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Abstract 

The second order saddlepoint approximation (SPA) has been used for component reliability 

analysis for higher accuracy than the traditional second order reliability method. This work extends 

the second order SPA to system reliability analysis. The joint distribution of all the component 

responses is approximated by a multivariate normal distribution. To maintain high accuracy of the 

approximation, the proposed method employs the second order SPA to accurately generate the 

marginal distributions of the component responses; to simplify computations and achieve high 

efficiency, the proposed method estimates the covariance matrix of the multivariate normal 

distribution with the first order approximation to the component responses. Examples demonstrate 

the high effectiveness of the second order SPA method for system reliability analysis. 
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1. INTRODUCTION 

One of the criteria for systems design is to avoid system failures or minimize the probability 

of system failures. It is therefore necessary to predict system reliability accurately and efficiently 

during the design process [1]. System reliability is typically measured by the probability that the 

system fulfills its intended function without failures [2]. There are multiple components in the 

system, and each component may have multiple failure modes. Suppose the i-th failure model has 

a limit-state function given by  

 ( )  ( 1 )i iY g i = ,...,m= X  (1) 

where iY   is a component response, and X   is the vector of random variables. If 0iY <  , the 

failure model does not occur; otherwise, the failure mode occurs. If we consider a failure model as 

a component, component reliability is then computed by 

 Pr( ( ) 0) ( )   ( 1, 2,..., )
i

i iR g f d i m
Ω

= < = =∫X x x  (2) 

where iΩ   is the component safe domain or the domain defined by { }: ( ) 0i iY g= <X X  , and 

( )f x  is the joint probability density function (PDF) of X . For a series system, if one failure 

mode occurs, the system fails. System reliability is therefore given by 

 
1

Pr ( ) 0 ( )
S

m

S i
i

R g f d
Ω=

 = < = 
  ∫ ∫ XX x x   (3) 

where SΩ  is the system safe domain or the domain defined by { }1
: ( ) 0

m

i
i

g
=

<X X
, and m is the 

number of components in the system. 
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In practice, it is difficult to integrate a multidimensional PDF over the safe domain in Eq. (3). 

Different approaches have therefore been developed to approximate the multi-dimensional integral. 

They include the bound approximation, surrogate approaches, and analytical approaches.  

Bound approximation methods predict system reliability with lower and upper bounds. The 

first order bound method for series systems assumes that all the component responses are 

completely dependent or mutually exclusive. Based on this assumption, upper and lower bounds 

are derived. Ditlevsen [3] developed the second-order bound method by taking into account all the 

single mode failure probabilities and all the pairwise mode intersection failure probabilities to 

narrow the first order bound. Song and Der Kuireghian [4] proposed a linear programming (LP) 

method to compute the system reliability bound. The LP bounds are independent of the ordering 

of the components and are guaranteed to produce the narrowest possible bounds. Another 

reliability bound method is the complementary intersection method [5]. It approximates the 

reliability of series systems with eigenvector dimension reduction and produces more accurate 

results compared with the first and the second order bound methods. More studies on system 

reliability bound methods can be found in Refs. [6, 7]. 

Surrogate approaches predict single-valued system reliability by creating surrogate models for 

component responses and using Monte Carlo simulation (MCS). Surrogate models are created first, 

and then system reliability is estimated with MCS based on the surrogate models. The surrogate 

modeling methods include the polynomial chaos expansion (PCE) [8], Support Vector Machine 
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(SVM) [9], and Kriging method [10-13]. The recent development in this area is to perform 

surrogate modeling and MCS simultaneously. For example, Bichon et al. [10, 11] applied the 

efficient global optimization to reliability assessment. This method uses the active learning 

function called the Expected Feasibility Function (EFF) to choose new training points in the 

vicinity of the limit state, resulting in building an accurate surrogate model with fewer function 

evaluations. Fauriat and Gayton [12] proposed to build the initial Kriging surrogate model and 

continually refine the model by choosing new training points from a pre-sampled MCS population. 

Wu and Du proposed a new kriging method to predict system reliability that combines MCS and 

the Kriging method with improved accuracy and efficiency[13]. 

Analytical methods use neither surrogate models nor MCS and also produce single-valued 

system reliability. They approximate nonlinear limit-state functions so that the system probability 

integral can be easily computed. The methods include the use of the First Order Reliability Method 

(FORM) [14, 15], Second Order Reliability Method (SORM) [16, 17], and Saddlepoint 

Approximation Method (SPA) [15, 18]. FORM is the most well-known method due to its good 

balance between accuracy and efficiency. It at first transforms random variables into standard 

normal variables and then it identifies the reliability index, which is the minimum distance from 

the origin to the linearized and transformed limit-state function at the most probable point (MPP). 

System reliability is then approximated by the multidimensional integration of the joint probability 

density function after the marginal distributions and correlation coefficients of component states 
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are obtained by the first order approximation [14, 19]. Although the efficiency of such method is 

good, the accuracy may not be good if limit-state functions are highly nonlinear. Therefore, 

Madsen [17] presented an extension of FORM based on a more accurate approximation of the 

limit-state function, and the result shows smaller differences between the second order 

approximation and the exact result.  

Among the above methods, SPA can improve accuracy for problems with or without the non-

normal to normal transformation. Du estimated the system reliability by SPA without any 

transformation on random input variables, leading to more accurate result than the FORM [6]. But 

the method is still the first order approximation and produces bounds of system reliability. An 

extension of the first order SPA to the second order SPA on component reliability analysis has also 

been proposed to accommodate quadratic functions, and the method is more accurate than the first 

order SPA and SORM without sacrificing computational efficiency [20]. Papadimitriou et al. 

proposed a new mean-value second-order saddlepoint approximation method for reliability 

analysis of nonlinear systems with correlated non-Gaussian and multimodal random variables, and 

the result is more accurate than FORM and SORM [21]. But these methods are for only the 

component reliability analysis. 

