Proceedings of the ASME 2019

International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference
IDETC/CIE2019

August 18-21, 2019, Anaheim, CA, USA

IDETC2019-97541

SECOND ORDER RELIABILITY METHOD FOR TIME-DEPENDENT RELIABILITY ANALYSIS
USING SEQUENTIAL EFFICIENT GLOBAL OPTIMIZATION

Zhangli Hu
Department of Mechanical and Aerospace Engineering
Missouri University of Science and Technology
Rolla, MO, USA

ABSTRACT

Reliability depends on time if the associated limit-state
function includes time. A time-dependent reliability problem can
be converted into a time-independent reliability problem by
using the extreme value of the limit-state function. Then the first
order reliability method can be used but it may produce a large
error since the extreme limit-state function is usually highly
nonlinear. This study proposes a new reliability method so that
the second order reliability method can be applied to time-
dependent reliability analysis for higher accuracy while
maintaining high efficiency. The method employs sequential
efficient global optimization to transform the time-dependent
reliability analysis into the time-independent problem. The
Hessian approximation and envelope theorem are used to obtain
the second order information of the extreme limit-state function.
Then the second order saddlepoint approximation is use to
evaluate the reliability. The accuracy and efficiency of the
proposed method are verified through numerical examples.

1. INTRODUCTION

Reliability is the probability that a product performs its
intended function under specified conditions over a period of
time [1]. Higher reliability means a lower chance of failure. It is
especially critical to maintain high reliability because failures
may be costly and catastrophic. Predicting reliability during a
design stage is therefore imperative for many products.

For many engineering applications, reliability depends on
time if the associated limit-state function involves time-
dependent parameters, such as time-variant loads and the
deterioration of material properties. For example, the wave loads
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on offshore structures are time-dependent since the typical wave
heights and periods change randomly over time [2]; the material
and dimensional properties of concrete structures vary with
respect to time due to the time-dependent chloride corrosion
damage [3, 4]; for mechanisms, the motion error involves time-
dependent input motion [5, 6].

Extensive research has been conducted on time-dependent
reliability analysis. Existing time-dependent reliability
methodologies can be roughly classified into three group. The
first group is Rice’s formula based methods, whose key step is
the computation of the upcrossing rate. For instance, a PHI2
method was developed to compute the time-variant reliability
[7]. Hu and Du proposed a time-dependent reliability method for
hydrokinetic turbine blades [8]. Besides, many other empirical
modifications [5, 9-14] have also been made. This group has
advantages over other groups for its efficiency. But it may
produce large errors when upcrossings are strongly dependent.

The second group includes simulation-based methods using
surrogate models. Most of these methods build a surrogate model
to replace the original limit-state function by evaluating the
response variable at a number of points predefined through
Design of Experiment (DoE) [15-17]. Then Monte Carlo
simulation (MCS) is performed based on the surrogate model.
The methods include artificial neural networks (ANN) [18, 19],
polynomial chaos expansions (PCE) [20, 21], and Gaussian
process based method, also known as Kriging model based
methods [22-26]. This group can evaluate the time-dependent
reliability accurately if the surrogate model is well trained.
Nevertheless, this may result in a high computational cost.
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The third group contains the methods that convert time-
dependent reliability analysis into the time-independent
reliability analysis using the extreme value of the time-
dependent limit-state function. If the distribution of the extreme
value can be estimated accurately, the accuracy of this group is
higher than the first group. The typical methods in this group are
extreme value response method [22, 27], extreme value
distribution method [28], composite limit-state function method
[29], and the envelope function method [6]. However, it is often
a challenging task to obtain the distribution of the extreme value
accurately and efficiently.

We propose a new time-dependent method using sequential
efficient global optimization (SEGO). The new method first
converts the time-dependent problem into a time-independent
counterpart by using the extreme value. Then the Hessian
approximation and envelope theorem are employed to obtain the
second order approximation to the extreme value. Finally the
second order saddlepoint approximation (SOSPA) [30, 31] is
used to estimate the distribution of the extreme value. The new
method is termed as SEGO/SOSPA. It improves the accuracy by
using second order approximation to the extreme value of the
limit-state function and maintains high efficiency by using
SEGO.

