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ABSTRACT 
Reliability depends on time if the associated limit-state 

function includes time. A time-dependent reliability problem can 
be converted into a time-independent reliability problem by 
using the extreme value of the limit-state function. Then the first 
order reliability method can be used but it may produce a large 
error since the extreme limit-state function is usually highly 
nonlinear. This study proposes a new reliability method so that 
the second order reliability method can be applied to time-
dependent reliability analysis for higher accuracy while 
maintaining high efficiency. The method employs sequential 
efficient global optimization to transform the time-dependent 
reliability analysis into the time-independent problem. The 
Hessian approximation and envelope theorem are used to obtain 
the second order information of the extreme limit-state function. 
Then the second order saddlepoint approximation is use to 
evaluate the reliability. The accuracy and efficiency of the 
proposed method are verified through numerical examples. 

1. INTRODUCTION 
Reliability is the probability that a product performs its 

intended function under specified conditions over a period of 
time [1]. Higher reliability means a lower chance of failure. It is 
especially critical to maintain high reliability because failures 
may be costly and catastrophic. Predicting reliability during a 
design stage is therefore imperative for many products. 

For many engineering applications, reliability depends on 
time if the associated limit-state function involves time-
dependent parameters, such as time-variant loads and the 
deterioration of material properties. For example, the wave loads 
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on offshore structures are time-dependent since the typical wave 
heights and periods change  randomly over time [2]; the material 
and dimensional properties of concrete structures vary with 
respect to time due to the time-dependent chloride corrosion 
damage [3, 4]; for mechanisms, the motion error involves time-
dependent input motion [5, 6]. 

Extensive research has been conducted on time-dependent 
reliability analysis. Existing time-dependent reliability 
methodologies can be roughly classified into three group. The 
first group is Rice’s formula based methods, whose key step is 
the computation of the upcrossing rate. For instance, a PHI2 
method was developed to compute the time-variant reliability 
[7]. Hu and Du proposed a time-dependent reliability method for 
hydrokinetic turbine blades [8]. Besides, many other empirical 
modifications [5, 9-14] have also been made. This group has 
advantages over other groups for its efficiency. But it may 
produce large errors when upcrossings are strongly dependent. 

The second group includes simulation-based methods using 
surrogate models. Most of these methods build a surrogate model 
to replace the original limit-state function by evaluating the 
response variable at a number of points predefined through 
Design of Experiment (DoE) [15-17]. Then Monte Carlo 
simulation (MCS) is performed based on the surrogate model. 
The methods include artificial neural networks (ANN) [18, 19], 
polynomial chaos expansions (PCE) [20, 21], and Gaussian 
process based method, also known as Kriging model based 
methods [22-26]. This group can evaluate the time-dependent 
reliability accurately if the surrogate model is well trained. 
Nevertheless, this may result in a high computational cost. 
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The third group contains the methods that convert time-
dependent reliability analysis into the time-independent 
reliability analysis using the extreme value of the time-
dependent limit-state function. If the distribution of the extreme 
value can be estimated accurately, the accuracy of this group is 
higher than the first group. The typical methods in this group are 
extreme value response method [22, 27], extreme value 
distribution method [28], composite limit-state function method 
[29], and the envelope function method [6].  However, it is often 
a challenging task to obtain the distribution of the extreme value 
accurately and efficiently. 

We propose a new time-dependent method using sequential 
efficient global optimization (SEGO). The new method first 
converts the time-dependent problem into a time-independent 
counterpart by using the extreme value. Then the Hessian 
approximation and envelope theorem are employed to obtain the 
second order approximation to the extreme value. Finally the 
second order saddlepoint approximation (SOSPA) [30, 31] is 
used to estimate the distribution of the extreme value. The new 
method is termed as SEGO/SOSPA. It improves the accuracy by 
using second order approximation to the extreme value of the 
limit-state function and maintains high efficiency by using 
SEGO. 

