, we use the following stopping criterion in Step 7: 

 ≤                                                                       (24) 

where  is a threshold, which usually takes a small positive number, such as 0.005. 
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If the stopping criterion in Eq. (24) is not satisfied, how many samples do we need to add to 

the current sample set ? Combining Eq. (22) and Eq. (24), we have 

  ≥  σ
 (25) 

It means that to meet the stopping criterion in Eq. (24), we should use a sample size at least 

 
. For convenience, let  = round  , where round∙ represents the operation 

to get the nearest integer. Then the number  of samples we should add to the current sample 

set  is  

  =  −  (26) 

However, when ,  is too rough at the first several training iterations, both  and σ 

may have very poor accuracy. As a result,  determined by Eq. (26) may be misleading. To 

resolve this problem, we set a threshold  for . Then  is modified to 

  = , if  −  >  − , otherwise  (27) 

4.5 Implementation 

In this subsection, we give the detailed procedure of the proposed method. The detailed 

flowchart is shown in Fig. 2. The total number  of function evaluations in Eq. (9) is used to 

measure the main computational cost of the proposed method, since Eq. (9) usually involves the 

computation of an expensive black-box function.  
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Fig. 2 Detailed flowchart 

The strategy of the extreme value in this study is similar to what the nested extreme response 

surface approach [58] employs, because both methods use the same EGO to solve the global 

optimization problem. But the problem in the former method is the multidimensional global 

optimization with respect to time and space while the problem in the latter method is a 
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unidimensional one with respect to time. As a result, the learning functions and stopping criteria 

of the two methods are different.  

4.6 Extension to problems with input random fields 

When the TSD QC ∙ involves input random fields, it is straightforward to use the series 

expansion of the random fields so that the above implementation of the proposed method still holds. 

For example, a QC is given as 

 = , ,                                                               (28) 

where  is a vector of random fields. To easily present the idea, we assume there is only one 

random filed, given by . Widely used series expansions for random fields include, but are not 

limited to, the Karhunen-Loeve series expansion (K-L), the orthogonal series expansion (OSE), 

and the expansion optimal linear estimation method (EOLE) [48]. Since Ω is discretized into , 

the autocorrelation coefficient function of  is discretized into the autocorrelation coefficient 

matrix  with dimension   × . Then the EOLE expansion ,  of  is given by 

 ,  =  +    : , 
 ,  ∈  (29) 

where  is the mean value function of ,  is the standard deviation function of , 

,  = 1,2, … ,  are  independent standard Gaussian variables,  is the -th eigenvalue of 

,  is the -th (row) eigenvector of , and : ,  is the -th column of . Note that the 

eigenvalues are sorted from the largest to the smallest. Usually only the first   ≤  

eigenvalues are significant. Therefore, Eq. (29) is practically truncated, and only the first  orders 

are kept: 

 ,  =  +    : , 
 ,  ∈  (30) 
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Then the dimension of  is . With the expansion, Eq. (28) is rewritten as 

 = , , ,                                                          (31) 

or equivalently as 

 = ,                                                              (32) 

where  = ,  . Eq. (32) shares the same format with Eq. (8), and hence the above 

implementation in Subsection 4.5 is also applicable.  

The direct implementation this way, however, may suffer from the curse of dimensionality. 

Since many random variables, i.e. , are in the series expansion , , the dimension of  and 

hence that of ,  is high. As a result, the dimension of the surrogate model ,  is also 

high. The high-dimensional surrogate model has as least two drawbacks. First, it is not cheap 

anymore, losing its expected advantages. Second, more training points are needed for an 

acceptable accuracy. To overcome the drawbacks, we build a surrogate model , ,  with 

respect to ,   and . Note that the entire random field   is treated as only one variable for 

, , . Then the surrogate model  ,  with respect to  and  is obtained through 

,  = , , ,                                                    (33) 

Since the truncated series expansion ,  in Eq. (30) has a simple closed-form expression, 

if , ,  is accurate and efficient, so will be ,  in Eq. (33). Since the dimension of 

, ,  is  − 1 lower than that of , , it is more efficient to train , ,  with higher 

accuracy. To build , , , we need the training points  of .  can be obtained simply 

by substituting ,  into Eq. (30). Similarly, when ,  is determined by Eq. 

