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Abstract



Using both coarse-grained (CG) and fine-grained (FG) simulations we show how strain hardening
in polymeric glasses under uniaxial extension arises from highly stretched strands that form as the
polymer chains deform subaffinely on increasing length scales as strain increases. The coarse-
grained simulations are performed using the hybrid Brownian Dynamics method (HBD) [Zou, W.
& Larson, R. G. Soft Matter 2016, 3, 3853-3865] with 10-30 coarse-grained springs per polymer
chain, while the fine-grained simulations employ the Kremer-Grest bead-spring model with 600
beads per chain. We find that the HBD model accurately predicts how the MD chain configurations
evolve during deformation despite being a single-chain-in-mean-field model that does not account
for entanglements or monomer-level structure. We show using both models that the glassy strain
hardening modulus Gr is much larger than the melt plateau modulus Gy because chain segments
become highly stretched at modest Hencky strain (e < ~1) owing to the high interchain friction in
the glass. HBD model predictions of strain hardening match those of the MD simulations in shape
and magnitude, relative to the flow stress, which is the stress just beyond the yield point, for several
deformation protocols, and also capture the increase in strain hardening with increasing chain
length that saturates in the long chain limit. As deformation proceeds, chains begin to form kinks
or folds (starting at a Hencky strain € ~ 1.6) analogous to those produced in extensional flows of
dilute and entangled polymer solutions. We identify “entangled kinks” in the MD simulations;
these do not appear to strongly influence strain hardening, but may be important in delaying
fracture. Motivated by these results, we improve upon HBD’s ability to accurately capture stress-
strain curves at small strains through yielding and strain softening by extending the theory to
multiple segmental relaxation modes, whose strain-dependent relaxation times are obtained from
small-molecule probe relaxation experiments by Ediger and coworkers [Bending, B. & Ediger, M.

D. J. Polym. Sci. B 2016, 54, 1957-1967]. This produces excellent agreement between the HBD



model and experimental stress-strain curves through the yield point, but requires segmental
relaxation data for each experiment. Future work should aim at developing a constitutive equation

for the segmental relaxation.



Introduction

Glassy materials possess remarkable properties such as high stiffness and transparency, good
corrosion resistance, low permeability, as well as ease of fabrication,'-?> making them ubiquitous
in both traditional and emerging material applications.>*>% The growing demand for low-cost,
lightweight materials with sufficient mechanical strength has led to increasing use of polymeric
glasses as substitutes for inorganic materials such as silicon and metals. However, polymeric
glasses tend to fail in a catastrophic, brittle fashion through avalanche-like plastic deformation,
often manifested as crazing and necking. This often makes their ductility significantly lower than
that of conventional metals, which can render them useless for many applications.” To ensure their
mechanical stability for a variety of loading environments, several methods for strengthening
polymeric glasses are available, for example, mechanical preconditioning,®® subglass-transition-
temperature annealing,'® etc. However, the complicated interplay of chemistry,!'"!?
entanglement/crosslink density,'? severity of confinement,'* as well as thermomechanical history
in determining ultimate mechanical properties of polymeric glasses make it extremely difficult to
ensure the above stability-enhancing procedures are reliable.*>!'> Moreover, the still-rapid pace of
development of new glasses with remarkable performance, including vapor-deposited “ultra-

stable” polymer glasses,® plasticizer-mediated glasses, !

and rigid polymer-cast “superionic”
films,'® show that we are still far from a complete understanding of how polymers’ molecular
structure affects the macroscopic mechanical properties of their bulk glassy state. For example,
while it is well known that the restrictions imposed by the strength and directionality of covalent

bonds along chain backbones (which distinguish polymeric from small-molecule glasses) play a

critical role when a polymer glass is subjected to large strains,!”"" the details remain highly



controversial.?%?! Progress towards predicting the performance of polymeric glasses under large
deformation therefore requires an explicit accounting both short-range segmental dynamics and

long-range polymeric ones, as well as the interaction of the two.

Glasses composed of short polymer chains are prone to brittle fracture, while those composed of
well-entangled chains are usually more ductile, especially if they exhibit pronounced post-yield
strain hardening.?” Understanding the source of strain hardening is thus a reasonable starting point
for improving the strength of polymeric materials. Molecular dynamics simulations are
particularly useful in this effort because they provide complete detail on chain configurations, local
strain variations, multiscale anisotropy, and any other measure of plastic deformation one can
imagine. Targeted coarse-grained simulations’?*3% have also been used to investigate glassy-
polymeric strain hardening in considerable detail over the past decade. Three results from these
simulations that are potentially critical for achieving a general understanding of strain hardening
are: (1) For strains between yield and the onset of supralinear, “Langevin” hardening, the stress o
is primarily dissipative (viscoplastic); (i1) for any given polymer, although the plastic flow stress
orand strain hardening modulus Gr each depend significantly on temperature and strain rate, they
remain linearly related to each other as these parameters are varied; (iii) in bidisperse mixtures
where a weight fraction f of chains have length N < N.and the remaining chains have length N >>
N.(where N.is the rheological entanglement length measured in number of monomers), a(€) ~=
fosnord €) + (1-f)O1ong(€), Where asnore(€) and oong(€) are the respective responses for f=1 and f= 0,
up to the onset of Langevin hardening. Results (i-ii) are corroborated by experiments.?'-3> While