The reminder of this paper is organized as follows: Section 
2 reviews the theoretical background of this work. Then the new 
SEGO/SOSPA method is discussed in Section 3 followed by 
three examples in Section 4. Conclusions are given in Section 5. 

2. REVIEW OF FUNDAMENTAL METHODOLOGIES 
In this section, we briefly review the basic definition of time 

dependent reliability. We also discuss the commonly used first 
order reliability method (FORM).  

2.1 Time-Dependent Reliability 

In this work, we consider a limit-state function given by 
                  ( , )Y g t X                                    (1) 

where ( , )g tX  is explicit with respect to time t , 

1[ ,..., ]T
N

X XX  is an N-dimensional vector of independent 

random variables. 
For a given period of time [0, ]T , the reliability is defined 

by 

                (0, ) Pr ( , ) 0, [0, ]R T g t t T   X             (2) 

in which   means “for all”. 
The associated probability of failure is given by 

                         (0, ) Pr ( , ) 0, [0, ]
f
p T g t t T   X             (3) 

where   means “there exists at least one”. 

2.2 First Order Reliability Method (FORM) 

FORM is the most commonly used method in time-
dependent reliability analysis since it can convert the general 
non-Gaussian process into an equivalent Gaussian process [32]. 

X  is transformed into standard normal variables U . Then 

the most probable point (MPP) 
MPP

u  is identified by the 

following model: 

             
min

s.t. ( , ) ( ( ), ) 0

T

g t g T t




 

UU

X U
               (4) 

in which ( )T   is an operator of the transformation from U  to X . 

The limit-state function is linearized at 
MPP

u  by 

   
,

1

( ( ), ) ( , ) ( )

( , )( )
MPP

N

MPP i MPP i

i i

MPP MPP

g
g T t g t U u

U

g t

 


  



  


U u

U u

u U u

        (5) 

where 
1

( , ) , ... ,

MPP MPP

T

MPP

N

g g
g t

U U
 

  
  
   U u U u

u  is the 

gradient vector, and ,MPP i
u  is the i-th component of 

MPP
u . 

Finally, the probability of failure can be estimated by                          

 

1

Pr ( , ) 0, [0, ]

Pr ( , ) ( ) 0

Pr{ ( ) ( ) 0, [0, ]}

MPP

f

N

MPP i iMPP

i i

p g t t T

g
g t U u

U

t t t T

 

   

  
    

  
    


U u

X

u

α U

       (6)

in which ( )t  is the time-dependent reliability index 

                  ( )
MPP

t  u                                     (7) 

And ( )tα  is the time-dependent unit gradient vector                           

         1 2

( , )
( ) ( ), ( ),..., ( )

( , )

TMPP

N

MPP

g t
t t t t

g t
  


 


u
α

u
           (8) 

As Eq. (6) shows, the non-Gaussian process ( , )g tX has 

been transformed into an equivalent Gaussian process 
represented as a sum of standard normal random variables. A 
common method is to build the surrogate models of ( )t  and 

α( )t  with respect to t  and then to use MCS to estimate the 

probability of failure. However, it might be computational 
expensive to build accurate surrogate models. 

3. SEGO/SOSPA 
The objective of this study is to improve the accuracy of the 

time-dependent reliability analysis by employing the second-
order approximation. The central idea is to convert the time-
dependent problem into a time-independent problem using 
sequential efficient global optimization (SEGO). The second 
order approximation is obtained by using the Hessian 
approximation and envelope theorem. Then the time-
independent problem is addressed with the second-order 
saddlepoint approximation (SOSPA) [30]. 

3.1 Overview 

The time-dependent probability of failure can be evaluated 
through the extreme value of the limit-state function, expressed 
by [27] 

             
 

 [0, ]

(0, ) Pr ( , ) 0, [0, ]

Pr min ( , ) 0

f

t T

p T g t t T

g t


   

 

X

X
          (9) 
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The extreme limit-state function, also known as the 
envelope function [6], or the composite limit-state function [29], 

[0, ]
min ( , )
t T

g t


X  is obtained by 

                       
[0, ]

( ) min ( , ) ( , ( ))
t T

G g t g t


 X X X Xɶ              (10) 

where ( )G X is the global minimal value of ( , )g tX  with respect 

to t .  ( )G X  is time independent and only depends on X . tɶ  is 

the time instant when the global minimal value occurs. tɶ  is a 
function of X . 