(18), the next training point ℎ of  is obtained by substituting ,  into Eq. (30). 
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Note that  = , . When more than one input random fields are involved, the 

procedure of building and updating the surrogate model  is similar.   

However, it should be mentioned that Eq. (33) is not suitable for all problems involving input 

random fields. Roughly speaking, the problems involving input random fields, including random 

processes which are unidimensional random fields, can be grouped into two categories. To 

distinguish the two categories, we first need to make it clear that whenever  in Eq. (28) is fixed 

to a specific realization ,  and , ,  are a random vector and a random 

variable, respectively. If the randomness, or uncertainty, of the output random variable 

, ,  only comes from the input random variables  and , then the problem 

belongs to Category 1. If the randomness of , ,   comes from not only   and 

 but also ,  ≠ , then the problem belongs to Category 2. Eq. (33) can only deal 

with problems in Category 1. When dealing with Category 2 problems, we cannot treat the entire 

random field as a single input variable to   anymore. Instead, we must treat each component of  

as an input variable to , resulting in a high-dimension Gaussian process model. Currently the 

Gaussian process model cannot work well for high-dimensional problems. Therefore, we only 

consider Category 1 when input random fields are involved, and in the example section, both 

Example 3 and Example 4 belong to Category 1. 

5. NUMERICAL EXAMPLES  

In this section, we use four examples to test the proposed method. The first one is a 

mathematical example. With a low-dimension case in this example, we aim at clearly illustrating 

the detailed procedure of the proposed method. Then we test the method by setting a higher 

dimensionality for this example. The second one is an engineering example involving only random 
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variables while the third one, also an engineering example, involves both random variables and 

unidimensional random fields. The last engineering example involves multidimensional random 

fields. 

The direct MCS is also used to compute the TSD robustness metric. MCS calls the original 

QLF model in Eq. (11) directly. The sample size of MCS is set to 10. The results of MCS are 

treated as the exact ones for the accuracy comparison. For all examples, the convergence thresholds 

 ,  , and  , are set to 0.005 , 0.005 , and 10, respectively. Both methods share the same 

discretization of .  

5.1. A math problem 

The QC is given by  

  =  


 + 0.1 +  + 5sin0.1  


  (34) 

where ,  … ,  are  independent and identically distributed normal variables with mean 

and standard deviation being 1 and 0.02, respectively. The domain  of  = ,  is 0,2 ×
0,5.  is given as 

 = 0.1 +  + 5sin0.1                                        (35) 

and  = $1000.  and  are discretized into 20 and 50 points, respectively; so there are 

 = 10 discretization points in . 

For an easy demonstration, we first consider a low-dimension case and set  = 2. Using the 

Hammersley sampling, we generate 10 initial training points in the hypercube 0,1 = 0,1. 

The initial training points are given in Table 1. Then we transform the first two data columns into 

Z-space, using the inverse probability method mentioned in Subsection 4.2, to get the initial 

training points . Note that each training point in  is rounded to the nearest one in . The 
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last two data columns are transformed into X-space to generate . Substituting those points in 

,  one by one into Eq. (9), we obtain 10 initial training points  of . ,  and  are 

given in Table 2. Since Eq. (9) is called 10 times,  = 10. Initially we set  = 400.  

