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This paper presents a modeling and uncertainty quantification (UQ) study of the photoelec-
tron sheath near the lunar surface. A fully kinetic 3-D finite-difference (FD) particle-in-cell
(PIC) code is utilized to simulate the plasma interaction near the lunar surface and the resulting
photoelectron sheath. For the uncertainty quantification analysis, this FD-PIC code is treated
as a black box providing high-fidelity quantities of interest, which are also used to construct
efficient reduced-order models to perform UQ analysis. 1-D configuration is chosen to present
the analytic sheath solution as well as to demonstrate the procedure and capability of the UQ
analysis.

I. Nomenclature

e = elementary charge
E = electric field
F = cumulative density function
m = mass
n = density
J = current density
k = Boltzmann constant
R = real number domain
T = temperature
V = individual variable in the input
v = velocity
X,x = input variables of high-fidelity models
Y, y = response of high-fidelity models

Greek letters
φ = electric potential
Ω = computation domain

Subscript
c = captured
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d = drifting
f = free
m = minimum
r = reflected
s = surface
th = thermal
p = photoelectron
e = electron
i = ion

II. Introduction

This paper considers plasma charging on the lunar surface with a focus on photoelectron sheath. The plasma species
includes ambient solar wind (protons and electrons) and photoelectrons emitted from the illuminated lunar surface.

This work is motivated by the high computational cost associated with uncertainty quantification (UQ) analysis of
plasma simulations using high-fidelity fully kinetic models. In this paper, we study the photoelectron sheath near the
lunar surface with a focus on effects of variables of uncertainty (such as the ambient electron density or photoelectron
temperature) on the plasma environment. A fully kinetic 3-D finite-difference (FD) particle-in-cell (PIC) code is utilized
to simulate the plasma interaction near the lunar surface and the resulting photoelectron sheath. For the uncertainty
quantification analysis, this PIC code is treated as a black box providing high-fidelity quantities of interest, which are
also used to construct efficient reduced-order models to perform UQ analysis. A 1-D configuration is first studied to
demonstrate the procedure and capability of the UQ analysis. The rest of the paper is organized as follows. Section
III presents the analytic and numerical solutions of the 1-D photoelectron sheath. Verification and validation of the
FD-PIC code for photoelectron sheath solution is shown. Section IV describes the Kriging model and the uncertainty
quantification approach. Section V discusses the UQ analysis of the 1-D photoelectron sheath. The conclusion is given
in Section VI.

III. Analytic and Numerical Solutions of 1-D Photoelectron Sheath

A. Analytic Solution

1. Sheath Model
The essential of the work in this research is following [1] and [2], but is extended to include the drifting velocity of

solar wind electrons in analytic calculation, and compare the result of a numerical simulation with the analytic solution.
According to [1] and [2], there will be 3 types of electric potential profile in the photoelectron sheath: Sheath Type

A, Sheath Type B, and Sheath Type C, as shown in Fig. 1. For each sheath type, there will be different populations of
electrons. The solar wind electron contains “free solar wind electrons", representing electrons which are able to reach
the lunar surface, and “reflected electrons", representing electrons which are reflected by the potential barrier. The
photoelectron contains “free photoelectrons", which are able to reach the infinity, and “captured photoelectrons", which
are attracted back to the lunar surface. The reflected and captured electrons are both consisted as two equal parts but
traveling in opposite directions, as shown in Fig. 2.

In these three sheath profiles, Type A is a non-monotonic potential profile, the curve of Type A will first decrease
from the surface to the minimum potential, then it will increase to the potential at infinity, which is zero. Type B will
decrease from the surface potential to the potential at infinity. Type C will increase from the surface potential to the
potential at infinity. Both Type B and Type C are monotonic. The profiles are shown in Fig. 3.

2. Electron Distribution
There are two kinds of electrons in the computation domain. The solar wind electrons, which is originating from the

ambient plasma, and the photoelectrons, which is originating from the lunar surface. In this computation, we assume
that both kinds of electrons follow the Maxwellian distribution in the photoelectron sheath, the distribution function is
given in Eq. (1).
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Fig. 1 Assumed potential profiles as a function of the distance from the surface [2]

Fig. 2 Different populations of electrons as described in [2]

f (v) =
1
√
πvth

exp
(
−

v2

vth2

)
(1)

where the vth =
√

2kT
m is the thermal velocity of the particle.