result (ii1) is difficult to test directly for f>~ 0.5 owing to the tendency of short chains to produce



defects that lead to brittle fracture in experiments, it is consistent with Kramer’s argument?” that

entropic elasticity is not the primary source of strain hardening.

The least-well-understood aspect of strain hardening is the physical origin of the ratio F(e) =
o(€)/ oy for large strains. Haward suggested®* that G >> Gy because the magnitude of Gris set by
the density of uncrossable chain contours pc, which is much larger than the entanglement density
pe. Both these densities increase with chain stiffness, as does F(¢€).3* In neat high-polymer glasses,

Gr depends linearly on entanglement density,?’

which suggests that entanglements dominate
hardening in glasses just as they do in rubbers. This assumption has been employed in many
models of glassy polymer mechanics, including the highly successful 8-chain model of Arruda and
Boyce.*® On the other hand, in bidisperse mixtures p. and Gy are quadratic in (1-f), but [F(€) -1] is
linear in (1-f),>* which suggests that entanglements are less important. In fact, the linear

dependence of hardening modulus on long-chain weight fraction suggests that hardening results

from stresses produced by individual chains deforming in a very viscous medium.?*

Taken together, results (i-ii1) imply that much of glassy-polymeric strain hardening response can
be captured by theories in which a glass-physics model for the segment-scale dynamics is coupled
to a single-chain-in-mean-field model for the large-scale chain configurations. Such models reflect
the fact that the primary forces in polymer glasses are short-ranged and the evolution of chain-
scale structure under deformation is strongly coupled to the evolution of segment-scale structure.
In fact, there are a number of recently developed coarse-grained theoretical models®”*? for polymer
glasses that are constructed along these lines. Two of us (Zou and Larson) recently published one

such coarse-grained “hybrid” model**# in which a one-mode Maxwellian equation for local



segmental relaxation with time constant (7%) was used to predict the local frictional drag that a
“glassy solvent” exerts on an isolated-chain representing the larger-scale “polymeric” relaxation
(with time constant 7 = ats, where « is the polymer-to-segmental relaxation time ratio). With a
simple fluidity model describing the nonlinear response of 75 under applied deformation, the stress
from the segmental mode was added to that produced by polymeric relaxation, whose dynamics
were approximated by a bead-spring chain with bead drag coefficient proportional to 5. Although
the interplay between segmental and polymeric stresses allows this hybrid model to capture much
of the experimental phenomenology of deformed polymeric glasses,****3 the model ignores
entanglements. It also ignores specific energetic terms arising from pair, covalent-bond, and
angular interactions, all of which are known to be important in determining the overall mechanical
properties of polymeric glasses. One might therefore expect this model to break down in the post-
yield regime, where effects of these energetic terms become increasingly important.62%3! On the
other hand, there is considerable evidence that single-chain-in-mean-field models can in fact
capture much of the physics of large-strain deformation, including strain hardening, at least up to
the beginning of the “dramatic” (supra-Gaussian) hardening regime. Moreover, our recent work®’
suggests that Gaussian strain hardening in glasses results primarily from highly-stretched sub-
chains separated by bends or nascent fold points rather than from entanglements. Significantly, the
model® correctly predicts the onset of strain hardening at Hencky strains of order unity and that
the hardening modulus Gr is much greater than the melt plateau modulus Gy. These findings
suggest that the most important cause of strain hardening is the large stretch of sub-entangled
strands of polymer chains that arises because the applied deformation rate is much greater than the
rate at which those strands can relax their configurations. Unfortunately it is not yet possible to

test this idea experimentally, despite the applications of many novel experimental methods to



deformed polymeric glasses.>'%474° MD simulations, however, offer an alternative avenue for
exploring and testing new theories, and can provide information on polymer conformations and
entanglements.’”*® In particular, they allow testing of the assumptions and findings of our coarse-
grained hybrid-BD (HBD) model, and specifically its ability to predict coarse-grained chain
configurations and strain hardening accurately despite neglecting entanglements and local polymer
chain structure. Thus, in the following sections, we will find the extent to which chain deformation
and stress predicted by a Kremer-Grest bead-spring MD simulation can be captured by a much
coarser grained hybrid Brownian dynamics model (HBD) that is resolved at the level of 10 or more

Kuhn steps.