                                   [0, ]
min ( , )
t T

t t g t


 Xɶ              (11) 

Now Eq. (9) can be converted into the following time-
independent problem: 

            
 
 

(0, ) Pr ( , ) 0, [0, ]

Pr ( ) 0

fp T g t t T

G

   

 

X

X
            (12) 

Then a time-independent reliability method can be applied 
after the conversion. In this work, we assume that ( )G X  exists 

and is continuously differentiable. 

3.2 SEGO 

In this subsection, we discuss the proposed method. 

3.2.1 Sequential Optimization 

It is very difficult to analytically obtain the extreme limit-
state function ( )G X . So FORM is generally used to 

approximate ( )G X , and the MPP of ( )G X  is found by using the 

following optimization model: 

                        
[0, ]

min

s.t. ( ( )) min ( ( ), ) 0

T

t T
G T g T t




  

UU

U U
             (13) 

Eq. (13) is formulated as a double loop structure. The inner 
loop is the global optimization with respect to time t , while the 
outer loop is the MPP search with respect to U . The 
computational cost of the double loop optimization is very high. 

Inspired by sequential optimization and reliability 
assessment (SORA) [33], we use a sequential strategy to 
decouple the global optimization from the MPP search and 
perform the two loops sequentially. In the first cycle, FORM is 

used to locate the MPP (1)
MPP

u  at the initial time 0t . 

                                   
0

min

s.t. ( ( ), ) 0

T

g T t






UU

U
             (14) 

After the MPP (1)
MPP

u  is obtained, the global optimization is 

performed by fixing U  at the (1)
MPP

u , and optimal time is 

obtained as 
(1)
tɶ . 

                              
(1) (1)

[0, ]

arg min ( ( ), )
MPP

t T

t g T t


 uɶ              (15) 

In the second cycle, the new MPP (2)
MPP

u  is located at the 

time instant 
(1)
tɶ  using Eq. (14). And then the extreme value time 

is updated to 
(2)
tɶ  by performing global optimization at (2)

MPP
u . 

(2) (2)

[0, ]

arg min ( ( ), )
MPP

t T

t g T t


 uɶ                         (16) 

This process is repeated until convergence. The global 
optimization is discussed in Sec. 3.2.2.  

The flowchart of the above procedure is illustrated in Fig. 1. 

 
Fig. 1 Flowchart of sequential optimization 

 

3.2.2 Efficient Global Optimization (EGO) 

The global optimization method used in this study is the 
efficient global optimization (EGO) [22, 27, 34]. EGO has been 
widely used in various areas [35, 36] because it can search for 
the global optimum with high computational efficiency. In this 
work, we search for a time instant where ( ( ), )

MPP
Y g T t u  is 

minimized. Recall that 
MPP

u  is fixed during the optimization 

process, and then ( ( ), )
MPP

g T tu  is a one-dimensional function. 

We denote this function as ( )g t ; namely, ( ) ( ( ), )
MPP

g t g T t u . 

We then create its surrogate model ( )g t  as follows: 

                    ɵ  ( ) ( ( ), ) ( ) γ + ( )T

MPP
y g t g T t F t Z t  u            (17) 

where ( ) γTF t  is a deterministic term, ( )F t  is a vector of 

regression functions, γ  is a vector of regression coefficients, 

and ( )Z t  is a stationary Gaussian process with zero mean and a 

covariance given by 

                           2
1 2 1 2Cov[ ( ), ( )] ( , )

Z
Z t Z t R t t                (18) 

in which 2
Z

  is process variance, and ( , )R   is the correlation 

function. 
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The output of the surrogate model is a Gaussian random 
variable following 

                               ɵ   2( ) ~ ( ), ( )y g t N t t              (19) 

where ( )t  and 2 ( )t  are the mean and standard deviation of 

ɵy . If t  is a training point, ( ) ( )t g t   and ( ) 0t  . This 

means that the surrogate model is exact at a point where the 
model is trained. 

