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Abstract

The second order saddlepoint approximation (SPA) has been used for component reliability
analysis for higher accuracy than the traditional second order reliability method. This work extends
the second order SPA to system reliability analysis. The joint distribution of all the component
responses is approximated by a multivariate normal distribution. To maintain high accuracy of the
approximation, the proposed method employs the second order SPA to accurately generate the
marginal distributions of the component responses; to simplify computations and achieve high
efficiency, the proposed method estimates the covariance matrix of the multivariate normal
distribution with the first order approximation to the component responses. Examples demonstrate

the high effectiveness of the second order SPA method for system reliability analysis.



1. INTRODUCTION

One of the criteria for systems design is to avoid system failures or minimize the probability
of system failures. It is therefore necessary to predict system reliability accurately and efficiently
during the design process [1]. System reliability is typically measured by the probability that the
system fulfills its intended function without failures [2]. There are multiple components in the
system, and each component may have multiple failure modes. Suppose the i-th failure model has
a limit-state function given by

Y =g.(X) (i=1,.,m) (1)
where Y is a component response, and X 1is the vector of random variables. If Y, <0, the
failure model does not occur; otherwise, the failure mode occurs. If we consider a failure model as
a component, component reliability is then computed by

R =Pr(g,(X)<0)= J.f(x)dx i=12,..,m) (2)

Q
where Q. is the component safe domain or the domain defined by {X:K =g.(X) <O}, and
f(x) is the joint probability density function (PDF) of X. For a series system, if one failure

mode occurs, the system fails. System reliability is therefore given by
Ry = Pr(q 2.(X)< 0] = [ [ e 3)
where Q) is the system safe domain or the domain defined by {X : ﬁ gi(X)} <0, and m is the
i=1

number of components in the system.



In practice, it is difficult to integrate a multidimensional PDF over the safe domain in Eq. (3).
Different approaches have therefore been developed to approximate the multi-dimensional integral.
They include the bound approximation, surrogate approaches, and analytical approaches.

Bound approximation methods predict system reliability with lower and upper bounds. The
first order bound method for series systems assumes that all the component responses are
completely dependent or mutually exclusive. Based on this assumption, upper and lower bounds
are derived. Ditlevsen [3] developed the second-order bound method by taking into account all the
single mode failure probabilities and all the pairwise mode intersection failure probabilities to
narrow the first order bound. Song and Der Kuireghian [4] proposed a linear programming (LP)
method to compute the system reliability bound. The LP bounds are independent of the ordering
of the components and are guaranteed to produce the narrowest possible bounds. Another
reliability bound method is the complementary intersection method [5]. It approximates the
reliability of series systems with eigenvector dimension reduction and produces more accurate
results compared with the first and the second order bound methods. More studies on system
reliability bound methods can be found in Refs. [6, 7].

Surrogate approaches predict single-valued system reliability by creating surrogate models for
component responses and using Monte Carlo simulation (MCS). Surrogate models are created first,
and then system reliability is estimated with MCS based on the surrogate models. The surrogate

modeling methods include the polynomial chaos expansion (PCE) [8], Support Vector Machine



(SVM) [9], and Kriging method [10-13]. The recent development in this area is to perform
surrogate modeling and MCS simultaneously. For example, Bichon et al. [10, 11] applied the
efficient global optimization to reliability assessment. This method uses the active learning
function called the Expected Feasibility Function (EFF) to choose new training points in the
vicinity of the limit state, resulting in building an accurate surrogate model with fewer function
evaluations. Fauriat and Gayton [12] proposed to build the initial Kriging surrogate model and
continually refine the model by choosing new training points from a pre-sampled MCS population.
Wu and Du proposed a new kriging method to predict system reliability that combines MCS and
the Kriging method with improved accuracy and efficiency[13].

Analytical methods use neither surrogate models nor MCS and also produce single-valued
system reliability. They approximate nonlinear limit-state functions so that the system probability
integral can be easily computed. The methods include the use of the First Order Reliability Method
(FORM) [14, 15], Second Order Reliability Method (SORM) [16, 17], and Saddlepoint
Approximation Method (SPA) [15, 18]. FORM is the most well-known method due to its good
balance between accuracy and efficiency. It at first transforms random variables into standard
normal variables and then it identifies the reliability index, which is the minimum distance from
the origin to the linearized and transformed limit-state function at the most probable point (MPP).
System reliability is then approximated by the multidimensional integration of the joint probability

density function after the marginal distributions and correlation coefficients of component states



are obtained by the first order approximation [14, 19]. Although the efficiency of such method is
good, the accuracy may not be good if limit-state functions are highly nonlinear. Therefore,
Madsen [17] presented an extension of FORM based on a more accurate approximation of the
limit-state function, and the result shows smaller differences between the second order
approximation and the exact result.