Simulation Methods

Molecular Dynamics (MD) Simulations. Our standard MD simulations use a flexible Kremer-
Grest bead-spring glass,’> consisting of Nci = 500 chains of length Nyp = 600 monomer beads.
Since the Kuhn length of this model is ~ 5/3 beads, each chain has Nx = 360 Kuhn segments with
entanglement length N.~ 51 Kuhn segments,'? so that a chain has an average of 7-8 entanglements.
All monomers have mass m and interact via the truncated and shifted LJ potential Uy(r) = 4uo-
[(a/r)'? - (a/r)® - (alre)'? + (alre)®], where uo is the intermonomer binding energy, a is the monomer
diameter and rc = 2”%a is the cutoff radius. Covalent bonds are modeled using the FENE potential
Urene(r) = -(kRo?/2) - In[1- (r/Ro)*] with the standard parameter’! choices Ro = 1.5a and k = 30uo/a2.
The Lennard-Jones time unit is T = (ma*/uo)'"?, and the MD time step we employ is At = 0.0057.
As in Ref. 29, the system is first thoroughly equilibrated well above Ty (at T = 0.47uo/ks ~ 1.3Ty),>

then slowly cooled to T = 0.3uo/kp ~ 0.8Ty. Since the cooling rate employed for T < Ty + 0.1uo/ks



is 10uo/kpt, the aging time (tw) of the glass, approximated as the time between attainment of the
glass transition at Ty = 0.37uo/ks and the final temperature T = 0.3uo/ks is 0.077/10° = 7x10%z.
After cooling the system, we uniaxially stretch the box containing the chains at a rate of € =2.5x10
3/t while symmetrically reducing its transverse dimensions to maintain constant volume. Thus, the
strain rate times the aging time is €t,, = 1.75, which is close to unity. Throughout all these
simulations, periodic boundaries are applied along all three directions; the monomer number
density of the T = 0.3uo/kp glass is p = 1.0578/a3. All MD simulations are performed using

LAMMPS.33

Hybrid Brownian Dynamics (HBD) Simulations. On the other hand, for HBD simulations, the
polymeric glass is represented by phantom bead-spring chains with extensible FENE springs,
suspended in an implicit “glassy” solvent, with each bead acting as a center of force. The relaxation

time of the glassy solvent is represented by a phenomenological fluidity equation, Eq. (1):

P =1-A"-1) (1la)

A =uy2tr(D:D),D = [Vv + (V»)T]/2 (1b)

Here, 7} is the fully rejuvenated relaxation time, which is fixed at the value of 6 s, which is far
smaller than 75 and so its exact value is not very important. D is the deformation rate tensor, and
Vv is the velocity gradient. The rejuvenation parameter yu influences the strain required for the
glassy mode to “rejuvenate” and become liquid-like under deformation. This parameter controls
plasticity and local properties of the glass; in particular, it is roughly inversely proportional to the

flow stress or (which is the plateau stress immediately following the yield point), is inversely



proportional to the yield strain, and influences the formation of localized “kinks” or folds in the

chain at high strain rate in the HBD model, as shown below.

Note that Eq. (1) is a highly oversimplified one-parameter model of physical ageing and
rejuvenation that lacks detailed consideration of the thermomechanical history of the sample. In
particular, the rate of rejuvenation is assumed to depend solely on strain-rate history, which will
cause softening even in the linear viscoelastic regime at high frequencies. As we shall see, it leads
to a stress overshoot on startup of flow that increases strongly with strain rate, rather than
approximately logarithmically as in real glasses, and to a flow stress that is less sensitive to strain
rate at high strain rates than seen in MD simulations. Eq. (1) is thus only (barely) suitable as a
crude model for some simple nonlinear strain histories (See “Drawbacks of single-mode segmental
model” in SI for details.) We will later replace this model with experimental measurements of
segmental mode relaxation to predict the yielding behavior for an experimental PMMA glass.
Future work should focus on the development, or adoption from the literature, of a better segmental

model.