The purpose of this work is to extend the second-order SPA to system reliability analysis in 

order to achieve high accuracy. The joint distribution of all the component responses is 

approximated by a multivariate normal distribution. The second order SPA is used to approximate 
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the marginal distributions of the component responses for higher accuracy. The covariance matrix 

of the multivariate normal distribution is estimated using the first order approximation.  

The second-order SPA for component reliability analysis is briefly reviewed in Section 2. The 

extension of the second-order SPA to system reliability analysis is discussed in Section 3 followed 

by examples in Section 4. Conclusions are made in Section 5. 

2. REVIEW OF SECOND ORDER SPA  

In this section, we review the second order SPA for component reliability analysis [20]. It is 

the basis of the proposed system reliability method in this work.  

2.1 MPP search 

The method first approximates the limit-state function with a second order polynomial. It is 

the same approximation in the original SORM [22], which involves the MPP search in the standard 

normal space using FORM. With the assumption that all variables in X  are independent, they 

are transformed into the standard normal variables U. The transformation is given by  

 ( ) ( )i i iF X U= Φ  (4) 

where ( )iF ⋅  and ( )Φ ⋅   are the cumulative distribution functions (CDFs) of iX   and iU  , 

respectively. Then the transformed standard normal variables are  

 1[ ( )]i i iU F X−= Φ  (5) 

After the transformation, the limit state function becomes 

 ( ) ( )Y g G= =X U  (6) 
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Then, the minimum distance from the original to the limit-state surface ( ) 0G =U  is identified. 

The distance is the reliability indexβ . The minimum distance point is called the MPP. The model 

for searching for the MPP is given by 

 
min || ||
subject to    ( ) 0G

 =

u
u

 (7) 

where || ||⋅  means the length of a vector, namely 

 2 2 2 2
1 2

1
|| ||

n

n i
i

u u u uβ
=

= = + + =∑u   (8) 

The solution from Eq. (7) is the MPP * * * *
1 2( , ,..., )nu u u=u . 

2.2 Quadratic limit-state function 

After the MPP is found, the limit-state function is approximated by 

 ( )T* T 2 * * * T * * 2 * * T 2 *1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
2 2

Q G G G G G= ∇ −∇ + ∇ −∇ + ∇U u u u u u u u u U U u U  (9)  

where *
* *

1

( ) ,...,
n

G GG u
U U

 ∂ ∂
∇ =   ∂ ∂ u u

  is the gradient, and 2 *( )G∇ u   is the Hessian matrix, 

given by 

 

*

2 2 2

2
1 1 2 1

2 2 2

2 * 2
2 1 2 2

2 2 2

2
1 2

( )

n

n

n n n

G G G
U U U U U
G G G

G U U U U U

G G G
U U U U U

 ∂ ∂ ∂
 ∂ ∂ ∂ 
 ∂ ∂ ∂
 

∇ = ∂ ∂ ∂ 
 
 
 ∂ ∂ ∂
 ∂ ∂ ∂ u

u





   



 (10) 

The independent standard normal vector 
~ ~ ~ ~

1 2( , ,..., )nU U U=U   can be easily generated as 
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follows: 

 
~

1−=U D U  (11) 

where D is an orthogonal matrix whose column vectors are the eigenvectors of 2 *1 ( )
2

G∇ u , and 

~ ~ ~ ~

1 2( , ,..., )nU U U=U  is a vector of independent standard normal random variables. 

Thus, Eq. (9) is expressed in the form of a quadratic polynomial function, as follows: 

 T T( )Q a= + +U b U U CU      (12) 

in which  

 

* T 2 * * * T *

T
1 2

T
1 2

1 ( ) ( ) ( )
2

( , ,..., )

( , ,..., )
n

n

a G G

b b b

diag c c c

 = ∇ −∇
 = =
 = =


u u u u u

b D b

C D CD

  




  

 (13) 

Since C   is diagonal, Eq. (12) can be written as sum of quadratic functions of different 

standard normal variables. 

 2

1 1
( ) ( ) ( )

n n

i i i i i i
i i

Q Q a bU cU
= =

= = + +∑ ∑U U 
  

   (14) 

where  

 i
aa
n

=  (15) 

and n is the total number of random variables. 

( )iQ U  is further rewritten as follows  
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2
2

2

2
2 2

( )     
42

    >0
( ) ( ) =   0

42
    =0

                               

i i
i i i

ii
i i i

i i
i i i i i i i

ii
i i i

i i i

b bc U a
cc

Z d c
b bQ c U a Z d c

cc
a bU c

a bU


+ + −

  + = − − − + − − + < 
−  + +



U

 



 







 

 

  








 






 (16) 

where 𝑑𝑑𝑖𝑖 is constant and is determined by the following equation  

 
2

4
i

i i
i

bd a
c

= −






 (17) 

𝑍𝑍𝑖𝑖 is obtained by a linear transformation of 𝑈𝑈�𝑖𝑖 

 

         >0
2

     <0
2

i
i i i i

i

i
i i i i

i

bZ c U c
c

bZ c U c
c


= +



 = − − −





 







 



 (18) 

iZ  is normally distributed and is denoted by ~ ( , )
i ii Z ZZ N µ σ , where the mean 𝜇𝜇𝑍𝑍𝑖𝑖 is given 

by 

 

         0
2

    0
2

i

i
i

i
Z

i
i

i

b c
c

b c
c

µ


>

= 
− < −













 (19) 

and the standard deviation 𝜎𝜎𝑍𝑍𝑖𝑖 is given by 

 
       > 0 

    0i

i i
Z

i i

c c

c c
σ

= 
− <

 

 

 (20) 

2( / )
ii i ZV Z σ=   follows a noncentral chi-square distribution with freedom of 1 [23, 24]; 
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namely 2~ (1, )iV χ λ , where λ  is a non-centrality parameter and given by 

 2( )i

i

Z

Z

µ
λ

σ
=  (21) 

The limit-state function in Eq. (16) in finally expressed by a linear combination of either 

noncentral chi-square variables or standard normal variables.  