After building the initial model, the expected improvement 
(EI) metric is used to identify the new training point with the 
highest probability to produce a better extreme value of the 
response. The improvement is defined by 

                                 *max( ,0)I y y                (20) 

in which *

1,2,...,
min ( )

i
i k

y g t


  is the current minimum response 

obtained from the sampled training points.  
Thus its expectation or EI is computed by [34] 

       
 

*

* *
*

EI( ) [max( ,0)]

( ) ( )
( ) ( )

( ) ( )

t E y y

y t y t
y t t

t t

 
  

 

 

    
      

   

      (21) 

where ( )   and ( )   are the cumulative distribution function 

(CDF) and probability density function (PDF) of a standard 
normal variable, respectively. 

Table 1 Algorithms of EGO 

Steps  Procedure 

1 Generate  initial training points 1 2[ , ,..., ]s

k
t t tt  and 

compute the response of limit-state function 

1 2[ ( ), ( ), , ( )]s

k
g t g t g ty …  

2 
Construct a surrogate model ɵ ( )y g t  using 

 ,s s
t y  

3 Find the global minimum *

1,2,...,
min ( )

i
i k

y g t


  and 

corresponding time *
t  

4 Search for 1 arg max EI( )
k

t
t t  , where EI( )t  is 

computed by Eq. (21) 
5 Compare max EI( )

t
t  with EI : if EImax EI( )

t
t  , 

stop and give the final optimum *y  and *
t ; 

otherwise, go to next step 
6 Update 1[ , ( )]s s

k
g t y y  and 1[ , ]s s

k
t t t , and 

repeat steps 2-5 
 
The new training point 1k

t   is identified as the time that 

maximizes the expected improvement. 
                                   1 arg max EI( )

k
t

t t                   (22) 

The procedure of EGO is described in Table 1. More details 
can be found in Ref. [34].  

In this work, the convergence criterion of EGO EI  is 

chosen as *
EI 2%y   . 

By combining sequential strategy with EGO, the MPP *
u of 

extreme limit-state function  G X  can be obtained efficiently 

by solving Eq. (13). If FORM is used, the probability of failure 
is estimated by             

                        

 
 

*

(0, ) Pr ( , ) 0, [0, ]

Pr ( ) 0

( )

f

F

p T g t t T

G



   

 

  

X

X           (23) 

where * *
F  u  is the first order reliability index of the extreme 

limit-state function.  
Since the above method uses FORM and SEGO, we denote 

this method as SEGO/FORM. In general, the extreme limit-state 
function can be highly nonlinear and SEGO/FORM may not be 
accurate enough. In Sec. 3.3, we discuss how to develop a 
second-order approximation method. This method uses the 
Hessian approximation and envelope theorem to obtain the 
second order information of the extreme limit-state function. 
Then SOSPA is used to estimate the probability of failure. 

3.3 Hessian Approximation and Envelope Theorem 

The second-order approximation requires the Hessian 
matrix. But it is challenging to calculate the Hessian because it 
consists of second derivatives of the extreme limit-state function 
with respect to random input variables X . Hence a quasi-
Newton approach [37, 38] is introduced in this work to 
approximate the Hessian matrix. This Hessian approximation 
method can take advantage of the MPP search information in 
SEGO, leading to high efficiency. 