Equation (1) is for stationary Maxwellian distribution, for drifting Maxwellian distribution, the equation will be
written as

f (v) =
1
√
πvth

exp
[
−
(v − vd)

2

vth2

]
(2)

where vd is the drifting velocity.

3. Densities
The density of each population of electrons is given as
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Fig. 3 Potential profiles obtained from the analytic solution with normalized coordinates and potential
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where ne,f , np,f , ne,r, and np,c represents the density of free solar wind electrons, free photoelectrons, reflected solar
wind electrons, and captured photoelectrons, respectively.

ne,∞ and ve,th is the density at infinity and thermal velocity of solar wind electrons, np,0 and vp,th is the density
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at surface and thermal velocity of photoelectrons. vm =

√
2e(φ(z)−φm)

me
is the minimum velocity that required for the

electrons to travel over the potential barrier. φm is the minimum potential, and φ∞ is the potential at infinity.
The ion density is obtained as

ni(z) =
ni,∞vi,∞
vi(z)

= ni,∞
(
1 −

2eφ(z)
vi,∞2mi

)− 1
2 (7)

where ni,∞ and vi,∞ is the density and velocity of solar wind ions at infinity.
Then the Poisson’s equation can be written as

d2φ

dz2 = −
e
ε0

(
ni − ne,f − ne,r − np,f − np,c

)
(8)

4. Charge Neutrality
We assume the total density at infinity is neutral in this computation, which can be represented in the equation as

ne(∞) + np(∞) − ni(∞) =ne,f(∞) + ne,r(∞) + np,f(∞) − ni(∞) = 0 (9)

Equation (9) can also be written as
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5. Current Density
According to the assumption, there will be no net current flow at infinity when the situation reaches the steady state.
The zero current density at infinity can be obtained as

Je,f(∞) + Jp,f(0) − Ji(∞) = ne,f

∫ ∞

vm(0)
v fp(v)dv + np,f

∫ −vm(∞)

−∞

v fe(v)dv + ni,∞vi,∞ = 0 (11)

The reflected solar wind electrons and the captured photoelectrons are two equal parts that are traveling in opposite
directions, so they will not contribute to the current.

Then Eq. (11) can be written as
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6. Electric Field
To obtain the analytic solution of Type A, we need to calculate the minimum potential, then the electric field at infinity
need to be introduced.

The electric field of each species is obtained as
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where Ee,f , Ep,f , Ee,r, Ep,c, and Ei is the electric field of free solar wind electrons, free photoelectrons, reflected
solar wind electrons, captured photoelectrons, and ions, respectively. np is the photoelectron density when the elevation
angle is 90◦. And M = vd

Cs
is the ion Mach number.

The zero electric field at infinity can be obtained as

E(∞) = Ee,f(∞) + Ee,r(∞) + Ep,f(∞) + Ei(∞) = 0 (18)

B. Verification of the FD-PIC Simulation of 1-D Photoelectron Sheath

1. Comparison of Analytic Solution and Simulation
The comparison of the results of analytic solution and simulation are presented in this section. The drifting velocities

of the solar wind electrons and ions are both 468 km/s, the densities at infinity are both 8.7 cm−3, and the thermal
temperatures are 12 eV and 10 eV, respectively. The parameters used in this computation are listed in Table 1. The lunar
surface is considered as a flat surface, which means the elevation angle will not change at any place on the surface.
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The numerical simulation in this study is using a FD-PIC code. In this code, the collisions between particles are
neglected, hence the lunar surface charging, electric field, charged particle trajectories, and space charge are solved
self-consistently.

2. Computation Domain
In order to simulate a 1-D photoelectron sheath, the computation domain is selected as a 2×2×600 region, which is

shown in Fig. 4. All PIC cells are normalized, so the length of each cubic PIC cell is ∼ 1.315/
√

sin(α) m, where the α
is the elevation angle. The solar wind electrons and ions are traveling into the computation domain in the X-Y plane,
along -z-direction.

There are in total 180,000 solar wind electrons and ions are preloaded in the computation domain, and another 100
particles of both species, including photoelectrons, are injected into the computation domain in each time step. The
simulation will run 100,000 steps for each case, which is ∼ 900 seconds. The wall clock time is ∼ 6 hours for each case.
The time step n is normalized by 1

ωp
, where ωp is the frequency of the photoelectron.

