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ABSTRACT

Product performance varies with respect to time and space in many engineering applications.
This paper discusses how to measure and evaluate the robustness of a product or component when
its quality characteristics are functions of random variables, random fields, temporal variables, and
spatial variables. At first, the existing time-dependent robustness metric is extended to the present
time- and space-dependent problem. The robustness metric is derived using the extreme value of
the quality characteristics with respect to temporal and spatial variables for the nominal-the-better
type quality characteristics. Then a metamodel-based numerical procedure is developed to evaluate
the new robustness metric. The procedure employs a Gaussian Process regression method to
estimate the expected quality loss that involves the extreme quality characteristics. The expected
quality loss is obtained directly during the regression model building process. Three examples are
used to demonstrate the robustness analysis method. The proposed method can be used for
robustness analysis during robust design optimization under time- and space-dependent

uncertainty.
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1. INTRODUCTION

Robust design optimization (RDO) [1] is an optimization design methodology for improving
the quality of a product through minimizing the effect of the causes of variation without
eliminating the causes [2]. It allows for the use of low grade materials and reduces labor and
material cost while improving reliability and reducing operating cost [2]. RDO has been used to
improve product quality in industrial applications [3, 4]. Over the last three decades, it has gained
much attention from many research fields, such as operations research [5-7], aerospace [8, 9],
structural mechanics [10, 11], vibration control [12, 13], automobile [14-16], and fatigue analysis
[17, 18]. Methods to solve RDO can be roughly grouped into three categories: probabilistic
methods [19-21], deterministic methods [22-26], and metamodel-based methods [27-32].
Probabilistic methods perform the robust optimization using the probability distributions of
random variables. Deterministic methods incorporate a non-statistical index, such as the gradient
of a response, into the optimization problem to obtain a robust optimum [32]. Metamodel-based

methods employ computationally cheap surrogate models to improve the efficiency of RDO.

Robustness analysis, which evaluates and predicts the robustness of a design, is repeated for
a number of times during RDO. Many metrics that measure the robustness exist in literature. The
most common metric is the Taguchi’s quality loss function (QLF) [2]. This metric measures not
only the distance between the average quality characteristics (QCs) and their targets, but also the
variation in the QCs [33]. There are also other robustness metrics, such as the signal-to-noise ratio

[2], the percentile difference [34], and the worst-case QCs [35].

Most of the above robustness metrics are defined for static QCs that do not change over time
and space. Some of the metrics could be used for dynamics problems, but they are only applicable

for situations where the targets of QCs vary with signals [36, 37], instead of with time. To deal
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with problems involving time-dependent QCs, Goethals et al. [38] proposed to use the weighted
sum of mean values of a QLF at discretized time instances to measure the robustness. The
weighted-sum method, however, does not take into consideration of the autocorrelation of the
time-dependent QLF, which is modeled as a stochastic process. To overcome this drawback, Du
[33] proposed to use the maximum value of the time-dependent QLF to measure the time-

dependent robustness.

In addition to the above static and time-dependent problems, more general is the time- and
space-dependent (TSD) problem [39]. In many engineering applications, QCs vary with both time
and space. There are at least two reasons for the TSD QCs. (1) A QC is a function of TSD variables,
such as the wind load and road conditions. (2) The QC itself is a function of temporal and spatial
variables. A typical example is a wind turbine. Since the wind speed varies with time and location,
it is usually modeled as a TSD random field, subjected to which, the QC of the turbine is hence

TSD.

There is a need to define a new robustness metric for the optimization involving TSD problems.
The object of this work is to derive a robustness metric for TSD problems and develop a numerical
method to evaluate it. We use the expectation of the maximum value of a TSD QLF to measure
the robustness. For the former, we employ the same strategy in [33], and for the latter we use a
metamodeling method to manage the computational efficiency because of the involvement of the
expensive multidimensional global optimization [40-43] with respect to temporal and spatial
parameters. An efficient method based on the Gaussian process model [44-47] is then proposed.
The contributions of this work are twofold. First, a TSD robustness metric is defined. It can take

into consideration of all information of the TSD QLF, including its autocorrelation. Therefore, it
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is mathematically a rigorous metric for the TSD problems. Second, a Gaussian process based

method is developed to effectively compute the TSD robustness metric.

The proposed TSD robustness metric is actually an extension of the time-dependent robustness
metric proposed in [33]. The similarity is that both the proposed TSD robustness metric and the
time-dependent robustness metric use the maximum value of the QLF to measure the robustness.
However, this study deals with a more general and complicate problem because the time-
dependent problem is only a special case of the TSD problem. From the perspective of
mathematical models, the new robustness metric needs the multidimensional global optimization
with respect to both temporal and spatial parameters, while the time-dependent one involves
unidimensional global optimizations with respect to only a temporal parameter. In addition, the

new QLF may include random fields in its input.

The paper is organized as follows. Section 2 briefly reviews the time-dependent robustness
metric, whose extension to TSD problems is discussed with a new robustness metric in Section 3,
followed by a meta-modeling numerical procedure for the new metric in Section 4. Four examples

are given in Section 5, and conclusions are provided in Section 6.

