Adaptive Neural Network-Based Approximation to Accelerate
Eulerian Fluid Simulation

Wengian Dong
University of California, Merced
wdong5@ucmerced.edu

Zhen Xie
University of California, Merced
zxiel0@ucmerced.edu

ABSTRACT

The Eulerian fluid simulation is an important HPC application. The
neural network has been applied to accelerate it. The current meth-
ods that accelerate the fluid simulation with neural networks lack
flexibility and generalization. In this paper, we tackle the above lim-
itation and aim to enhance the applicability of neural networks in
the Eulerian fluid simulation. We introduce Smart-fluidnet, a frame-
work that automates model generation and application. Given an
existing neural network as input, Smart-fluidnet generates multiple
neural networks before the simulation to meet the execution time
and simulation quality requirement. During the simulation, Smart-
fluidnet dynamically switches the neural networks to make best
efforts to reach the user’s requirement on simulation quality. Eval-
uating with 20,480 input problems, we show that Smart-fluidnet
achieves 1.46x and 590x speedup comparing with a state-of-the-art
neural network model and the original fluid simulation respec-
tively on an NVIDIA Titan X Pascal GPU, while providing better
simulation quality than the state-of-the-art model.

CCS CONCEPTS

« Computing methodologies — Parallel algorithms; Neural
networks; Model development and analysis.

KEYWORDS

Approximate computing, Computational fluid simulation, Neural
network.

ACM Reference Format:

Wengian Dong, Jie Liu, Zhen Xie, and Dong Li. 2019. Adaptive Neural
Network-Based Approximation to Accelerate Eulerian Fluid Simulation. In
The International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC ’19), November 17-22, 2019, Denver, CO, USA. ACM,
New York, NY, USA, 14 pages. https://doi.org/10.1145/3295500.3356147

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SC ’19, November 17-22, 2019, Denver, CO, USA

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6229-0/19/11...$15.00
https://doi.org/10.1145/3295500.3356147

Jie Liu
University of California, Merced
jliu279@ucmerced.edu

Dong Li
University of California, Merced
dli35@ucmerced.edu

1 INTRODUCTION

The fluid simulation aims to study the flow of fluid materials and
has been widely applied to multiple disciplines such as chemical
physics and material science [1-3]. However, the simulation of
fluid dynamics usually requires prohibitively high computational
resources [4, 5] and thus limits its application in the related fields.

The neural network-based machine learning model, as a tool
to learn and model complicated (non)linear relationships between
input and output datasets, has shown preliminary success in HPC
problems (e.g., detecting neutrinos [6], developing Bose-Einstein
Condensates state [7], and recognizing extreme weather events [8]).
Using neural networks, scientists are able to augment existing sim-
ulations by improving accuracy and significantly reducing latency.

The neural network has been applied to accelerate fluid simula-
tion as well [9-11]. By replacing some execution phases with neural
networks, the most recent work reports 14.6X to 716X performance
improvement [10].

However, the current methods to accelerate the fluid simula-
tion using neural networks have fundamental limitations. First,
the current method to apply the neural work to the fluid simula-
tion lacks flexibility. In particular, given the simulation code, the
current method usually generates just one neural network model.
At runtime, this model is used throughout the whole execution to
approximate some target computation. This method ignores the
fact that replacing the target computation at different execution
phases of the fluid simulation can have different implications on
the simulation quality. At some execution phase, using another
neural network model may be able to generate higher simulation
quality without losing performance. Hence, using multiple neural
network models instead of one is a better strategy. However, with
just one single neural network model, the current method lacks
such flexibility.

Second, the current method to apply the neural network to the
fluid simulation lacks a generalization ability. In particular, given a
fluid simulation code with the neural network applied, there is no
guarantee that the application can run the simulation to completion
and meet the requirement on simulation quality for every input
problem. Using a single neural network model for all input problems
either leaves the performance opportunities on the table (discussed
in the last paragraph), have large simulation quality violations, or
both.

Third, there is no systematic approach to construct and apply
neural network models to the fluid simulation. How to construct
neural networks to meet the user requirement on performance

https://doi.org/10.1145/3295500.3356147
https://doi.org/10.1145/3295500.3356147

SC ’19, November 17-22, 2019, Denver, CO, USA

(execution time) and simulation quality is challenging. Currently,
domain scientists build neural networks intuitively. There is no
systematic approach to help them build and apply neural networks
for HPC applications. The recent work on Auto-Keras [12] and Au-
toML [13] aims to automatically generate a neural network model
with high accuracy. However, they lack concerns on high perfor-
mance (execution time), and focus on image processing or natural
language processing. Hence, they are not directly usable by HPC.

In this paper, we tackle the above limitations and aim to enhance
the applicability of neural networks in HPC applications (particu-
larly the Eulerian fluid simulation). Given an existing neural net-
work model as input, our system uses a systematic approach to con-
struct multiple neural network models and dynamically switches
them at runtime during the execution of the fluid simulation to
meet the user requirements on performance and simulation quality.

In order to tackle the above limitations, we must address three
challenges. First, we must automatically generate multiple neural
network models to enable high flexibility and better generality
when applying neural networks. Given the user requirements on
performance and simulation quality, we aim to generate multiple
neural network models, each of which has different topologies
and different implications on performance and simulation quality.
We should not expect the domain scientists to manually construct
models.

Second, how to select neural network models at runtime to enable
the best performance without violating the quality requirement
is a challenge. We must have a method to predict the impact of
applying a neural network model at a certain execution phase on
the final simulation quality.

Third, a neural network model can approximate the fluid simu-
lation with high accuracy for some input problems but not for all.
How to construct neural network models to provide a high-quality
approximation for a large number of input problems and ensure
overall performance benefit is another challenge.

In this paper, we focus on a Eulerian fluid dynamic simulation
code (mantaflow [14]) and introduce a framework (named “Smart-
fluidnet”) to address the above three challenges. Smart-fluidnet has
three major components. (1) It includes a model construction plu-
gin for Auto-Keras to extend its functionality to enable automatic
construction of multiple neural network models. (2) Smart-fluidnet
also includes a multilayer perceptrons model (MLP) to guide the
model selection process to meet the requirement on performance
and simulation quality. The neural network models selected by
MLP is able to cover more input problems to ensure overall perfor-
mance benefit. (3) Smart-fluidnet includes a runtime component
integrated into mantaflow and dynamically switches the neural
network models to make best efforts to meet the user requirement
on simulation quality. The runtime component is based on a met-
ric and a lightweight runtime algorithm that can predict the final
simulation quality in the middle of the fluid simulation.

We summarize the major contributions of this paper as follows:

e A systematic approach and a framework (Smart-fluidnet)
to accelerate the Eulerian fluid simulation; Our evaluation
shows that using 20,480 input problems for the simulation,
Smart-fluidnet achieves 46% performance improvement over
the Tompson’s model [10] (a state-of-the-art neural network

W . Dong et al.

model) on average and 590X speedup over the original fluid
simulation on average, while providing better simulation
quality than the Tompson’s model.

o A new methodology that constructs, selects, and applies mul-
tiple neural network models (instead of one) to address the
fundamental limitation of model flexibility and generaliza-
tion in the existing neural network-based approximation.
We demonstrate great potential of using this methodology
to meet user requirements on the simulation quality and
execution time.

2 BACKGROUND

In this section, we provide background on the Eulerian fluid sim-
ulation and neural network-based approximation. In the rest of
the paper, the term performance means execution time, not predic-
tion accuracy in the machine learning field. We also use the terms
approximation model and neural network model interchangeably.

2.1 Eulerian Fluid Simulation

The Eulerian fluid simulation, in essence, solves the Navier-Stokes
equations. The Navier-Stokes equations describe the fluid move-
ment under a continuous velocity field # and a pressure field p.
When the fluid has zero viscosity, one uses the incompressible
Navier-Stokes equations, which can be expressed as the Euler equa-
tions as follows:

aﬁ—”v” 1v +4, (1)
or C u-vu P P+,

V=0 @)
Equation 1 is a vector equation called “momentum equation”. This
equation can make the velocity field stay divergence-free. Equation
2 is the incompressibility condition, which enforces fluid volume
to remain constant throughout the simulation. In the above two
equations, ¢ is time, p represents fluid density, and g represents
gravity.

Mantaflow performs fluid simulation by iteratively solving Equa-
tions 1 and 2. In this paper, we use MAC (marker-and-cell) grids [15]
to discretize fluid flows, and use the finite difference (FD) method
to calculate partial derivative on each grid [16, 17].

For each velocity component that borders a grid cell, the FD
method iteratively applies updates on velocity and pressure. In a
grid cell, the pressure is sampled at the grid cell center and the
velocity is sampled at the centers of the vertical faces of the grid
cell. The above method is common and can simplify the handling
of solid-cell boundaries conditions.

To solve Equations 1 and 2, mantaflow uses a standard operator
splitting method [18-20] to split up Equation 1 (Equation 2 is used
as a constraint) into three parts. The three parts are advection,
adding external force, and pressure projection. Algorithm 1 depicts
the implementation of the Eulerian simulation in mantaflow, which
includes the above three parts.

The Eulerian simulation in mantaflow includes N time steps.
The first part (Lines 4-5) of each time step is to solve the momen-
tum equation to get an auxiliary velocity field #B. #B
ity approximation which is not divergence-free, and the pressure-
gradient term (Vp) used during the solving process is computed in

is a veloc-

Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid Simulation

Algorithm 1 Velocity Update in the Euler Equation

Require: Simulation time step N;
1: Start with an initial divergence-free velocity field i°
2: Determine a good time step At to go from time t,, to time tp41.
3 for n— 1to N do
4 Advection. Set #4 = advect(ii™, At, q);
5. Add body force. iiB = ii4 + atf;
6. Pressure projection. set 7! = Project(at, #B):
7. 1) Solve the Poisson eq. V - Vpy, = ﬁ v -uB
8 //Use a PCG solver to to update py,.
9: Set initial guess p, =0 and residual vector r=d (if r=0, then
return py)
10: Set search direction § = ApplyPreconditioner(r);
11: while residual doesn’t reach the convergence criteria

122 do ,
- rir.
13 Seta = T)
14: Calculate the residual r = r — aApy;
15: Update the solution p, = p, + as;
16: Update the conjugated direction s = r + f5;

172 end while
18: 2) Apply velocity update: #"*1 = 4B — At% Y pn;
19: end for
20: return 0

the previous time step. At Line 7, the divergence-free pressure py,
is computed by solving a Poisson’s equation which includes the
divergence of #® and a scaled gradient of the pressure. At Line 18,
a divergence-free velocity field, #"*! is calculated, by subtracting
off the pressure gradient from the approximate velocity field up.
In the above process, solving the Poisson’s equation is the most
crucial and time-consuming step to preserve the divergence-free
constraint on the velocity and maintain simulation accuracy.

The process of solving the Poisson’s equation in mantaflow
(Line 7 in Algorithm 1) is based on the Preconditioned Conju-
gate Gradient (PCG) method, which involves large computation
that iteratively converges to meet a convergence criteria (Lines 8-
17). Mantaflow uses a multi-grid approach [21] as a preprocessing
step of the PCG method. The pre-conditioner (Line 10) applied in
mantaflow is the Modified Incomplete Cholesky L0 preconditioner,
called “MICCG(0)”. In this paper and the existing work [10], neural
networks are used to approximate this PCG method.

In this paper, we simulate a 2D smoke plume [22, 23]. The simu-
lation output in mantaflow is a smoke dense matrix of a rendered
smoke frame. The smoke dense matrix represents density blurring
of the plume, which reflects fluid movement. After using neural
networks to approximate the computation in the fluid simulation,
the output dense matrix can be different from that in the original
simulation (using the mantaflow’s PCG-based solver), which means
we have quality loss. The simulation quality loss (Q;,ss) is formally

defined by: N M
1 *
Quoss = N3 Z Z ‘PU - Pij|’ ®)
i=1 j=1

where p refers to the smoke density matrix generated in the original
simulation, and p* represents the smoke density matrix generated
after applying neural network-based approximation. p;; and p?j are

SC ’19, November 17-22, 2019, Denver, CO, USA

matrix elements with the coordinate (i, j). In essence, Equation 3
calculates the average relative error of all matrix elements. After
applying the neural network-based approximation, we want to
avoid quality loss (i.e., we do not want to lose simulation accuracy).

2.2 Neural Network-Based Approximation

The neural network is a general-purpose method that can be used
to learn and model complicated linear and non-linear relationships
between input and output datasets. Hence, the neural network has
been used to approximate some conventional algorithms in an ap-
plication to improve performance [9-11]. The neural networks are
expected to generate similar outputs as the conventional algorithms
when fed with the same inputs as for the conventional algorithms.