Among the above methods, SPA can improve accuracy for problems with or without the non-
normal to normal transformation. Du estimated the system reliability by SPA without any
transformation on random input variables, leading to more accurate result than the FORM [6]. But
the method is still the first order approximation and produces bounds of system reliability. An
extension of the first order SPA to the second order SPA on component reliability analysis has also
been proposed to accommodate quadratic functions, and the method is more accurate than the first
order SPA and SORM without sacrificing computational efficiency [20]. Papadimitriou et al.
proposed a new mean-value second-order saddlepoint approximation method for reliability
analysis of nonlinear systems with correlated non-Gaussian and multimodal random variables, and
the result is more accurate than FORM and SORM [21]. But these methods are for only the
component reliability analysis.

The purpose of this work is to extend the second-order SPA to system reliability analysis in
order to achieve high accuracy. The joint distribution of all the component responses is

approximated by a multivariate normal distribution. The second order SPA is used to approximate



the marginal distributions of the component responses for higher accuracy. The covariance matrix
of the multivariate normal distribution is estimated using the first order approximation.

The second-order SPA for component reliability analysis is briefly reviewed in Section 2. The
extension of the second-order SPA to system reliability analysis is discussed in Section 3 followed

by examples in Section 4. Conclusions are made in Section 5.

2. REVIEW OF SECOND ORDER SPA

In this section, we review the second order SPA for component reliability analysis [20]. It is
the basis of the proposed system reliability method in this work.
2.1 MPP search
The method first approximates the limit-state function with a second order polynomial. It is
the same approximation in the original SORM [22], which involves the MPP search in the standard
normal space using FORM. With the assumption that all variables in X are independent, they
are transformed into the standard normal variables U. The transformation is given by
F(X,)=0(U,) @)
where F/(-)and ®() are the cumulative distribution functions (CDFs) of X, and U,,
respectively. Then the transformed standard normal variables are
U, = '[F(X)] 5)
After the transformation, the limit state function becomes

¥=g(X)=G(U) (6)
7



Then, the minimum distance from the original to the limit-state surface G(U)=0 is identified.
The distance is the reliability index . The minimum distance point is called the MPP. The model

for searching for the MPP is given by

min || u || 7
subjectto G(u)=0

where ||-|| means the length of a vector, namely

Blull=ul +ul +u? =D (8)
i=1

The solution from Eq. (7) is the MPP u” = (i, u,,...,u. ).
2.2 Quadratic limit-state function

After the MPP is found, the limit-state function is approximated by

O(U) = %(u* ) VG -VGu) ' +(VG(u') - VGu ' )T U +%UTV2G(u*)U )

. oG oG . : .
where VG(u )=| —| .,...,——| . | is the gradient, and V’G(u’) is the Hessian matrix,
oU, |u oU, u
given by
G G PG |
oU;  oU,U, oU, U,
G &G G
V:G(u')=| oU,U, oU; ou,U, (10)
G &G G
| oUU, oU,U, ou, |.

The independent standard normal vector U=(U,,U,,...,U,) can be easily generated as



follows:

Uu=D"U (11)

where D is an orthogonal matrix whose column vectors are the eigenvectors of EVZG(u*), and

fJ = ((} l,lj 5yuees (} ) is a vector of independent standard normal random variables.

Thus, Eq. (9) is expressed in the form of a quadratic polynomial function, as follows:
O0(U)=a+b"U+U'CU (12)

in which

a= %(u*)TVZG(u*)u* ~VGu)'u

b=D"b=(b,b,,...b) (13)

C=D'CD =diag(,,é,,....¢,)

Since C is diagonal, Eq. (12) can be written as sum of quadratic functions of different

standard normal variables.

Q(U):Zn:Qi(ﬁ):Zn:(di+Z;il7i+5i0i2) (14)

where
- (15)

and # is the total number of random variables.