The total stress is given by the sum of polymeric and “segmental” contributions, X? and X%, where
superscripts “p” and “s” represent “polymeric” or “segmental” mode, respectively. The segmental
component satisfies an upper convected Maxwell model, with relaxation time 5 and modulus G.
The polymeric stress X7 is obtained from the BD simulations of a bead-spring chain and assigned
a modulus GP. This modulus G? is a modulus per coarse-grain spring in the model, as explained in

the SI, and therefore is inversely proportional to the number of springs used in the model. For the

20-spring model used in most of the work here, with each spring constituting 18 Kuhn steps, G?
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should be about twice the plateau modulus of the melt simulated by the MD method. The bead
drag coefficient used in the HBD simulations of the polymer is made proportional to the
instantaneous value of the segmental relaxation time 8 whose evolution is described by Eq. (1a).
Since the polymer chain is a Rouse chain, its longest relaxation time 7?7 will be proportional to the
square of the number of Kuhn steps in the chain N%, times the local relaxation time of a single
Kuhn segment 7/, which will depend on the stiffness of the polymer. Defining aX = 7€/ 15, the ratio
a = /15 = akN% should therefore be proportional to the square of the chain length. We expect
that it should increase with chain stiffness (for fixed Nk). For flexible chains with Nx = 360 (as
employed in our MD simulations), assuming that aX = 1 yields a = 1.3x10°, which is close to the
value we use here (a = 8x10%; see Table 1). Simulations are carried out after assigning an initial
value, tw, to 75, called the “waiting time” since it is roughly the value of 5 achieved after the sample
has rested for a time tw following a previous strong deformation. It can also be considered the
sample’s “age.” A detailed description of the model can be found in our previous work,* and

additional details relevant to the present study are given in the SI.

As a result of coarse-graining, some of the parameters of the MD simulation are represented by
different variables in the HBD model. The number of monomers N (or number of Kuhn steps Nk)
in the MD simulation is captured by the number of springs Nusp of the HBD model along with the
FENE spring force law, which is sensitive to the number of Kuhn steps Nk per spring. Nk in the
MBD simulations should be equal to the product NgsxNupp of the HBD model. The chain density p
of the MD model is captured in the polymer modulus GP of the HBD model as explained in the SI
(Eq. S4). The glass age of the MD model should be similar to the “waiting time” ¢ of the HBD

model. The temperature T of the MD model should influence both the glassy modulus G* and the

11



rejuvenation parameter u of the HBD model in some way that is yet to be explored. Finally, a
combination of the chain stiffness of the MD model, set by a bending potential, and the chain
length N of the MD model, should be reflected in the value of a in the BD model. While the link
between the chain length N of the MD model and Nk of the HBD model is clear (as shown explicitly
below), the relationship between the bending potential of the MD model and a and possibly other

parameters of the HBD model has yet to be worked out in detail.

Results and discussion

To compare MD results directly with our HBD results where a modest number of springs (Nupp =
10, 20, or 30) is used, the MD chain conformations need to be coarse-grained. We do this by first
dividing the MD chain into Nugp sequential subsections, each containing Nup/Nusp MD springs
(i.e., Nup/Nugp +1 MD beads), and then map each of these onto a single coarse-grained “MDCG”
vector connecting the endpoints of the subsection. For the “base” case in which we use Nugp = 20
springs in the HBD model, we therefore map 30 MD beads with 18 Kuhn steps of an MDCG strand
into a single HBD spring, and assign parameters to the spring so that it represents 18 Kuhn
segments. Thus Nupce = (Nupp) is the number of strands (springs) in the MDCG (HBD) model.
From the starting state of an MD simulation, we take an initial ensemble of chain configurations
to form the MDCQG strands, and use these coordinates to form HBD bead-spring chains. We then
run these in an HBD simulation under fast extension so that large-scale chain relaxation is
negligible, and the overall chain conformation and stress of our coarse-grained (HBD) and fine-
grained (MD) models are only weakly dependent on the deformation rate. The “age” of the glassy

mode of the HBD model is the “waiting time” tw, which is set to 26.4 h = 9.5x10* s (see Table I).
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A high extension rate of € = 10 s”' is applied for HBD simulations giving ét,,, = 0.95, which is
around unity, close to the corresponding value €t,, = 1.75 for the MD simulations discussed above,
for which &€ =2.5%107/t and t,,= 7x10*. Since the relaxation time of the polymer chain 77 is many
orders of magnitude longer than the relaxation time of the glassy mode, which is close to tw, the
value €t,, of around unity implies that the Weissenberg number for the entire polymer €t” is very
much higher than unity and nearly the same in both MD and HBD simulations. An example chain
conformation at two Hencky strains € = 1.6 and 2.5 from both MD and HBD simulations under
uniaxial extension are shown in Fig. 1, with the values of the HBD parameters given in Table I.
For this comparison, as described above, the starting configuration of the HBD chain at
equilibrium was taken as that of the MDCG chain extracted from the MD initial configuration.
The agreement in configuration as a function of strain between the two is typical of the majority

of the chains, with more quantitative comparisons discussed in what follows.

Table 1. Standard values of model parameters for HBD simulations in Figs. 1-4.