2. REVIEW OF STATIC AND TIME-DEPENDENT ROBUSTNESS METRICS
Nominal-the-best, smaller-the-better, and larger-the-better are three types of QCs [33]. In this
work, we only focus on the nominal-the-best type. The discussions, however, can be extended to

the other two types.

2.1. Static robustness metric

The most common robustness metric is the QLF. Let a QC be defined as

Y =g(X) (1)
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where X = (X1, X, ..., Xy) are N input random variables. Then the QLF is
L =A(Y —m)? )

where m is the target value of Y, and A is a constant determined by a monetary loss. The

robustness is measured by the expectation, or the mean E;, of L, which is calculated by
E, = Al(uy — m)* + o] (3)

where py and oy are the mean and standard deviation of Y, respectively. The smaller is E;, the
better is the robustness because puy (the average QC) is closer to the target m and gy (variation of

the QC) is smaller.

2.2. Time-dependent robustness metric
A time-dependent QC is given by
Y =g(X1) “4)
Note that the input of g(-) may also include random processes, which can be transformed into
functions with respect to random variables and t [48]. Thus Eq. (4) does not lose generality. At
instant t, the QLF is given as
L) = A®[Y —m()]* = ADO[gX, ) —m(D)]? ()
L(t) can measure only the quality loss at a specific time instant t and is thus called point quality
loss function (P-QLF). To measure the quality loss of a product over a time interval [g, f], Du [33]

proposed to use the extreme value or the worst-case value of L(t) over [g, f]. The worst-case

quality loss is called interval quality loss function (I-QLF) and is given by

L(tt) = trn[?%ﬁL(t) = trn[?%{A(t) [9(X,t) —m(t)]*} (6)
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Note that L(g, f) is a random variable while L(t) is a random process. Like static problems, the

expectation E}, (g, E) of L(g, f) is also used as the time-dependent robustness metric given by
E(tt) = E[L(6T)] (7
where E(-) stands for expectation. Minimizing E;, (g, f) reduces both the deviation of the QC from
its target and the variation in the QC over time interval [g, E]. When X is fixed to a specific
realization x, Eq. (6) actually shows a unidimensional global optimization problem. Multiple

samples of L(g,f) are necessary to calculate EL(E,E) using Eq. (7), and hence multiple

unidimensional global optimizations is required to obtain E}, (g, f).

3. ANEW ROBUSTNESS METRIC FOR TIME- AND SPACE-DEPENDENT QCS

In TSD problems, in addition to random variables and random processes, static random fields
and time-dependent random fields are also involved. For convenience, we do not distinguish
random processes, static random fields or time-dependent random fields. In this paper, we
generally call them random fields. Let Z = (S;, S,, S, t) be the vector comprising the three spatial
parameters (x-, y-, and z-coordinates) and the time. Note that for problems in one-dimensional and
two-dimensional space, Z = (S, t) and Z = (S, S,, t), respectively. Also note that random fields
can be transformed into functions with respect to random variables and Z [48]. Without loss of

generality, a TSD QC is then given by
Y =9(X,7) (8)
With the TSD QC, the QLF is given by

LX,Z) = AD[Y - m@D))* = A@D)[g(X,2) - m(D)] )
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L(X, Z) measures the qualify loss at any specific point z € Q, where Q is the domain of Z, and it

is also a P-QLF.

Before defining the TSD robustness metric, we propose some criteria of robustness metrics for
the TSD problems, inspired by the criteria of the robustness metrics for time-dependent problems
given in [33]. The criteria are as follows:

(a) The metric must represent the maximum quality loss over Q2. This reflects the fact that the
quality loss is not reversible. If a quality loss, including the maximum quality loss, has
occurred, there is no way to turn back.

(b) The metric should increase or at least stay the same with the expansion of O, given that other
conditions stay unchanged. The reason is that when a product involves a larger space and/or is
put into service for a longer period of time, the robustness should be worse or at least the same.

(¢) The metric should capture the autocorrelation of the P-QLF L(X,Z) over Q. Since L(X,Z) isa
random field, its autocorrelation is an important property. Two different random fields with
the same marginal distribution at any point may have very different performances if they do
not share the same autocorrelation.

(d) Minimizing the metric will lead to optimizing the mean QCs and minimizing the variations of
the QCs over Q. This criterion comes from the purpose of the robust optimization [49].

Based on the above criteria, we define the TSD robustness metric E; (Q2) as

E} (Q) = E[Lmax(X; Q)] (10)
where
Lmax(X,©2) = max L(X, z) (11)
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is the maximum value of L(X,Z) and is called the domain quality loss function (D-QLF). The
definition of Ly,,(X, Q) ensures that E; (Q2) meet Criterion (a) naturally. Let Q c Q, then it is

obvious that
Lmax(xl Q) < Lmax(xr Q) (12)

and hence EL(Q) < E; (Q). Therefore, E; (Q) meets Criterion (b). Since L, .4 (X,Q) is the
maximum value distribution [50, 51] of L(X, Z), the autocorrelation of L(X, Z) is necessary for
computing L,.,(X, Q). Different autocorrelation functions of L(X,Z) will lead to different
distributions of L,,.(X,Q), and hence E;(Q) can capture the autocorrelation of L(X,Z),
indicating that E; (©2) meets Criterion (c). Since L(X,Z), and hence L4 (X, Q) and E,(Q), are
nonnegative, minimizing E; (Q) requires that the QC g(X, Z) gets close to its target m(Z) as much

as possible. Therefore, E; (Q) also meets Criterion (d).