The reminder of this paper is organized as follows: Section
2 reviews the theoretical background of this work. Then the new
SEGO/SOSPA method is discussed in Section 3 followed by
three examples in Section 4. Conclusions are given in Section 5.

2. REVIEW OF FUNDAMENTAL METHODOLOGIES

In this section, we briefly review the basic definition of time
dependent reliability. We also discuss the commonly used first
order reliability method (FORM).

2.1 Time-Dependent Reliability
In this work, we consider a limit-state function given by

Y =g(X,0) M
where g(X,7) is explicit with respect to time ¢ |,

X =[X,,...,X,]" is an N-dimensional vector of independent
random variables.
For a given period of time [0,7], the reliability is defined
by
R(0,T)= Pr{g(X, 1) >0, Vt €0, T]} 2)
in which V means “for all”.
The associated probability of failure is given by
p(0.T)=Pr{g(X.) <0, 3r [0,T]} 3)
where 3 means “there exists at least one”.

2.2 First Order Reliability Method (FORM)

FORM is the most commonly used method in time-
dependent reliability analysis since it can convert the general
non-Gaussian process into an equivalent Gaussian process [32].

X is transformed into standard normal variables U. Then
the most probable point (MPP) wu,,, is identified by the

following model:

{min Juu’ @

st. gX,t)=g(T(U),H))=0
in which T'(-) is an operator of the transformation from U to X.

The limit-state function is linearized at u,,, by

Y, 8
g
TU),tH)=g(u,pp,1)+ ) —— U, =y,
g(T(U),1) = g(u,,,1) ,Z:l:@U[ U:u‘w( MPP,) 5)
=Vg(u,p, )(U-u,,,)
T
Cg cg .
where Vgu,,,,t)=|—— y e s is the
g( o ) [6U1 U=uypp aUN UuMPP]

gradient vector, and u,,,,; is the i-th component of u,,, .

Finally, the probability of failure can be estimated by
p, =Pr{g(X,1)<0, 3re[0,T]}

N
1%
= Pr{g(uMPP,t)-irz—g

- U,

i

(Ui _u[MPP) < O} (6)

U=uypp

=Pr{f()+a(®)U <0, It <[0,T]}
in which f(¢) is the time-dependent reliability index

B0 =, (M
And a(¢) is the time-dependent unit gradient vector
Vg (uypp,t) T
a(t):éz « (t)aa (t)a"'aa (t) (8)
Watu .0 00

As Eq. (6) shows, the non-Gaussian process g(X,#) has

been transformed into an equivalent Gaussian process
represented as a sum of standard normal random variables. A
common method is to build the surrogate models of £(¢) and

a(?) with respect to ¢ and then to use MCS to estimate the

probability of failure. However, it might be computational
expensive to build accurate surrogate models.

3. SEGO/SOSPA

The objective of this study is to improve the accuracy of the
time-dependent reliability analysis by employing the second-
order approximation. The central idea is to convert the time-
dependent problem into a time-independent problem using
sequential efficient global optimization (SEGO). The second
order approximation is obtained by using the Hessian
approximation and envelope theorem. Then the time-
independent problem is addressed with the second-order
saddlepoint approximation (SOSPA) [30].

3.1 Overview
The time-dependent probability of failure can be evaluated
through the extreme value of the limit-state function, expressed
by [27]
p,(0,T)=Pr{g(X,r)<0,3re[0,T]}
©)

= Pr{lrer[loi%g(X, 1)< 0}
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The extreme limit-state function, also known as the
envelope function [6], or the composite limit-state function [29],
r1[1011T1] g(X,?) is obtained by
tel0,

G(X) = min g(X.1) = g(X.1(X)) (10)
where G(X) is the global minimal value of g(X,#) with respect

to z. G(X) is time independent and only depends on X. {is

the time instant when the global minimal value occurs. fisa
function of X.

Z:&

Now Eq. (9) can be converted into the following time-
independent problem:
p,(0,T)= Pr{g(X,t) <0,3te [O,T]}
=Pr{G(X) <0}
Then a time-independent reliability method can be applied
after the conversion. In this work, we assume that G(X) exists

min g(X, t)} (11)

te[0,T
(12)

and is continuously differentiable.