The Hessian matrix is updated using the following formulas 
[38] 

   
( ) ( ) ( ) ( ) ( ) ( )

( 1) ( )

( ) ( ) ( ) ( )

( )( )

( )

k k k k k k T
k k

k k k T k

  
 



r H s r H s
H H

r H s s
          (24) 

where 

                              
( ) ( 1) ( )

( ) ( 1) ( )

k k k

MPP MPP

k k kG G





  


  

s u u

r
               (25) 

in which ( )k
MPP

u  represents the MPP at current iteration k  used in 

the SEGO, ( ) ( ) ( )
1 ,...,

T
k k k

nG G U G U         is the gradient 

vector of the extreme limit-state function, and ( )k
s  and ( )kr  are 

the variation of the MPP and the gradient between two 
successive iterations, respectively.  

The approximated Hessian is expected to converge to the 
true Hessian as the MPP reaches the true MPP. However, SEGO 
does not provide the gradient information of the extreme limit-
state function, and extra computational effort is needed. In this 
case, the finite difference method is used. 
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( ) ( )

min ( , ) min ( , )

i i i

i i

i i i
t t

i

G u u G uG

U u

g u u t g u t

u

  


 

  




              (26) 

As Eq. (26) indicates, min ( , )i i
t
g u u t   needs additional 

global optimization at 
i i
u u  . Directly using the finite 

difference method will increase N  times of global optimization 
at each iteration in order to obtain the gradient. This is very 
computationally expensive. 

To reduce the computational cost, we use the envelope 
theorem, which is a widely used method in economic 
optimization field [39, 40]. The envelope theorem can connect 
the derivative of extreme limit-state function with the derivative 
of original limit-state function. 

       
( )

, ( ) ( , )
i i i t t

G g t g t
U U U



  
 

  
U

U U U U
ɶ

ɶ           (27) 

Eq. (27) indicates that the gradient of the extreme limit-state 
function (the envelope function) at U  equals to the gradient of 

the original limit-state function at time instant ( )t t Uɶ . 

Eq. (26) becomes 

                         

( )

( ) ( )

( , ) ( , )

i i i

i i

i i i

i t t

G u u G uG

U u

g u u t g u t

u


  


 

  



uɶ

             (28) 

Then only N  function calls are required in each iteration by 
using the envelope theorem. This makes the method more 
efficient. 

Combining Eqs. (24) and (28) yields the gradient G  and 
Hessian matrix H  of the extreme limit-state function. Then the 
second order reliability method can be used. 

3.4 SOSPA 

Once the MPP *
u , gradient G , and Hessian matrix H  of 

the extreme limit-state function are available, the second 
approximation to the extreme limit-state function is formulated 
as 

                             ( ) T TG a  U b U U CU               (29) 

where 

                             

 * * * *

* *

1
( )

2

( )

1

2

T
Ta G

G

  


  

 


u Hu u u

b u Hu

C H

             (30) 

Then SOSPA [30] is employed to estimate the probability 
of failure, and it is considered in general more accurate than the 
traditional SORM methods such as Breitung’s [41] and Tvedt’s 
methods [42]. 

After the extreme limit-state function is approximated in Eq. 
(29), we can obtain the cumulant generating function (CGF). 

                       
1

* 21 1
( ) log(1 2 )

2 2

n

F i

i

K t t t tk


                 (31) 

The derivatives of CGF are 

                              
1

*

1

( )
1 2

n
i

F

i i

k
K t t

tk






    
                      (32) 

                              
 

21

2
1

( ) 1
1 2

n
i

i i

k
K t

tk





  


              (33) 

The saddlepoint 
s
t  is obtained by solving the following 

equation: 

                          
1

*

1

( ) 0
1 2

n
i

F

i i

k
K t t

tk






     
              (34) 

Then the probability of failure is evaluated by 

                    

 
 

(0, ) Pr ( , ) 0, [0, ]

Pr ( ) 0

1 1
( ) ( )( )

fp T g t t T

G

w w
w




   

 

   

X

X               (35) 

where 

                                   1/2
sgn( ) 2 ( )s sw t K t              (36) 

                                          1/2
( )

s s
t K t                (37) 

in which sgn( ) 1, 1 or 0
s
t    , depending on whether 

s
t  is 

positive, negative, or zero. 
Saddlepoint approximation has several excellent features. It 

yields an extremely accurate probability estimation, especially in 
the tail area of a distribution [43-46]. More details can be found 
in Ref. [30]. 