4. AMETA-MODLING APPROACH TO ROBUSTNESS ANALYSIS
The robustness metric defined in Eq. (10) involves the extreme value of a general random field.
It is not an easy task to evaluate the robustness metric for a given design. In this section, we discuss

our proposal numerical method for the robustness analysis.

4.1. Overview of the proposed robustness analysis

The main idea of the proposed robustness analysis method is to train a Gaussian process model
L(X,Z) for L(X,Z). Replacing L(X, Z) in Eq. (11) with L(X,Z), we can approximate L., (X, Q)

with L. (X, Q) as follows:
Zmax(x; Q) = max L(X,z) (13)
ZEQ
Then the Monte Carlo simulation (MCS) [52] is used to compute E; (Q2) by
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E(Q) = ——ymesf  (xD,0) (14)

nmcs <=1

where nycs is the sample size, and X is the i-th sample of X. Since L(X,Z) is computationally
much cheaper than L(X,Z), the proposed method can significantly improve the efficiency.
Generally, a larger number of training points of L(X,Z) is preferred to train L(X,Z) for higher
accuracy, but the efficiency will decrease because L(X, Z) in engineering applications is often a

black-box function whose evaluation needs expensive numerical procedures or simulations [53].

To balance the accuracy and the efficiency, we do not require L(X, Z) to be accurate globally.
Instead, we only need it to be locally accurate at samples of X in Eq. (14). To this end, we employ
the efficient global optimization (EGO) [54, 55] to adaptively add training points to update L(X, Z).

To have a quick overview to the proposed method, we give a simplified flowchart in Fig. 1.
There are in total eight steps in the proposed method. Details of Step 2 will be given in Subsection
4.2. The EGO, which comprises Steps 3 through 5, will be detailed in Subsection 4.3. We propose
two stopping criteria in Steps 4 and 7. Detailed information is given in Subsection 4.4. The
implementation of the algorithm and the detailed flowchart will be given in Subsection 4.5. In

Subsection 4.6, we discuss how to deal with a more general problem that involves random fields.
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Step 1
Randomly generate samples of X for MCS.

l

Step 2

Generate initial training set.

Construct L (X,Z) with the training set.

Step 4
If I has been

well trained

Step 5
Add a sample to update

the training set.

Step 6
Compute £, () with MCS.

Step 8
Add samples to the
MCS sample set of X.

Return £, (Q).

Fig. 1 Simplified flowchart

4.2 Initial training set
The principle of generating initial training set for building a Gaussian process model is to
spread the initial training points evenly. Commonly used sampling methods include random

sampling, Latin hypercube sampling and Hammersley sampling [56]. In this study, we employ the
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Hammersley sampling method because it has better uniformity properties over a multidimensional
space [57].

Since the dimension of the entire input vector (X,Z) is N + N, where Ny is the dimension of
Z, the Hammersley sampling method generates initial training points in a hypercube [0,1]V*Vz,
To get initial training points of X, we can simply use the inverse probability method to transform
the training points from the hypercube space to the X-space. As for the initial training points of Z,
we treat all components of Z as if they were independent uniform random variables and then also
use the inverse probability method to transform the training points from the hypercube space to
the Z-space.

Samples of a row random vector are assembled into a matrix. For example, the initial training

points x'™ of X = (X1, X, ..., Xy) are

[ NORMO ORI ]
x® (2) - (2)
=| X I (15)
[ (nm) (nln) (nln)J
N

where n;,, is the total number of initial training points. With x'® and the initial training points z"
of Z, we then obtain initial training points ' of L(X, Z) by calling Eq. (9). Finally, we get the

trn trn ltrn) — (Xln in lln)

initial training set (x where the superscript #7n represents training

points.

4.3 Employment of EGO

trn trn ltI‘l’l) we can

EGO is based on the Gaussian process model. With the training set (x
build L(X,Z). Because only a limit number of training points are used, L(X,Z) has model

uncertainty (or epistemic uncertainty), which is measured by o(X, Z).
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Practically, when L(X,Z) is available, we need to discretize Q to compute the maximum value

Linax (X, Q) with Eq. (13). If we discretize Z i, the j-th element of Z, into m; points, then Q will be

. . . N . . .
discretized into ny = [[; %, m; points. For convenience, we denote the ng points of Z by 79,

whose dimension is ng X Nz. Then Eq. (13) is rewritten as

Loax(X, Q) = max L(X, z) (16)
7€z

Since L% (X, Q) may not be the exact global maximum, we need to add training points of
(X,Z,L) to update L(X, Z) so that the L,,(X, ) will be more accurate. To determine how to add
a new training point, we use the well-known expected improvement (EI) learning function [55]

given by

EI(%,2) = (L — Lina) ® (522) + o(x, 2)p (S2) 17)

o(x,z) o(x,z)

where L = L(x,z) and Lax = Linax(X,Q); @®(-) and ¢(-) are the cumulative distribution
function and probability density function of a standard Gaussian variable, respectively. EI(X, z)
means that the exact Ly, (X, Q) is expected to be EI(x, z) larger than the current L, (X, Q). In
other words, if we add a training point at (X,z) to update L(X,Z), we expect to update current
Liax (%, Q) to Loy (X, Q) + EI(X,z). In principle, we should update L, (X, Q) by a step size as
large as possible so that the algorithm converges quickly. Therefore, we determine the next training

point (X(next), Z(next)) by

(next) ., (next)) —

X ,Z = El(x,z 18
( ) ars xexl"lrgse,lxzezQ (x,2) (18)
where xMCS represents the MCS population of X. Eq. (18) indicates a double-layer optimization.