Q.(U) is further rewritten as follows



Z}+d, >0

lad ~ 77 b 2 ~ b 2 ~
(U) =3 —(-¢U, —F +a,———=3-2"+d. ¢ <0 (16)
0,(0) =1~ ST A +
- - a+bU ¢=0
a,+bU.
where d; is constant and is determined by the following equation
b}
d, = ~, i 17
=4 (17)
Z; is obtained by a linear transformation of U;
—- b i
Z = \/CTU[ t—= ¢>0
N

h (18)

AN A <0

2\/-c,

Z, is normally distributed and is denoted by Z, ~ N(u, ,o, ), where the mean p , is given

by

&
Il

and the standard deviation oy, is given by

¢,>0
(19)
¢, <0
¢>0
(20)
¢, <0

V.=(Z, /o, )> follows a noncentral chi-square distribution with freedom of 1 [23, 24];

10



namely ¥, ~ y*(1,4), where 1 is a non-centrality parameter and given by
A= (ﬁ)z (21)
o,

The limit-state function in Eq. (16) in finally expressed by a linear combination of either

noncentral chi-square variables or standard normal variables.

Q(U)=4-0;V,+d, ¢ <0 (22)

2.3 Saddlepoint approximation

Saddlepoint approximation is used to recover a PDF from its cumulant generating function

(CGF). The CGF of the noncentral chi-square V, in Eq. (22) is given by

At 1
K, (t)=————log(1-2¢ 23
() === log(1-21) (23)

The CGF of the standard normal variable U, in Eq. (22) is given by

1
Kﬁi =5t2 (24)

The CGF of Q.(U) in Eq. (22) is then given by

A0 L a(-20t e ds & =0
1-2051 2 e "
K, (t)=4- 4ozt —llog(1+2azt)+d.z ¢ <0 (25)
¢ 1+205t 2 S
dt+lbi2t2 ¢ =0
2

With all the above CGFs available, the CGF of the limit-state function in Eq. (12) Q(U) is

11



then computed by

Ko(0)=Y Ky 1) 26)

After the CGF K, (?) is obtained, it is straightforward to find the PDF of the limit-state
function, and this requires to find the saddlepoint ¢ , which is found by solving the following
equation

K,()=0 (27)
where K'Q (¢) 1s the first derivative of K, (#). According to the Lugannani and Rice’s formula

[25], the component reliability R.,, is computed by

SPA
~ 1 1
Rypp = Pr{Q(U) <0} = D(w) + ¢(W)(; —;) (28)
where ®(-) and ¢(-) are CDF and PDF of a standard normal distribution, respectively.
w=sgn(t,) {2[-K, (1,)]}" (29)
v=t1[K,()]" (30)
where sgn(z ) =+1,—1 or 0, depending on whether ¢z  is positive, negative or zero; K, é (¢) isthe

second derivative of K, () with respect to 7.

3. SYSTEM RELIABILITY WITH SECOND ORDER SPA

In this section, we discuss the new second-order SPA method for system reliability analysis.
We focus on only series systems; the method, however, can also be extended to parallel systems

and the combination of series and parallel systems.

12



System reliability can be estimated by integrating the joint PDF of all the input random
variables in the safe region as indicated Eq. (3). To use SPA, we consider the PDF of component

responses directly. The system state is determined by component responses predicted from

component limit-state functions Y = g, (X) (i =1,2,...,m). System reliability is then computed by

s

RS:Pr( Y = g.(X)<0, i=1,2,...,m) 31)

Eq. (31) requires the joint distribution of Y, (i =1,2,...m). This means that we need to consider
both component reliability and dependencies between component responses. Hereby, we
approximate the joint distribution of all the component responses as a multivariate normal
distribution.

If we consider only the first order terms of Eq. (9), the component limit-state function becomes

0,(U)=-VG(u)"u, +VG,(u))U (32)

If we divide both sides of Eq. (32) by the magnitude of the gradient, we obtain

0U) _ VGm)' . VG)

[vG) :_||VG(uj) i +||vg(u;) U (33)
Or
o)
oy 2reY G4)

The event of the safe component Q,(U) <0 1is equivalent to the event —f +a,U<0. We
then define a new variable
Z,=-B +aU (35)

13



where @, is the directional vector and is given by

VG _u

" “Fow | A 69

We call Z an equivalent component response. It is obvious that Z, follows a normal
distribution. As a result, all the equivalent component responses follow a multivariate normal
distribution.