(a) The computation domain (b) Top surface of the domain

Fig. 4 The detail of the computation domain

3. Boundary Conditions
The zero-Dirichlet boundary condition where φ = 0 is applied for the Zmax boundary, which is treated as the reference

for the electric potential. The other boundaries are all applied with the zero-Neumann boundary condition where ∂φ
∂n = 0.

Solar wind electrons and ions are loaded in the X-Y plane and injected at Zmax, and the photoelectrons are injected
at Zmin. The boundary conditions for y-dimensions and x-dimensions are periodic and reflective, respectively. Particles
are absorbed at z-dimensions.

4. Results and Comparison
Figure 5 shows the comparison of the potential profiles obtained from analytic solution and the simulation at

elevation angle α = 90◦ and α = 60◦, respectively. The mesh size is 0.1λd, where λd is the Debye length of the
photoelectron.

When the elevation angle is large enough, the profiles of Type A and Type B can be existed at the same time in both
analytic solution and the simulation. Figure 6 shows the Type B profile in the sheath at the same elevation angles as in
Type A.

The reason that causes the difference between Type A and Type B is that, according to the assumption, the solar
wind electron density at infinity is not equal to solar wind ion density, which is obtained by solving Eqs. (9), (11), and
(18). The solution in Type A is larger than that in Type B, which will result in a larger surface potential in Type B.
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(a) α = 60◦ (b) α = 90◦

Fig. 5 Comparison of the Type A potential profile obtained from the analytic solution and the simulation

(a) α = 60◦ (b) α = 90◦

Fig. 6 Comparison of the Type B potential profile obtained from the analytic solution and the simulation

Figure 7 shows the comparison of the potential profiles obtained from analytic solution and the simulation at the
elevation angle α = 10◦ and α = 5◦, with a drifting solar wind electrons.

IV. Surrogate Modeling and Uncertainty Quantification Approach

A. Introduction to Kriging
Kriging [3] is based on the idea that the black-box function g (x) is regarded as a realization of a stochastic field

G (x). First, the stochastic field is defined based on a design of experiments. Then, the Best Linear Unbiased Predictor
is used to predict the output value at any input point. The model for G (x) is given as

G (x) = F (x, β) + h (x) (19)

where F (x, β) is the deterministic part which gives an approximation of the response in mean, and h (x) is a stationary
Gaussian field with zeros mean. F (x, β) represents the trend of Kriging and corresponds to a regression model that can
be written as

F (x, β) = f (x) β (20)
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(a) α = 5◦ (b) α = 10◦

Fig. 7 Comparison of the Type C potential profile obtained from the analytic solution and the simulation

Table 1 Solar wind and photoelectrons parameters (α is the elevation angle)

electrons ions photoelectrons
Drifting Velocity, km/s 468 468 -

Density, cm−3 8.7 8.7 64 sin(α)
Temperature, eV 12 10 2

with f (x) = { f1 (x) , f2 (x) , ..., fn (x)}, where n is the dimensionality of x, the basis functions and β = {β1, β2, ..., βn}
the vector of regression coefficients. In this paper, ordinary Kriging is selected which means that F (x, β) ≡ β. All the
following equations are based on ordinary Kriging. The covariance of h (x) between two input points x and w is defined
by

cov (h (x) , h (w)) = σ2
hRθ (x,w) (21)

where σ2
h
is the random field variance and Rθ the correlation function defined by a set of parameters θ. Several models

exist to define the correlation function. The widely used anisotropic Gaussian model is given by

Rθ (x,w) =
n∏
i=1

exp
[
−θi(xi − wi)

2] (22)

where xi and wi are the ith components of x and w, respectively, and θi is a parameter. We use this model in this study.
Given any x in the input space, the Kriging prediction G (x) follows a normal distribution N

(
µ (x) , σ2 (x)

)
. The

reason why the Kriging prediction is a random variable is that only a finite number of training samples are used to
train the Kriging model. Therefore, there is epistemic uncertainty in the prediction and the uncertainty is modeled
by the normal random variable. The larger is σ (x), the more significant is the uncertainty. If σ (x) = 0, the normal
variable degenerates into a deterministic value µ (x), meaning that the prediction at this point is exact. Usually the
prediction is only exact at training points because at training points, the exact output values are known to the Kriging
model. Generally, µ (x) is used as the deterministic prediction. When σ (x) is sufficiently small, µ (x) is an accurate
prediction. On the contrary, when σ (x) is large, µ (x) is not guaranteed to be an accurate prediction. In that case,
more training samples are needed to update the Kriging model. With σ (x) being capable to quantify the prediction
accuracy,the Kriging model outweights many other metamodels.
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B. Training Kriging Model for the Photoelectron Sheath Solution
For a 1-D photoelectron sheath, the electric potential φ is a function of the vertical coordinate z with parameters

p = (vd,Te,Tp,ni,∞,np), where vd, Te, Tp, ni,∞, and np represent solar wind drifting velocity, electron temperature,
photoelectron temperature, density of ions at infinity, and density of photoelectrons, respectively.