The reason is that whenever we want to optimize Z in Eq. (18), we must fix X to a specific
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realization x so that Eq. (16) can be used to calculate L .. With Eq. (9), we can obtain the next
training point 1¢XY of L(X, Z). Then the training set (x™™, z"™, 1"™) is updated through

[ trn
xtm = | X
X(next)

o Ztrn 19
z - _z(next) ( )

thrn _ [ ltrn ]
- _l(next)

The updated training set (x"™, z'™,1%™) is used to refine L(X, Z). Then L ,«(X, Q) in Eq. (16)

and hence E;(QQ) in Eq. (14) are also updated. With similar procedures, training points are
iteratively added into the training set, and E; (QQ) is updated iteratively until stopping criteria are

satisfied.

4.4. Stopping criteria

In this subsection, we discuss two stopping criteria in Steps 4 and 7 shown in Fig. 1. The
purpose of the stopping criterion in Step 4 is to judge whether more training points are necessary
to update L (X, Z). A straightforward stopping criterion is

max  [EI(%,2)/Lmax(x Q)| < ¢ (20)
€z

xexMCS | 7

where c is a threshold, which usually takes a small positive number, such as 0.005. This stopping
criterion guarantees that for any x € xM®S, the absolute value of the expected improvement rate of
Liax (X, Q) is small enough. In other words, this stopping criterion guarantees that the nycsg
samples of L., (X, Q) are all accurate enough so that E; (Q) is accurate enough. The threshold c,
however, does not directly measure the accuracy of E;(€2). As a result, it is hard to determine a
proper value for c. If we set a too small value to ¢, it may result in unnecessary iterations and hence

an unnecessary computational cost. To resolve this problem, we propose a new stopping criterion
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W =

{mean max EI(X, z)]}/EL(Q)| <w (21)

xexMCS lzezQ
where w is another threshold, which usually takes a small positive number, such as 0.005. Since

max EI(X,Z) is the maximum expected improvement of L, .4 (X, ), mean | max EI(x,z)| is the
7€z xexMCS Lzez0

expected maximum improvement of E; (). Then, W is the absolute value of the expected
improvement rate of E; (Q2). W directly measures the accuracy of E; (Q2), and so we can set the
value of w according to specific engineering requirement. For example, if we set w = 0.005, no
more training points will be added if adding more training points can change current E; (Q2) by no
more than 0.5%. As a result, if nycg is sufficiently large, the relative error of the obtained E; ()
is expected to be between —0.5% and 0.5%.

Step 7 mainly deals with the following question: How many samples of L., (X, Q) are enough
to obtain accurate E; (Q)? Since Ly, (X, Q) is a random variable, the sample size needed to
estimate its mean value E; (QQ) is dependent on the standard deviation o () of L, (X, Q). Since
the sample size is nycs, the deviation coefficient I' of E; (QQ) is

o(Q) (22)

[=— "
E,(Q)\/nyucs

where E; (Q) is estimated by Eq. (14), and 6(Q) is estimated by

nmMmcs

1 - ,
0(@) = |——= ) [Lnaxx©,0) - E,@)]’ (23)
Nmes — 1 pr
Eq. (22) shows that the larger is ny s, the smaller I' will we obtain. A smaller I' means that the

estimated E; () is more accurate. Therefore, we use the following stopping criterion in Step 7:

I'<y (24)

where v is a threshold, which usually takes a small positive number, such as 0.005.
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If the stopping criterion in Eq. (24) is not satisfied, how many samples do we need to add to

the current sample set xM¢5? Combining Eq. (22) and Eq. (24), we have

a(@) |’

A 25
E (Q)y 23

Nycs = [

It means that to meet the stopping criterion in Eq. (24), we should use a sample size at least

() 2 . B
[EL(Q)V] . For convenience, let ny = round {[

()

2
here round(-) represents the operation
EL(Q)V] } w () rep p

to get the nearest integer. Then the number n,44 of samples we should add to the current sample

set xMCS ig

Nadd = Mo — NMcs (26)
However, when L(X, Z) is too rough at the first several training iterations, both E; (Q2) and o(Q)
may have very poor accuracy. As a result, n,qq determined by Eq. (26) may be misleading. To
resolve this problem, we set a threshold 7,44 for n,qq. Then n,q44 1s modified to

fladd, if Mo — Nmcs > lada

i 2
ng — Nucs, otherwise (27)

Nadd = {

4.5 Implementation
In this subsection, we give the detailed procedure of the proposed method. The detailed
flowchart is shown in Fig. 2. The total number n.,; of function evaluations in Eq. (9) is used to
measure the main computational cost of the proposed method, since Eq. (9) usually involves the

computation of an expensive black-box function.
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MCS
Generate n,,. random samples x |

trn

Generate initial (x ,z“'“) using the

Hammersley sampling method

L]