3.2 SEGO
In this subsection, we discuss the proposed method.

3.2.1 Sequential Optimization
It is very difficult to analytically obtain the extreme limit-
state function G(X) . So FORM is generally used to

approximate G(X),and the MPP of G(X) is found by using the
following optimization model:

min +UU’

st G(T(U)) = min g(T(U).0) =0 (13)

Eq. (13) is formulated as a double loop structure. The inner
loop is the global optimization with respect to time ¢, while the
outer loop is the MPP search with respect to U . The
computational cost of the double loop optimization is very high.

Inspired by sequential optimization and reliability
assessment (SORA) [33], we use a sequential strategy to
decouple the global optimization from the MPP search and
perform the two loops sequentially. In the first cycle, FORM is

used to locate the MPP u'),, at the initial time 7.
min v UU’
st g(T(U),t)=0

After the MPP u{),, is obtained, the global optimization is

O]
MPP >

(14)

performed by fixing U at the u and optimal time is
obtained as 7 .

;(1) =arg ming(T(uﬁ\il)PP)’t) (13)

1€[0,T]

In the second cycle, the new MPP u'}), is located at the

. ~m . .
time instant ¢ using Eq. (14). And then the extreme value time

(2)

is updated to P by performing global optimization at u}, .

~(2) . 2)
t  =argming(T(u'}),),t) (16)
te[0,T]
This process is repeated until convergence. The global

optimization is discussed in Sec. 3.2.2.
The flowchart of the above procedure is illustrated in Fig. 1.

[ Initial point ]

:
&
]
&
¥ 3

(k)
U
v

Global
optimization

k=k+1

Converge?

Obtain MPP of extreme
limit-state function

Fig. 1 Flowchart of sequential optimization

3.2.2 Efficient Global Optimization (EGO)

The global optimization method used in this study is the
efficient global optimization (EGO) [22, 27, 34]. EGO has been
widely used in various areas [35, 36] because it can search for
the global optimum with high computational efficiency. In this
work, we search for a time instant where ¥ = g(T'(u,,;,),?) is

minimized. Recall that u,,, is fixed during the optimization
process, and then g(7'(u,,,),t) is a one-dimensional function.
We denote this function as g(z) ; namely, g(¢) = g(T'(u,pp),1) .

We then create its surrogate model é(t) as follows:

y=g0)=g(T(,).0=FO' y+2()  (17)
where F(t)"y is a deterministic term, F(f) is a vector of
regression functions, y is a vector of regression coefficients,
and Z(t) is a stationary Gaussian process with zero mean and a
covariance given by
Cov[Z(t),Z(t,)] = GéR(tl 24) (18)
in which o, is process variance, and R(--) is the correlation
function.
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The output of the surrogate model is a Gaussian random
variable following

y=g(t)~ N(u(t).c’ (1)) (19)
where u(¢) and o’(¢) are the mean and standard deviation of

)A/ . If ¢ is a training point, u(¢)=g() and o(t)=0. This
means that the surrogate model is exact at a point where the
model is trained.

After building the initial model, the expected improvement
(EI) metric is used to identify the new training point with the
highest probability to produce a better extreme value of the
response. The improvement is defined by

I =max(y" - ,0) (20)

obtained from the sampled training points.
Thus its expectation or EI is computed by [34]

EI(r) = E[max(y" — »,0)]
(e Y —u(t) y -u@) 2D
=(» u(r))@(—am ]+a(r)¢(—am J
where @(-) and ¢(-) are the cumulative distribution function

(CDF) and probability density function (PDF) of a standard
normal variable, respectively.

Table 1 Algorithms of EGO

Steps Procedure

1 Generate initial training points t* =[¢,,7,,...,¢,] and
compute the response of limit-state function
y =[g().g(%,),...,g()]

Construct a surrogate model )A/ = é(t) using

2
{t.y}
3 Find the global minimum y" = jgink g(t,) and
corresponding time ¢’
4 Search for #,,, = arg max El(¢) , where EI(¢) is
t
computed by Eq. (21)
5 Compare max El(z) with ¢ :if max EI(¢) < &,
t t

stop and give the final optimum y" and ¢ ;
otherwise, go to next step

6 Update y* =[y",g(#,,,)] and t' =[t",7,,,], and
repeat steps 2-5

The new training point ¢, is identified as the time that
maximizes the expected improvement.
t,,, = arg max EI(?) (22)
t

The procedure of EGO is described in Table 1. More details
can be found in Ref. [34].