3.5 SEGO/SOSPA Procedure 

The detailed steps of SEGO/SOSPA are summarized below. 
Step 1: Set 1k  . Use the initial time instant as the initial 

extreme value time 
 0

0t tɶ  and use a unit vector as the initial 

MPP (1)
0MPP

u u . 

Step 2: Perform the MPP search at time instant 
( 1)k

t


ɶ  and 

obtain MPP ( )k
MPP

u  by solving the following formulas 

                                    
( 1)

min

s.t. ( ( ), ) 0

T

k

g T t




 

UU

U ɶ
             (38) 

Step 3: Implement efficient global optimization by fixing U  

at ( )k
MPP

u  . The optimal time 
( )k
tɶ  that minimizes the limit-state 

function is found and the corresponding minimum value ( )
min
kg is 

also obtained. 
Step 4: Perform Hessian approximation by using quasi-

Newton approach with Eq. (24) and envelope theorem with Eq. 
(28). 

Step 5: Check convergence. The convergence criterion is 
defined as 

xiaoping
Highlight
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                                        ( )
min
k

tolg                (39) 

If 
tol

  , terminate the iteration, and  ( ) ( ) ( ), ,k k k

MPP Gu H  

is the output. Otherwise, set 1k k   and return to step 2. 
Step 6: Calculate 

f
p  using SOSPA based on the 

information  ( ) ( ) ( ), ,k k k

MPP Gu H . 

The flowchart of overall procedure of SEGO/SOSPA is 
shown in Fig. 2. 

 
Fig. 2 Flowchart of SEGO/SOSPA 

4 EXAMPLES 
In this section, three examples are used to test 

SEGO/SOSPA. To show its benefits, we compare it with SEGO 
using FORM, denoted as SEGO/FORM. The accuracy is 
evaluated by the relative error with respect to the result from 
MCS with a large sample size. The relative error is defined as 

                             
,MCS

, MCS

% 100%
f f

f

p p

p



              (40) 

where 
f
p  is the result from SEGO/SOSPA or SEGO/FORM. 

We also use the number of function calls as a measure of 
efficiency. 

4.1 Example 1: Mathematical Problem 

A mathematical example modified from [27] is used as the 
first example, which has two independent normal random 
variables. The limit-state function is given by 

                  2 2
1 2 1 2( , ) 5 1 9g t X X X t X t    X                (41) 

where t  varies within [0,5] , 1 2[ , ]X XX  with 
2

1 ~ (3.5, 0.3 )X N  and 2
2 ~ (3.5, 0.3 )X N .  

 
Fig. 3 Extreme limit-state surface formed by instantaneous 

limit-state surfaces 

 
Fig. 4 Extreme limit-state surface 
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Fig. 3 shows the extreme failure surface formed by the 
instantaneous limit-state surfaces at different discretized time 
instants within the interval [0,5] . The extreme limit-state 

function has a parabolic curve. 
The extreme failure surface is confirmed by the one from an 

analytical equation obtained by solving 0
g

t





, leading to 

                         
2

2 1
1 2

2

25
( ) 9

4( 1)

X
G X X

X
  


X               (42) 

The contour of the analytical extreme limit-state function is 
plotted in Fig. 4, where the failure region is colored grey. 

SEGO is used to find the MPP of the extreme limit-sate 
function. The iteration history of the MPP search is shown in 
Table 2.  Fig. 5 displays the convergence history of first order 
reliability index 

F
  in SEGO. The MPP obtained from SEGO 

algorithm quickly converges to (-1.1314, -2.9165). It is close to 
the true MPP at (-1.1290, -2.9174), which is directly obtained 
from the analytical extreme limit-state function Eq. (42). 