€ (s a Nugp u Nk tw (h) Gr (MPa) Gs (MPa)

10° 8.0x10* 20 143 360 26.4 0.67 500

The values used here for all parameters are the same as in our previous work,* except for a and Gp. The value of a is
approximately N2, consistent with the number of Kuhn lengths in the HBD and MD chains. And G? (= 3pRT /M) is
set as a typical value of the “spring modulus” G, where Ms is the molecular weight of a single spring. To represent a
18-Kuhn-step segment of polymer such as PMMA (a Kuhn-step molecular weight is around 611 Daltons with Ceo =
8.22 and backbone bond molecular weight ~50 Daltons for PMMA), Ms = 11K Daltons, giving GP =~ 0.67 MPa
(according to the formula for the polymer stress used in Eq. 4a of our previous paper®’). Nk also was adjusted from

that in the previous work slightly from 400 to 360, to match the value for the MD simulations.
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Figure 1. Chain conformations predicted from MD simulations with/without coarse-graining (i.e., MD and MDCG
chains) under a constant extension rate of €= 2.5x10” in LJ units and from HBD simulations with Nusp = 20 under a
constant extension rate of € = 107 57!, for an example chain at (a) € = 1.6; (b) € = 2.5. Blue beads are connected via
green springs for MD, MDCG and HBD chains. Each pair of adjacent red springs in (b) contains a local “fold” or
“kink” discussed in the text. As discussed in the text, the product €t,,~1 is nearly the same in both MD and HBD
simulations. Qualitatively similar results are also obtained by changing the level of coarse-graining, e.g. Nysp = 10 or

30, as shown in the SI.

Non-affine Stretching, Mean Stretch, and Highly Stretched Segments. Figure 1 shows that the
HBD simulations predict strain-dependent chain conformations similar to those produced in the
MD simulations as long as the initial HBD configurations are obtained by coarse-graining the
initial MD configuration. We quantify the ensemble-averaged strain-dependent configurations and
their similarity between MD and HBD simulations in Fig. 2. Figure 2(a) shows that the mean-
squared end-to-end distance of a strand containing n Kuhn segments follows affine deformation at

large n, i.e., (R2)ag/{R2)eq = (e2€ + 2¢€)/3 as a function of strain € in uniaxial extension, where
(R2)eq is the mean-squared end-to-end distance at equilibrium. Although the deformation of a

typical chain is essentially affine on large scales, the near-inextensibility of covalent bonds forces

chains to deform sub-affinely on short scales. A continuous crossover from sub-affine to affine
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deformation is shown by both HBD and MD results, with the crossover strand length n* increasing
with strain.?® We find that even at small strain (¢ ~ 0.5), subaffinity is significant for chain
segments with n as large as ~ N¢/3, where Ne~ 51 is the number of MD Kuhn segments per
entanglement. This result agrees with small angle neutron scatting (SANS) experiments®* on glassy
PMMA that had been deformed into the strain hardening regime, which showed a crossover from
subaffine to affine deformation at a length scale of about ~1/2 of the entanglement mesh size.

Figure 2(b) shows MD and HBD results for the mean segmental stretch S(n) (= (R2)°5/nb). Here

S(1) = 1 because covalent bonds are inextensible and S(n) ~ n"1/2 for large n because chains are
random-walk-like. The key result illustrated here is that as the strain reaches unity and beyond,
S(n) at the sub-entanglement scale increases dramatically. Figure 2(c) quantifies the fraction of
“highly stretched chain segments” Fis(n) that have S(n) > Smin (= 0.7). It is clear that Frs becomes
large around the onset of strain hardening (at € ~ 1.0, as shown later in Fig. 6), and well before
fully-formed kinks/well-folded chains appear (at € ~ 1.6, see Figs. 3 and 4). We will show that it
is these highly stretched chain segments (which appear as precursors to kinked or folded strands)
that lead to the onset of strong strain hardening. While the HBD model in Fig. 2 uses Nupp = 20
coarse-grained springs corresponding to 30 MD beads/springs, the SI shows that the similarity
between the MD and HBD chain configurations is insensitive to values of Nugp between 10 and
30. As also shown in both the main text and the SI, the results in Fig. 2 are also insensitive to
rejuvenation parameter u (Fig. 3) and to strain rate (Figs. S3-S6) for both the HBD and MD models.
Although chain configurations are quite different in uniaxial compression than in extension
(compare Figs. S7 and S8 to Figs. S1 and S2), there remains very good agreement between MD

and HBD simulations in each case, with HBD parameters held fixed when strain rate or strain type
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are changed. Results in the SI show good agreement between HBD and MD simulations for