In this work, the convergence criterion of EGO ¢ is
chosen as ¢, :|y*|><2%.

By combining sequential strategy with EGO, the MPP u’ of
extreme limit-state function G(X) can be obtained efficiently

by solving Eq. (13). If FORM is used, the probability of failure
is estimated by

p;(0,T)= Pr{g(X,t)<0,3re[0,T1}
=Pr{G(X) <0} (23)
=O(-f3;)
where S, = "u ” is the first order reliability index of the extreme

limit-state function.

Since the above method uses FORM and SEGO, we denote
this method as SEGO/FORM. In general, the extreme limit-state
function can be highly nonlinear and SEGO/FORM may not be
accurate enough. In Sec. 3.3, we discuss how to develop a
second-order approximation method. This method uses the
Hessian approximation and envelope theorem to obtain the
second order information of the extreme limit-state function.
Then SOSPA is used to estimate the probability of failure.

3.3 Hessian Approximation and Envelope Theorem
The second-order approximation requires the Hessian
matrix. But it is challenging to calculate the Hessian because it
consists of second derivatives of the extreme limit-state function
with respect to random input variables X . Hence a quasi-
Newton approach [37, 38] is introduced in this work to
approximate the Hessian matrix. This Hessian approximation
method can take advantage of the MPP search information in
SEGO, leading to high efficiency.
The Hessian matrix is updated using the following formulas
(38]
(r(k) _H(k)s(k))(r(k) _H(k)s(k))T

H*Y =H® + (24)
(r(k) _ H(k)s(k))T S(k)
where
(k) _ y(k+1) (k)
S =Uypp —Wypp (25)
l.(k) — VG(k+l) _ VG(k)

in which ul}), represents the MPP at current iteration & used in
the SEGO, VG =[6G"/aU,.,...6G* [eU, ] is the gradient

vector of the extreme limit-state function, and s’ and r*® are
the variation of the MPP and the gradient between two
successive iterations, respectively.

The approximated Hessian is expected to converge to the
true Hessian as the MPP reaches the true MPP. However, SEGO
does not provide the gradient information of the extreme limit-
state function, and extra computational effort is needed. In this
case, the finite difference method is used.
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0G _ G(u, +Au, )-G(u,)
U, Au,

i i

. . (26)
min g(u, +Au, ,t)—min g(u, ,t)

B Au,

i

As Eq. (26) indicates, min g(u, + Au, ,t) needs additional

global optimization at u, +Aw, . Directly using the finite

difference method will increase N times of global optimization
at each iteration in order to obtain the gradient. This is very
computationally expensive.

To reduce the computational cost, we use the envelope
theorem, which is a widely used method in economic
optimization field [39, 40]. The envelope theorem can connect
the derivative of extreme limit-state function with the derivative
of original limit-state function.

16} 1o}
—G(U)=—g(U, /(U =— U,z 27
g C® aUg( U))=— = |, @

Eq. (27) indicates that the gradient of the extreme limit-state
function (the envelope function) at U equals to the gradient of

the original limit-state function at time instant ¢ = ;(U) .
Eq. (26) becomes
oG G, +Au;)-G(u,)
ou, Au,

g(u[ +Au[ ,t)_g(l/l,- at)|
Au,

i t=1(u)

Thenonly N function calls are required in each iteration by
using the envelope theorem. This makes the method more
efficient.

Combining Egs. (24) and (28) yields the gradient VG and
Hessian matrix H of the extreme limit-state function. Then the
second order reliability method can be used.

3.4 SOSPA

Once the MPP u’, gradient VG, and Hessian matrix H of
the extreme limit-state function are available, the second
approximation to the extreme limit-state function is formulated
as

(28)

G(U)=a+b"U+U'CU (29)
where

1, T « .
a=—(u") Hu' —=VG@u )Y u

S(u) (u)
b=VG@u')-Hu (30)
c-1

2

Then SOSPA [30] is employed to estimate the probability
of failure, and it is considered in general more accurate than the
traditional SORM methods such as Breitung’s [41] and Tvedt’s
methods [42].