Compute 1™ by substituting
(le’zlﬂl ) mto Eq‘ (9)1 ncall = nin

*A Update
Construct L(X,Z) m _m ym
. trm _ trn lml (X - Jl )
using (x FARLS through Eq. (19)

Y A

> Compute L, (X,Q) at x™* through Eq. (16)

v

Compute E, (Q) through Eq. (14)

Compute W through Eq. (21) |

Find (X(ucxll,z(n:xr) )
Yo through Eq. (18)

and compute 1",
Ves n n_.+1

cal = Mean
Compute /" through Eq. (22)|

Return E, (Q)

No

Compute n,;, through Eq. (27)‘

v

Randomly generate n,,; samples of X

and add them into sample set x"'*

Pyies = Pycs 1 g

Fig. 2 Detailed flowchart
The strategy of the extreme value in this study is similar to what the nested extreme response
surface approach [58] employs, because both methods use the same EGO to solve the global
optimization problem. But the problem in the former method is the multidimensional global

optimization with respect to time and space while the problem in the latter method is a
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unidimensional one with respect to time. As a result, the learning functions and stopping criteria

of the two methods are different.

4.6 Extension to problems with input random fields

When the TSD QC g(-) involves input random fields, it is straightforward to use the series
expansion of the random fields so that the above implementation of the proposed method still holds.
For example, a QC is given as

Y =9(X,H(Z),Z) (28)

where H(Z) is a vector of random fields. To easily present the idea, we assume there is only one
random filed, given by H(Z). Widely used series expansions for random fields include, but are not
limited to, the Karhunen-Loeve series expansion (K-L), the orthogonal series expansion (OSE),
and the expansion optimal linear estimation method (EOLE) [48]. Since Q is discretized into z%,
the autocorrelation coefficient function of H(Z) is discretized into the autocorrelation coefficient

matrix My with dimension ng X ng. Then the EOLE expansion H(§,Z) of H(Z) is given by

HED = (@) +ou(@) Y VM, (10,2 € 2° 29)

k=1 \/_
where uy (z) is the mean value function of H(Z), o (z) is the standard deviation function of H(Z),
ok = ., Mg are ng independent standard Gaussian variables, A, is the k-th eigenvalue of
M}, V, is the k-th (row) eigenvector of My, and My (:, k) is the k-th column of M. Note that the
eigenvalues are sorted from the largest to the smallest. Usually only the first p (p < ng)
eigenvalues are significant. Therefore, Eq. (29) is practically truncated, and only the first p orders

are kept:

HED =@+ o @Y. J_kaH< ),z €2 (0)
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Then the dimension of  is p. With the expansion, Eq. (28) is rewritten as

Y =g[X,H(E 72),Z] €2))

or equivalently as

Y = 9(% 2) (32)

where X = (§,X). Eq. (32) shares the same format with Eq. (8), and hence the above

implementation in Subsection 4.5 is also applicable.

The direct implementation this way, however, may suffer from the curse of dimensionality.
Since many random variables, i.e. &, are in the series expansion H (&, Z), the dimension of & and
hence that of g(x, Z) is high. As a result, the dimension of the surrogate model Z(X, Z) is also
high. The high-dimensional surrogate model has as least two drawbacks. First, it is not cheap
anymore, losing its expected advantages. Second, more training points are needed for an
acceptable accuracy. To overcome the drawbacks, we build a surrogate model L(X,H,Z) with

respect to X, H and Z. Note that the entire random field H is treated as only one variable for
Z(X, H,Z). Then the surrogate model f(x, Z) with respect to X and Z is obtained through

L(X,Z2) =L[X H(§ Z),Z] (33)

Since the truncated series expansion H (&, Z) in Eq. (30) has a simple closed-form expression,

if Z(x, H,Z) is accurate and efficient, so will be Z(X, Z) in Eq. (33). Since the dimension of

L(X,H,Z) is (p — 1) lower than that of Z(X, Z), it is more efficient to train L(X, H, Z) with higher

accuracy. To build L(X, H, Z), we need the training points h®™™ of H. h'™ can be obtained simply

by substituting (™, z"™) into Eq. (30). Similarly, when (ex9, z(exV)) s determined by Eq.

(18), the next training point h(¢XY of H is obtained by substituting (£eXV, z(mexV) into Eq. (30).
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Note that xext) = (gnext) xext)) When more than one input random fields are involved, the
procedure of building and updating the surrogate model L is similar.

However, it should be mentioned that Eq. (33) is not suitable for all problems involving input
random fields. Roughly speaking, the problems involving input random fields, including random
processes which are unidimensional random fields, can be grouped into two categories. To
distinguish the two categories, we first need to make it clear that whenever Z in Eq. (28) is fixed
to a specific realization z®, H(z¥) and g(X, H(z®),z¥) are a random vector and a random
variable, respectively. If the randomness, or uncertainty, of the output random variable
g(X, H(z(i)), z(i)) only comes from the input random variables X and H(z(i)), then the problem
belongs to Category 1. If the randomness of g(X,H(z(i)),z(i)) comes from not only X and
H(z¥) but also H(z"?),j # i, then the problem belongs to Category 2. Eq. (33) can only deal
with problems in Category 1. When dealing with Category 2 problems, we cannot treat the entire
random field as a single input variable to L anymore. Instead, we must treat each component of &
as an input variable to L, resulting in a high-dimension Gaussian process model. Currently the
Gaussian process model cannot work well for high-dimensional problems. Therefore, we only
consider Category 1 when input random fields are involved, and in the example section, both

Example 3 and Example 4 belong to Category 1.