System reliability is then approximated by

m

R, =Pr[ﬁ 0.(U)< oj - Pr(ﬁ aU-p < oj ~Pr(112,<0) (37)

The multivariate normal distribution is denoted by N(m,,X,), where p, isthe mean vector
of Z=(Z,,Z,,...,Z,) and X, is the covariance matrix. System reliability thus becomes the
CDF @, (0;p,,X,) of Z at 0;namely

Ry=0, 0, 2= [ 1 (2)iz (38)
where f,(z) is the joint PDF of Z.

Since we use the first approximation directly as indicated in Eq. (9), the method we have just
discussed is the existing FORM for system reliability analysis.

The accuracy of the multivariate normal integration in Eq. (38) is closely related to the

accuracy of the mean vector p, and covariance matrix X, . In addition to high accuracy, we would

also like to maintain high efficiency. There are mainly two ways to make the integration accurate

and efficient. First, we improve the accuracy by determining p, with the second order

14



component reliability obtained from the second order SPA. This strategy is adapted from Ref. [26]
where the traditional SORM is used. Since the second-order SPA is in general more accurate than
the traditional SORM, the new method has higher accuracy. We use the second order SPA to
approximate the marginal CDF of Z, at 0, which is the component reliability
F, (0) = PK(Z, <0) = Ry, (39)
where R, 1is calculated by the second-order SPA method given in Eq. (28). Then the associated
reliability index is determined by
Ry =®(4) (40)
We call ﬂiSPA an equivalent reliability index, which is given by
B = (RSPAI,) (41)
Since ﬁiSPA is obtained from a more accurate reliability estimate, we use it to replace f§, in
Eq. (35), resulting in Z, =" +a,U. The mean vector of the multivariable distribution of Z
is then obtained.
n, =B B (42)
The above treatment ensures that the component reliability or the marginal distributions of
component responses are accurately estimated by the second order approximation.
In order to simplify computations and achieve high efficiency, we use the same strategy in Ref.
[26] to estimate the covariance matrix X, . The idea is to use the first order approximation in Eq.

(32). Let the components of X, be p;, i,j=1,2,...,m, i # j. The covariance is given by

15



p,=ala, (43)

Then X, is given by

1 p, Pim
1 ..
¥, = p121 . p:2m (44)
pml me 1 mxm

The joint distribution of all component responses is now approximated by a multivariate

normal distribution. With p, and X, available, the joint PDF of Z=(Z,Z,,...,Z,) 1is

expressed as

(45)

£, (@) =mexp(—§<z—uzfz*(z—mj

Then system reliability R can be easily calculated by integrating the PDF in Eq. (38) from
(—o,...,—©0) to (0,...,0) and the system probability of failure is

Py =1-R; (46)

Many algorithms are available for integrating f,(z) in Eq. (45) such as the first order multi-

normal approximation (FOMN) [27], the product of conditional marginal method (PCM) [28], and

Alan Genz method [29].

The proposed method provides a new way to estimate the system reliability with nonlinear

limit-state functions. The dependencies between component responses are automatically

accommodated in the system covariance matrix, and component marginal CDFs can be obtained

accurately by using the second-order SPA. Thus this method not only achieves high accuracy in

16



estimating system reliability but also simplifies the computations while maintaining high
efficiency.

The procedure of the system reliability analysis with the second-order SPA is briefly
summarized below.

(1) Transform random variable X into U in the standard normal space.

(2) Search for MPPs u; ; obtain the reliability index S, and first and second derivatives of

component limit-state functions at the MPPs.

(3) Perform the second-order SPA for all components.

(4) Use SPA results to find the means of equivalent component responses.

(5) Use MPPs and reliability indexes to find the covariance matrix.