 

2

2

     >0

Q ( )=    0

        =0

i

i

Z i i i

i Z i i i

i i i i

V d c

V d c

a bU c

σ

σ

 +
− + <


+

U










 

 (22) 

2.3 Saddlepoint approximation 

Saddlepoint approximation is used to recover a PDF from its cumulant generating function 

(CGF). The CGF of the noncentral chi-square iV  in Eq. (22) is given by 

 1( ) log(1 2 )
1 2 2i

i
V

tK t t
t

λ
= − −

−
 (23) 

The CGF of the standard normal variable iU  in Eq. (22) is given by 

 21
2iUK t=



 (24) 

The CGF of ( )iQ U  in Eq. (22) is then given by 

 

2
2

2

2
2

2

2 2

1 log(1 2 )       0
1 2 2

1( ) log(1 2 )      < 0
1 2 2

1                                        = 0  
2

i

i

i

i

i i

i

i Z
Z i i

Z

i Z
Q Z i i

Z

i i

t
t d t c

t

t
K t t d t c

t

at b t c

λσ
σ

σ

λσ
σ

σ


− − + >

−

= − − + + +

 +






 

 (25) 

With all the above CGFs available, the CGF of the limit-state function in Eq. (12) Q( )U  is 
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then computed by  

 
1

( ) ( )
i

n

Q Q
i

K t K t
=

=∑  (26) 

After the CGF ( )QK t   is obtained, it is straightforward to find the PDF of the limit-state 

function, and this requires to find the saddlepoint st , which is found by solving the following 

equation 

 ' ( ) 0QK t =  (27) 

where ' ( )QK t  is the first derivative of ( )QK t . According to the Lugannani and Rice’s formula 

[25], the component reliability SPAR  is computed by 

 SPA
1 1Pr{ ( ) 0} ( ) ( )( )R Q w w
w v

φ= < = Φ + −U  (28) 

where ( )Φ ⋅  and ( )φ ⋅  are CDF and PDF of a standard normal distribution, respectively. 

 1/2sgn( ){2[ ( )]}s Q sw t K t= −  (29) 

 '' 1/2[ ( )]s Q sv t K t=  (30) 

where sgn( ) 1, 1 or 0st = + − , depending on whether st  is positive, negative or zero; '' ( )QK t  is the 

second derivative of ( )QK t  with respect to t. 

3. SYSTEM RELIABILITY WITH SECOND ORDER SPA 

In this section, we discuss the new second-order SPA method for system reliability analysis. 

We focus on only series systems; the method, however, can also be extended to parallel systems 

and the combination of series and parallel systems.  
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System reliability can be estimated by integrating the joint PDF of all the input random 

variables in the safe region as indicated Eq. (3). To use SPA, we consider the PDF of component 

responses directly. The system state is determined by component responses predicted from 

component limit-state functions ( ) ( 1, 2,..., )i iY g i m= =X . System reliability is then computed by  

 
1

Pr ( ) 0,  ,1, 2,
m

S i i
i

R Y g i m
=

 = = < …= 
 

X  (31) 

Eq. (31) requires the joint distribution of  ( 1, 2,... )iY i m= . This means that we need to consider 

both component reliability and dependencies between component responses. Hereby, we 

approximate the joint distribution of all the component responses as a multivariate normal 

distribution.  

If we consider only the first order terms of Eq. (9), the component limit-state function becomes 

 T* * *( ) ( ) ( )i i i i iQ G G= −∇ +∇U u u u U  (32)  

If we divide both sides of Eq. (32) by the magnitude of the gradient, we obtain 

 
* *

*

T
*

* *

( ) ( ) ( )
( ) ( ) ( )

i i i i
i

i i i

Q G G
G G G

∇ ∇
= − +

∇ ∇ ∇
U u uu U
u u u

 (33)  

Or 

 
*

( )
( )

i
i i

i

Q
G

β= − +
∇ u

αU U  (34) 

The event of the safe component ( ) 0iQ <U  is equivalent to the event 0i iβ− + <α U . We 

then define a new variable 

 ii iZ β− += α U  (35)  
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where iα  is the directional vector and is given by 

 
* *

*

( )
( )

ii i

i
i

i

G
G β

∇
= =

∇
u uα
u

 (36)  

We call iZ   an equivalent component response. It is obvious that iZ   follows a normal 

distribution. As a result, all the equivalent component responses follow a multivariate normal 

distribution.  

System reliability is then approximated by 

 
1 1 1

=Pr ( ) 0 Pr 0 =Pr( <0)
m m m

S i i i
i i i

iR Q Zβ
= = =

   < = − <   
   

U α U    (37) 

The multivariate normal distribution is denoted by ( , )Z ZN μ Σ , where Zμ  is the mean vector 

of 1 2( , , ), mZZ Z …=Z   and ZΣ   is the covariance matrix. System reliability thus becomes the 

CDF ( ; , )m Z ZΦ 0 μ Σ  of Z  at 0 ; namely 

 
0 0

( ; , ) ... ( )m Z ZS ZR f d
−∞ −∞

= Φ = ∫ ∫0 μ Σ z z  (38) 

where ( )Zf z  is the joint PDF of Z . 