Due to the aleatory uncertainty in lunar environment as well as the epistemic uncertainty, all components of p are
modeled as interval variables, whose domain is Ω. Because a closed-form expression of the solution to φ (z; p) ,p ∈
Ω, z ∈ [Zmin, Zmax] is not available, obtaining the entire electric potential function φ (z; p) ,p ∈ Ω, z ∈ [Zmin, Zmax] is
time-consuming. To obtain φ (z; p) efficiently, employing a Kriging model is a good method. Some input-output sample
pairs, i.e., training points, are used to train the Kriging model φ̃ (z; p) for φ (z; p). If the prediction uncertainty (or error)
is too large, more training samples are added to update φ̃ (z; p) until the prediction uncertainty is acceptable. Note that
both z and p are treated as input variables of φ̃ (z; p), so the dimensionality of φ̃ (z; p) is 6.

To generate training samples, we first evenly discretize pi, i = 1,2,3,4,5 into Ni, i = 1,2,3,4,5 points, respectively.

Then Ω is accordingly discretized into NΩ =
5∏
i=1

Ni points, denoted as pU. The specific values of Ni, i = 1,2,3,4,5

are determined by Ω as well as the required resolution. Since for any given p ∈ Ω, a numerical method, such as the
Runge-Kutta integration method, is used to solve Poisson’s equation to get a curve φ (z; p) , z ∈ [Zmin, Zmax], we get a
series of training samples along z-direction when p is fixed to a specific value. When we solve Poisson’s equation using
a numerical integration method, we also need to discretize z into Nz points, denoted as zU. Then we evenly select Nini
initial points of p, denoted as pini, from pU. For each p ∈ pini, we get Nz initial training samples from φ (z; p) and hence
currently we have NzNini initial training points. Since φ (Zmax; p) is always 0, for each p ∈ pU we also have a training
point (Zmax,p,0). As a result, there are in total NzNini + NΩ training points.

With the initial training points, we can build an initial Kriging model φ̃ (z; p). In order to know if φ̃ (z; p) is accurate
enough, we need to come up with a metric to measure the overall accuracy. As mentioned in the previous subsection,
σ (z; p) is able to measure the prediction error. However, σ (z; p) can only measure the prediction error at a specific
point (z; p). To measure the overall accuracy, we use the metric Γ which is given by

Γ =
1

NzNΩ

NΩ∑
i=1

Nz∑
j=1

©­­«
�������
σ

(
z(j); p(i)

)
µ

(
z(j); p(i)

)
�������ª®®¬ (23)

where z(j) is the j th point in zU, and p(i) is the ith point in pU. Actually, Eq. (23) is the mean absolute deviation
coefficient of all prediction points. If Γ < γ, where γ is a small positive number, the Kriging model φ̃ (z; p) is said to be
accurate. Otherwise, more training samples are necessary to update the Kriging model. To determine on which p ∈ pU

we should add training samples, we need to come up with a learning function [4]

p(next) = max
p∈pU

Nz∑
j=1

©­­«
�������
σ

(
z(j); p

)
µ

(
z(j); p

)
�������ª®®¬ (24)

where p(next) is the next training sample of p. Then we solve Poisson’s equation to get Nz training points, fixing p to
p(next). Adding those training points to update φ̃ (z; p), we get a higher prediction accuracy and hence a smaller value of
Γ. Using similar procedures, we can update φ̃ (z; p) adaptively until Γ < γ is met. Obviously, γ is a hyperparameter that
controls the accuracy of the final φ̃ (z; p). In general, the smaller is γ, the higher accuracy of φ̃ (z; p) will we obtain.

V. 1-D Photoelectron Sheath: Kriging Modeling and UQ Analysis
In this section, we present a study of 1-D photoelectron sheath including analytic solution (treated as a “black box”

in the surrogate modeling step), Kriging model, and uncertainty quantification to demonstrate the approach described in
Section IV.