(6) Form the multivariate normal PDF and integrate it to obtain system reliability.
4 EXAMPLES
In this section, four examples are presented. The first example is used to demonstrate the

proposed method while the other three examples show possible engineering applications. The

accuracy is measured by the percentage error with respect to a solution from MCS. The error is

calculated by
MCS
Psy — Psy
&= %x 100% (47)
DPsy
where pg™ and p, are probabilities of system failure from MCS and second order SPA

17



method, FORM method or SORM method, respectively.
4.1 Example 1
The first example is mathematical example. A system consists of two physical components,
and each component has one limit-state function. There are two basic random variables denoted
by X=(X,,X,). X, is normally distributed with mean g =4 and standard deviation
o, =0.7, and the distribution is denoted by X, ~ N(4,0.7). X, islognormally distributed with
mean 4, =4 and standard deviation o, =1, and the distribution is denoted by X, ~ LN(4,1).
The two limit-state functions are given by
gX)=5-X,X, (48)
2, (X)=-X"-X,"-7X,+16X,-40 (49)
At first, MPPs, reliability indexes, and directional vectors of the two limit-state functions are
obtained. The results are given in Table 1.

Table 1 MPP, reliability index and directional vector

Place Table 1 here

Next, the reliability of each component is calculated by the second-order SPA with
R =0.9995 and R»=0.9994. The mean values of the two equivalent component responses
Z=(Z,,Z,) are then calculated by

p, =" =(B" )icin = ((ID_I(RIA))i:L2 =(3.3083,3.2358)

18



The correlation coefficients p, are calculated by Eq. (43). For example,

Py, = 0,05 =0.3007 . Therefore, the covariance matrix is obtained.

s |1 oa]_ [ 1 03007
Zolpy, 1 0.3007 1

Using Eq. (38), we obtain the system probability of failure py, =1-R; =1.0702x 107

When FORM and SORM are used, the covariance matrices are the same as X, , and the mean
values of the two equivalent component responses are p, =B"" =(3.3620,3.1450) and
n, =B =(3.3086,3.2274) Based on Eq. (38), the system probabilities of failure based on
FORM and SORM are pg, =1.2111x107 and py =1.0878x10™ respectively.

For MCS, a large sample size of 10" is used to compute the system reliability. All results are
listed in Table 2, which shows that the errors of SOSPA, SORM and FORM are 0.289%, 1.35%
and 12.% respectively. The results indicate that SOSPA is more accurate than FORM and SORM.
The number of function calls in Table 2 indicate that FORM is more efficient than SOSPA and
SORM. 1.0878x107°

Table 2 Probability of system failure in Example 1

Place Table 2 here

4.2 Example 2
Example 2 is an engineering example. Consider a roof structure [30], whose top boom and

compression bars are made by concrete, while the bottom boom and all the tension bars are made
19



of steel. Assume the bars bear a uniformly distributed load g. Let 4. and E_. be the cross
sectional area and elastic modulus of the concrete bars, respectively. Let 4; and Eg be the cross
sectional area and elastic modulus of the steel bars, respectively. The perpendicular deflection of

the roof peak node C is calculated by

2
Aczﬁ( 381 1.13] (52)
2 \4.E.  AE,

A failure event occurs when the perpendicular deflection AC exceeds 1.5 cm. The limit-state

function is then defined by

2
g x) =2 8L L3 6015 (53)
2 \4E, " AE,

The second failure mode is that the internal force of bar AD exceeds its ultimate stress. The

internal force of bar AD is N, =1.35¢/, and the ultimate strength of the baris f.4., where f
is the compressive stress of the bar. The second limit-state function is given by
g2,(X)=1.185¢ql - f A (54)
A failure occurs when the internal force of bar EC N,. =1.3¢l exceeds its ultimate stress
fsAs, where f; is the tensile strength of the bar. Therefore, the third limit-state function is
formulated by

g2,(X)=0.65¢gl — f A (55)

E. and E; are lognormally distributed, and the rest of random variables ¢, [, 4, 4., f., and

fo are normally distributed. They are listed in Table 3.

20



Table 3 Distribution of random variables

Place Table 3 here

After the MPPs are found, the reliability indexes and directional vectors are available.