A neural network can be represented as a directed acyclic graph
where nodes of the graph are connected neurons. Embedded in
the graph, there are a number of parameters (or “weights”). Those
neurons and weights are organized as layers. The process of obtain-
ing the values of those weights are called training. Once the neural
network is trained offline using training datasets, it can be used
online within the fluid dynamic simulation to improve performance.
During training, an objective function is used to calculate the model
accuracy loss, so that the weights can be adjusted to reach better
model accuracy.

In this paper, we use Convolutional Neural Networks (CNN)
to approximate computation (i.e., using the PCG solver to solve
the Poisson’s equation) in the Eulerian fluid simulation. This com-
putation is the most time-consuming part of the Eulerian fluid
simulation. Our profiling results reveal that this computation takes
70-80% of total simulation time.

Recent work [10] introduces an unsupervised learning frame-
work to generate a CNN model with five stages of convolution and
Rectified Linear Unit (ReLU) layers to approximate computation
(the PCG solver) in the Eulerian fluid simulation. The inputs of the
CNN are the divergence of the velocity field, denoted as V - 17’;
and the geometry field, denoted as g;—1. The output of the CNN is
the pressure field, denoted as p;. The mapping feono from input to
output by this CNN model can be represented as follows:

ﬁt = feonv (V : ﬁ;s gi-1; W), (4)

where W is the CNN model parameters. The predicted p; is used to
update velocity 4y in Equation 1. In our study, this CNN (named as
the Tompson’s model) is used as input in Smart-fluidnet to generate
new neural networks for online fluid simulation.

The objective function of the Tompson’s model, i.e., DivNorm,
is the sum of weighted L-2 norm of the divergence of the predicted
velocity u; over all fluid cells (mesh volumes) in the rendered smoke
frame. DivNorm is defined as follows:

DivNorm = Z wi{V i@ }2, (5)
i

where w; is a weighting term for each fluid cell to emphasize the
divergence of grids on geometry boundaries, i.e., w; = max(1, k—d;).
d; is the distance field. It takes the value 0 for solid cells or the
minimum Euclidean distance to the nearest solid cell for fluid-cells.

SC ’19, November 17-22, 2019, Denver, CO, USA

Proportion of Input:

0.01 0.02 0.03 0.04 0.05
Quality loss

Figure 1: Distribution of quality loss for the Tompson’s
model with different input problems [10].

Table 1: Execution time and simulation quality loss of three
models for solving the Poisson’s equation.

Method Execution Time (ms) Avg. Quality Loss
PCG 2.34 % 108 —
Tompson [10] 7.19 x 104 1.3x 1072
Yang [11] 3.20 x 10% 4.9 %1072

2.3 Motivation of Our Work

The existing work to solve the Poisson’s equation includes the PCG
solver in mantaflow and two neural network models (Tompson [10]
and Yang [11]). We study the implications of the three methods on
simulation quality and execution time. To study the impact of each
model, we evaluate 20,480 different input problems of the fluid simu-
lation and report the average simulation quality loss and execution
time. The simulation quality loss Q;,s is calculated by comparing
the simulation output and the real physical measurements on fluid
flow. Table 1 and Figure 1 show the results.

Table 1 shows that PCG achieves the highest simulation qual-
ity as an exact solution but the worst performance (the longest
execution time). On the other hand, the Yang’s model performs
10%x faster than PCG but causes about 10?x loss in the simulation
quality. There is a clear trade-off between simulation quality and
performance.

Figure 1 shows the distribution of quality loss for various input
problems when we use the Tompson’s model. The figure reveals
that given various input problems, the model generates different
simulation quality. For most input problems, the simulation quality
loss is between 0.01 and 0.02. Given a user-defined quality require-
ment (e.g., the quality loss should be less than 0.01), the simulation
may not meet the quality requirement for most input problems
(e.g., around 65.42% input problems can not meet user requirement
when the requirement is 0.01). We have the same observation for
the Yang’s model.

The above results reveal that it is imperative to use multiple
models to explore the trade-off between performance and simu-
lation quality and maximize the possibility of reaching the user
requirement on the simulation quality for various input problems.

W . Dong et al.

3 OVERVIEW

Figure 2 gives the workflow of Smart-fluidnet. The workflow in-
cludes offline and online phases. During the offline phase, Smart-
fluidnet takes an existing neural network model as an input and
constructs a set of neural network models by model transformation.
We introduce four operations (deleting, narrowing, pooling and
dropout) to transform the input neural model into multiple neural
network models. Then we choose neural network models that are
promising for high performance improvement and high quality
based on the Pareto optimality analysis.

After model construction, Smart-fluidnet further chooses mod-
els based on the user requirement about simulation quality. Given
various input problems of the fluid simulation, we introduce an
MLP-based model to predict the probability of each model to reach
the user requirement on the simulation quality. Considering the
possible cost of restarting the simulation when the simulation qual-
ity does not meet the user requirement, we choose those models
that have a sufficiently high probability to benefit the performance
improvement. After the above offline phase, we have a handful of
neural network models ready for online approximation. At runtime,
given an input problem of the Eulerian fluid simulation, Smart-
fluidnet dynamically switches neural network models with the
most promising neural network to meet the user requirement on
the simulation quality. The model switching is based on a metric
and a linear regression model to predict whether the current model
can reach the requirement on the simulation quality at the end of
the simulation.

The Smart-fluidnet framework consists of three main modules:
approximation model construction (Section 4), offline output-quality
control (Section 5), and quality-aware runtime design (Section 6).
Their relationships are depicted in Figure 2. We explain them in
detail as follows.

4 APPROXIMATE MODEL CONSTRUCTION

Given an input neural network, we transform it to construct multi-
ple neural network models with different network architectures.

The new neural network models can be more accurate or more
efficient (i.e., using less execution time) than the input neural net-
work; Having such a mixture of different models provides flexible
computation approximation during the online fluid simulation.

To generate more accurate neural network models, the user can
use an existing framework such as Auto-Keras to generate and train
models. Auto-Keras uses the Bayesian optimization to generate
a single model with the best accuracy. We change Auto-keras to
generate and train five models with the better accuracy. We generate
five models, because generating more than five highly accurate
models often causes more than five models to be selected after
applying MLP (Section 5), which causes large runtime overhead
when making the decision on switching models; While generating
less than five models will lead to insufficient candidates after the
model selection (Section 5).

Besides the above, we also aim to generate less accurate but
faster models. We introduce new transformation operations into
Auto-Keras to simplify the neural network architecture, which
will shorten the execution time. We describe our transformation
operations as follows.

M\
MLP Model

Quality-aware Runtime Design

Select

Neural
Network
1

Transformation
Operations

Model for
Runtime System

User nput
Requirement Problems

Quality-Aware
Model-Switch
Algorithm

Quality Optimal
Fluid Simulation

I
I
|
I
I
I
Input I
I
I
I
I
I
I
I

Figure 2: Workflow of the proposed Smart-fluidnet.

0.03
[)
3 . *
° ° & o
0.025 |- ‘3 $ o °
([) .
oo e]
» @ %28
X e e ° °
@ 002 | <% %S ° o . o
o x ° % °
> * £°s
= bl)
© * x '
8 0.015 | % e ©
<] e 8
2 %
0.01 | x ° o
x
0.005 L ‘ ‘ ‘ ‘ |
05 1 15 2 2.5 3

Time Cost (s)

Figure 3: Scatter plot of quality loss and time cost of different
neural network models.

Operation 1: deleting a layer of the neural network. This operation
is denoted as shallow(G, L), where G is the neural network graph
of the input neural network and L is the layer to be deleted. This
operation not only shortens the depth of neural network but also
reduces memory consumption, thus makes the fluid simulation
time shorter.
Operation 2: narrowing a layer of the neural network. This oper-
ation reduces neurons in an intermediate layer. This operation is
denoted as narrow(G, L, r), where r is the number of neurons to be
reduced at the layer L, and L can be either a fully-connected layer
or a convolutional layer.
Operation 3: pooling. This operation, denoted as pooling(G, L, m),
downsamples a layer L using a pooling matrix m. We can apply two
pooling strategies, i.e., maxpooling and averagepooling. A special
case of m is a 2 X 2 matrix which can discard 75% neurons in the
intermediate layers.
Operation 4: dropout. This operation, denoted as dropout(G, L, p),
drops neurons at a layer L with a given probability p. It offers a
more flexible way to reduce the number of neurons, compared with
the second operation by controlling the value of p. This operation
is useful to increase the generalization capability of the model.
Based on the above four operations, we transform the input
neural network into new ones. Given an input neural network, we
first apply a shallow(G, L) operation on each of the intermediate
layers. We do not apply the operation more than twice in the input

model, and hence do not delete more than one intermediate layers.
After applying shallow(G, L), we generate five new models.
Second, we apply narrow(G, L, r) operation on the five new mod-
els. A big value of r means a large number of neurons will be re-
duced. Based on our experimental results, the simulation quality
loss can be large (more than 20%) for most of the input problems,

if r > % where |L| is the total number of neurons. Therefore, we

empirically use r = # For each new model, we randomly choose
r neurons to apply the narrow(G, L, r) operation; Furthermore, for
each new model, we apply narrow(G, L, r) ten times, each of which
generates a new model. In our case, in total, we have 55 new models
(five new models after applying shallow(G, L) and 50 more after
applying narrow(G, L, r)).

Third, for the 55 new models, we apply pooling(G, L, m) opera-
tions. In particular, for each new model, we randomly replace any
of two neighbor-neurons with a new neuron using max pooling.
The total number of neurons to be replaced is constrained to be
10% of the total neurons. After applying pooling(G, L, m), we have
55 more new models (110 models in total).

Atlast, to enrich our neuron network models, we randomly select
18 out of the 110 models to apply the dropout(G, L, p) operation. In
particular, in each of the 18 models, we randomly drop out neurons.
The total number of neurons to drop is limited to 10% of the total
neurons. After applying dropout(G, L, p), we have 18 more new
models. In total, we have 128 models.

We apply the four operations in the above order, because the
operation that tends to reduce more neurons than other operations
will be performed earlier. This method allows us to efficiently gen-
erate new models. Using a different order can take longer time to
generate models or be prone to generate less accurate models.

After the above model generation and in combination with the
accurate models generated by Auto-Keras (five models), we have
133 models in total. Afterwards, we use Pareto optimality to reduce
the number of models for online approximation. We select models
that have the lowest time cost, the lowest quality loss, or both.

To explain the idea of Parento optimality, we use Figure 3 to illus-
trate it. Figure 3 shows the result of our model selection approach. In
this figure, each point represents a model; The red points are those
selected model for further analysis (Section 5); The green points are
discarded models. In Figure 3, the quality loss and execution time
for each model are collected during the model construction. This

SC ’19, November 17-22, 2019, Denver, CO, USA

is a common method to collect the model information
work [24, 25]. Section 7 gives details on the hardware pl
input datasets to collect the results in Figure 3. We can ¢
those models located in the leftmost part of Figure 3 «
the lowest time cost, the lowest quality loss, or both. Th
(14 models) are selected based on the Pareto optimality 1
name them “model candidates” in the later discussion).
Sensitivity Study. The above process of constructing
works involves a couple of parameters. We summari
follows and change those parameters to study their im
simulation quality. In our study, we use 100 input prob]
the simulation quality of PCG as the baseline, we calcu
erage quality loss of all input problems when using the
model. This average quality loss is used as the user requ
quality loss in our sensitivity study.

(1) The number of layers to prune (Operation 1). C
method prunes one layer at most. For sensitivity study, We prune
more than one layer, but find that it leads to a large quality violation
(20% quality loss on average), which is not good.

(2) The percentage of neurons to apply pooling (Operation 3).
Our current method applies pooling to 10% of total neurons. We
set the percentage of neurons to apply pooling as 5%, 20% and
30%, and evaluate the impact of this parameter on the simulation
quality. Our experiments show that using 20% and 30%, the fluid
simulation has a large quality violation (35% and 50% quality loss
on average, respectively), which is not good. However, using 5%,
the fluid simulation has the similar quality loss on average as using
10%. In addition, since using 10% can lead to better performance
than 5%, we choose 10% in our study.

(3) The dropout rate (Operation 4). Our current method drops
out 10% of total neurons. We also try 5% and 15% as the dropout rate.
Our experiments show that 5% and 10% outperform 15% in terms
of the simulation quality loss. In particular, the quality losses with
5% and 10% as the dropout rate are 0.156 and 0.164 respectively,
while the quality loss with 15% as the dropout rate is higher (0.239).
Since 5% and 10% has the similar quality loss and using 10% leads
to less execution time, we adopt 10% as our dropout rate.