Table 1 Initial training points in hypercube space 
Point number Data 

1 0.0000 0.5000 0.3333 0.2000 
2 0.1000 0.2500 0.6667 0.4000 

3 0.2000 0.7500 0.1111 0.6000 

4 0.3000 0.1250 0.4444 0.8000 

5 0.4000 0.6250 0.7778 0.0400 

6 0.5000 0.3750 0.2222 0.2400 

7 0.6000 0.8750 0.5556 0.4400 

8 0.7000 0.0625 0.8889 0.6400 

9 0.8000 0.5625 0.0370 0.8400 

10 0.9000 0.3125 0.3703 0.0800 

With the initial training points, we build the initial , . Then using Eq. (14) and Eq. (21) 

we obtain  = $ 4044.5 and  = 1.41%, respectively.  = 1.41% means that if we add 

more training points to update , , we expect to improve the current  by 1.41%. Since 

1.41% is larger than the threshold value 0.5%, more training points are needed. The learning 

function in Eq. (18) locates the next training point ,  at 0, 0, 0.9263, 0.9630. 

Substituting ,  into Eq. (9), we obtain l = 3188.0 and then update  =
 + 1 = 11. The new training point is added into current training set to update  , . With 

the process going on, more and more training points are added. In total 7 training points are added 

one by one, which are given in Table 3.  becomes 10 + 7 = 17. The update of  is shown in 

Fig. 3. In Iteration 8, the 7 training point shown in Table 3 is added to update , , resulting 

in  = 0.45% < 0.5%. Therefore, no more new training points are needed. Note that in all the 

eight iterations,  = 400 remains unchanged.  
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Table 2 Initial training points in X-space and Z-space 
Point number   


 

1 0.0000 2.5000 0.9914 0.9832 3664.4
2 0.2000 1.2500 1.0086 0.9949 4036.1

3 0.4000 3.7500 0.9756 1.0051 3618.5

4 0.6000 0.6250 0.9972 1.0168 4128.0

5 0.8000 3.1250 1.0153 0.9650 3657.3

6 1.0000 1.8750 0.9847 0.9858 3639.8

7 1.2000 4.3750 1.0028 0.9970 3993.8

8 1.4000 0.3125 1.0244 1.0072 4277.8

9 1.6000 2.8125 0.9643 1.0199 3722.3

10 1.8000 1.5625 0.9934 0.9719 3586.5

 

Table 3 Added training points 
Iteration    l 

1 0.0000 0.0000 0.9263 0.9630 3188.0 
2 2.0000 0.0000 0.9769 1.0544 4269.2

3 2.0000 5.0000 0.9263 0.9630 1082.4

4 0.0000 5.0000 1.0557 0.9859 5208.2

5 0.0000 5.0000 1.0222 1.0460 6107.1

6 2.0000 0.0000 1.0161 0.9451 3707.9

7 2.0000 0.0000 0.9330 0.9927 3444.1

 

To check if 400 samples are sufficient to obtain accurate ,  we calculate  using Eq. 

(22), which results in  = 0.0064. Since 0.0064 is larger than the threshold γ = 0.005, the sample 

size  = 400 is not sufficiently large and hence we need to increase it. From Eqs. (25) and 

(26), we know that  should be increased by at least 247. However, according to Eq. (27) we 

only increase it by 100, because we set the hyperparameter  = 100. The reason for limiting 

the increasing step of  has been given in Subsection 4.4. Then with the updated  =
400 + 100 = 500 and updated , we calculate  again to check if ,  is still accurate. 
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Fig. 3 shows that  < 0.5% in Iteration 9; hence ,  is still accurate. We calculate  and then 

 again and repeat the process until both  < 0.5% and  < 0.005 are satisfied.  

 

Fig. 3 Update of  

Table 4 Robustness analysis results 
Methods Proposed method MCS $ 4.28 × 10 4.35 × 10 

Relative error (%) -1.5 -  677 10  17 10 
 

The final results, as well as the results obtained directly by MCS, are given in Table 4. The 

robustness computed by the proposed method is $4.28 × 10 , and the robustness by MCS is 

$4.35 × 10. The proposed method is very accurate, with a small relative error of −1.5%. In 

addition to the 10 initial training points, 7 more training points are added adaptively to update the 

Gaussian process model, and hence the proposed method costs 17 function calls. The proposed 

method adaptively increases the sample size, obtaining accurate results with only 677 samples.  