B, =4.6396
B, =3.8122
B, =3.4440
a, =(0.7054,0.1857,-0.4890,-0.2122,-0.4147,-0.1465,0,0)
a, =(0.1686,0.0179,0,-0.1504,0,0,0,-0.9740)
a, =(0.2009,0.0215,-0.1325,0,0,0,-0.9704,0)

Similarly, the reliability of each component is calculated by the second-order SPA, which
produces R =1.0, R, =0.9999, and R, =0.9997. The mean values of the three equivalent
component responses Z =(Z,,Z,,Z,) are then calculated by

p, =B = (B0 =P (R),,, =(4.5985,3.7999,3.4358)
is

The covariance matrix X,

1 py P 1 0.1542 0.2092
X ={p, 1 pyl|=/01542 1 00343
Py pn 1| 102092 00343 1

Thus, the system probability of failure is estimated to be py, =3.6983x 107,

When FORM is used, the covariance matrix remains the same, and the mean values of the three

21



equivalent component responses are p, =(4.6396, 3.8122, 3.4440) . Based on Eq. (38), the
system probability of failure is p, =3.5714x 107 . Similarly, the system probability of SORM is
Ps =3.6642x 10™*. The solution from MCS with a sample size of 1x10’ serves as a benchmark
for the accuracy comparison. All results are given in Table 4, which indicates that SOSPA is more
accurate than FORM and SORM while the latter is more efficient than the former.

Table 4 Probability of system failure in Example 2

Place Table 4 here

4.3 Example 3
This example has ten polynomial surface response functions used as a surrogate for a more
computationally intensive numerical model of the various phenomena leading to failure [31, 32].
The system reliability is defined by
Ry =Pr(g,(X)<0Ng,(X)<0M...N g, (X) < 0N g,,(X) < 0) (56)
The limit-state functions g,(-) are given below.
g,(X)=1.16-0.3717X,X,-0.00931X,X,, —0.484X,X, +0.01343X . X,, -1 (57)

2,(X)=4.72-0.5X,-0.19X,X, —0.0122X,X,,

(58)
+0.009325.X,X,, +0.000191.X2 —4.01

2,(X) =28.98+3.818X, —4.2X,X, +0.0207X.X,, +6.63X X,

(59)
~7.7X, X, +0.32X,X,,—32

22



2,(X)=33.86+2.95X, +0.1792X,, —5.057X, X, - 11X, X,

60
~0.0215X,X,, —9.98X, X, — 22X, X, —32 (60)
2:(X)=46.36-9.9X, —-12.9X X, +0.1107.X,X,, —32 (61)
2.(X)=0.261-0.0159.X,X, —0.188.X,X, —0.019.X,.X, +0.0144 X, X, )

+0.0008757.X, X,, —0.32

g,(X)=0.214+0.00817.X, —0.131.X,.X, —0.0704 X X, +0.03099.X, X,
~0.018.X,.X, +0.0208.X,.X, +0.121.X,.X, — 0.00364.X X, (63)
+0.0007715.X,.X,, —0.0005354.X, X, +0.00121.X,X,, —0.32

2,(X)=0.74-0.61X, —0.163X, X, +0.001232.X, X,, —0.166 X, X,

(64)
+0.227X2 32
2,(X)=10.58—0.674X, X, —~1.95X, X, +0.02054 X, X,, —0.0198.X, X, )
+0.028X,X,,—9.9
2,0(X) =16.45—0.489.X, X, —0.843X X, +0.0432.X, X,, —0.0556.X, X,, (66)

~0.0003.X2 —15.69

There are eleven random variables which are B-pillar inner (X, ), B-pillar reinforcement ( X, ),
floor side inner (X, ), cross members (X, ), door beam (X, ), door belt line reinforcement ( X,),
roof rail (X, ), B-pillar inner ( X; ), floor side inner ( X, ), barrier height (X, ), and barrier hitting
position (X|,). All of them are normally distributed with parameters defined in the Table 5.

The reliability indexes of all components are at first calculated by FORM, which yields
p,=93064 , pB,=18772 , p,=4.0596 , pB,=29767 , p;=12968 , P, =12.1197 ,
B, =15.5223, B, =4.8357, B,=3.7118 and p,,=1.8782. Therefore, for FORM, the mean
values of ten equivalent component responses Z=(Z,,Z,,---,Z,,) are

n, =(9.3064,1.8772,4.0596,2.9767,1.2968,12.1197,15.5223,4.8357,3.7118,1.8782)

23



The 10-by-10 covariance matrix is given by

1 —-0.7651 .-~ 0.9021  0.5581 |
—0.7651 1 o —0.9285 —0.7498
x, = : - : :
0.9021 -0.9285 - 1 0.7093
| 0.5581 —0.7498 .- 0.7093 |

The system probability of failure from FORM method is p;, =1-R; =0.1390.
When SOSPA method is used, the mean values of the ten equivalent component responses are
given by
p3* =(9.3286,1.4495,4.0629,2.9759,1.2983,12.1274,15.4725,4.8079,3.7234,2.0335)

Table 5 Distribution of random variables

Place Table 5 here

The probability of system probability from SOSPA is then given by py, =0.1777 .