(4) The number of neural network models to apply the dropout
operation. Our current method chooses 18 models. Our study re-
veals that choosing 15-20 models are enough for the Pareto optimal-
ity and MLP (see Section 5) to generate 2-5 models. Using less than
15 models to apply the dropout operation, however, we could gen-
erate no qualified model after applying MLP. Using more than 20
models, we could have more than 5 qualified models after applying
MLP. Having more than 5 models means that the runtime system
may suffer from large runtime overhead for selecting a model to use.
As a result, we choose 18 (in between 15 and 20) as our parameter.

5 OFFLINE OUTPUT-QUALITY CONTROL

In many fluid simulation cases, users can have specific requirement
on the simulation quality and execution time. We use the notation,
U(q, t), to represent the user requirement, where g and t are the user
requirement on the quality loss and execution time respectively.
The final quality loss and execution time of the fluid simulation
should be less than g and t, respectively. The quality control should
be aware of the success rate of neural network models, namely

Figure 4: The network architecture of our MLP model.

the ratio of those input problems with which the fluid simulation
can reach the simulation quality and time requirement to the total
number of input problems.

The awareness of the success rate can be developed from statis-
tical knowledge by executing neural network models on various
input problems. In this section, we design a non-linear MLP model
to develop such awareness. In the following subsections, we first
introduce the construction of training samples for training the MLP
model and then give details on how to construct and apply the MLP.

5.1 Construction of Training Samples

We collect execution records (i.e., simulation quality and execu-
tion time) for the 14 neural network models after the construction
of those models (Section 4). Based on the execution records, we
generate training samples to train the MLP model.

Collection of Execution Records. For each of the 14 neural net-
work models, we get N execution records by running N input
problems (N = 20, 480 input problems in this paper). Each of the N
execution records includes the simulation quality qﬁ and execution
time tX, where n € [1,N] and k refers to a neural network NNy
from the 14 neural network models. Each execution record is repre-
sented as ERﬁ. Such execution record is collected during the model
construction (Section 4). Note that our model construction process,
similar to other AutoML work [24, 25], includes not only changing
model architecture but also training models. Hence we can collect
execution records during the model construction.

Sample Generation. Given N execution records, we can generate
samples to train the MLP. Each sample is represented with a feature
vector using Equation 6.

F= (q, t, lk,abﬁlk’Mk,Wk,r_}eSk) (6)

In Equation 6, the feature vector F includes quality and execution
time requirements (q and t), and architecture information for the

. —_ = — —
neural network NNy (ie., I, kery, chny, pooly, unpy, and resg,
representing the number of layers, kernel sizes, channel number,
pooling size, unpooling size, and residual connection of each layer
respectively). Each of the last five architecture information is a
vector composed of nine components that indicate properties of
each layer of the neural network N Ny. Therefore, each input feature
vector has 3 + 5 * 9 = 48 components in total.

Given a neural network NNy, we generate a sample by randomly
picking up a user requirement (q and t), and then use Equation 6 to

Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid Simulation

0.8 T T T T

1000 1500 2000 MLP.

0 2000 4000 6000 8000 10000
Training Steps

Figure 5: Training losses of five MLPs.

build the feature vector of the sample. Based on the N execution
records and the user requirement, we calculate that how many of
N execution records meet the user requirement. The ratio of those
execution records to N, denoted as rg_4 ¢, is the label of the sample.
By choosing different combinations of g and t, we can generate as
many samples as possible.

5.2 MLP Model Construction and Loss Function

Given a neural network NNy and user requirement g and t, we
can build a feature vector F using Equation 6. Our MLP model
(see Equation 7) takes such a feature vector as input and generates
an output ¢ g ;, which is a floating point number indicating the
probability that NN meets the user requirement for any input
problem.
Proq.t = fmrp (Frq.) 7)

Figure 4 shows the network topology of our MLP. It includes six
hidden layers and a 48-neuron input layer. The numbers of neurons
in the six hidden layers are 32, 32, 16, 16, 8 and 8 respectively. All the
neurons in the hidden layers use ReLU as activation to increase the
non-linearity of the model. The neurons in the last hidden layer uses
a sigmoid function as activation. Using the samples constructed in
Section 5.1 to train the MLP, we aim to minimize the loss between
the model output 7 , ; and the ground truth label ry 4 ;.
Alternative MLP Topologies. Besides the above MLP topology,
we try four alternative MLP topologies, in order to find one for best
accuracy. Among the four MLPs, two of them are deeper than our
current MLP, while the other two are shallower. When building an
alternative MLP, we follow the rule that in the topology of a neural
network, a deeper layer generally has less number of neurons than
shallower ones (i.e., the number of neurons gradually decreases
across layers). Many discriminative neural networks, such as Alex-
Net[26], VGG-Net[27], are constructed, following this rule. The
architectures of the four models plus our current MLP model are
briefly described as follows:

e MLP; has 4 layers with 48, 32, 16 and 1 neurons;

e MLP;, has 5 layers with 48, 32, 16, 8 and 1 neurons;

e MLPs (our current MLP model) has 6 layers with 48, 32, 32,
16, 8 and 1 neurons;

e MLP, has 7 layers with 48, 64, 32, 32, 16, 8 and 1 neurons;

e MLPs has 8 layers with 48, 64, 64, 32, 32, 16, 8 and 1 neurons.

Figure 5 presents the training loss curves of the above five MLPs
(MLPs is our current MLP model). We find that the convergence

SC ’19, November 17-22, 2019, Denver, CO, USA

speed of MLPs is faster than those of MLP; and MLP,, and offers
lower training loss (i.e., higher prediction accuracy). Compared with
MLP3; model, MLP4 and MLPs do not have significant advantages
in terms of convergence speed and loss, although they have deeper
topologies. Hence, MLP3 exhibits a balanced trade-off between
prediction accuracy and model size, and is thus chosen as our MLP
model in this paper.

5.3 Usage of MLP

Given a user-specified simulation quality (g) and time cost (¢), we
use MLP to calculate 7y g ; for a given neural network model NNy.
A larger value of 7y 4 ; represents a higher success rate. In other
words, it is highly possible that NN can meet the simulation qual-
ity and time requirement on an input problem.

Given the user-specified simulation quality (q) and time require-
ment (1), the neural network NNy and MLP prediction result (f g ;).
we use the following method to decide if NN} should be selected
for the runtime system for the fluid simulation. In particular, con-
sidering the probability that the user requirement on the simulation
quality is violated and the user has to re-run the simulation without
using any neural network, the simulation time is calculated based
on Equation 8.

Trotal = fk,q,t X TMk + (l - fk,q,t) X T’, (8)

where T’ is the execution time without using any neural network
and Ty n, is the execution time using the neural network NNj.. We
compare T;,;,; With the user requirement on the execution time ¢.
Only those neural networks that have T;,;,; less than t is selected.

The above selection method considers the impact of violating the
simulation quality requirement on the simulation time, and ensure
that if NN} is repeatedly employed for many input problems, there
is performance benefit.

6 QUALITY-AWARE RUNTIME DESIGN

After applying MLP, multiple neural networks are selected. We use
a runtime technique to schedule those neural networks to optimize
performance and meet the simulation quality requirement. In or-
der to determine which neural network should be used at runtime,
we need to evaluate the model being used in terms of the final
quality loss, and switch to a suitable one if necessary. However,
without running the simulation to completion, we cannot know the
final quality loss. Thus we construct a metric called CumDivNorm
(defined in Equation 9), which is used to set up a bridge between
DivNorm (see Equation 5) measurable at runtime and the final sim-
ulation quality loss Q;,ss (Section 6.1). Based on CumDivNorm and
the predicted final quality loss, we introduce a quality-aware model-
switch algorithm (Section 6.2) to select the best neural network to
accelerate the fluid simulation.

6.1 Prediction of Simulation Quality Loss

The objective function DivNorm provides a goal that our neural
network aims to achieve. Using DivNorm, we can know how the
neural work performs in terms of prediction accuracy. However,
there is a missing link between the prediction accuracy of the neural
network and the final simulation quality loss Qj -

SC ’19, November 17-22, 2019, Denver, CO, USA

8 T T T T T T
6 4
E
<} i
=z 4
=
o2 4
0 ;
0 20 40 60 80 100 120 140
Time Steps
800 0.04
40
g 600 P -10.03
o 20 -,
Z (2}
= 400 P 1002 28
(@] 0Ls a
£ 200 0 5 = = CumDivnorm || ¢ o4
= t
o ——
0 , : : 0
0 20 40 60 80 100 120 140

Time Steps

Figure 6: Relationship between CumDivNorm and Qltgss'

CumDivNorm: A Metric for Runtime Quality Control. To ex-
plore the relationship between DivNorm and final simulation qual-
ity Qjoss>» We calculate CumDivNorm (i.e., the accumulation of
DivNorm)and Qy s at each simulation time step (denoted as Qlt;ss)'
The accumulation of DivNorm over n time steps is defined in Equa-

tion 9.

n
CumDivNorm = Z DivNorm;. 9)
i=1

In order to observe how these varibles are correlated, Figure 6
depicts how DivNorm, CumDivNorm, and Q;,¢s vary across all
time steps of the fluid simulation using an input problem with the
grid size 1028*1028. We have the following observations. These

observations are valid for other input problems as well.

e Observation 1: DivNorm dramatically increases at the first
few time steps and then gradually converges to a stable value;
e Observation 2: Ql[js and CumDivNorm have similar in-

creasing tendency (except the first few time steps).

The above observations indicate that CumDivNorm and Qlt sss

calculated at each time step are correlated. In order to quantify the
relationship between CumDivNorm and Qlt ;ss at each time step,
we use the Pearson’s product moment correlation coefficient (rp)
[28] and the Spearman’s rank correlation coefficient (rs) [29] to
statistically reveal the correlation between the two variables.

The two coefficients are defined as follows. Given two input
vectors x and y (the vector length is n), the calculation of rp and
rs to quantify the correlation between x and y is formulated as

follows: _ _
S =Xy -y)

rp = , (10)
VEi G = R~ 9
6 d?
rs=1- m (11)

where x; and y; are the values of x and y for the i-th component,
and d counts the pairwise disagreement (i.e., x; is not equal to y;)
between the two vectors (see [30] for a more detailed description).
In general, the coefficients that belong to [0.10-0.29] represent weak
association, (0.29-0.49] represent medium association, and above
0.49 represent strong association [31].

W . Dong et al.

In our study, we use 20,480 input problems, each of which will
have 128 simulation time steps. The CumDivNorm and Qlt jss of
each time step will be calculated to build the two input vectors.
Using Equations 10 and 11, we have rp = 0.61 and rs = 0.79, which
indicates a strong correlation.

Based on the above discussion, it is possible to use CumDivNorm

to predict Qlt ;SS in the final time step (i.e., the final quality loss
Qjoss)- Note that we cannot calculate Qlt jss at runtime, because it
involves PCG, which is too expensive. In the following discussion,
we first discuss how to predict CumDivNorm in the final time step
(CumDivNormfinal), and then we discuss how to predict Qjss
based on the predicted CumDivNorm/"al,
Predicting CumDivNorm/"4!. We introduce a lightweight ap-
proach to predict CumDivN orm/mal Qur prediction approach is
based on Figure 6. In this figure, CumDivNorm quickly grows at
first, and then the growth rate remains stable. This trend is general
across all 20,480 input problems we test.

The stable growth rate of CumDivNorm makes it possible to

predict CumDivNorm/ 17! in the middle of the fluid simulation. In
particular, we use five time steps to build a linear regression model
(fr(x) = ax + b), by the least square method, where x is the time
step and fr.(x) is the predicted CumDivNorm. Note that the data
used to build the linear regression model must be collected after
the growth rate becomes stable. Hence, we skip the first five time
steps and build the regression model after each five steps. Also,
in each five time steps (a check interval) to build the model, we
skip the first two to make sure the trend is stable and only use
the remaining three to build the model. The above model-building
process happens every five time steps, and the model is used to
predict and check Q¢ (see the following discussion). Hence, we
fix the check interval to be five time steps in the rest of the paper.
In Section 7.4, we study the impact of the check interval on the
simulation quality.
Predicting Qj,ss based on CumDivNorm/"a!, We use a method
based on the k-nearest neighbor (KNN) algorithm to predict Q-
Our method includes offline and online phases. During the of-
fline phase, we test the neural network models selected by MLP
with 128 small input problems. For each test, we collect a pair
of data (CumDivNorm/ el 0, -} and put them into a histori-
cal database. The offline phase is fast, because we use small input
problems. During the online phase, at a time interval, to predict
Oloss» we check CumDivNorm/ "4l in the database and find k
pairs whose CumDivNorm/ 14! are the closest to the predicted
CumDivNorm/ "4l in the current time interval. We use the aver-
age of Qj,ss in the k pairs as the predicted Q;,¢¢ in the current
time interval. In our evaluation, we use different values for k, but
find that k € [4, 6] is usually sufficient to give accurate prediction,
hence we choose k = 4 to reduce runtime overhead.