We consider the 1-D photoelectron sheath problem discussed in [5] as a test problem. The intervals of vd , Te, Tp , ni,∞,
and np are 468,000 (1 ± 0.1)m/s, 12 (1 ± 0.1) eV, 2 (1 ± 0.1) eV, 8.7 (1 ± 0.1) cm−3, and 64 (1 ± 0.1) cm−3, respectively,
and then Ω = 468,000 (1 ± 0.1)m/s× 12 (1 ± 0.1) eV× 2 (1 ± 0.1) eV× 8.7 (1 ± 0.1) cm−3 × 64 (1 ± 0.1) cm−3. We set
Ni = 3, i = 1,2,3,4,5 and hence there are NΩ = 35 = 243 points in pU. [Zmin, Zmax] = [0,60]m is evenly discretized
into Nz = 20 points. In order to obtain the 243 electric potential profiles, we can solve Poisson’s equations 243 times,
each with a parameter combination from the 243 points. Figure 8 shows the 243 electric potential profiles. Each profile
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contains Nz = 20 points, and hence there are in total 243 × 20 = 4860 points of data, which will be treated as the exact
data points to verify corresponding data obtained by the proposed Kriging-based method.

Fig. 8 Electric potential profiles obtained by MCS

To apply the proposed Kriging-based method, we first select 5 points p(i), i = 1,2,3,4,5 from pU. Specific values
of p(i), i = 1,2,3,4,5 are given in Table 2. At each of those 5 points, we solve Poisson’s equation and get 5 electric
potential profiles, which are shown in Fig. 9 (a). Since each profile contains Nz = 20 points, currently there are in total
100 training points. As mentioned in Section IV, those points at Zmax, where φ always takes 0, are also used as training
points. Therefore, there are in total 100+243=343 training points for training the initial Kriging model. Figure 9 (b)
shows corresponding 243 profiles estimated by the initial Kriging model. Obviously, the initial Kriging model is not
accurate. After adding 10 more sample profiles to update the Kriging model, corresponding 243 profiles estimated
by the Kriging model are shown in Fig. 9 (c). The accuracy is significantly improved. With γ = 0.05, the proposed
Kriging-based method converged after adding 28 sample profiles. The final electric potential profiles are shown in Fig.
9 (d). It shows that the final Kriging model is quite accurate. To obtain the upper and lower boundaries of the potential
profiles, we evenly discretize Ω into 100,000 points, 100 points along each dimension, and then call the well-trained
Kriging model to obtain the corresponding 100,000 potential profiles. With the 100,000 potential profiles, we finally
obtain the upper and lower boundaries shown in Fig. 10.

Table 2 Initial training samples of p

p(i) vd , m/s Te, eV Tp , eV ni,∞, cm−3 np , cm−3

p(1) 421,200 10.8 1.8 7.83 57.6
p(2) 421,200 12.0 2.2 8.7 64
p(3) 468,000 10.8 2.0 9.57 70.4
p(4) 468,000 13.2 2.0 8.7 57.6
p(5) 514,800 12.0 1.8 9.57 64
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(a) The initial training samples (b) The initial Kriging model

(c) The updated Kriging model (d) The final Kriging model

Fig. 9 Electric potential profiles estimated by the Kriging model

Fig. 10 Potential profile boundaries obtained by Kriging model
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VI. Conclusion
We introduced the analytic approach to obtain the 1-D electric potential profile, which is a function of the distance

from the lunar surface in this study. The shape of the potential profile will be affected by the sun elevation angle,
there are three different types of potential profiles in the assumption, according to the different elevation angle. As the
elevation angle increases, the potential profile will transform from Type C to Type A, and then to Type B. However, even
though both Type A and Type B can be obtained from the analytic solution, there should be only one stable profile in
reality.

We also used a FD-PIC code to run a numerical simulation, and compare the result with the analytic solution. We
ran the simulation with different elevation angles, and the comparison shows that the result obtained from the simulation
matches the analytic solution very well, which demonstrates the validity of the code.

Then the FD-PIC code and the analytic solution have been used as the black box to support the uncertainty
quantification analysis. We used the Kriging model to predict the 1-D photoelectron sheath, and the result shows the
accuracy of the Kriging model, which demonstrates the ability and the accuracy of the UQ analysis in this research.

Ongoing work is focused on 2-D and 3-D configurations of the lunar surface to perform UQ analysis.
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