All results are given in Table 6, which also indicates that SOSPA is much more accurate than
FORM and SORM while the latter is more efficient than the former. For this problem with 10
responses, the error from FORM and SORM are too large.

Table 6 Probability of system failure in Example 3

Place Table 6 here
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4.4 Example 4

The final example involves an assembly system where a rectangular steel bar cantilevered to a
steel channel with four identical tightly fitted bolts located at points 4, B, C, and D as shown in
Fig. 1. The rectangular bar is subjected to an external force F. All random variables are given in

Table 7.

Place Figure 1 here

Fig. 1 A cantilever bar

Table 7 Distribution of random variables

Place Table 7 here

The centroid of the bolt group O is found by symmetry. The shear reaction V passes through
O, and the moment reaction M is about O. They are givenby V=F, M =F(l; + 1, + %4). The

distance from the centroid to the center of each bolt is

r=05 /lz+l§

The primary shear load per bolt is F' = E. Since the secondary shear forces are equal, they

become F'' = % = iw—r. The resultants of the primary and secondary shear forces are obtained by

using the parallelogram rule. The magnitudes are found to be

Fy=Fy =+/(F)?+ (F")? — 2F'F"cosb,

25



Fo =Fp =/(F")2 + (F")? — 2F'F" cos#,
where 6; = %i + arctan (i—:), and 0, = %i — arctan (i—:).
The largest bearing stress is due to the pressing of the bolt against the channel web. The bearing
area of the channel is A; = t;d,. The maximum bearing stress of the channel should be smaller

than its yield strength, which is given by

F,
&aX)=—"-5, (67)

1

Correspondingly, the limit-state function of the bar is defined by

F,
£X)=—"-5, (68)

2
where A, =t,d,
The critical bending stress in the bar occurs at the cross section 4-B, where the bending moment

is My = F(ly + 1;). The second moment of area of the section is

I' = Ipgr — 2(Iholes + CZZA) =

ty15 t,dy 12
12 2|12 T3 b

The bending stress of the bar should be smaller than its yield strength, and this is given by

aX)=M_g (69)

I/c
where [/c is the section modulus for the bar, ¢ = [5/2.
Bolt 4 and B are critical because they carry the largest shear load F, and Fg. The shear stress

of the bolts should not be greater than the allowable shear stress. Thus, the limit-state functions of
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bolts 4 and B are defined by

F

(X =", (70)
&)=L, (1)

sb
where Ag, and A, are shear-stress areas.

Similarly, the limit-state functions of bolts C and D are defined by

g (X)="Cor, (72)
(X =22, (73)

sd

where Ag. and Ag; are shear-stress areas.

There are seven limit-state functions. The system probabilities of failure and the function calls
from all methods are provided in Table 8. The results show that SOSPA is the most accurate method
because its error is only 0.593% compared with the MCS result and the errors of SORM and FORM
are much larger. FORM is the most efficient method since its number of function calls is the least.
SOSPA and SORM call the limit-state functions with the same time.

Table 8 Probability of system failure in Example 4

Place Table 8 here
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S. CONCLUSION

The proposed second order saddlepoint approximation (SOSPA) method is an alternative
method for system reliability analysis. This method results in higher accuracy than the first order
approximation method by combing the second order approximation and saddlepoint
approximation. SOSPA accurately produces the marginal distributions of all component responses.
This is achieved by employing the saddlepoint approximation after transforming the approximated
second-order limit-state functions into linear combinations of noncentral chi-square variables. The
dependences between component responses are considered with the only first approximation for
the sake of efficiency. With the estimated marginal component distributions and component
correlations, the joint distribution of all the component responses is formed by a multivariate
normal distribution, which leads to a fast evaluation of the system reliability.