For example, assuming that the predicted CumDivNorm/ "4l jn
a time interval is 108. To predict Qj,,, for this time interval, we
select four pairs from the database, i.e., (101, 0.09), (112, 0.11), (105,
0.10), and (109, 0.11), whose CumDivNorm/ 4l is closest to the
given CumDivNorm (108). Then the predicted Qj,,, for this time
interval is 0.1025 ((0.09 + 0.11 + 0.10 + 0.11)/4). We organize all
data pairs as a binary search tree, such that finding the four pairs
is cheap.

Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid Simulation

SC ’19, November 17-22, 2019, Denver, CO, USA

Algorithm 2 The quality-aware model-switch runtime algorithm

Require: The user requirement U(q, ?).
1: Choose a neural network model My with the highest success rate
according to MLP.

2: while ¢ does not reach the final time step do

3: Send My to predict the final simulation quality.

4: Prediction of quality loss:

5: 1) Build a linear regression model with Div N orm values measured
in the last five time steps;

6 2)Predict CumDivNorm/i"4! by the linear regression model;

7: 3)Predict Q) of the current neural network model by the KNN
algorithm;

8: Model Switch:

9: if Q; iscloseto g then

10: Continue using the current neural network model for L steps;
11: elseif Q; _ lessthan g then

12: Switch to a faster (less accurate) neural network model;

13 elseif Q) _ islarger than g then

14: Switch to a slower (more accurate) neural network model;

15: else if Cannot find any model then

16: Restart by the PCG method;

17: endif

18: t « t + L ;//Lis the check interval.
19: end while
20: return 0

6.2 Quality-Aware Model-Switch Algorithm

With the ability to predict the simulation quality loss, we introduce
a quality-aware model-switch algorithm. Algorithm 2 depicts this
runtime algorithm. After applying MLP, we have several promising
neural network models and their probabilities to meet the user-
specified requirement. We also know the execution time (i.e., the
inference time) of each network model. During the simulation, the
neural network with the highest probability to meet user-specified
requirement is selected as the first model to approximate compu-
tation in the fluid simulation. Then we calculate CumDivNorms
in the first check interval, build a linear regression model, calcu-
late CumDivNorm/"4! using the regression model, and predict
Qjoss by the KNN algorithm. After that, we compare the predicted
Qjoss (annotated with Ql’oss in the rest of the paper) with the user
requirement gq. If Ql/oss is close to g, we predict that the current
neural network model can meet the user requirement. The runtime
algorithm continues to use the current neural network model. But
if Ql/oss is larger (or smaller) than g, then the runtime algorithm
chooses a accurate (or fast) model with better (or worse) accuracy.
If all the neural network models cannot meet g, we restart the sim-
ulation and use the traditional simulation method (i.e., the PCG
method). The above model switch process happens periodically
(the period is the check interval). We calculate CumDivNorms at
the end of every check interval to determine if the model switch is
necessary.
An Example. Figure 7 gives an example to further explain our
runtime algorithm. In this example, we have five neural network
models and the user requirements on the simulation quality loss
and execution time are 0.013 and 6.64s respectively.

During the offline phase, five neural network models are con-
structed by the model transformation (Section 4) and selected by

Model candidates
(T 7 M1 M2 M3 M4 M N
11 M2 M3 M4 M5
I Pro. 0.91 0.88 0.78 0.74 0.72
| Exec 3.97 4.88 3.50 3.66 8.70

/

Step 1. Executing model

Run model and collect DivNorm

Interval 2:M3 with longer Exec than M1

Interval 3:M5 with longer Exec than M3

I

Step 2. Prediction of . '
CumDivNorm and quality loss | i
M1 M3][M5

Predicted
CumDivNorm | 336 | 281 | 227
Predicted

: atisficd
: has better

Step 3. Model-switch

is satisfied Execution until end |

cannot be

Redo with PCG method |

Faster model or
more accuracy model

options

Quality Loss

0.02

0.02

Figure 7: An example to explain our runtime algorithm.

MLP (Section 5); We record the possibility and execution time
of the five neural network models (shown as Step 1 in Figure 7).
At runtime, we use the first neural network (M1) which has the
highest probability (91%) to meet the user requirement on the simu-
lation quality. Then we skip the first five steps and fit the values of
DivNorms in the first check interval into a linear regression model,
and predict that the CumDivNorm closes to 395 at the final time
step. Using the KNN method, we predict Q¢ as 0.019, which is
much larger than the user requirement (0.013). So we switch to a
more accurate neural network model, i.e., M3 (a model with higher
accuracy than M1 and the highest probability among remaining
neural network models). After using M3 for another five time steps
(one check interval), we predict Ql,oss of M3 as 0.015, which is still
larger than the user requirement. So we switch to another more
accurate neural network model, i.e., M5. We predict Ql,oss of M5
as 0.013, which can meet the user requirement, we then use M5
during the next check interval.

Compared with using a single neural network model, our run-
time algorithm introduces additional computation (i.e., predict-
ing CumDivNorm and applying the KNN method). However, the
computation of the simple linear regression algorithm to predict
CumDivNorm and the traversal of the binary tree to apply the
KNN method are lightweight. Such overhead can be easily over-
weighed by the performance benefit introduced by adaptive neural
network-based approximation. We evaluate performance (including
the runtime overhead) in Section 7.2.

7 EVALUATION

We evaluate our framework to examine its impact on performance
and simulation quality of the Eulerian fluid simulation.
Platform. We conduct all experiments on a high-end server with
24 Intel Xeon E6-2760 v3 CPU cores running at 2.30GHz. The server
is equipped with an NVIDIA Titan X (Pascal) GPU. We use cuDNN
5.0 on this GPU to run neural networks.

Fluid Simulation. During the fluid simulation, we run 128 time
steps (the default number of time steps in mantaflow) for each
input problem. To comprehensively evaluate the performance, we
use multiple grid sizes for each input problem, including 128128,
256%256, 512%512, 768768, and 1024%1024.

Input Datasets. We generate training and evaluation datasets by
mantaflow, which is an open-source framework for the fluid simu-
lation. The training dataset is used to optimize the parameters of
the neural network models and MLP model, while the evaluation

[Tompson
600 7] Smart-fluidnet

N .

128*128 256*256 512*512 768*768 1024*1024
Grid Size

o

Figure 8: Performance (execution time) of the Tompson’s
model and Smart-fluidnet.

0.04 —

[Tompson
003 L + N N [Smart-fluid Il
2 w £ T -
o + I+ + + I
— +
o027 7 : . -t 1
© - —
5 001 Eﬂ * ? E * Q &= h
1 1
1 +
‘ ‘ L, ‘ 1.4
128*128 256*256 512*512 768*768 1024*1024
Grid Size

Figure 9: Variation of quality loss with various grid sizes for
input problems.

dataset is used to evaluate the performance of the online algorithm
during the fluid simulation. Each of the two datasets contains 20,480
input problems. There is no overlapping between the training and
test datasets. To generate the total 40,960 problems, we initialize
velocity by a pseudo-random turbulent field [32], and generate oc-
cupancy grids with the border wall by introducing some objects in
the simulation domain. Those objects are from the NTU 3D Model
Dataset [33].

Neural Networks. We use Auto-Keras [12] with extension (Sec-
tion 4) to search qualified convolutional neural network architec-
tures. Auto-Keras constructs neural networks using Python, but
the fluid simulation is implemented in Lua/Torch7. Hence we re-
implement and optimize the neural networks with the Torch7 pack-
age.

7.1 Model Speedup and Accuracy

We conduct experiments to measure performance. We take the PCG
solver as the baseline method. PCG is the traditional method used
in the Eulerian fluid simulation and does not include any neural
network. Compared with neural network-based approximation,
PCG has the highest simulation quality but the performance is very
bad. All performance (execution time) reported in this section is
shown as “speedup” with respect to the performance of PCG.
Figure 8 shows the results for Smart-fluidnet and the Tompson’s
model with different grid sizes. The Tompson’s model represents
the state-of-the-art neural network to accelerate the Eulerian fluid
simulation. In all test cases, Smart-fluidnet performs better than
the Tompson’s model and is 1.46X better on average. The largest
improvement over the Tompson’s model is 2.25X. Besides the exe-
cution time, we also study the simulation quality of the Tompson’s

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14Smart

Model Candidates

Figure 10: Performance (execution time) for the Tompson’s
model and Smart-fluidnet.

model and Smart-fluidnet. We use 20,480 input problems to eval-
uate each method. We use the simulation quality of PCG as the
ground truth and study the quality loss of the Tompson’s model and
Smart-fluidnet. Since Smart-fluidnet requires the user to specify a
requirement on the quality loss, we use the average quality loss of
all input problems when using the Tompson’s model, as the user
requirement (the target).

Figure 9 presents boxplots™ to show the results of the quality
loss for all input problems with five selected grid sizes. We draw
two observations from Figure 9: (1) The outputs of Smart-fluidnet
are closer to the target value than those of the Tompson’s model;
(2) The variances of Smart-fluidnet are smaller than those of Tomp-
son’s model. These two observations reveal that Smart-fluidnet can
give more consistent simulation quality than the Tompson’s model,
which is crucial for dealing with largely diversified input problems.

To further study the consistency of simulation quality with vari-
ous input problems, we study how many input problems can lead
to the simulation with satisfiable simulation quality. Table 2 shows
the results. Table 2 reveals that Smart-fluidnet leads to a larger
percentage of a high-quality simulation than the Tompson’s model
in all cases. The difference between Smart-fluidnet and Tompson’s
model is as large as 44.67% (when the grid size is 1024*1024).

7.2 Analysis on Runtime System

In this section, we analyze the effectiveness of our runtime system.
Taking the grid size of 1024*1024 as an example, the average quality
loss and execution time of the Tompson’s model are 0.013 and 6.64
seconds respectively. We take this quality loss and execution time
as the target (i.e., the user requirement) of Smart-fluidnet.

Speedup. We show the performance (the speedup of execution
time) of running the 14 neural network models alone without model
switching. We use the performance of PCG as the baseline to cal-
culate speedup. We also show the performance of Smart-fluidnet
and compare it with the 14 individual models. Figure 10 shows

“In the boxplots, the boxes are bounded by 25th and 75th percentiles of the quality
loss; The central marks of the boxes indicate the median; The ‘+ markers outside the
boxes indicate the extreme outliers [34].

0.05

ézzzi;%%££i$}f$iiiii+
SR LL L LT Y,

| T
Tomp M1 M2 M3 M4 M5 M6 M7 M9 M10 M11 M12 M13 M14Smart
Comparsion with Model Candidates

Figure 11: Variation of simulation quality in different model
candidates.

that the performances of the 14 neural network models are quite
different, with the speedup ranging from 541.25X to 141.17X. The
performance of Smart-fluidnet is close to the median performance
(440.1 X) of the 14 neural network models. This is the result of
dynamically using different neural network models at runtime.
Quality. We compare the 14 neural network models, the Tompson’s
model, and Smart-fluidnet, in terms of quality loss. We calculate
the quality loss using the method in Section 7.1. Figure 11 shows
the results. Similar to Figure 9 in Section 7.1, the figure shows the
distribution and variation using the boxplots. Figure 11 reveals
that the variation of the quality loss in Smart-fluidnet with various
input problems is much smaller than any of the 14 neural network
models alone. With Smart-fluidnet, 91.05% of the input problems’
simulation quality meet the user requirement. With the shortest
and longest models (among the 14 neural network models), 12.52%
and 92.71% of the input problems’ simulation quality meet the user
requirement.

Figures 10 and 11 include the results for using only the fastest
model M1 or the most accurate model M14 throughout the sim-
ulation. M1 is 1.18x faster than Smart-fluidnet, but achieves the
user requirement on the simulation quality in only 12.52% of the
input problems (for Smart-fluidnet, it is 91.05); M14 achieves the
user requirement on the simulation qualtiy in 92.71% of the input
problems, which is close to Smart-fluidnet, but the performance of
M14 is 3.12x worse than Smart-fluidnet.

Table 3 shows the time distribution of five neural network models
used by Smart-fluidnet for all input problems. The second row of the
table shows the probability of reaching the target when using each
neural network model alone, which is predicted by MLP; The third
row shows the percentage of execution time of the fluid simulation
for the five neural network models (i.e., the time distribution). The
table shows that the model with the highest probability, M7, takes
50.56% of the total execution time, which is the longest execution
time among the five models. We also notice that M5, which is the
fastest model among the five neural network models, takes 18.1% of
the total execution time (the second longest execution time among
the five models). These indicate that Smart-fluidnet makes best
efforts to reach the user requirement on the simulation quality and
execution time.