5. NUMERICAL EXAMPLES

In this section, we use four examples to test the proposed method. The first one is a
mathematical example. With a low-dimension case in this example, we aim at clearly illustrating
the detailed procedure of the proposed method. Then we test the method by setting a higher

dimensionality for this example. The second one is an engineering example involving only random
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variables while the third one, also an engineering example, involves both random variables and
unidimensional random fields. The last engineering example involves multidimensional random
fields.

The direct MCS is also used to compute the TSD robustness metric. MCS calls the original
QLF model in Eq. (11) directly. The sample size of MCS is set to 10°. The results of MCS are
treated as the exact ones for the accuracy comparison. For all examples, the convergence thresholds
w, v, and n;,, are set to 0.005, 0.005, and 10, respectively. Both methods share the same

discretization of Q.

5.1. A math problem
The QC is given by

N N

y = Z X2+ 0.1(Zy + Z, + 5)2sin(0.12,) Hxi (34)

- g

i =1

where (X4, X, ..., Xy) are N independent and identically distributed normal variables with mean
and standard deviation being 1 and 0.02, respectively. The domain Q of Z = (Z,,Z,) is [0,2] X
[0,5]. m(Z) is given as
m(Z) = 0.1(Z, + Z, + 5)?*sin(0.1Z,) (35)
and A(Z) = $1000. Z; and Z, are discretized into 20 and 50 points, respectively; so there are
ng = 102 discretization points in z.
For an easy demonstration, we first consider a low-dimension case and set N = 2. Using the
Hammersley sampling, we generate 10 initial training points in the hypercube [0,1]¥*Nz = [0,1]*.
The initial training points are given in Table 1. Then we transform the first two data columns into

Z-space, using the inverse probability method mentioned in Subsection 4.2, to get the initial

training points z™. Note that each training point in z" is rounded to the nearest one in z*. The
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last two data columns are transformed into X-space to generate x'™. Substituting those points in
(xi“, zin) one by one into Eq. (9), we obtain 10 initial training points I'® of L. z'™, x'™ and '™ are
given in Table 2. Since Eq. (9) is called 10 times, n.,; = 10. Initially we set nycs = 400.

Table 1 Initial training points in hypercube space
Point number Data

0.0000 0.5000 0.3333 0.2000
0.1000 0.2500 0.6667 0.4000
0.2000 0.7500 0.1111 0.6000
0.3000 0.1250 0.4444 0.8000
0.4000 0.6250 0.7778 0.0400
0.5000 0.3750 0.2222 0.2400
0.6000 0.8750 0.5556 0.4400
0.7000 0.0625 0.8889 0.6400
0.8000 0.5625 0.0370 0.8400
0.9000 0.3125 0.3703 0.0800

O 00 3 &N i B W N~

—
(e

With the initial training points, we build the initial L(X, Z). Then using Eq. (14) and Eq. (21)
we obtain E; (QQ) = $4044.5 and W = 1.41%, respectively. W = 1.41% means that if we add
more training points to update L(X,Z), we expect to improve the current E; (Q) by 1.41%. Since
1.41% is larger than the threshold value 0.5%, more training points are needed. The learning
function in Eq. (18) locates the next training point (z(®eXY,x("exV) at (0,0,0.9263,0.9630).
Substituting (z®eXY, xexV) into Eq. (9), we obtain 10*Y) = 3188.0 and then update ncyy =
Nean + 1 = 11. The new training point is added into current training set to update L(X,Z). With
the process going on, more and more training points are added. In total 7 training points are added
one by one, which are given in Table 3. n.,; becomes 10 + 7 = 17. The update of W is shown in
Fig. 3. In Iteration 8, the 7' training point shown in Table 3 is added to update L(X, Z), resulting
in W = 0.45% < 0.5%. Therefore, no more new training points are needed. Note that in all the

eight iterations, nycs = 400 remains unchanged.

Xiaoping Du 22 Copyright © 2019 by ASME



Table 2 Initial training points in X-space and Z-space
Point number zn xin ]in
0.0000 2.5000 0.9914 0.9832 3664.4
0.2000 1.2500 1.0086 0.9949 4036.1
0.4000 3.7500 0.9756 1.0051 3618.5
0.6000 0.6250 0.9972 1.0168 4128.0
0.8000 3.1250 1.0153 0.9650 3657.3
1.0000 1.8750 0.9847 0.9858 3639.8
1.2000 4.3750 1.0028 0.9970 3993.8
1.4000 0.3125 1.0244 1.0072 4277.8
1.6000 2.8125 0.9643 1.0199 37223
1.8000 1.5625 0.9934 0.9719 3586.5

O 00 3 N D B~ W N =

—_
()

Table 3 Added training points
Iteration 7z (next) x (next) |(next)