To test the proposed method with higher dimensionality, we set  = 8 while keeping other 

parameters unchanged. The results obtained from the proposed method and MCS are given in 

Table 5. The robustness computed by the proposed method is $6.70 × 10, and the robustness by 
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MCS is $6.67 × 10. The relative error is 0.5%, and 70 function calls and only 400 samples are 

used by the proposed method.  In this case,  = 8 and  = 2, and hence the dimensionality of 

,  is 10. The two cases show that the proposed method works well for both low dimension 

and moderate dimension in this example problem. 

Table 5 Robustness analysis results 

Methods Proposed method MCS $ 6.70 × 10 6.67 × 10 
Relative error (%) 0.5 -  400 10  70 10 

 

Note that the second case needs a smaller sample size ( = 400) than that ( = 677) 

of the first case, although the dimensionality is higher in the second case. The reason is that the 

deviation coefficient  
 of , in the first case is larger than that in the second case. 

5.2. A slider mechanism 

Shown in Fig. 4 is a slider mechanism [39]. The spatial variables are the offset  and the initial 

angle  with the following ranges:  ∈ 14.85, 15.15 m and  ∈ −2°, 2°. The time span is 

 ∈ 0 , 0.1 s. Then the  vector is , , . The random variable vector is  = , , which 

includes two independent random link lengths ~15, 0.015 m and ~35, 0.035 m. 

The QC, or the actual position of the slider, is 

  =  cos +  +  −  +  sin +  (36) 

where ω = 1 rad/s is the angular velocity. The target QC is 

  = 15 cos + 35 − 15 + 15 sin (37) 
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and  = $1000/m . The intervals of ℎ,   and  are all evenly discretized into 20 points. 

Accordingly,  = 14.85, 15.15 m × −2°, 2° × 0, 0.1 s  is discretized into  = 20 ×
20 × 20 = 8 × 10 points.   

Setting the initial value of   to 1000 and   to 100, the robustness analysis results are 

given in Table 6. The proposed method is accurate and efficient with 31 function calls.      

 

 

Fig.4 A slider mechanism 

Table 6 Robustness analysis results 

Methods Proposed method MCS  $ 88.43 88.02 
Relative error (%) 0.5 -  1492 10  31 8 × 10 

 

5.3. A cantilever beam 

Shown in Fig. 5 is a cantilever beam. Its span  = 1 m. Due to the machining error, the 

diameter of its cross section is not a deterministic. Instead, it is modeled as a one-dimensional 

stationary Gaussian random field . The mean value  and standard deviation  of  are 

0.1 m and 0.001 m, respectively. Its autocorrelation coefficient function ,  is given as 
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 ,  = exp− −  (38) 
 

 

Fig. 5 A cantilever beam 

The beam is subjected to a torsion  and a tensile force   at the right endpoint.   is a 

normal variable with mean  and standard deviation  being 1000 N and 100 N, respectively. 

 is a stationary Gaussian process with mean  and standard deviation  being 200 N ∙ m 

and 20 N ∙ m, respectively. Its autocorrelation coefficient function ,  is given by 

,  = exp −                                                   (39) 

The maximum von Misses stress of the beam is the QC and is given by 

  =  4 + 3 16
 (40) 

The target  = 0  and  = $1000/Mpa . The domain Ω  of  = ,   is 0, 1 m ×
0, 5 yr and is evenly discretized into  = 20 × 50 = 1000 points. 

With ,  we can get the autocorrelation coefficient matrix M of the one-dimensional 

random field . Since  is discretized evenly into 20 points, the dimension of M is 20 × 20. 

The most significant three eigenvalues of M are 17.0693, 2.7182 and 0.2026. We use EOLE to 
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generate the series expansion of  and only keep the first three orders. Similarly, we use EOLE 

to generate the series expansion of  and only keep the first six orders. 