The accuracy of the proposed is largely determined by the accuracy of the approximated limit-
state functions with second order Taylor expansion in the vicinity of the most probable points. The
accuracy is also affected by the first order approximation for estimating correlations between
component responses.

How to more accurately estimate component correlations by a second order approximation
needs a further investigation. The other future work is to incorporate the system reliability analysis

in reliability-based design optimization.
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Table 1 MPP, reliability index and directional vector

u’ p o
g (-2.6981,-2.0057) 3.3602 (0.8025,0.5966)
g, (-2.5485, 1.8429) 3.1450 (0.8103,-0.5869)
Table 2 Probability of system failure in Example 1
Method Psy g (%) Total function calls
SOSPA 1.0702x107 0.29 45
SORM 1.0878x107 1.35 45
FORM 1.2111x1073 12.80 39
MCS 1.0733x107 N/A 107

Table 3 Distribution of random variables

Variables Distribution
X, g (N/m) N(14000,1400)
X, L (m) N(12,0.12)
X, A (m*) | N(9.00x107,0.54x107)
X, 4. (m*) N(5x1072,4x107)
X E;, (N/m®) | LN(2x10",0.12x10")
X, E. (N/m®) | LN(3x10",0.18x10")
X, fs (N/m?*) | N(3.35x10°,0.60x10%)
X, Jfe (N/m*) | N(1.34x107,0.24x10")
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Table 4 Probability of system failure in Example 2

Method Py e (%) Total function calls
SOSPA 3.6983x10™* 0.34 243

SORM 3.6642x10™ 1.26 243
FORM 3.5714x10* 3.76 135

MCS 3.7110x10* N/A 107

Table 5 Distribution of random variables

Random variable Distribution
X, (mm) N(0.500,0.030)
X, (mm) N(1.310,0.030)
X, (mm) N(0.500,0.030)
X, (mm) N(1.395,0.030)
X, (mm) N(0.875,0.030)
X, (mm) N(1.200,0.030)
X, (mm) N(0.400,0.030)
X, (GPa) N(0.345,0.006)
X, (GPa) N(0.192,0.006)
X,, (mm) N(0.0,10.0)
X, (mm) N(0.0,10.0)
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Table 6 Probability of system failure in Example 3

Method Py &(%) Total function calls
SOSPA 0.1777 3.31 1572
SORM 0.1355 26.40 1572
FORM 0.1391 24.30 912

MCS 0.1838 N/A 107
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Table 7 Distribution of random variables

Variables Distribution

X, F (N) N(1.6 X 10%, 1.6 x 103)
X, S; (Pa) LN(300 x 108,57 x 10%)
X3 S, (Pa) LN(300 x 10%,57 x 10°)
X, 7, (Pa) LN(310 x 10%,59 x 10°)
Xs 7, (Pa) LN(310 x 10%,59 x 10°)
Xe 7. (Pa) LN(310 x 10%,59 x 10°)
X5 74 (Pa) LN(310 x 10%,59 x 10°)
Xg t; (m) N(1.0 X 107%,2.0 x 107™%)
X, t, (m) N(1.0 X 1072,2.0 x 107%)
Xi0 d, (m) N(1.6 X 1072,3.2 x 107%)
Xi1 d, (m) N(1.6 X 1072,3.2 x 107%)
X1z d. (m) N(1.6 X 1072,3.2 X 107%)
X3 dq (m) N(1.6 X 1072,3.2 X 107%)
Xi4 [, (m) N(3.2%x107%,6.4 x 1073)
Xis [, (m) N(5.0 X 1072%,1.0 X 1073)
Xi6 5 (m) N(2.0 X 1071,4.0 x 1073)
Xi7 l, (m) N(1.5%107%,3.0 x 1073)
Xig ls (m) N(1.2%x107%,2.4 X 1073)
X9 Agq (M?) N(1.44 x 107%,2.88 x 107°)
X500 Agp (M?) N(1.44 x 107%,2.88 x 107°)
X5 Ag (m?) N(1.44 x 107%,2.88 x 107°)
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Asd (mZ)

N(1.44 X 10™*,2.88 x 1079)

Table 8 Probability of system failure in Example 4

Method Py £ (%) Total function calls
SOSPA 1.1672x107 1.71 2599
SORM 1.0273x107 13.50 2599
FORM 1.2292x1073 3.51 828

MCS 1.1875%107 N/A 107
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