Table 2 Iteration history of MPP search for Example 1 

Iterations  MPP
u     ming   tɶ   

1 (-5.8805, -1.7106) -4.1627 1.4636 
2 (-2.1135, -2.7084) -0.8475 1.9414 
3 (-1.4111, -2.8275) -0.0997 2.1070 
4 (-1.2110, -2.8875) -0.0095 2.1594 
5 (-1.1504, -1.1314) 48.1489 10   2.1760 

6 (-1.1314, -2.9165) 43.3407 10  2.1824 

 
Fig. 5 Convergence history of 

F
  in Example 1 

After SEGO, FORM and SOSPA are used. For MCS, 610  
samples are drawn for input random variables X , and the time 
variable t  is discretized evenly into 100 time instants within 
interval [0,5] . The results are shown in Table 3. And they 

indicate that SEGO/FORM produces a large error of 18.5%   

due to the nonlinearity of the extreme limit-state function. 
SEGO/SOSPA achieves a more accurate result with an error of 

2.47%  . With respect to SEGO/FROM, SEGO/SOSPA 
requires additional computations which equal to the 
multiplication of the number of iteration k  and the dimension of 

input random variables N , i.e. 6 2 12kN    . SEGO/SOSPA 
has much higher accuracy with slightly decreased efficiency. 

Table 3 Results of Example 1 

Methods f
p   %   

Number of 
function calls 

SEGO/SOSPA 31.0524 10  2.47% 124 

SEGO/FORM 48.7918 10   18.5% 112 

MCS 31.0790 10  - 810   

4.2 Example 2: Automobile Front Axle 

An automobile front axle beam [47] is subjected to a torque 
T  and a bending moment 0 (0.1sin(0.25 ) 0.9) N mmM M t    

in which [0,12]t . The limit-state function is given by 

         

22

2 2( , ) 3 3y y

x

M T
g t S S

W W

 
  

             
X     (43) 

in which 
y
S  is the yield strength,   and   are the maximum 

normal stress and shear stress, respectively, and 
x

W  and W  are 

section factor and polar section factor given by 

                     
3

3 3( 2 )
( 2 )

6 6
x

a h c b
W h h c

h h


                    (44)          

                         
3

2 0.4 ( 2 )
0.8

a h c
W bc

c



               (45) 

where , ,a b c   and h  are dimension variables of the I-beam. All 

the parameters are independent and are listed in Table 4.  

Table 4 Distribution of parameters for axle beam example 

Variable 
(Unit) 

Distribution Mean 
Standard 
Deviation 

a (mm)  Normal 12 0.6 
b (mm)  Normal 65 3.25 
c (mm) Normal 14 0.7 
h (mm) Normal 85 4.25 

M0 (N·mm)  Lognormal 7106 7105 
T (N·mm) Extreme value type I 3.1106 3105 
Sy  (MPa)  Deterministic 610 - 

610  samples are used for MCS and t  is discretized into 100 
time instants within interval [0,12] . Results are given in Table 

5. Even though SEGO/FORM is more efficient than SEGO 
/SOSPA, it produces a relatively large error. SEGO/SOSPA is 
more accurate with only 18 additional function calls compared 
to SEGO/FORM. 
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Table 5 Results of Example 2 

Methods f
p   %   

Number of 
function calls 

SEGO/SOSPA 34.3800 10  0.37% 176 

SEGO/FORM 34.1899 10   4.69% 158 

MCS 34.3960 10  - 810   

 

4.3 Example 3: A Vibration Problem 

This example involves a forced vibration of a two degree of 
freedom system modified from [22, 48]. The original one degree 
of freedom system is the main system and consists of a spring 1k  

and a mass 1m . The added system is an absorber and consists of 

a spring 2k , a mass 2m  and a damper 2c . All parameters are 

random variables and their distributions are given in Table 6. 