7.3 Evaluation of MLP Effectiveness

In this section, we evaluate the effectiveness of MLP. We compare
the success rate of our runtime system with and without MLP. The
success rate means using all input problems for tests (20,480), how

120%

[without MLP controller
100% [with MLP controller

80% - b
60% - b
40% b

Success Rate

20% b

0% 1 1 L 1 1
128*128 256256 512*512 768*768 1024*1024

Grid Size
Figure 12: Success rate of reaching target quality with or

without using MLP.

Table 3: Execution time distribution for the five neural net-
work models used by Smart-fluidnet at runtime.

Grid size M7 M5 M10 M2 M13

Prob.(MLP) 86.12% 82.16% 79.43% 74.60% 70.38%
Time Distr. 50.56% 18.10% 11.12% 4.07% 16.15%

many of them reach the simulation quality requirement with our
runtime system. Similar to Section 7.1, we use the average quality
loss when using all input problems for the fluid simulation with
the Tompson’s model, as the user requirement. Without MLP, we
have 14 neural network models to be used by the runtime before
the fluid simulation, while with MLP, we have five.

Without MLP, we use the fastest neural network model (but
less accurate) in the beginning and then switch to more accurate
models until we find a model that can reach the user requirement
on the simulation quality. We use this model in the remaining of
the fluid simulation. Figure 12 shows the results. The figure reveals
that Smart-fluidnet with MLP causes higher success rates than
without MLP. The success rate with MLP is 88.86% on average
and can be up to 91.36%. This result shows that without MLP, the
runtime system can use those neural network models that have a
lower possibility to reach the quality target, in order to have better
performance. With MLP, we avoid applying those models, hence
improving the success rate. We also compare performance with
and without MLP. For the grid sizes of 128128, 256%256, 512%512,
768%768, and 1024%1024, the corresponding performance when we
use MLP, which is normalized by the performance without MLP, is
97%, 84%, 92%, 79% and 83% respectively. With MLP, we perform
better in all cases.

7.4 Sensitivity Study: Check Interval

We study the impact of the check interval on execution time and
success rate. We change the check interval, and Figure 13 shows the
results. Figure 13 shows that the success rate decreases when the
interval increases. Such decrease is because the model switching
is too slow to achieve high simulation quality. We also observe an
unusual increase of the success rate when the interval changes from
14 to 16. We attribute such an increase to the statistical variance
of using the linear regression method to make the prediction. Al-
though using 16 seems to be useful to increase prediction accuracy
for our input problems, using 5 achieves the highest success rate.
Therefore, we use 5 as the check interval throughout our evalua-
tion. We do not use a check interval smaller than 5, because we have
to skip the first two time steps to ensure that the growth rate of

Success Rate

40% : :
5 10 15 20

Different Check Intervals

Figure 13: Impact of the check interval on the success rate.

Table 4: Resource usage of different methods.

Methods FLOP (single step) GPU Memory
PCG ~1,250 M 332 MB
Tompson 24379 M 299 MB
Smart-fluidnet 110.97 M 1,069 MB

CumDivNorm is stable and using less than three time steps to build
the linear regression model cannot give high prediction accuracy.

7.5 Evaluation of Resource Usage

We evaluate resource usage (FLOP and GPU memory consumption)
by PCG, the Thompson’s and Smart-fluidnet with the grid size of
512*512. Since all input problems for such a grid size has the same
resource usage, we randomly choose an input problem and present
the evaluation results in Table 4.

We find that Smart-fluidnet requires much less FLOP than PCG
and the Tompson’s, which explains why Smart-fluidnet has better
performance. On the other hand, Smart-fluidnet consumes more
memory than PCG and the Tompson’s, because Smart-fluidnet
uses five neural network models on GPU (but not running them
simultaneously). However, the memory consumption of Smart-
fluidnet is still smaller than the GPU memory capacity (12 GB). If
GPU memory is not sufficient, then we may either use fewer neural
network models or run them on CPU.

8 RELATED WORK

Applying neural networks to HPC applications. Neural net-
works (especially deep neural networks (DNNs)) have been em-
ployed in HPC applications recently. In [35], a neural network is
used to generate input data for modulating the simulation process.
Wigley et al. [7] propose a neural network-based online optimiza-
tion process for the Bose-Einstein condensates (BEC). In [36], neural
networks are used to accelerate thermal-hydraulic modeling and
enables faster assessment for the dynamic thermal-hydraulic sys-
tem. Richard et al. [35] apply a neural network to ITER magnets
to predict the occurrence of the interruption, which can be used to
adjust the reaction to continue generating power and avoid ITER
damage. Mathuriya et al. [37] build a CNN model to determine the
physical model that describes our universe.

In our work, we use neural network models to approximate
computation in an HPC application. Different from the existing
efforts, we aim to address the limitation of model flexibility and
generality in the existing work [10].

W . Dong et al.

Acceleration of the fluid simulation. Since the fluid simulation
is an important HPC application, many research efforts have been
focusing on improving its performance. Popovic et al. use a multi-
grid approach to pre-process data for the PCG method in the tradi-
tional fluid simulation [38].

Molemaker et al. use iterated orthogonal projections and Michael
Lentine et al. apply a coarse-grid correction method [39] to ap-
proximate the Poisson’s equation [40]. These two approaches are
effective, but both of them are inexact and only competitive in
low-resolution settings. Some recent efforts [41] address the above
limitation by using a data-driven approach or leveraging some use-
ful statistical characteristics in the data distribution. Our work is
different from them, because we use neural network models (not
traditional solvers) to improve performance of the fluid simulation.

Some recent efforts attempt to build a neural network model that

makes prediction for stability, collisions, forces and velocities of data
objects in images or videos [42]. Given pressure data from previous
frames, voxel occupancy, and velocity divergence, Yang et al. use
a patch-based neural network to predict the next pressure [43].
Jonathan et al. use a convolutional neural network to predict the
pressure value in the Eulerian fluid simulation [10]. The existing NN-
based approximation approaches lack flexibility and generalization,
discussed in Section 1.
Model compression. During the process of model construction,
we use some operations to generate simpler neural network models.
The recent work using model compression aims to generate simpler
models [44]. There are multiple techniques for model compression,
including quantization parameters [45, 46], layer pruning [47, 48],
binarized networks [49, 50], low rank approximation [51], and
knowledge distillation [52, 53]. Different from the existing work
that focuses on resource-constrained execution environment (e.g.,
mobile devices), we focus on simplifying model without resource
constrains and study how to build the models to meet the simulation
quality for an HPC application.

9 CONCLUSIONS

Using machine learning (especially neural networks) to approxi-
mate computation in HPC applications and improve performance
has shown preliminary success recently. However, using this ap-
proach faces fundamental limitations due to the lack of model
flexibility and generality. In this paper, we focus on a specific HPC
application and introduce a systematic approach to address the
above limitation. In particular, we introduce a framework (Smart-
fluidnet) that automatically uses multiple neural network models
at runtime to approximate computation and make best efforts to
meet the user requirements on simulation quality and execution
time. The framework includes a series of techniques to construct
and select neural network models. Based on the comprehensive
evaluation, we show that Smart-fluidnet is 1.46X and 590X faster
than a state-of-the-art neural network model and the original fluid
simulation respectively on an NVIDIA Pascal GPU, while providing
better simulation quality than the state-of-the-art model.

Acknowledgement. This work was partially supported by U.S.
National Science Foundation (CNS-1617967, CCF-1553645 and CCF-
1718194) and Chameleon Cloud. We thank reviewers and our shep-
herd for their constructive comments.

Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid Simulation

REFERENCES

[1] Anne H de Boer, Paul Hagedoorn, Robert Woolhouse, and Ed Wynn. Compu-

[9

[10

(11

[12

[14

[15

[16
[17

(18

[20

[21

[22

[23

[24

[25

flaa

[

=

]

]
]

]
]

]

]

]

]

tational fluid dynamics (cfd) assisted performance evaluation of the twincer™
disposable high-dose dry powder inhaler. Journal of Pharmacy and Pharmacology,
64(9):1316-1325, 2012.

Sanghun Chot, Shinjiro Miyawaki, and Ching-Long Lin. A feasible computational
fluid dynamics study for relationships of structural and functional alterations with
particle depositions in severe asthmatic lungs. Computational and mathematical
methods in medicine, 2018.

David R Rutkowski, Scott B Reeder, Luis A Fernandez, and Alejandro Roldan-
Alzate. Surgical planning for living donor liver transplant using 4d flow mri,
computational fluid dynamics and in vitro experiments. Computer Methods in
Biomechanics and Biomedical Engineering: Imaging & Visualization, 6(5):545-555,
2018.

Yidong Xia, Ansel Blumers, Zhen Li, Lixiang Luo, Yu-Hang Tang, Joshua Kane,
Hai Huang, Matthew Andrew, Milind Deo, and Jan Goral. A gpu-accelerated
package for simulation of flow in nanoporous source rocks with many-body
dissipative particle dynamics. arXiv preprint arXiv:1903.10134, 2019.

Troy Snyder and Minel Braun. A cfd-based frequency response method applied
in the determination of dynamic coefficients of hydrodynamic bearings. part 1:
Theory. Lubricants, 7(3):23, 2019.

Alexander Radovic. Neutrino Identification with a Convolutional Neural Network
in the NOVA Detectors. In International Conference on High Energy Physics, 2016.
P B. Wigley, P J. Everitt, Anton Hengel, John Bastian, M A. Sooriyabandara, Gor-
don McDonald, Kyle Hardman, C D. Quinlivan, Manju Perumbil, Carlos claiton
Noschang kuhn, I R. Petersen, Andre Luiten,] Hope, N Robins, and Michael
Hush. Fast machine-learning online optimization of ultra-cold-atom experiments.
Scientific Reports, 6:25890, 2015.

Evan Racah, Christopher Beckham, Tegan Maharaj, Samira Kahou, Mr. Prab-
hat, and Chris Pal. ExtremeWeather: A Large-scale Climate Dataset for Semi-
supervised Detection, Localization, and Understanding of Extreme Weather
Events. In NIPS, 2017.

Byungsoo Kim, Vinicius C Azevedo, Nils Thuerey, Theodore Kim, Markus Gross,
and Barbara Solenthaler. Deep fluids: A generative network for parameterized
fluid simulations. In Computer Graphics Forum, volume 38, pages 59-70. Wiley
Online Library, 2019.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin.
Accelerating eulerian fluid simulation with convolutional networks. In Proceed-
ings of the 34th International Conference on Machine Learning-Volume 70, pages
3424-3433. JMLR. org, 2017.

Cheng Yang, Xubo Yang, and Xiangyun Xiao. Data-driven projection method in
fluid simulation. Computer Animation and Virtual Worlds, 27(3-4):415-424, 2016.
Haifeng Jin, Qingquan Song, and Xia Hu. Efficient neural architecture search
with network morphism. arXiv preprint arXiv:1806.10282, 2018.

Hugo Jair Escalante, Wei-Wei Tu, Isabelle Guyon, Daniel L Silver, Evelyne Viegas,
Yugiang Chen, Wenyuan Dai, and Qiang Yang. Automl@ neurips 2018 challenge:
Design and results. arXiv preprint arXiv:1903.05263, 2019.

Nils Thuerey and Tobias Pfaff. Mantaflow. http://mantaflow.com, 2016.

Francis H Harlow and J Eddie Welch. Numerical calculation of time-dependent
viscous incompressible flow of fluid with free surface. The physics of fluids,
8(12):2182-2189, 1965.

Alan Jeffrey. Applied partial differential equations: an introduction. Academic
Press, 2003.

Zhaosheng Yu. A DLM/FD method for fluid/flexible-body interactions. Journal
of computational physics, 207(1):1-27, 2005.

Joseph L Steger and RF Warming. Flux vector splitting of the inviscid gasdynamic
equations with application to finite-difference methods. Journal of computational
physics, 40(2):263-293, 1981.

NN Yanenko. Simple schemes in fractional steps for the integration of parabolic
equations. In The Method of Fractional Steps, pages 17-41. Springer, 1971.
Alexandre Joel Chorin. Numerical solution of the navier-stokes equations. Math-
ematics of computation, 22(104):745-762, 1968.

Aleka McAdams, Eftychios Sifakis, and Joseph Teran. A parallel multigrid pois-
son solver for fluids simulation on large grids. In Proceedings of the 2010 ACM
SIGGRAPH/Eurographics Symposium on Computer Animation, pages 65-74. Euro-
graphics Association, 2010.

Olivier Génevaux, Arash Habibi, and Jean-Michel Dischler. Simulating fluid-solid
interaction. In Graphics Interface, volume 2003, pages 31-38, 2003.

Ronald Fedkiw, Jos Stam, and Henrik Wann Jensen. Visual simulation of smoke.
In Proceedings of the 28th annual conference on Computer graphics and interactive
techniques, pages 15-22. ACM, 2001.