After the extreme limit-state function is approximated in Eq.
(29), we can obtain the cumulant generating function (CGF).

n—1
K(t) = —ﬂ;t+%t2 —%Zlog(l—%ki) (31)

The derivatives of CGF are

n-1

K'(t)= +t+ 32
() =4 Zl 20k (32)
S k;
K'ty=1+) ——— (33)
= (1-2ek, )’
The saddlepoint ¢, is obtained by solving the following
equation:
K'@t)= +t+ 34
) =-p Zl 2k (34)
Then the probability of failure is evaluated by
p,(0,T)=Pr{g(X,r)< 0,3t [0,T]}
=Pr{G(X) <0} (35)
1 1
=O(w) +p(w)(—-—)
w v
where
1/2
w=sgn(t,){2[-K ()]} (36)
v=1,[K"¢t)]" (37)

in which sgn(z,)=+1,-1 or 0, depending on whether ¢ is
positive, negative, or zero.

Saddlepoint approximation has several excellent features. It
yields an extremely accurate probability estimation, especially in
the tail area of a distribution [43-46]. More details can be found
in Ref. [30].

3.5 SEGO/SOSPA Procedure
The detailed steps of SEGO/SOSPA are summarized below.
Step 1: Set k£ =1. Use the initial time instant as the initial
extreme value time ;(0)

o _
MPP u'), =u,.

=t, and use a unit vector as the initial

~ (k-1)
Step 2: Perform the MPP search at time instant ¢ and

obtain MPP u'’), by solving the following formulas
min ~UU"
st. g(T(U),7" ")=0
Step 3: Implement efficient global optimization by fixing U

at u*) . The optimal time 7
MPP p

(38)

that minimizes the limit-state

function is found and the corresponding minimum value g*) is

also obtained.

Step 4: Perform Hessian approximation by using quasi-
Newton approach with Eq. (24) and envelope theorem with Eq.
(28).

Step 5: Check convergence. The convergence criterion is
defined as
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—|o®
&= |gmin

. . . k k k
terminate the iteration, and (uﬁw),P,VG( ', H ))

< gtol

39)

If e<e¢

tol >
is the output. Otherwise, set k£ = k +1 and return to step 2.
Step 6: Calculate p, using SOSPA based on the

information (uﬁf},,, , VG H® ) .

The flowchart of overall procedure of SEGO/SOSPA is
shown in Fig. 2.

[ ed ]
I

k=1

]
T =

L

o _
Wypp = Ug

!

MPP search
min UUT
~ (k1)

st. g(T(U)LE )=0

3

&)
Wymp

Efficient Global Optimization
min g(T(,).7)

k=k+1

4 ! B 1

Hessian Approximation
(Quasi-Newton approach with Eq. (24)
and envelope theorem with Eq. (28))

) (k) )
Wypps VG ). H

Yes

No

Calculate p. using SOSPA

Fig. 2 Flowchart of SEGO/SOSPA

4 EXAMPLES

In this section, three examples are used to test
SEGO/SOSPA. To show its benefits, we compare it with SEGO
using FORM, denoted as SEGO/FORM. The accuracy is
evaluated by the relative error with respect to the result from
MCS with a large sample size. The relative error is defined as

Py =Py mcs

&% = x100% (40)

Py ovcs

where p, is the result from SEGO/SOSPA or SEGO/FORM.
We also use the number of function calls as a measure of
efficiency.

4.1 Example 1: Mathematical Problem
A mathematical example modified from [27] is used as the
first example, which has two independent normal random
variables. The limit-state function is given by
gX,) = XX, -5Xt+(X,+1)t* -9 (41)
where ¢ varies within [0,5] , X=[X,X,] with
X, ~N(3.5,03%) and X, ~ N(3.5,0.3%).