Since we use the first approximation directly as indicated in Eq. (9), the method we have just 

discussed is the existing FORM for system reliability analysis.  

The accuracy of the multivariate normal integration in Eq. (38) is closely related to the 

accuracy of the mean vector Zμ and covariance matrix ZΣ . In addition to high accuracy, we would 

also like to maintain high efficiency. There are mainly two ways to make the integration accurate 

and efficient. First, we improve the accuracy by determining Zμ   with the second order 
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component reliability obtained from the second order SPA. This strategy is adapted from Ref. [26] 

where the traditional SORM is used. Since the second-order SPA is in general more accurate than 

the traditional SORM, the new method has higher accuracy. We use the second order SPA to 

approximate the marginal CDF of iZ  at 0, which is the component reliability  

 SPA( ) Pr(Z 0)
i i iZF R= < =0   (39) 

where SPAiR  is calculated by the second-order SPA method given in Eq. (28). Then the associated 

reliability index is determined by 

 ( )SPA
SPAi iR βΦ=   (40) 

We call SPA
iβ an equivalent reliability index, which is given by 

 ( )1
S

SPA
PAii Rβ −Φ=  (41) 

Since SPA
iβ  is obtained from a more accurate reliability estimate, we use it to replace iβ  in 

Eq. (35), resulting in SPA
i i iZ β= − +α U . The mean vector of the multivariable distribution of Z  

is then obtained. 

 SPA SPA SPA
1 2( , ,..., )Z mβ β β=μ  (42) 

The above treatment ensures that the component reliability or the marginal distributions of 

component responses are accurately estimated by the second order approximation. 

In order to simplify computations and achieve high efficiency, we use the same strategy in Ref. 

[26] to estimate the covariance matrix ZΣ . The idea is to use the first order approximation in Eq. 

(32). Let the components of ZΣ  be ,  , 1, 2, , ,  ij i j m i jρ … ≠= . The covariance is given by  
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 T
ij i jρ = α α  (43) 

Then ZΣ  is given by  

 

12 1

21 2

1 2

1
1

1

m

m
Z

ij

m m m m

ρ ρ
ρ ρ

ρ
ρ ρ

×

 
 
 =
 
 
 

Σ





  



 (44) 

The joint distribution of all component responses is now approximated by a multivariate 

normal distribution. With Zμ  and ZΣ   available, the joint PDF of 1 2( , ,..., )mZ Z Z=Z   is 

expressed as  

 T 11 1( ) exp ( ) ( )
2(2 ) | |

Z Z Zm
Z

f
π

− = − − − 
 

z z μ Σ z μ
Σ

 (45) 

Then system reliability SR  can be easily calculated by integrating the PDF in Eq. (38) from 

( ,..., )−∞ −∞  to (0,...,0)  and the system probability of failure is 

 1Sf Sp R= −  (46) 

Many algorithms are available for integrating ( )Zf z  in Eq. (45) such as the first order multi-

normal approximation (FOMN) [27], the product of conditional marginal method (PCM) [28], and 

Alan Genz method [29].  

The proposed method provides a new way to estimate the system reliability with nonlinear 

limit-state functions. The dependencies between component responses are automatically 

accommodated in the system covariance matrix, and component marginal CDFs can be obtained 

accurately by using the second-order SPA. Thus this method not only achieves high accuracy in 
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estimating system reliability but also simplifies the computations while maintaining high 

efficiency.  

The procedure of the system reliability analysis with the second-order SPA is briefly 

summarized below. 

(1) Transform random variable X into U in the standard normal space. 

(2) Search for MPPs *
iu ; obtain the reliability index iβ  and first and second derivatives of 

component limit-state functions at the MPPs. 

(3) Perform the second-order SPA for all components. 

(4) Use SPA results to find the means of equivalent component responses. 

(5) Use MPPs and reliability indexes to find the covariance matrix. 

(6) Form the multivariate normal PDF and integrate it to obtain system reliability. 

4 EXAMPLES 

In this section, four examples are presented. The first example is used to demonstrate the 

proposed method while the other three examples show possible engineering applications. The 

accuracy is measured by the percentage error with respect to a solution from MCS. The error is 

calculated by 

 
MCS

S S
MCS
S

100%f f

f

p p
p

ε
−

= ×  (47) 

where MCS
Sfp   and Sfp   are probabilities of system failure from MCS and second order SPA 
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method, FORM method or SORM method, respectively. 

4.1 Example 1 

The first example is mathematical example. A system consists of two physical components, 

and each component has one limit-state function. There are two basic random variables denoted 

by 1 2( , )X X=X  . 1X   is normally distributed with mean 1 4µ =   and standard deviation 

1 0.7σ = , and the distribution is denoted by 1 ~ (4,0.7)X N . 2X  is lognormally distributed with 

mean 2 4µ =  and standard deviation 2 1σ = , and the distribution is denoted by 2 (4,1)X LN
. 

The two limit-state functions are given by 

 1 1 2( ) 5g X X= −X  (48) 

 2 2
1 22 1 2( 7 16 40)g X X X X= − − − + −X  (49) 

At first, MPPs, reliability indexes, and directional vectors of the two limit-state functions are 

obtained. The results are given in Table 1. 