deformation affinity, strand stretch, and the fraction of highly stretched segments.
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Figure 2. Local stretching in fine-grained Kremer-Grest polymer model (solid lines) compared to that of the coarse-
grained HBD model (dotted lines) with Nsp = 20. (a) The ratio of the mean-squared distance (R2) between monomers
separated by n Kuhn steps to its affine value (R2 )ayras a function of n for various €; values below unity indicate sub-
affine deformation. (b) The mean segmental stretch S(n) relative to full extension. (c) The fraction of “highly stretched
segments” Frs(n) as defined in the text with Smin = 0.7. In panel (c) at € = 0.5, due to the relatively high level of coarse-
graining, the HBD model only predicts a single non-zero point, Fns = 4.0 x 10" for n = 18 Kuhn steps, which is located
outside the range of the plot. However, this value is still consistent with that from MD, i.e., Frs = 3.4 x 10#atn = 18

Kuhn steps.

Kinks. We note in Fig. 1 the appearance of “kinks” or folds, i.e., highly stretched and oriented pairs
of adjacent springs with a folded shape as denoted by red springs in Fig. 1(b) at large deformations.
Since these “kinks” are localized, as shown below, their frequency is sensitive to the resolution of
the HBD model and to the rejuvenation parameter y, unlike the results in Fig. 2. Since the strain
hardening behavior of the HBD model is relatively insensitive to both p and to chain resolution
(as we will show below; cf. Fig. 5), we anticipate that these kinks do not strongly influence strain

hardening for strains that are experimentally attainable for glassy polymers (e <~2). (Localized
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kinks do however seem to be important in the evolution of stress in molten polymers at high strain
(e > 3) and high strain rate.’>>) We identify kinks in both MDCG and HBD chains using coarse-
grained vectors that are compatible with the level of resolution in these models; a detailed
description of our method is given in the SI. The average numbers of kinks per chain, Niink(€),
thereby obtained as functions of the imposed strain for MDCG and HBD conformations are shown
in Fig. 3(a) and (c) with three different values of Nypp and three different values of the rejuvenation
parameter p. Unlike the properties plotted in Fig. 3(b) and (d), Nkink(€) is sensitive to both Nupp
and y; it is, however, quite insensitive to the uniaxial strain rate in both MD and HBD simulations.
Niini(€) 1s strongly dependent on deformation type; for example, it is far lower in uniaxial
compression because the direction of chain stretching is perpendicular rather than parallel to the

direction of applied strain; see Fig. S11 in the SI.

For each Nupp, there is a value of u that gives a match between Niink(€) predicted by the HBD
model and the MD simulations, where the MD configurations have been mapped into the same
number of “MDCG” vectors as the number of springs in the HBD model. The best match with the
MD results is obtained roughly when the product uNygp = 2800; see Fig. 3(c) and Fig. 4(a). Since
u controls the rate of rejuvenation, the results suggest an interesting coupling between the rate of
rejuvenation used in the model for the segmental glassy mode and the degree of coarse-graining
used for the polymeric mode. A high value of 4 means faster mechanical rejuvenation, leading to
a faster relaxation of local segmental modes. A sensitivity of kink formation to this value is
explained by its effect on local motion and the locking of two neighboring segments into a kink
that is not easily unfolded. Increasing y makes unraveling the kink easier, and this is counter-acted

by a smaller value of Nypp which allows more kinks to form, since there are more possible kink
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locations when the chain has more beads. Thus, while the stretching of strands of various length
1s insensitive to coarse-graining, as shown in Fig. 2, accurate a priori resolution of numbers of
kinks evidently requires a chain resolved at the monomer or Kuhn step level. Nevertheless, our
coarse-grained HBD model can be tuned to produce the same Nyink(€) as obtained by our fine-

grained MD model by setting uNygp = 2800.
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Figure 3. Sensitivity of the average number of kinks Nkin(€) and the degree of deformation non-affinity for HBD
model to the level of coarse-graining Nusp and rejuvenation parameter y. In (a), numbers of kinks are shown for
different levels of coarse-graining of both MDCG model and the HBD model with p = 143. In (c) the effect of the
rejuvenation parameter y on Nkink(€) in the HBD with Nugp = 20 (colored broken lines) is compared to Nkink(€) in the
MDCG model with Nupce = 20 (thick grey line). In (b) the non-affinity parameter is compared between the MD model
(without coarse graining) and the HBD model with p = 143 at different levels of coarse-graining, while in (d), a similar