Evan R. Sparks, Ameet Talwalkar, Daniel Haas, Michael J. Franklin, Michael L.
Jordan, and Tim Kraska. Automating model search for large scale machine
learning. In Proceedings of the Sixth ACM Symposium on Cloud Computing, 2015.
Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. Ease.ml: Towards multi-
tenant resource sharing for machine learning workloads. Proc. VLDB Endow.,
11(5), 2018.

[26]

[27]
(28]
[29]

(30]

[31

[32

(33]
(34]

[35

(36

[37

[38

[43

(44

S
&

[46

[47

[48

[49

o
=

[51

[52

SC ’19, November 17-22, 2019, Denver, CO, USA

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. In Advances in neural information
processing systems, pages 1097-1105, 2012.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

MD Nefzger and James Drasgow. The needless assumption of normality in
pearson’s r. American Psychologist, 12(10):623, 1957.

Sten Henrysson. Gathering, analyzing, and using data on test items. Educational
measurement, 2, 1971.

DJ Best and DE Roberts. Algorithm as 89: the upper tail probabilities of spear-
man’s rho. Journal of the Royal Statistical Society. Series C (Applied Statistics),
24(3):377-379, 1975.

Nian Shong Chok. Pearson’s versus Spearman’s and Kendall’s correlation coeffi-
cients for continuous data. PhD thesis, University of Pittsburgh, 2010.

Theodore Kim, Nils Thiirey, Doug James, and Markus Gross. Wavelet turbulence
for fluid simulation. In ACM Transactions on Graphics (TOG), volume 27, page 50.
ACM, 2008.

Jiantao Pu and Karthik Ramani. On visual similarity based 2d drawing retrieval.
Computer-Aided Design, 38(3):249-259, 2006.

Robert Dawson. How significant is a boxplot outlier? Journal of Statistics
Education, 19(2), 2011.

L Savoldi Richard, R Bonifetto, Stefano Carli, A Froio, A Foussat, and R Zanino.
Artificial neural network (ann) modeling of the pulsed heat load during iter cs
magnet operation. Cryogenics, 63:231-240, 2014.

Stefano Carli, R Bonifetto, L Savoldi, and R Zanino. Incorporating artificial neural
networks in the dynamic thermal-hydraulic model of a controlled cryogenic
circuit. Cryogenics, 70:9-20, 2015.

Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence Meadows, James
Arnemann, Lei Shao, Siyu He, Tuomas Kérnd, Diana Moise, Simon J Pennycook,
et al. Cosmoflow: using deep learning to learn the universe at scale. In SC18:
International Conference for High Performance Computing, Networking, Storage
and Analysis, pages 819-829. IEEE, 2018.

Aleka McAdams, Eftychios Sifakis, and Joseph Teran. A Parallel Multigrid Pois-
son Solver for Fluids Simulation on Large Grids. In MZoran Popovic and Miguel
Otaduy, editors, Eurographics/ ACM SIGGRAPH Symposium on Computer Anima-
tion. The Eurographics Association, 2010.

Michael Lentine, Wen Zheng, and Ronald Fedkiw. A novel algorithm for in-
compressible flow using only a coarse grid projection. In ACM Transactions on
Graphics (TOG), volume 29, page 114. ACM, 2010.

Jeroen Molemaker, Jonathan M. Cohen, Sanjit Patel, and Jonyong Noh. Low
viscosity flow simulations for animation. pages 9-18, 01 2008.

Tyler De Witt, Christian Lessig, and Eugene Fiume. Fluid simulation using
laplacian eigenfunctions. ACM Trans. Graph., 31(1):10:1-10:11, February 2012.
Adam Lerer, Sam Gross, and Rob Fergus. Learning physical intuition of block
towers by example. In Proceedings of the 33rd International Conference on Inter-
national Conference on Machine Learning-Volume 48, pages 430-438. JMLR. org,
2016.

Yang Hong, Kuo-Lin Hsu, Soroosh Sorooshian, and Xiaogang Gao. Precipitation
estimation from remotely sensed imagery using an artificial neural network
cloud classification system. Journal of Applied Meteorology, 43(12):1834-1853,
2004.

Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of model compression
and acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.
Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew
Howard, Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of
neural networks for efficient integer-arithmetic-only inference. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 2704-2713,
2018.

Shuang Wu, Guogqi Li, Feng Chen, and Luping Shi. Training and inference with
integers in deep neural networks. arXiv preprint arXiv:1802.04680, 2018.
Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-efficient
convolutional neural networks using energy-aware pruning. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pages 5687-5695,
2017.

Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning
convolutional neural networks for resource efficient inference. arXiv preprint
arXiv:1611.06440, 2016.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-
net: Imagenet classification using binary convolutional neural networks. In
European Conference on Computer Vision, pages 525-542. Springer, 2016.
Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran El-Yaniv, and Yoshua
Bengio. Binarized neural networks: Training deep neural networks with weights
and activations constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830, 2016.
Cheng Tai, Tong Xiao, Yi Zhang, Xiaogang Wang, et al. Convolutional neural
networks with low-rank regularization. arXiv preprint arXiv:1511.06067, 2015.
Bharat Bhusan Sau and Vineeth N Balasubramanian. Deep model compression:
Distilling knowledge from noisy teachers. arXiv preprint arXiv:1610.09650, 2016.

SC ’19, November 17-22, 2019, Denver, CO, USA W . Dong et al.

[53] Raphael Gontijo Lopes, Stefano Fenu, and Thad Starner. Data-free knowledge
distillation for deep neural networks. arXiv preprint arXiv:1710.07535, 2017.

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We conduct all experiments on a high-end server with 24 Intel
Xeon E6-2760 v3 CPU cores running at 2.30GHz. The server is also
equipped with an NVIDIA Titan X (Pascal) GPU. Some details of the
experiments are listed below. 1) Speedup and accuracy. We conduct
experiments to test execution time and model accuracy by using
our runtime algorithm, i.e., Smart-fluid and take the PCG algorithm
as the baseline method. We use 20,480 input problems to evaluate
the execution time and simulation accuracy of three methods, i.e.,
PCG, Tompson, and Smart-fluidnet. 2) We test the performance
(the speedup of execution time) of running the 14 designed neural
network models and our designed runtime system. We evaluate
the efficiency of our runtime system by testing the execution time
and simulation accuracy. 3) We evaluate the effectiveness of the
MLP (an offline predictor). We compare the success rate of our
runtime system with and without MLP. 4) We do a sensitivity study
by evaluating the impact of the check interval(a parameter in our
runtime algorithm) on execution time and success rate.

ARTIFACT AVAILABILITY

Software Artifact Availability: Some author-created software ar-
tifacts are NOT maintained in a public repository or are NOT avail-
able under an OSI-approved license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: Some author-created data artifacts
are NOT maintained in a public repository or are NOT available
under an OSI-approved license.

Proprietary Artifacts: No author-created artifacts are proprietary.
List of URLs and/or DOIs where artifacts are available:

https://github.com/caterby/Smart-fluid

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: NVIDIA Titan X (Pascal) GPU;Intel
Xeon E6-2760 v3 CPU

Operating systems and versions: Ubuntu 14.04 runing Linux ker-
nel 4.2.0-27-generic

Compilers and versions: g++ V4.8
Applications and versions: Torch 7.0
Libraries and versions: cuDNN (version R5 EA);cutorch;

Key algorithms: Euler equations; KNN(K-nearest neighbors);
Pareto optimal;

Input datasets and versions: the NTU 3D Model Database models

Output from scripts that gathers execution environment informa-
tion.

OPENCV_INCLUDE_PATH=/home/USER/bwb/OpenCV_for_all/An
— aconda3_gcc4.8.4_compiled/include

LESSOPEN=| /usr/bin/lesspipe %s
C_INCLUDE_PATH=/home/USER/bwb/Caffe_for_all_projects
— _onS2/include:/usr/local/cuda-9.0/include: /usr/1
— ocal/cuda-9.0/include

MAIL=/var/mail/USER

SSH_CLIENT=169.236.181.5 65035 22

USER=USER
LD_LIBRARY_PATH=/home/USER/torch/install/lib:/home/U,
— SER/anaconda3_new/1ib:/home/USER/bwb/OpenCV_for_
— all/Anaconda3_gcc4.8.4_compiled/lib:/home/USER/b
— wb/Caffe_for_all_projects_onS2/1lib:/usr/local/cu;
— da-9.0/1ib64:/usr/local/cuda-9.0/extras/CUPTI/1i
— b64
LUA_PATH=/home/USER/ . luarocks/share/lua/5.1/?.1lua;/h
< ome/USER/.luarocks/share/lua/5.1/?/init.lua;/hom,
— e/USER/torch/install/share/lua/5.1/?.1lua;/home/U,
— SER/torch/install/share/lua/5.1/?/init.lua;./?.1,
< ua;/home/USER/torch/install/share/luajit-2.1.0-b,
— etal/?.lua;/usr/local/share/lua/5.1/?.1lua;/usr/1,
— ocal/share/lua/5.1/?/init.1lua

SHLVL=1

OLDPWD=/tmp4/USER_data/FluidNet/torch_runtime
HOME=/home /USER

SSH_TTY=/dev/pts/17
OpenCL_INCLUDE_DIR=/usr/local/cuda-9.0/include
CUDNN_PATH=/usr/local/cuda-8.0/1ib64/1libcudnn.so.5
OPENGL_LIBRARY_DIR=/usr/1ib/x86_64-1inux-gnu
CPLUS_INCLUDE_PATH=/home/USER/bwb/Caffe_for_all_proj
— ects_onS2/include:/usr/local/cuda-9.0/include:/u,
— sr/local/cuda-9.0/include

CUDA_VERSION=cuda-9.90

CUDA_VISIBLE_DEVICES=0
QT_QPA_PLATFORMTHEME=appmenu-qt5

LOGNAME=USER

_=./collect_environment.sh
MATLAB_ROOT=/usr/local/MATLAB/R2016b
XDG_SESSION_ID=7696

TERM=xterm

OpenCL_LIBRARY=/usr/local/cuda-9.0/1ib64
PATH=/home/USER/torch/install/bin:/home/USER/anacond
< a3_new/bin:/home/USER/bwb/OpenCV_for_all/Anacond
a3_gcc4.8.4_compiled/bin:/home/USER/bwb/Caffe_fo
r_all_projects_onS2/bin:/home/USER/pycharm-commu
nity-2017.3.1/bin:/usr/local/cuda-9.0/bin:/usr/1
ocal/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbi
— n:/bin:/usr/games:/usr/local/games
CAFFEROOT=/home/USER/bwb/Caffe_for_all_projects_onS2
— /caffe

et

XDG_RUNTIME_DIR=/run/user/1000045
DISPLAY=1ocalhost:10.0

LANG=en_US.UTF-8
LS_COLORS=rs=0:di=01;34:1n=01;36:mh=00:pi=40;33:50=0,
< 1;35:do=01;35:bd=40;33;01:cd=40;33;01:0r=40;31;0
— 1:s5u=37;41:5g=30;43:ca=30;41:tw=30;42:0w=34;42:s,
— t=37;44:ex=01;32:%.tar=01;31:%.tgz=01;31:%.arj=0,
— 1;31:%.taz=01;31:%.1zh=01;31:%.1zma=01;31:%.tlz=
01;31:%.txz=01;31:%.zip=01;31:%.2z=01;31:%.7=01;3
1:%.dz=01;31:%.gz=01;31:%.12z=01;31:%.xz=01;31:%.
bz2=01;31:%.bz=01;31:%.tbz=01;31:%.tbz2=01;31:*.
tz=01;31:%.deb=01;31:%.rpm=01;31:%.jar=01;31:%.w
ar=01;31:%.ear=01;31:%.sar=01;31:%.rar=01;31:*x.a
ce=01;31:%.200=01;31:%.cpio=01;31:%.7z=01;31:%.r
z=01;31:*. jpg=01;35:%. jpeg=01;35:%.gif=01;35:%.b
mp=01;35:%.pbm=01;35:*.pgm=01;35:%.ppm=01;35:%.t
ga=01;35:%.xbm=01;35:%.xpm=01;35:%.tif=01;35:*%.t
iff=01;35:%.png=01;35:%.svg=01;35:*.svgz=01;35: %
.mng=01;35:*%.pcx=01;35:%.mov=01;35:%x.mpg=01;35:%
.mpeg=01;35:%.m2v=01;35:*.mkv=01;35:%.webm=01;35,
1%.0gm=01;35:%.mp4=01;35:%.m4v=01;35:*x.mp4v=01;3
5:%.vob=01;35:*.qt=01;35:%.nuv=01;35:*%.wmv=01; 35,
:x.asf=01;35:%.rm=01;35:*.rmvb=01;35:%.flc=01;35,
tx.avi=01;35:%.f1i=01;35:%.f1v=01;35:%.g1=01;35:
— *.d1=01;35:%.xcf=01;35:%.xwd=01;35:%.yuv=01;35:%
— .cgm=01;35:%.emf=01;35:%.axv=01;35:%.anx=01;35:%,
— .0gv=01;35:%.0gx=01;35:%.2ac=00;36:*%.au=00;36:%.
— flac=00;36:%.mid=00;36:*.midi=00;36:*.mka=00;36: ,
— *.mp3=00;36:%.mpc=00;36:%.0gg=00;36:%.ra=00;36:%
— .Wav=00;36:*%.axa=00;36:%.0ga=00;36:*%.spx=00;36:%
— .xspf=00;36:

SHELL=/bin/bash

LESSCLOSE=/usr/bin/lesspipe %s %s
CUDA_HOME=/usr/local/cuda-9.0
PWD=/tmp4/USER_data/FluidNet
LUA_CPATH=/home/USER/torch/install/1lib/?.so; /home/US
— ER/.luarocks/lib/lua/5.1/?.s0;/home/USER/torch/i
— nstall/lib/lua/5.1/?.s0;./?.s0;/usr/local/lib/1u,
— a/5.1/?.s0;/usr/local/lib/lua/5.1/1oadall.so
DYLD_LIBRARY_PATH=/home/USER/torch/install/lib:
SSH_CONNECTION=169.236.181.5 65035 169.236.184.82 22
PYTHONPATH=/home/USER/bwb/Caffe_for_all_projects_onS
— 2/caffe/python:

CUDA_PATH=/usr/local/cuda-9.0

R)
* % ok ok Kk ok

!