Table 1 MPP, reliability index and directional vector 

------------------------------- 
Place Table 1 here 

------------------------------- 

Next, the reliability of each component is calculated by the second-order SPA with 

1 0.9995R =   and R2=0.9994. The mean values of the two equivalent component responses 

1 2( , )Z Z=Z  are then calculated by 

 SPA SPA 1
1,2 1,2( ) ( ( )) (3.3083,3.2358)Z i i i iRβ −
= == = = Φ =μ β   
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The correlation coefficients ijρ   are calculated by Eq. (43). For example, 

T
12 1 2 0.3007ρ = =α α . Therefore, the covariance matrix is obtained.  

 12

21

1 1 0.3007
1 0.3007 1Z

ρ
ρ
   

= =   
  

Σ   

Using Eq. (38), we obtain the system probability of failure 31 1.0702 10Sf Sp R −= − = × . 

When FORM and SORM are used, the covariance matrices are the same as ZΣ , and the mean 

values of the two equivalent component responses are FORM (3.3620,3.1450)Z = =μ β   and 

SORM (3.3086,3.2274)Z = =μ β  Based on Eq. (38), the system probabilities of failure based on 

FORM and SORM are 31.2111 10Sfp −= ×  and 31.0878 10Sfp −= ×  respectively. 

For MCS, a large sample size of 710  is used to compute the system reliability. All results are 

listed in Table 2, which shows that the errors of SOSPA, SORM and FORM are 0.289%, 1.35% 

and 12.% respectively. The results indicate that SOSPA is more accurate than FORM and SORM. 

The number of function calls in Table 2 indicate that FORM is more efficient than SOSPA and 

SORM. 31.0878 10−×  

Table 2 Probability of system failure in Example 1 

------------------------------- 
Place Table 2 here 

------------------------------- 

4.2 Example 2 

Example 2 is an engineering example. Consider a roof structure [30], whose top boom and 

compression bars are made by concrete, while the bottom boom and all the tension bars are made 
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of steel. Assume the bars bear a uniformly distributed load q. Let CA   and CE   be the cross 

sectional area and elastic modulus of the concrete bars, respectively. Let SA  and SE  be the cross 

sectional area and elastic modulus of the steel bars, respectively. The perpendicular deflection of 

the roof peak node C is calculated by  

 
2 3.81 1.13

2 C C S S

qlC
A E A E

 
∆ = + 

 
 (52) 

A failure event occurs when the perpendicular deflection C∆  exceeds 1.5 cm. The limit-state 

function is then defined by 

 
2

1
3.81 1.13( ) 0.015

2 C C S S

qlg
A E A E

 
= + − 

 
X  (53) 

The second failure mode is that the internal force of bar AD exceeds its ultimate stress. The 

internal force of bar AD is 1.35ADN ql= , and the ultimate strength of the bar is C Cf A , where Cf  

is the compressive stress of the bar. The second limit-state function is given by 

 2 ( ) 1.185 C Cg ql f A= −X  (54) 

A failure occurs when the internal force of bar EC 1.3ECN ql=  exceeds its ultimate stress

S Sf A  , where Sf   is the tensile strength of the bar. Therefore, the third limit-state function is 

formulated by 

 3( ) 0.65 S Sg ql f A= −X  (55) 

CE  and SE  are lognormally distributed, and the rest of random variables ,  ,  ,  ,  S C Cq l A A f , and 

Cf  are normally distributed. They are listed in Table 3. 
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Table 3 Distribution of random variables 

------------------------------- 
Place Table 3 here 

------------------------------- 

After the MPPs are found, the reliability indexes and directional vectors are available.  

 1 4.6396β =   

2 3.8122β =  

3 3.4440β =  

 1 (0.7054,0.1857, 0.4890, 0.2122, 0.4147, 0.1465,0,0)= − − − −α   

 2 (0.1686,0.0179,0, 0.1504,0,0,0, 0.9740)= − −α   

 3 (0.2009,0.0215, 0.1325,0,0,0, 0.9704,0)= − −α   

Similarly, the reliability of each component is calculated by the second-order SPA, which 

produces 1 1.0R =  , 2 0.9999R =  , and 3 0.9997R =  . The mean values of the three equivalent 

component responses 1 2 3( , , )Z Z Z=Z  are then calculated by  

 SPA SPA 1
1,2,3 1,2,3( ) ( ) (4.5985,3.7999,3.4358)Z i i i iRβ −
= == = = Φ =μ β   

The covariance matrix ZΣ  is 

 
12 13

21 23

31 32

1 1 0.1542 0.2092
1 0.1542 1 0.0343

1 0.2092 0.0343 1
Z

ρ ρ
ρ ρ
ρ ρ

   
   = =   
      

Σ   

Thus, the system probability of failure is estimated to be 43.6983 10Sfp −= × . 

When FORM is used, the covariance matrix remains the same, and the mean values of the three 
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equivalent component responses are (4.6396,  3.8122,  3.4440)Z =μ  . Based on Eq. (38), the 

system probability of failure is 43.5714 10Sfp −= × . Similarly, the system probability of SORM is 

43.6642 10Sfp −= × . The solution from MCS with a sample size of 71 10×  serves as a benchmark 

for the accuracy comparison. All results are given in Table 4, which indicates that SOSPA is more 

accurate than FORM and SORM while the latter is more efficient than the former. 

Table 4 Probability of system failure in Example 2 

------------------------------- 
Place Table 4 here 

------------------------------- 

 

4.3 Example 3 

This example has ten polynomial surface response functions used as a surrogate for a more 

computationally intensive numerical model of the various phenomena leading to failure [31, 32]. 