1 0.0000 0.0000 0.9263 0.9630 3188.0
2.0000 0.0000 0.9769 1.0544 4269.2
2.0000 5.0000 0.9263 0.9630 1082.4
0.0000 5.0000 1.0557 0.9859 5208.2
0.0000 5.0000 1.0222 1.0460 6107.1
2.0000 0.0000 1.0161 0.9451 3707.9
2.0000 0.0000 0.9330 0.9927 3444.1

N N L AW

To check if 400 samples are sufficient to obtain accurate E; (Q2), we calculate I" using Eq.
(22), which results in I' = 0.0064. Since 0.0064 is larger than the threshold y = 0.005, the sample
size nycs = 400 is not sufficiently large and hence we need to increase it. From Egs. (25) and
(26), we know that nycs should be increased by at least 247. However, according to Eq. (27) we
only increase it by 100, because we set the hyperparameter 71,44 = 100. The reason for limiting
the increasing step of nycs has been given in Subsection 4.4. Then with the updated nycs =

400 + 100 = 500 and updated xMCS we calculate W again to check if L(X,Z) is still accurate.
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Fig. 3 shows that W < 0.5% in Iteration 9; hence L(X, Z) is still accurate. We calculate I' and then

W again and repeat the process until both W < 0.5% and I' < 0.005 are satisfied.

lteration

Fig. 3 Update of W

Table 4 Robustness analysis results

Methods Proposed method MCS
E (Q)($) 4.28 x 103 4.35 x 103
Relative error (%) -1.5 -
NMcs 677 105
Ncall 17 108

The final results, as well as the results obtained directly by MCS, are given in Table 4. The
robustness computed by the proposed method is $4.28 X 103, and the robustness by MCS is
$4.35 x 103. The proposed method is very accurate, with a small relative error of —1.5%. In
addition to the 10 initial training points, 7 more training points are added adaptively to update the
Gaussian process model, and hence the proposed method costs 17 function calls. The proposed
method adaptively increases the sample size, obtaining accurate results with only 677 samples.

To test the proposed method with higher dimensionality, we set N = 8 while keeping other
parameters unchanged. The results obtained from the proposed method and MCS are given in

Table 5. The robustness computed by the proposed method is $6.70 X 10%, and the robustness by
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MCS is $6.67 x 10*. The relative error is 0.5%, and 70 function calls and only 400 samples are
used by the proposed method. In this case, N = 8 and N, = 2, and hence the dimensionality of
L(X,Z) is 10. The two cases show that the proposed method works well for both low dimension
and moderate dimension in this example problem.

Table 5 Robustness analysis results

Methods Proposed method MCS
E (Q)($) 6.70 x 10* 6.67 x 10*
Relative error (%) 0.5 -
NMcs 400 10°
Ncal 70 108

Note that the second case needs a smaller sample size (nycs = 400) than that (nycs = 677)

of the first case, although the dimensionality is higher in the second case. The reason is that the

_ . Q . . .
deviation coefficient % of L. (X, Q) in the first case is larger than that in the second case.
L

5.2. A slider mechanism

Shown in Fig. 4 is a slider mechanism [39]. The spatial variables are the offset H and the initial
angle 6, with the following ranges: H € [14.85,15.15] m and 8, € [—2°,2]. The time span is
t € [0,0.17] s. Then the Z vector is (H, 8, t). The random variable vector is X = (L4, L,), which
includes two independent random link lengths L;~N(15,0.015%) m and L,~N(35,0.035%) m.

The QC, or the actual position of the slider, is

Y =L, cos(6, + wt) + \/L% — (H + Ly sin(6y + wt))? (36)

where w = 1 rad/s is the angular velocity. The target QC is

m(Z) = 15 cos(wt) + /352 — (15 + 15 sin(wt))? (37)
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and A(Z) = $1000/m?2. The intervals of h, 8, and t are all evenly discretized into 20 points.
Accordingly, Q = [14.85,15.15] m x [—2,2°] X [0,0.17] s is discretized into ng = 20 X
20 X 20 = 8 x 103 points.

Setting the initial value of nycg to 1000 and 71,44 to 100, the robustness analysis results are

given in Table 6. The proposed method is accurate and efficient with 31 function calls.

Fig.4 A slider mechanism

Table 6 Robustness analysis results

Methods Proposed method MCS
E. (Q)($) 88.43 88.02
Relative error (%) 0.5 -
NMcs 1492 105
Ncall 31 8 x 108

5.3. A cantilever beam

Shown in Fig. 5 is a cantilever beam. Its span L = 1 m. Due to the machining error, the
diameter of its cross section is not a deterministic. Instead, it is modeled as a one-dimensional
stationary Gaussian random field D (x). The mean value up and standard deviation op of D(x) are

0.1 m and 0.001 m, respectively. Its autocorrelation coefficient function pp (x4, x,) is given as
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pp (x1,%3) = exp[—(x; — x3)?] (38)

F
(et D(x)

Fig. 5 A cantilever beam

The beam is subjected to a torsion T(t) and a tensile force F at the right endpoint. F is a
normal variable with mean up and standard deviation gz being 1000 N and 100 N, respectively.
T(t) is a stationary Gaussian process with mean u; and standard deviation a; being 200 N - m

and 20 N - m, respectively. Its autocorrelation coefficient function p;(ty, t,) is given by

pr(tit) = exp| - (22) ] (39)

The maximum von Misses stress of the beam is the QC and is given by

4F 1?2 _[16T(®)]°

The target m(Z) = 0 and A(Z) = $1000/(Mpa)?. The domain Q of Z = (x,t) is [0,1] m X

[0, 5] yr and is evenly discretized into ng = 20 X 50 = 1000 points.
With pp (x4, x,) we can get the autocorrelation coefficient matrix M, of the one-dimensional
random field D(x). Since x is discretized evenly into 20 points, the dimension of M, is 20 X 20.