Distributor ID: Ubuntu
Description: Ubuntu 14.04.5 LTS
Release: 14.04

Codename: trusty

Linux Vision-S002 4.2.0-27-generic #32~14.04.1-Ubuntu
— SMP Fri Jan 22 15:32:26 UTC 2016 x86_64 x86_64
— x86_64 GNU/Linux

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 48

On-line CPU(s) list: 0-47

Thread(s) per core: 2

Core(s) per socket: 12
Socket(s): 2

NUMA node(s): 2

Vendor ID: Genuinelntel
CPU family: 6

Model: 63
Stepping: 2

CPU MHz: 1255.566
BogoMIPS: 4601.46
Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 30720K

NUMA node® CPU(s): 0-11,24-35
NUMA nodel CPU(s): 12-23,36-47

MemTotal: 131906420 kB
MemFree: 27469880 kB
MemAvailable: 120525088 kB
Buffers: 1117516 kB
Cached: 88609324 kB
SwapCached: 3912 kB
Active: 62950380 kB
Inactive: 36006184 kB
Active(anon): 9226208 kB
Inactive(anon): 645168 kB
Active(file): 53724172 kB
Inactive(file): 35361016 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 124998652 kB
SwapFree: 124599112 kB
Dirty: 180 kB
Writeback: 0 kB
AnonPages: 9230036 kB
Mapped: 1586592 kB
Shmem: 641772 kB
Slab: 4408424 kB
SReclaimable: 4142160 kB
SUnreclaim: 266264 kB
KernelStack: 23520 kB
PageTables: 131168 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 190951860 kB
Committed_AS: 48192556 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 765552 kB
VmallocChunk: 34291679224 kB
HardwareCorrupted: 0 kB
AnonHugePages: 4284416 kB
CmaTotal: 0 kB
CmaFree: 0 kB
HugePages_Total: [}
HugePages_Free: Q

Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid Simulation

HugePages_Rsvd: 0
HugePages_Surp:]
Hugepagesize: 2048 kB
DirectMap4k: 82791384 kB
DirectMap2M: 50251776 kB
DirectMapiG: 3145728 kB
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 1.8T @ disk
sdal 8:1 0 119.2G 0 part [SWAP]
sda2 8:2 @ 46.6G 0 part /
sda3 8:3 0 1K 0 part
sda5 8:5 0 186.3G 0@ part /var
sda6 8:6 @ 1.5T @ part /tmp
sdb 8:16 Q 1.8T 0 disk
Lsdb1 8:17 @ 1.8T @ part /tmp2
sdc 8:32 Q 2.7T 0@ disk
Lsde1 8:33 @ 2.7T @ part /tmp3
sdd 8:48 Q 3.7T @ disk
Lsdd1 8:49 @ 3.7T @ part /tmp4
sde 8:64 © 3.7T 0 disk
L_sde1 8:65 © 3.7T @ part /tmp5
sdf 8:80 Q 2.7T 0 disk
Lsdf1 8:81 © 2.7T @ part /tmpé
sdg 8:96 © 2.7T @ disk
L sdg1 8:97 @ 2.7T @ part /tmp7
sdh 8:112 @ 2.7T 0 disk
Lsdh1 8:113 @ 2.7T @ part /tmp8
sro 11:0 1 1024M 0 rom
ramo 1:0 0 64M @ disk
raml 1:1 Q 64M 0 disk
ram2 1:2 0 64M 0 disk
ram3 1:3 0 64M 0 disk
ram4 1:4 Q 64M @ disk
ramb 1:5 0 64M 0 disk
ramé 1:6 0 64M 0 disk
ram7 1:7 0 64M @ disk
ram8 1:8 0 64M 0 disk
ram9 1:9 0 64M 0 disk
loop@ 7:0 0 @ loop
loop1 7:1 0 0 loop
loop2 7:2 0 0 loop
loop3 7:3 0 @ loop
loop4 7:4 0 0 loop
loop5 7:5 0 0 loop
loop6 7:6 0 0 loop
loop7 7:7 0 0 loop
ramio 1:10 0 64M 0 disk
raml1 1:11 Q 64M 0 disk
rami2 1:12 0 64M 0 disk
rami3 1:13 0 64M 0 disk
ramil4 1:14 0 64M 0 disk
rami15 1:15 0 64M 0 disk
Tue Apr 9 12:13:22 2019
e

| NVIDIA-SMI 384.145
— 384.145

Driver Version:

ey mm—mm +
| GPU Name Persistence-M| Bus-Id Disp.A
— | Volatile Uncorr. ECC |

| Fan Temp Perf Pwr:Usage/Cap]|

— | GPU-Util Compute M. |
| +]

Memory-Usage

PN ===+ |

| @ TITAN X (Pascal) Off | 00000000:02:00.0 Off
e N/A |

| 60% 84C P2 131W / 25@W | 7266MiB / 12189MiB

o 100% Default |

B e e e L L e e e e e e e e B L e |
P s L +

| 1 TITAN X (Pascal) Off | 00000000:03:00.0 Off
- | N/A |

| 72% 87C P2 188W / 250W | 6955MiB / 12189MiB
o | 100% Default |

B it R e e T]
ey ———F-———————————————————— +

| 2 TITAN X (Pascal) Off | 00000000:82:00.0 Off
o | N/A |

| 67% 78C P2 60W / 250W | 10MiB / 12189MiB
o | 0% Default |
e B e L L e |
ey mm e +

| 3 TITAN X (Pascal) Off | 00000000:83:00.0 Off
o N/A |

| 26% 47C P8 17W / 250W | 10MiB / 12189MiB
o 0% Default |

B e L e e e e e e e e e e]
P s et +

e]
R et +

| Processes:

o GPU Memory |

| GPU PID Type Process name

< Usage |

|]
- |

| 0 4573 C python

- 6637MiB |

| 0 9840 C

— /home/wenbobao/anaconda3_new/bin/python
— 619MiB |

| 1 43956 C python

o 6945MiB |

o]
@ mmmm e +

H/W path Device Class Description

/0

/0/1

< memory
/0/6

— Xeon(R) CPU E5-2670 v3 @ 2.30GHz

/0/7

system Computer

bus Motherboard
memory 125GiB System
processor Intel(R)
processor Intel(R)

— Xeon(R) CPU E5-2670 v3 @ 2.30GHz

/0/100

— E5 v3/Core i7
/0/100/1

— E5 v3/Core i7
/0/100/2

— E5 v3/Core i7
/0/100/2/0

— Corporation
/0/100/2/0.1

— Corporation
/0/100/3

— E5 v3/Core i7
/0/100/3/0

— Corporation
/0/100/3/0.1

— Corporation
/0/100/4

— E5 v3/Core i7
/0/100/4.1

— E5 v3/Core i7
/0/100/4.2

— E5 v3/Core i7
/0/100/4.3

— E5 v3/Core i7
/0/100/4.4

— E5 v3/Core i7
/0/100/4.5

— E5 v3/Core i7
/0/100/4.6

— E5 v3/Core i7
/0/100/4.7

— E5 v3/Core i7
/0/100/5

— E5 v3/Core i7
— Management
/0/100/5.1

— E5 v3/Core i7
/0/100/5.2

— E5 v3/Core i7
— Errors
/0/100/5.4

— E5 v3/Core i7
/0/100/11

— chipset SPSR
/0/100/11.4

bridge Xeon E7 v3/Xeon
DMI2

bridge Xeon E7 v3/Xeon
PCI Express Root Port 1

bridge Xeon E7 v3/Xeon
PCI Express Root Port 2

display NVIDIA

multimedia NVIDIA

bridge Xeon E7 v3/Xeon
PCI Express Root Port 3

display NVIDIA

multimedia NVIDIA

generic Xeon E7 v3/Xeon
DMA Channel @

generic Xeon E7 v3/Xeon
DMA Channel 1

generic Xeon E7 v3/Xeon
DMA Channel 2

generic Xeon E7 v3/Xeon
DMA Channel 3

generic Xeon E7 v3/Xeon
DMA Channel 4

generic Xeon E7 v3/Xeon
DMA Channel 5

generic Xeon E7 v3/Xeon
DMA Channel 6

generic Xeon E7 v3/Xeon
DMA Channel 7

generic Xeon E7 v3/Xeon

Address Map, VTd_Misc, System

generic Xeon E7 v3/Xeon
Hot Plug
generic Xeon E7 v3/Xeon

RAS, Control Status and Global

generic Xeon E7 v3/Xeon
I/0 APIC

generic C610/X99 series

storage C610/X99

— series chipset sSATA Controller [AHCI mode]

/0/100/14

— chipset USB xHCI Host Controller

/0/100/16

— series chipset MEI Controller #1

/0/100/16.1

bus

communication

communication
— series chipset MEI Controller #2

Dong, et al.

C610/X99 series
C610/X99

C610/X99

/0/100/1a bus C610/X99 series
— chipset USB Enhanced Host Controller #2

/0/100/1b multimedia C610/X99

— series chipset HD Audio Controller

/0/100/1c bridge C610/X99 series
— chipset PCI Express Root Port #1

/0/100/1c.3 bridge C610/X99

— series chipset PCI Express Root Port #4
/0/100/1c.3/0 bridge AST1150

— PCI-to-PCI Bridge

/0/100/1c.3/0/0 display ASPEED

— Graphics Family

/0/100/1c.4 bridge C610/X99

— series chipset PCI Express Root Port #5

/0/100/1d bus C610/X99 series
— chipset USB Enhanced Host Controller #1
/0/100/1f bridge C610/X99 series

— chipset LPC Controller
/0/100/1f.2
— series chipset 6-Port SATA Controller [AHCI mode]
/0/100/1f.3
— chipset SMBus Controller

/0/8

— E5 v3/Core i7

/0/9
— E5
/0/a
— E5
/0/b
— E5
/0/c
— E5
/e/d
— E5
/0/e
— E5
/0/f
— E5
/0/10
— E5
/0/11
— E5
/0/12
— E5
/0/13
— E5
/0/14
— E5

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

storage

bus

generic
QPI Link @
generic
QPI Link @
generic
QPI Link 0
generic
QPI Link 1
generic
QPI Link 1
generic
QPI Link 1
generic
R3 QPI Link @
generic
R3 QPI Link @
generic
R3 QPI Link @
generic
Unicast Registers
generic
Unicast Registers
generic
Unicast Registers
generic
Unicast Registers

C610/X99
C610/X99 series
Xeon E7 v3/Xeon
Xeon E7 v3/Xeon
Xeon E7 v3/Xeon
Xeon E7 v3/Xeon
Xeon E7 v3/Xeon
Xeon E7 v3/Xeon

Xeon E7 v3/Xeon

& 1 Monitoring

Xeon E7 v3/Xeon

& 1 Monitoring

Xeon E7 v3/Xeon

& 1 Monitoring

Xeon E7 v3/Xeon

Xeon E7 v3/Xeon

Xeon E7 v3/Xeon

Xeon E7 v3/Xeon

Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid Simulation

/0/15
— Eb5
/0/16
— E5
/0/17
— Eb5
/0/18
— E5
/0/19
— E5
/0/1a
— E5
/0/1b
— E5
/0/1¢c
— E5
/0/1d
— E5
/0/1e
— E5
/0/1f
— E5
/0/20
— E5
/0/21
— E5