The system reliability is defined by 

 1 2 9 10Pr( ( ) 0 ( ) 0 ... ( ) 0 ( ) 0)SfR g g g g= ≤ ≤ ≤ ≤X X X X     (56) 

The limit-state functions ( )ig ⋅  are given below. 

 1 2 4 2 10 3 9 6 10( ) 1.16 0.3717 0.00931 0.484 0.01343 1g X X X X X X X X= − − − + −X  (57) 

 2 4 2 3 4 10
2

6 10 11

( ) 4.72 0.5 0.19 0.0122
            0.009325 0.000191 4.01
g X X X X X

X X X
= − − −

+ + −

X
 (58) 

 3 3 1 2 5 10 6 9

7 8 9 10

( ) 28.98 3.818 4.2 0.0207 6.63
             7.7 0.32 32
g X X X X X X X

X X X X
= + − + +
− + −

X
 (59) 
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 4 3 10 1 2 2 8

5 10 7 8 8 9

( ) 33.86 2.95 0.1792 5.057 11
             0.0215 9.98 22 32
g X X X X X X

X X X X X X
= + + − −
− − − −

X
 (60) 

 5 2 1 8 3 10( ) 46.36 9.9 12.9 0.1107 32g X X X X X= − − + −X  (61) 

 6 1 2 1 8 2 7 3 5

5 10

( ) 0.261 0.0159 0.188 0.019 0.0144
             0.0008757 0.32
g X X X X X X X X

X X
= − − − +
+ −

X
 (62) 

 
7 5 1 8 1 9 2 6

2 7 3 8 3 9 5 6

5 10 6 10 8 11

( ) 0.214 0.00817 0.131 0.0704 0.03099
            0.018 0.0208 0.121 0.00364
            0.0007715 0.0005354 0.00121 0.32

g X X X X X X X
X X X X X X X X

X X X X X X

= + − − +
− + + −
+ − + −

X
 (63) 

 2 3 8 3 10 7 9

2

8
2

0.74 0.61 0.163 0.001232 0.166
             0.227 32

( ) X X X X X X X
X

g − − + −

+ −

=X
 (64) 

 1 2 2 8 3 10 4 1

1

9 0

6 0

10.58 0.674 1.95 0.02054 0.0198
             0.028 9.9

( ) X X X X X X X X
X

g
X

− − + −
+ −

=X
 (65) 

 3 7 5 6 9 10 90 11
2

11

1 16.45 0.489 0.843 0.0432 0.0556
              0.0003 15.6

( )
9

X X X X Xg X X X
X

− − −

−

= +

−

X
 (66) 

There are eleven random variables which are B-pillar inner ( 1X ), B-pillar reinforcement ( 2X ), 

floor side inner ( 3X ), cross members ( 4X ), door beam ( 5X ), door belt line reinforcement ( 6X ), 

roof rail ( 7X ), B-pillar inner ( 8X ), floor side inner ( 9X ), barrier height ( 10X ), and barrier hitting 

position ( 11X ). All of them are normally distributed with parameters defined in the Table 5. 

The reliability indexes of all components are at first calculated by FORM, which yields 

1 9.3064β =  , 2 1.8772β =  , 3 4.0596β =  , 4 2.9767β =  , 5 1.2968β =  , 6 12.1197β =  , 

7 15.5223β =  , 8 4.8357β =  , 9 3.7118β =   and 10 1.8782β =  . Therefore, for FORM, the mean 

values of ten equivalent component responses 1 2 10( , , , )Z Z Z=Z   are  

 (9.3064,1.8772,4.0596,2.9767,1.2968,12.1197,15.5223,4.8357,3.7118,1.8782)Z =μ   
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The 10-by-10 covariance matrix is given by 

 

10 10

1 0.7651 0.9021 0.5581
0.7651 1 0.9285 0.7498

0.9021 0.9285 1 0.7093
0.5581 0.7498 0.7093 1

Z

×

− 
 − − − 
 =
 − 
 − 

Σ





    





  

The system probability of failure from FORM method is 1 0.1390Sf Sp R= − = .  

When SOSPA method is used, the mean values of the ten equivalent component responses are 

given by 

 SPA (9.3286,1.4495,4.0629,2.9759,1.2983,12.1274,15.4725,4.8079,3.7234,2.0335)Z =μ   

Table 5 Distribution of random variables 

------------------------------- 
Place Table 5 here 

------------------------------- 

 

The probability of system probability from SOSPA is then given by 0.1777Sfp = .  

All results are given in Table 6, which also indicates that SOSPA is much more accurate than 

FORM and SORM while the latter is more efficient than the former. For this problem with 10 

responses, the error from FORM and SORM are too large. 

Table 6 Probability of system failure in Example 3 

------------------------------- 
Place Table 6 here 

------------------------------- 
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4.4 Example 4 

The final example involves an assembly system where a rectangular steel bar cantilevered to a 

steel channel with four identical tightly fitted bolts located at points A, B, C, and D as shown in 

Fig. 1. The rectangular bar is subjected to an external force F. All random variables are given in 

Table 7. 