Table 6 Distribution of parameters for vibration example 
Variable 
(Unit) 

Distribution Mean 
Standard 
Deviation 

1 (N/ m)k  Normal 63 10  53 10  

1 (kg)m  Normal 42 10  22 10  

2 (N/ m)k  Normal 48.5 10  38 10  

2 (kg)m  Normal 480 5 

2 (Ns/ m)c  Normal 300  5  

 
The mass 1m  in the main system is subjected to a sinusoidal 

force 0 sin( )f t  and the amplitude of vibration is given by 

     
 

 
   

1/2

22 2 2
2 2 2

1, max 0 22 2 2 2
2 1 1 2

2
2 2 2

2 2 1 1 2 2

c k m
q f

c k m m

k m k m k m

 
 
 

    
  

        
            

(46) 

 
Eq. (46) may be non-dimensionalised using a “static” 

deflection of main system, and the non-dimensional 
displacement of mass 1m  is obtained as 

         
 

 
   

1, max

0 1

1/2

22 2 2
2 2 2

1 22 2 2 2
2 1 1 2

2
2 2 2

2 2 1 1 2 2

/

q

f k

c k m
k

c k m m

k m k m k m

 

 
 
 

    
  

        
            

    (47) 

 

where   is the displacement and is considered over a wide 

excitation frequency band 12 30 (rad/ s)   .   is the 

excitation frequency and is treated as the time variable t  within 

interval [12, 30] rad/ s . A failure occurs when the displacement 

  is larger than 30. The probability of failure is given by 

                Pr , 30 0, [12,30]fp g      X         (48) 

where  1 1 2 2 2, , , ,k m k m cX . 

SEGO/FORM and SEGO/SOSPA are used to calculate the 

probability of failure. For MCS, 610  samples are used and the 
time variable   is discretized evenly into 500 instants within 
the interval [12,30] . Table 7 shows the results from different 

methods. The results indicate that SEGO/SOSPA achieves a 
higher accuracy than SEGO/FORM while it needs 20 additional 
function calls.  

Table 7 Results of Example 3 

Methods f
p   %   

Number of 
function calls 

SEGO/SOSPA 12.5572 10  0.06% 264 

SEGO/FORM 13.2577 10   27.5% 244 

MCS 12.5555 10  - 85 10   

5. CONCLUSIONS 
A new time-dependent reliability method, sequential 

efficient global optimization/second order saddlepoint 
approximation, is proposed for limit-state functions which are 
explicit with respect to time. This new method employs 
sequential efficient global optimization (SEGO) to convert a 
time-dependent problem into a time-independent counterpart 
where the most probable point (MPP) of the extreme limit-state 
function is obtained. Then a quasi-Newton approach and the 
envelope theorem are introduced to approximate the Hessian 
matrix of the extreme limit-state function. Finally the second 
order saddplepoint approximation (SOSPA) is used to evaluate 
the probability of failure. 

The new method improves the accuracy of time-dependent 
reliability analysis with a reasonably increased computational 
effort. It is generally more accurate than the SEGO with first 
order reliability method (FORM) due to the second-order 
approximation to the extreme limit-state function. Therefore the 
new method can be applied to the problems in which extreme 
limit-state functions are not close to linear. The new method, 
however, is less efficient than the first order approximation 
method because it requires second derivatives of extreme limit-
state function. But the increase in the computational cost is 
minimized by the Hessian approximation method and envelope 
theorem, which make the new method more efficient than the 
direct second-order approximation. 

The proposed method can also be extended to the time-
dependent problem where the random processes are involved. 
One feasible solution is to expand and approximate the random 
processes by sums of random variables. 
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Since the proposed method transforms the time-dependent 
problem into the time-independent one using the extreme value, 
the accuracy may not be good when multiple local optimums 
exist. And this method also shares the same limitations of 
SOSPA. For example, it may not be accurate if the extreme limit-
state function is highly nonlinear and far away from a quadratic 
function. 

Our future work includes applying the proposed method into 
time-dependent reliability-based design and extending the idea 
to more general limit-state functions. 
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