comparison is made but with different values of u in the HBD with Nugp = 20.
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Figure 4(a) shows Nink(€) determined in the MDCG and HBD models at different levels of coarse-
graining. Since many of these kinks will be located in the middle of the coarse-grained MDCG
vectors, rather than near their end points, where they can form a kink, the coarse-grained chains in
the MDCG model are likely to miss many of them. We therefore identify in Fig. 4(b) the kinks
derived from the original (i.e., un-coarse-grained) MD chains. A fold involving only two
neighboring bonds of the original MD chain cannot be regarded as a “kink,” but we instead require
that an abrupt change in chain orientation must persist over multiple original MD bonds for a
“kink™ to be present. Therefore we choose any of the Nyp beads of the original chain as a putative
kink position, and draw vectors from this bead's position to the positions of the two beads that lie
a chemical distance Nconn away along the chain contour. While in the MDCG chains only MD
beads that lie at the ends of the MDCG vectors are candidates to be “kinks,” any bead can be
recognized as a kink in the original chain. Hence, using the original MD chain, we identify more

kinks than in either the MDCG or HBD models, as can be seen in Fig. 4(b).

The results from all three models, (HBD, MDCG, and MD) show that kinks first emerge at a strain
that increases from ~ 0.5 to ~1.2 as the level of coarse graining increases. For € >~ 2, the MD
results in Fig. 4(b) show that Nynk(€) reaches a plateau, suggesting the system is approaching a
limit in which nearly fully stretched and oriented strands are linked by kinks. Beyond this point,
chain deformation is dominated by the unraveling of the kinks, if sample failure does not intervene
first. Unraveling of the kinked state is seen in melts at high strains € > 3.3>¢ In glassy polymers,
however, the stresses become so high that fracture occurs before the kinked state is reached. The
smaller Nkink(€) in the coarse-grained MD and HBD simulations of Fig. 4(a) relative to that for

fine-grained MD 1in 4(b) (where the reader should note the different scales on the y axes of Figs.
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4(a) and 4(b)), shows that some conformational details, in particular the full Nkink(€) have been lost

through coarse-graining.
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Figure 4. (a) Average numbers of kinks per chain Nkink(€) as a function of imposed strain for MDCG and HBD models
with different levels of coarse-graining. The values of the other parameters are the same as shown in Table 1. Note
that the values of u are chosen to give the best match of the HBD model to the corresponding MDCG model for the
predicted Nkini(€). (b) The total number of kinks per chain vs entangled ones as a function of imposed strain in MD
simulations. Here, the chains are not coarse-grained into MDCG vectors, but instead two vectors each encompassing
Nconn bonds in each of the two directions along the chain are constructed starting at each bead of the original MD
chain. The values of Nconn are taken so that Nup/Nconn matches the values of resolution Nupce = Nupp= 10, 20, 30 used

in the coarse-grained HBD and MDCG models.

Entangled Kinks. To investigate the possible role of entanglements in highly strained glassy
polymers, we wish as a first step to find which of the kinks that form in the MD simulations can
be considered “entangled.” Here, our objective is to identify the entanglements that are localized
at kinks since these entanglements most clearly restrict chain motion under deformation. Two
kinks are counted as entangled when they lie within a specific distance of each other, belong to

different chains, and mutually interwind; the details of how we identify these “entangled kink
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pairs” are given in the SI. Of these kinks in Fig. 4(b), we find that a fraction (~ 1/3) can be identified
as entangled kinks. While we here find little evidence that either unentangled or entangled kinks

influence strain hardening, our method of identifying these entangled kinks in MD simulations
could be of use in any future simulations that check for their role in the glassy dynamics of stiffer

polymers, or in the crazing regime, where these entangled kinks may be critical in sustaining the

integrity of the sample against fracture.
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Figure 5. Stress strain behaviors of uniaxial extension predicted by the 1-mode HBD model by varying (a) the level
of coarse-graining Nypp with the modulus of polymeric modes GP adjusted accordingly as indicated by Eq. (S4) in the
SI; (b) the rejuvenation coefficient y; (c) the Kuhn length friction ratio aX; and (d) the number of Kuhn steps Nk. Note
that the effects of aX and Nk are accounted by the HBD model through the ratio of polymeric to segmental relaxation
times, i.e., @ = akN% as well as the spring constant Nis. In the above four panels, the tensile stress is normalized by
the corresponding flow stress defined at strain € = 0.1, and all the adjustable parameters are kept at the same values as