The most significant three eigenvalues of M, are 17.0693, 2.7182 and 0.2026. We use EOLE to
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generate the series expansion of D (x) and only keep the first three orders. Similarly, we use EOLE
to generate the series expansion of T (t) and only keep the first six orders.

Setting the initial value of nycg to 1000 and i,44 to 1000, the robustness analysis results are
given in Table 7. The robustness computed by the proposed method and by MCS are $3.85 x 103
and 3.88 x 103, respectively. The relative error of the robustness computed by the proposed
method is only —0.7%. The proposed method calls the original quality loss function 13 times,
showing its high efficiency.

Table 7 Robustness analysis results

Methods Proposed method MCS
E.(Q) (%) 3.85 x 103 3.88 x 103
Relative error (%) -0.7 -
NMcs 1000 10°
Necall 13 108

5.4. An electron accelerator

Shown in Fig. 6 is an electron accelerator, which is used to accelerate electrons to a higher
speed. Electrons are horizontally emitted from the electrode, then enter the electric field E (w, h)
in the accelerator, and finally fly out from the accelerator. The initial velocity of the electrons is a
time-dependent stationary Gaussian random field V(w, h, t), whose mean value uy, and standard

deviation gy, are 500,000 m/s and 50,000 m/s, respectively. Its autocorrelation coefficient

function py, (wy, hy, t1; Wy, hy, t3) is given by
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electrode E(w,h)

S TN ()

Vo(w, h,t)x_i:- ------------------

Fig. 6 An electron accelerator

Py (o 5w, oy 1) = exp [ (a22) — (Racte)” (1] @41)

0.2 0.2 4

The length of the accelerator L is a random variable that follows a normal distribution
N(1,0.012) m. The electric field E(w, h) is a two-dimensional stationary Gaussian random field,
whose mean value yp and standard deviation o are 10 N/C and 1 N/C, respectively. Its

autocorrelation coefficient function pg(wq, hy; Wy, hy) is given by

pe(wa by wi, ;) = exp [ (i22) — (ke “2)

0.1 0.1

If the acceleration time and the interaction among the electrons are negligible, the velocity

V(w, h, t) of the electrons after acceleration is given by

V(w,h,t) =

\/ZqE(rl:lV, h)L n VOZ(W, h, t) (43)

where ¢ = 1.6 X 1071° C and m = 9.109 x 10731 kg are the electric quantity and mass of an

electron, respectively. The target velocity V; is given by

/unEL
V, = - + uj, (44)
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In this example, Z = (w, h,t) € Q =[-0.05,0.05] m X [-0.05,0.05] m X [0,10] s and
m(Z) = $1078/(m/s)?. Q is evenly discretized into ng = 10 X 10 x 20 = 2000 points. We
also use EOLE to generate the series expansions of both Vy(w, h, t) and E (w, h), and the first 20
and 8 orders are kept, respectively.

Setting the initial value of nycs to 2 X 10* and 7,44 to 103, the robustness analysis results
are given in Table 8. The robustness computed by the proposed method is $ 271.25. Again, the
proposed method is both accurate, with relative error being -0.1%, and efficient, with only 40
function evaluations. Although two multidimensional random fields are involved, the efficiency is
still high. The high efficiency is achieved by using the method described in Subsection 4.6, and
the dimension of this problem is only three, including one random variable and two random fields.

Table 8 Robustness analysis results

Methods Proposed method MCS
E.(Q) (%) 271.25 271.44
Relative error (%) -0.1 -
NMcs 22476 105
Necall 40 2 x 108

6. CONCLUSIONS
Existing robustness analysis methods only consider the static or time-dependent problems.
More general are time-and space-dependent problems. In this paper, a new robustness metric is
proposed for time-and space-dependent problems. The new metric has the following features:
e The robustness is measured by the expected maximum quality loss over the domain of
interest, which consists of the space and period of time under consideration.
e This metric can fully take into consideration of the autocorrelation of the time- and

space-dependent quality loss function at all points of the domain of interest.
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e Minimizing the expected maximum quality loss will reduce both the deviation of a
quality characteristic (QC) from its target and the standard deviation of the QC in the
domain of interest, thereby maximizing the robustness.

An efficient robustness analysis method is developed to quantify the robustness metric based
on the Gaussian process model and efficient global optimization. The method can accommodate
QCs that are general functions of random variables, random processes, and random fields,
temporal variables, and spatial variables.

Possible future work includes the following tasks: Further improve the efficiency of the
proposed robustness analysis method, develop other robustness analysis methods, and investigate

possible robustness metrics when multiple time- and space-dependent QCs are considered.
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