10

Instantaneous limit-state surfaces

Extreme limit-state surface

Fig. 3 Extreme limit-state surface formed by instantaneous
limit-state surfaces

10

Extreme limit-state surface

Fig. 4 Extreme limit-state surface
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Fig. 3 shows the extreme failure surface formed by the
instantaneous limit-state surfaces at different discretized time
instants within the interval [0,5] . The extreme limit-state
function has a parabolic curve.

The extreme failure surface is confirmed by the one from an

analytical equation obtained by solving é;_g =0, leading to
t

25X7 B
4X,-1

The contour of the analytical extreme limit-state function is
plotted in Fig. 4, where the failure region is colored grey.

SEGO is used to find the MPP of the extreme limit-sate
function. The iteration history of the MPP search is shown in
Table 2. Fig. 5 displays the convergence history of first order
reliability index S, in SEGO. The MPP obtained from SEGO
algorithm quickly converges to (-1.1314, -2.9165). It is close to
the true MPP at (-1.1290, -2.9174), which is directly obtained
from the analytical extreme limit-state function Eq. (42).

G(X)= XX, - 42)

Table 2 Iteration history of MPP search for Example 1

Iterations u,,, &in t
1 (-5.8805, -1.7106) -4.1627 1.4636
2 (-2.1135,-2.7084) -0.8475 1.9414
3 (-1.4111, -2.8275) -0.0997 2.1070
4 (-1.2110, -2.8875) -0.0095 2.1594
5 (-1.1504,-1.1314)  —8.1489x10™* 2.1760
6 (-1.1314,-2.9165) —3.3407x10™* 2.1824
6.5
q
6
55
5
i
45
4 L
35
3 . : B
1 2 3 4 5 6

lteration
Fig. 5 Convergence history of /3, in Example 1

After SEGO, FORM and SOSPA are used. For MCS, 10°
samples are drawn for input random variables X, and the time
variable ¢ is discretized evenly into 100 time instants within
interval [0,5] . The results are shown in Table 3. And they

indicate that SEGO/FORM produces a large error of £ =18.5%

due to the nonlinearity of the extreme limit-state function.
SEGO/SOSPA achieves a more accurate result with an error of
&=247% . With respect to SEGO/FROM, SEGO/SOSPA
requires additional computations which equal to the
multiplication of the number of iteration & and the dimension of
input random variables N, i.e. kN =6x2=12. SEGO/SOSPA
has much higher accuracy with slightly decreased efficiency.

Table 3 Results of Example 1

Methods
SEGO/SOSPA  1.0524x10°  2.47% 124
SEGO/FORM 8.7918x10*  18.5% 112
MCS 1.0790x107 - 10°

4.2 Example 2: Automobile Front Axle
An automobile front axle beam [47] is subjected to a torque
T and a bending moment M = M (0.1sin(0.25¢)+0.9) N-mm

in which ¢ €[0, 12]. The limit-state function is given by

2 2
M T
X,0)=S, Vo’ +3r° =S, — || — | +3| — 43
gX,n=S5, y (WJ [WPJ (43)
in which S is the yield strength, o and 7z are the maximum
normal stress and shear stress, respectively, and W, and W, are

section factor and polar section factor given by

a(h-2c) b, ;
Wo="r " = (h-2 44
=gt (=20 ] (44)
3 —
Wp =0.8bc? +M (45)

c
where a,b,c and & are dimension variables of the I-beam. All
the parameters are independent and are listed in Table 4.

Table 4 Distribution of parameters for axle beam example

V(%lril:)l ¢ Distribution Mean S:}Sggi

a (mm) Normal 12 0.6

b (mm) Normal 65 3.25

¢ (mm) Normal 14 0.7

h (mm) Normal 85 4.25
Moy (N-mm) Lognormal 7x10° 7x10°
T(N'-mm)  Extreme value type I ~ 3.1x10° 3x10°
Sy (MPa) Deterministic 610 -

10° samples are used for MCS and ¢ is discretized into 100
time instants within interval [0,12]. Results are given in Table
5. Even though SEGO/FORM is more efficient than SEGO
/SOSPA, it produces a relatively large error. SEGO/SOSPA is

more accurate with only 18 additional function calls compared
to SEGO/FORM.
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Table 5 Results of Example 2

Methods P % fumetion call
SEGO/SOSPA 43800x10°  0.37% 176
SEGO/FORM 4.1899x10°  4.69% 158
MCS 4.3960x107° - 10°

4.3 Example 3: A Vibration Problem

This example involves a forced vibration of a two degree of
freedom system modified from [22, 48]. The original one degree
of freedom system is the main system and consists of a spring ,

and a mass m, . The added system is an absorber and consists of
a spring k, , a mass m, and a damper c,. All parameters are
random variables and their distributions are given in Table 6.