------------------------------- 
Place Figure 1 here 

------------------------------- 

Fig. 1 A cantilever bar 

Table 7 Distribution of random variables 

------------------------------- 
Place Table 7 here 

------------------------------- 

The centroid of the bolt group O is found by symmetry. The shear reaction 𝑉𝑉 passes through 

O, and the moment reaction 𝑀𝑀 is about O. They are given by 𝑉𝑉 = 𝐹𝐹, 𝑀𝑀 = 𝐹𝐹(𝑙𝑙1 + 𝑙𝑙2 + 𝑙𝑙4
2

). The 

distance from the centroid to the center of each bolt is 

𝑟𝑟 = 0.5�𝑙𝑙42 + 𝑙𝑙52 

The primary shear load per bolt is 𝐹𝐹′ = 𝑉𝑉
4
. Since the secondary shear forces are equal, they 

become 𝐹𝐹′′ = 𝑀𝑀𝑀𝑀
4𝑟𝑟2

= 𝑀𝑀
4𝑟𝑟

. The resultants of the primary and secondary shear forces are obtained by 

using the parallelogram rule. The magnitudes are found to be  

𝐹𝐹𝐴𝐴 = 𝐹𝐹𝐵𝐵 = �(𝐹𝐹′)2 + (𝐹𝐹′′)2 − 2𝐹𝐹′𝐹𝐹′′𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃1 
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𝐹𝐹𝐶𝐶 = 𝐹𝐹𝐷𝐷 = �(𝐹𝐹′)2 + (𝐹𝐹′′)2 − 2𝐹𝐹′𝐹𝐹′′𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 

where 𝜃𝜃1 = 𝑝𝑝𝑝𝑝
2

+ arctan (𝑙𝑙4
𝑙𝑙5

), and 𝜃𝜃2 = 𝑝𝑝𝑝𝑝
2
− arctan (𝑙𝑙4

𝑙𝑙5
). 

The largest bearing stress is due to the pressing of the bolt against the channel web. The bearing 

area of the channel is 𝐴𝐴1 = 𝑡𝑡1𝑑𝑑𝑎𝑎. The maximum bearing stress of the channel should be smaller 

than its yield strength, which is given by 

 1 1
1

( ) AFg S
A

= −X  (67) 

Correspondingly, the limit-state function of the bar is defined by 

 2 2
2

( ) AFg S
A

= −X  (68) 

where 𝐴𝐴2 = 𝑡𝑡2𝑑𝑑𝑎𝑎 

The critical bending stress in the bar occurs at the cross section A-B, where the bending moment 

is 𝑀𝑀1 = 𝐹𝐹(𝑙𝑙1 + 𝑙𝑙2). The second moment of area of the section is 

𝐼𝐼 = 𝐼𝐼𝑏𝑏𝑏𝑏𝑏𝑏 − 2�𝐼𝐼ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 + 𝑑̅𝑑2𝐴𝐴� =
𝑡𝑡2𝑙𝑙23

12
− 2 �

𝑡𝑡2𝑑𝑑𝑎𝑎3

12
+
𝑙𝑙52

4
𝑡𝑡2𝑑𝑑𝑎𝑎� 

The bending stress of the bar should be smaller than its yield strength, and this is given by  

 1
3 2( ) Mg S

I c
= −X  (69) 

where 𝐼𝐼 𝑐𝑐⁄  is the section modulus for the bar, 𝑐𝑐 = 𝑙𝑙3 2⁄ . 

Bolt A and B are critical because they carry the largest shear load 𝐹𝐹𝐴𝐴 and 𝐹𝐹𝐵𝐵. The shear stress 

of the bolts should not be greater than the allowable shear stress. Thus, the limit-state functions of 
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bolts A and B are defined by 

 4 ( ) A
a

sa

Fg
A

τ= −X   (70) 

 5 ( ) B
b

sb

Fg
A

τ= −X  (71) 

where 𝐴𝐴𝑠𝑠𝑠𝑠 and 𝐴𝐴𝑠𝑠𝑠𝑠 are shear-stress areas. 

Similarly, the limit-state functions of bolts C and D are defined by  

 6 ( ) C
c

sc

Fg
A

τ= −X  (72) 

 7 ( ) D
d

sd

Fg
A

τ= −X  (73) 

where 𝐴𝐴𝑠𝑠𝑠𝑠 and 𝐴𝐴𝑠𝑠𝑠𝑠 are shear-stress areas. 

There are seven limit-state functions. The system probabilities of failure and the function calls 

from all methods are provided in Table 8. The results show that SOSPA is the most accurate method 

because its error is only 0.593% compared with the MCS result and the errors of SORM and FORM 

are much larger. FORM is the most efficient method since its number of function calls is the least. 

SOSPA and SORM call the limit-state functions with the same time.  

Table 8 Probability of system failure in Example 4 

------------------------------- 
Place Table 8 here 

------------------------------- 
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5. CONCLUSION 

The proposed second order saddlepoint approximation (SOSPA) method is an alternative 

method for system reliability analysis. This method results in higher accuracy than the first order 

approximation method by combing the second order approximation and saddlepoint 

approximation. SOSPA accurately produces the marginal distributions of all component responses. 

This is achieved by employing the saddlepoint approximation after transforming the approximated 

second-order limit-state functions into linear combinations of noncentral chi-square variables. The 

dependences between component responses are considered with the only first approximation for 

the sake of efficiency. With the estimated marginal component distributions and component 

correlations, the joint distribution of all the component responses is formed by a multivariate 

normal distribution, which leads to a fast evaluation of the system reliability. 

The accuracy of the proposed is largely determined by the accuracy of the approximated limit-

state functions with second order Taylor expansion in the vicinity of the most probable points. The 

accuracy is also affected by the first order approximation for estimating correlations between 

component responses.  