Setting the initial value of   to 1000 and   to 1000, the robustness analysis results are 

given in Table 7. The robustness computed by the proposed method and by MCS are $3.85 × 10 

and 3.88 × 10 , respectively. The relative error of the robustness computed by the proposed 

method is only −0.7%. The proposed method calls the original quality loss function 13 times, 

showing its high efficiency. 

Table 7 Robustness analysis results 

Methods Proposed method MCS  $ 3.85 × 10 3.88 × 10 
Relative error (%) -0.7 -  1000 10  13 10 

 

5.4. An electron accelerator 

Shown in Fig. 6 is an electron accelerator, which is used to accelerate electrons to a higher 

speed. Electrons are horizontally emitted from the electrode, then enter the electric field , ℎ 

in the accelerator, and finally fly out from the accelerator. The initial velocity of the electrons is a 

time-dependent stationary Gaussian random field , ℎ, , whose mean value   and standard 

deviation   are 500,000 m/s  and 50,000 m/s , respectively. Its autocorrelation coefficient 

function , ℎ, ; , ℎ,  is given by 
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Fig. 6 An electron accelerator 

, ℎ, ; , ℎ,  = exp − .  − .  −                    (41) 

The length of the accelerator   is a random variable that follows a normal distribution 

1, 0.01 m. The electric field , ℎ is a two-dimensional stationary Gaussian random field, 

whose mean value   and standard deviation   are 10 N/C and 1 N/C, respectively. Its 

autocorrelation coefficient function , ℎ; , ℎ is given by 

, ℎ; , ℎ = exp − .  − .                                 (42) 

If the acceleration time and the interaction among the electrons are negligible, the velocity 

, ℎ,  of the electrons after acceleration is given by  

 , ℎ,  = 2, ℎ + , ℎ,  (43) 

where  = 1.6 × 10 C and  = 9.109 × 10 kg are the electric quantity and mass of an 

electron, respectively. The target velocity  is given by 

  = 2 +   (44) 
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In this example,  = , ℎ,  ∈ Ω = −0.05,0.05 m × −0.05,0.05 m × 0,10 s  and 

 = $10/m/s . Ω  is evenly discretized into  = 10 × 10 × 20 = 2000  points. We 

also use EOLE to generate the series expansions of both  , ℎ,  and , ℎ, and the first 20 

and 8 orders are kept, respectively.  

Setting the initial value of   to 2 × 10 and   to 10, the robustness analysis results 

are given in Table 8. The robustness computed by the proposed method is $ 271.25. Again, the 

proposed method is both accurate, with relative error being -0.1%, and efficient, with only 40 

function evaluations. Although two multidimensional random fields are involved, the efficiency is 

still high. The high efficiency is achieved by using the method described in Subsection 4.6, and 

the dimension of this problem is only three, including one random variable and two random fields.  

Table 8 Robustness analysis results 

Methods Proposed method MCS  $ 271.25 271.44 
Relative error (%) -0.1 -  22476 10  40 2 × 10 

 

6. CONCLUSIONS 

Existing robustness analysis methods only consider the static or time-dependent problems. 

More general are time-and space-dependent problems. In this paper, a new robustness metric is 

proposed for time-and space-dependent problems. The new metric has the following features: 

 The robustness is measured by the expected maximum quality loss over the domain of 

interest, which consists of the space and period of time under consideration. 

 This metric can fully take into consideration of the autocorrelation of the time- and 

space-dependent quality loss function at all points of the domain of interest.  
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 Minimizing the expected maximum quality loss will reduce both the deviation of a 

quality characteristic (QC) from its target and the standard deviation of the QC in the 

domain of interest, thereby maximizing the robustness. 

An efficient robustness analysis method is developed to quantify the robustness metric based 

on the Gaussian process model and efficient global optimization. The method can accommodate 

QCs that are general functions of random variables, random processes, and random fields, 

temporal variables, and spatial variables.  

Possible future work includes the following tasks: Further improve the efficiency of the 

proposed robustness analysis method, develop other robustness analysis methods, and investigate 

possible robustness metrics when multiple time- and space-dependent QCs are considered. 
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