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

— Registers

/0/22
— E5

v3/Core

— Registers

/0/23
— E5

v3/Core

— Registers

/0/24
— E5
/0/25
— E5
/0/26
— E5
/0/27
— E5
/0/28
— E5
/0/29
— E5
/0/2a
— E5
/0/2b
— Eb5
/0/2c
— E5
/0/2d
— E5

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

generic Xeon E7 v3/Xeon
Unicast Registers

generic Xeon E7 v3/Xeon
Unicast Registers

generic Xeon E7 v3/Xeon
Unicast Registers

generic Xeon E7 v3/Xeon
Unicast Registers

generic Xeon E7 v3/Xeon
Unicast Registers

generic Xeon E7 v3/Xeon
Unicast Registers

generic Xeon E7 v3/Xeon
Unicast Registers

generic Xeon E7 v3/Xeon
Unicast Registers

generic Xeon E7 v3/Xeon
Buffered Ring Agent

generic Xeon E7 v3/Xeon
Buffered Ring Agent

generic Xeon E7 v3/Xeon
Buffered Ring Agent

generic Xeon E7 v3/Xeon
Buffered Ring Agent

generic Xeon E7 v3/Xeon

System Address Decoder & Broadcast

generic Xeon E7 v3/Xeon
System Address Decoder & Broadcast

generic Xeon E7 v3/Xeon
System Address Decoder & Broadcast

generic Xeon E7 v3/Xeon

PCIe Ring Interface
generic

PCIe Ring Interface
generic Xeon E7 v3/Xeon

Scratchpad & Semaphore Registers
generic Xeon E7 v3/Xeon

Scratchpad & Semaphore Registers
generic Xeon E7 v3/Xeon

Scratchpad & Semaphore Registers

Xeon E7 v3/Xeon

generic Xeon E7 v3/Xeon
Home Agent @

generic Xeon E7 v3/Xeon
Home Agent @

generic Xeon E7 v3/Xeon
Home Agent 1

generic Xeon E7 v3/Xeon
Home Agent 1

generic Xeon E7 v3/Xeon

Integrated Memory Controller @

— Target Address, Thermal & RAS Registers

/0/2e generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Target Address, Thermal & RAS Registers

/0/2f generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Channel Target Address Decoder

/0/30 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Channel Target Address Decoder

/0/31 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO Channel @/1 Broadcast

/0/32 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO Global Broadcast

/0/33 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Channel @ Thermal Control

/0/34 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Channel 1 Thermal Control

/0/35 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Channel @ ERROR Registers

/0/36 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Channel 1 ERROR Registers

/0/37 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO (VMSE) 0 & 1
/0/38 generic Xeon E7 v3/Xeon
< E5 v3/Core i7 DDRIO (VMSE) @ & 1
/0/39 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO (VMSE) 0 & 1
/0/3a generic Xeon E7 v3/Xeon
< E5 v3/Core i7 DDRIO (VMSE) @ & 1
/0/3b generic Xeon E7 v3/Xeon

— E5 v3/Core i7 Integrated Memory Controller 1

— Target Address, Thermal & RAS Registers

/0/3c generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller 1

— Target Address, Thermal & RAS Registers

/0/3d generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller 1

— Channel Target Address Decoder

/0/3e generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller 1

— Channel Target Address Decoder

/0/3f generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO Channel 2/3 Broadcast

/0/40 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO Global Broadcast

/0/41 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller 1

— Channel @ Thermal Control

/0/42 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller 1

— Channel 1 Thermal Control

/0/43 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller 1

— Channel @ ERROR Registers

/0/44 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller 1

— Channel 1 ERROR Registers

/0/45 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO (VMSE) 2 & 3

/0/46 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO (VMSE) 2 & 3

/0/47 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO (VMSE) 2 & 3

/0/48 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO (VMSE) 2 & 3

/0/49 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Power Control Unit

/0/4a generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Power Control Unit

/0/4b generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Power Control Unit

/0/4c generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Power Control Unit

/0/4d generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Power Control Unit

/0/4e generic Xeon E7 v3/Xeon
— E5 v3/Core 17 VCU

/0/4f generic Xeon E7 v3/Xeon
— E5 v3/Core i7 VCU

/0/0 bridge Xeon E7 v3/Xeon
— E5 v3/Core i7 PCI Express Root Port @

/0/0/0 etho network 1350 Gigabit
— Network Connection

/0/0/0.1 ethl network 1350 Gigabit
— Network Connection

/0/2 bridge Xeon E7 v3/Xeon
— E5 v3/Core i7 PCI Express Root Port 2

/0/2/0 display NVIDIA

— Corporation

/0/2/0.1 multimedia NVIDIA

— Corporation

/0/3 bridge Xeon E7 v3/Xeon
— E5 v3/Core i7 PCI Express Root Port 3

/0/3/0 display NVIDIA

— Corporation

/0/3/0.1 multimedia NVIDIA

— Corporation

/0/4 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DMA Channel @

/0/4.1 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DMA Channel 1

/0/4.2 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DMA Channel 2

/0/4.3 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DMA Channel 3

/0/4.4
— E5
/0/4.5
-~ E5
/0/4.6
— E5
/0/4.7
-~ E5
/0/5
— E5 v3/Core
— Management
/0/5.1

— E5 v3/Core
/0/5.2

— E5 v3/Core
— Errors
/0/5.4

— E5 v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

/0/50
— E5
/0/51
— E5
/0/52
— E5
/0/53
— E5
/0/54
— E5
/0/55
— E5
/0/56
— E5
/0/57
— E5
/0/58
— E5
/0/59
— E5
/0/5a
— E5
/0/5b
— E5
/0/5¢
— E5
/0/5d
— E5
/0/5e
— E5
/0/5f
— E5
/0/60
— E5
/0/61
— E5

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

i7

generic
DMA Channel 4
generic
DMA Channel 5
generic
DMA Channel 6
generic
DMA Channel 7
generic

Dong, et al.

Xeon E7

Xeon E7

Xeon E7

Xeon E7

Xeon E7

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

Address Map, VTd_Misc, System

generic
Hot Plug
generic

Xeon E7

Xeon E7

v3/Xeon

v3/Xeon

RAS, Control Status and Global

generic Xeon E7
I/0 APIC

generic Xeon E7
QPI Link @

generic Xeon E7
QPI Link @

generic Xeon E7
QPI Link @

generic Xeon E7
QPI Link 1

generic Xeon E7
QPI Link 1

generic Xeon E7
QPI Link 1

generic Xeon E7
R3 QPI Link @ & 1 Monitoring

generic Xeon E7
R3 QPI Link @ & 1 Monitoring

generic Xeon E7
R3 QPI Link @ & 1 Monitoring

generic Xeon E7
Unicast Registers

generic Xeon E7
Unicast Registers

generic Xeon E7
Unicast Registers

generic Xeon E7
Unicast Registers

generic Xeon E7
Unicast Registers

generic Xeon E7
Unicast Registers

generic Xeon E7
Unicast Registers

generic Xeon E7
Unicast Registers

generic Xeon E7

Unicast Registers

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

Adaptive Neural Network-Based Approximation to Accelerate Eulerian Fluid Simulation

/0/62 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Unicast Registers

/0/63 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Unicast Registers

/0/64 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Unicast Registers

/0/65 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Buffered Ring Agent

/0/66 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Buffered Ring Agent

/0/67 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Buffered Ring Agent

/0/68 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Buffered Ring Agent

/0/69 generic Xeon E7 v3/Xeon

— E5 v3/Core i7 System Address Decoder & Broadcast
— Registers

/0/6a generic Xeon E7 v3/Xeon
— E5 v3/Core i7 System Address Decoder & Broadcast
— Registers

/0/6b generic Xeon E7 v3/Xeon
— E5 v3/Core i7 System Address Decoder & Broadcast
— Registers

/0/6¢c generic

— E5 v3/Core i7 PCIe Ring Interface
/0/6d generic

— E5 v3/Core i7 PCIe Ring Interface
/0/6e generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Scratchpad & Semaphore Registers
/0/6f generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Scratchpad & Semaphore Registers
/0/70 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Scratchpad & Semaphore Registers

Xeon E7 v3/Xeon

Xeon E7 v3/Xeon

/0/71 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Home Agent @
/0/72 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Home Agent @
/0/73 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Home Agent 1
/0/74 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Home Agent 1
/0/75 generic Xeon E7 v3/Xeon

— E5 v3/Core i7 Integrated Memory Controller @

— Target Address, Thermal & RAS Registers

/0/76 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Target Address, Thermal & RAS Registers

/0/77 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Channel Target Address Decoder

/0/78 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 Integrated Memory Controller @

— Channel Target Address Decoder

/0/79 generic Xeon E7 v3/Xeon
— E5 v3/Core i7 DDRIO Channel 0/1 Broadcast

/0/7a generic Xeon E7
— E5 v3/Core i7 DDRIO Global Broadcast
/0/7b generic Xeon E7

— E5 v3/Core i7 Integrated Memory Controller
— Channel @ Thermal Control
/0/7c generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Channel 1 Thermal Control
/0/7d generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Channel @ ERROR Registers
/0/7e generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Channel 1 ERROR Registers

/0/7f generic Xeon E7
— E5 v3/Core i7 DDRIO (VMSE) 0 & 1
/0/80 generic Xeon E7
< E5 v3/Core i7 DDRIO (VMSE) @ & 1
/0/81 generic Xeon E7
< E5 v3/Core i7 DDRIO (VMSE) @ & 1
/0/82 generic Xeon E7
— E5 v3/Core i7 DDRIO (VMSE) 0 & 1
/0/83 generic Xeon E7

— E5 v3/Core i7 Integrated Memory Controller
— Target Address, Thermal & RAS Registers
/0/84 generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Target Address, Thermal & RAS Registers
/0/85 generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Channel Target Address Decoder

/0/86 generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Channel Target Address Decoder

/0/87 generic Xeon E7
— E5 v3/Core i7 DDRIO Channel 2/3 Broadcast
/0/88 generic Xeon E7
— E5 v3/Core i7 DDRIO Global Broadcast

/0/89 generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Channel @ Thermal Control

/0/8a generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Channel 1 Thermal Control

/0/8b generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Channel @ ERROR Registers

/0/8c generic Xeon E7
— E5 v3/Core i7 Integrated Memory Controller
— Channel 1 ERROR Registers

/0/8d generic Xeon E7
— E5 v3/Core i7 DDRIO (VMSE) 2 & 3
/0/8e generic Xeon E7
— E5 v3/Core i7 DDRIO (VMSE) 2 & 3
/0/8f generic Xeon E7

— E5 v3/Core i7 DDRIO (VMSE) 2 & 3

v3/Xeon

v3/Xeon
0

v3/Xeon
0

v3/Xeon
0

v3/Xeon
0

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon
1

v3/Xeon
1

v3/Xeon
1

v3/Xeon
1

v3/Xeon

v3/Xeon

v3/Xeon
1

v3/Xeon
1

v3/Xeon
1

v3/Xeon
1

v3/Xeon

v3/Xeon

v3/Xeon

/0/90
— E5
/0/91
— E5
/0/92
— E5
/0/93
— E5
/0/94
— E5
/0/95
— E5
/0/96
— E5
/0/97
— E5

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

v3/Core

i7

i7

i7

i7

i7

i7

i7

i7

DDRIO

Power

Power

Power

Power

Power

VCU

VCuU

generic

(VMSE) 2 & 3

generic
Control
generic
Control
generic
Control
generic
Control
generic
Control
generic

generic

Unit

Unit

Unit

Unit

Unit

Xeon

Xeon

Xeon

Xeon

Xeon

Xeon

Xeon

Xeon

E7

E7

E7

E7

E7

E7

E7

E7

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

v3/Xeon

Dong, et al.

	Abstract
	1 Introduction
	2 Background
	2.1 Eulerian Fluid Simulation
	2.2 Neural Network-Based Approximation
	2.3 Motivation of Our Work

	3 Overview
	4 Approximate Model Construction
	5 Offline Output-Quality Control
	5.1 Construction of Training Samples
	5.2 MLP Model Construction and Loss Function
	5.3 Usage of MLP

	6 Quality-Aware Runtime Design
	6.1 Prediction of Simulation Quality Loss
	6.2 Quality-Aware Model-Switch Algorithm

	7 Evaluation
	7.1 Model Speedup and Accuracy
	7.2 Analysis on Runtime System
	7.3 Evaluation of MLP Effectiveness
	7.4 Sensitivity Study: Check Interval
	7.5 Evaluation of Resource Usage

	8 Related Work
	9 Conclusions
	References