How to more accurately estimate component correlations by a second order approximation 

needs a further investigation. The other future work is to incorporate the system reliability analysis 

in reliability-based design optimization. 
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Table 1 MPP, reliability index and directional vector 

 

 *u  β  α  

1g  (-2.6981,-2.0057) 3.3602 (0.8025,0.5966) 

2g  (-2.5485, 1.8429) 3.1450 (0.8103,-0.5869) 

 

Table 2 Probability of system failure in Example 1 

Method Sfp  ε  (%) Total function calls 

SOSPA 1.0702×10-3 

 

 

0.29 45 

SORM 1.0878×10-3 

 

1.35 45 

FORM 1.2111×10-3 

 

12.80 39 

MCS 1.0733×10-3 N/A 107 

 

Table 3 Distribution of random variables 

 Variables Distribution 

1X   (N/m)q  N(14000,1400)  

2X   (m)L  N(12,0.12)  

3X  2 (m )SA  4 4N(9.00 10 ,0.54 10 )− −× ×  

4X  2 (m )CA  2 3N(5 10 ,4 10 )− −× ×  

5X  2 (N/m )SE  1 11 1LN( ,0.122 10 10 )××  

6X  2 (N/m )CE  1 11 1LN( ,0.183 10 10 )××  

7X  2 (N/m )Sf  8 8N(3.35 10 ,0.60 10 )× ×  

8X  2 (N/m )Cf  7 7N(1.34 10 ,0.24 10 )× ×  
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Table 4 Probability of system failure in Example 2 

 

Method Sfp  ε  (%) Total function calls 

SOSPA 3.6983×10-4 0.34 243 

SORM 3.6642×10-4 1.26 243 

FORM 3.5714×10-4 3.76 135 

MCS 3.7110×10-4 N/A 107 

 
 

Table 5 Distribution of random variables 
 

Random variable Distribution 

1X  (mm) N(0.500,0.030) 

2X  (mm) N(1.310,0.030) 

3X  (mm) N(0.500,0.030) 

4X  (mm) N(1.395,0.030) 

5X  (mm) N(0.875,0.030) 

6X  (mm) N(1.200,0.030) 

7X  (mm) N(0.400,0.030) 

8X  (GPa) N(0.345,0.006) 

9X  (GPa) N(0.192,0.006) 

10X  (mm) N(0.0,10.0) 

11X  (mm) N(0.0,10.0) 
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Table 6 Probability of system failure in Example 3 

Method Sfp  (%)ε  Total function calls 

SOSPA 0.1777 3.31 1572 

SORM 0.1355 26.40 1572 

FORM 0.1391 24.30 912 

MCS 0.1838 N/A 107 
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Table 7 Distribution of random variables 

 Variables Distribution 

𝑋𝑋1 𝐹𝐹 (N) N(1.6 × 104, 1.6 × 103) 

𝑋𝑋2 𝑆𝑆1 (Pa) LN(300 × 106, 57 × 106) 

𝑋𝑋3 𝑆𝑆2 (Pa) LN(300 × 106, 57 × 106) 

𝑋𝑋4 𝜏𝜏𝑎𝑎 (Pa) LN(310 × 106, 59 × 106) 

𝑋𝑋5 𝜏𝜏𝑏𝑏 (Pa) LN(310 × 106, 59 × 106) 

𝑋𝑋6 𝜏𝜏𝑐𝑐 (Pa) LN(310 × 106, 59 × 106) 

𝑋𝑋7 𝜏𝜏𝑑𝑑  (Pa) LN(310 × 106, 59 × 106) 

𝑋𝑋8 𝑡𝑡1 (m) N(1.0 × 10−2, 2.0 × 10−4) 

𝑋𝑋9 𝑡𝑡2 (m) N(1.0 × 10−2, 2.0 × 10−4) 

𝑋𝑋10 𝑑𝑑𝑎𝑎 (m) N(1.6 × 10−2, 3.2 × 10−4) 

𝑋𝑋11 𝑑𝑑𝑏𝑏 (m) N(1.6 × 10−2, 3.2 × 10−4) 

𝑋𝑋12 𝑑𝑑𝑐𝑐 (m) N(1.6 × 10−2, 3.2 × 10−4) 

𝑋𝑋13 𝑑𝑑𝑑𝑑  (m) N(1.6 × 10−2, 3.2 × 10−4) 

𝑋𝑋14 𝑙𝑙1 (m) N(3.2 × 10−1, 6.4 × 10−3) 

𝑋𝑋15 𝑙𝑙2 (m) N(5.0 × 10−2, 1.0 × 10−3) 

𝑋𝑋16 𝑙𝑙3 (m) N(2.0 × 10−1, 4.0 × 10−3) 

𝑋𝑋17 𝑙𝑙4 (m) N(1.5 × 10−1, 3.0 × 10−3) 

𝑋𝑋18 𝑙𝑙5 (m) N(1.2 × 10−2, 2.4 × 10−3) 

𝑋𝑋19 𝐴𝐴𝑠𝑠𝑠𝑠 (m2) N(1.44 × 10−4, 2.88 × 10−6) 

𝑋𝑋20 𝐴𝐴𝑠𝑠𝑠𝑠  (m2) N(1.44 × 10−4, 2.88 × 10−6) 

𝑋𝑋21 𝐴𝐴𝑠𝑠𝑠𝑠 (m2) N(1.44 × 10−4, 2.88 × 10−6) 
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𝑋𝑋22 𝐴𝐴𝑠𝑠𝑠𝑠  (m2) N(1.44 × 10−4, 2.88 × 10−6) 

 

Table 8 Probability of system failure in Example 4 

Method Sfp  ε (%) Total function calls 

SOSPA 1.1672×10-3 1.71 2599 

SORM 1.0273×10-3 13.50 2599 

FORM 1.2292×10-3 3.51 828 

MCS 1.1875×10-3 N/A 107 
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Fig. 1 A cantilever bar 
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