Table 6 Distribution of parameters for vibration example

V(%lri?)l ¢ Distribution Mean S?/rilngi
k, (N/ m) Normal 3x10° 3x10°
m, (kg) Normal 2x10* 2x10?
k, (N/m) Normal 8.5x10" 8x10°
m, (kg) Normal 480 5
¢,(Ns/ m) Normal 300 5

The mass m, in the main system is subjected to a sinusoidal

force f,sin(€d¢) and the amplitude of vibration is given by

r —‘1/2

csz + (kz - mzﬂz )2

ql, max = f;) (46)

O (k —m @ —m Q)

(k@ = (k =m Q) (k, 02 ) ]

Eq. (46) may be non-dimensionalised using a “static”
deflection of main system, and the non-dimensional
displacement of mass m, is obtained as

_ q}, max

Jolk

0 +(ky ~m Q) @7

A (k —mQ* —m, Q)

(k@ = (k= m @7k, -m, ) |

where ¢ is the displacement and is considered over a wide
excitation frequency band 12<Q<30 (rad/s) . Q is the
excitation frequency and is treated as the time variable ¢ within
interval [12, 30] rad/s . A failure occurs when the displacement
o is larger than 30. The probability of failure is given by

p, =Pr{g(X,Q)=30-5<0, 3Q[12,301} (48)

where X =[k,,m,k,,m,,c,].

SEGO/FORM and SEGO/SOSPA are used to calculate the
probability of failure. For MCS, 10° samples are used and the
time variable Q is discretized evenly into 500 instants within
the interval [12,30]. Table 7 shows the results from different
methods. The results indicate that SEGO/SOSPA achieves a

higher accuracy than SEGO/FORM while it needs 20 additional
function calls.

Table 7 Results of Example 3

Methods P % et eall
SEGO/SOSPA  2.5572x10"  0.06% 264
SEGO/FORM 32577107 27.5% 244
MCS 2.5555x107" - 5%10°

5. CONCLUSIONS

A new time-dependent reliability method, sequential
efficient global optimization/second order saddlepoint
approximation, is proposed for limit-state functions which are
explicit with respect to time. This new method employs
sequential efficient global optimization (SEGO) to convert a
time-dependent problem into a time-independent counterpart
where the most probable point (MPP) of the extreme limit-state
function is obtained. Then a quasi-Newton approach and the
envelope theorem are introduced to approximate the Hessian
matrix of the extreme limit-state function. Finally the second
order saddplepoint approximation (SOSPA) is used to evaluate
the probability of failure.

The new method improves the accuracy of time-dependent
reliability analysis with a reasonably increased computational
effort. It is generally more accurate than the SEGO with first
order reliability method (FORM) due to the second-order
approximation to the extreme limit-state function. Therefore the
new method can be applied to the problems in which extreme
limit-state functions are not close to linear. The new method,
however, is less efficient than the first order approximation
method because it requires second derivatives of extreme limit-
state function. But the increase in the computational cost is
minimized by the Hessian approximation method and envelope
theorem, which make the new method more efficient than the
direct second-order approximation.

The proposed method can also be extended to the time-
dependent problem where the random processes are involved.
One feasible solution is to expand and approximate the random
processes by sums of random variables.

8 Copyright © 2019 by ASME



Since the proposed method transforms the time-dependent
problem into the time-independent one using the extreme value,
the accuracy may not be good when multiple local optimums
exist. And this method also shares the same limitations of
SOSPA. For example, it may not be accurate if the extreme limit-
state function is highly nonlinear and far away from a quadratic
function.

Our future work includes applying the proposed method into
time-dependent reliability-based design and extending the idea
to more general limit-state functions.
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