those in Table I unless stated otherwise. The inserts are blow-ups of the normalized stress in the small-strain region.
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Strain Hardening. We plot in Fig. 5 the stress predicted by the 1-mode HBD model for various
values of model parameters, including resolution Npypp, rejuvenation parameter p, polymer
relaxation parameter aX, and length of chain in number of Kuhn steps Nx. The hardening behavior
is relatively insensitive to the level of coarse graining Nypp of the model, as shown in Fig. 5(a),
where the definition of polymer modulus G? makes it vary inversely related to Nugp (see SI for
details). Similarly, Fig. 5(b) shows that while the rejuvenation parameter u strongly influences the
elastic modulus, yield stress and yield strain, it has a relatively small effect on the degree of strain
hardening when it is normalized by the flow stress. We note that both the flow stress and the
hardening modulus are inversely proportional to u. As discussed earlier, @ = 77/75 = akN?% is
controlled by the chain length Nk and by the ratio aX = 78/ of the Kuhn step relaxation time to
the segmental relaxation time, the latter of which is set by the glassy mode in the HBD model. Fig.
5(c) shows that at fixed Nk the degree of strain hardening increases rapidly with increasing aX.
This behavior is consistent with our suggestion that aX is a measure of the effect of chain stiffness
on polymer relaxation time. However, the aX-independence of the stress-strain curves for € <~ 0.8
indicates that the parameter aX does not by itself capture all chain-stiffness effects; in real systems,
stiffer chains produce larger F(€) at far smaller strains.??>* Figure 5(d) illustrates the effect of
varying Nx with y and aX fixed. The increase in hardening with increasing chain length is consistent
with both experiments®’ and simulations.?>?” Note that while the onset strains for kink formation
in Fig. 4(a) correspond roughly with the onset strains for strain hardening for each of these levels
of resolution, as shown in Fig. 5(a) below, the strong dependence of Niink(€) on the level of coarse-
graining for higher strains in Fig. 4(a) is not reflected in the stress-strain curves. Therefore we do

not believe that kinks, entangled or otherwise, are a principal cause of glassy strain hardening.
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Yielding. The inserts to Fig. 5 show that the behavior of the 1-mode HBD model in the vicinity of
the yield point is unrealistic, with an abnormally large stress overshoot. This unrealistic behavior
becomes even more obvious when the strain rate is varied, as shown in Fig. 6. While for the lowest
strain rate in Fig. 6(b) the magnitude of the overshoot predicted by the HBD model is comparable
to that for the MD simulation at its lowest strain rate, the overshoot in the HBD model grows
rapidly with increasing strain rate and quickly becomes unrealistically high. The overshoot at any
one strain rate can be corrected by adjustment of parameters, but this leads to failure when the
strain rate is varied. Note that in Fig. 6 the flow stress orused to normalize the y axis is that for the
intermediate strain rate, while in Fig. 5 each curve is normalized by its own flow stress. This allows
the effect of strain rate on flow stress to be revealed in Fig. 6. Experiments and MD simulations
show that oy, is roughly logarithmic in strain rate (insert to Fig. 6(a)), while the fluidity model
shows little dependence of flow stress on strain rate if the strain rate is higher than the inverse of
the waiting time (see the insert to Fig. 6(b)). Thus, the fluidity model gives far too strong a

dependence of stress overshoot on strain rate, but too weak a dependence of flow stress.
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Figure 6. Mechanical responses of uniaxial extension under three different rates as well as compression predicted from
(a) the fine-grained Kremer-Grest polymer model and the coarse-grained HBD model with (b) 1-mode segmental
relaxation, where the segmental mode dynamics are computed from Egs. (1a) and (1b). The stress in the above panels
is normalized by the flow stress at the intermediate strain rate, i.e., € = 2.5%10” (in LJ units) for MD and € = 107 s™!
for HBD, which yields (a) or = 0.854 in LJ units of uo/a3, and (b) or= 6.18 MPa. The inserts are blow-ups of the

normalized stress in the small-strain region. For these predictions, we took Gs = 480 MPa and tw = 8.3 h.

This failure of the simple 1-mode HBD model to predict the behavior near yield does not seem to
greatly influence its predictions for the strain hardening regime, which are in semi-quantitative
agreement with the MD results. Thus, as the strain hardening region is entered, polymer stretching
and stress are evidently rather insensitive not only to polymer coarse graining (as revealed in Fig.
2), but also to the details of the segmental dynamics, e.g. the presence or absence of a broad
distribution of segmental relaxation times. This is consistent with previous results which have
shown that segment-scale relaxation becomes more homogeneous in the strain-hardening
regime.>® The response near the yield strain, however, is very sensitive to the segmental model.
Figure 6(b) shows that the 1-mode HBD model severely overpredicts the degree of post yield strain
softening seen in the MD simulations. This indicates that the near-universal behavior of the non-
affinity, stretch, and fraction of highly stretched strands illustrated in Fig. 2 does not extend to the
stress-strain behavior near the yield point, which is much more sensitive to the dynamics of the
segmental mode. The results in Fig. 6 reinforce our claim that strain hardening is controlled
primarily by chain stretching (at various length scales down to sub-entangled ones), and is tightly
coupled to the glassy segment-scale dynamics. They also demonstrate that our simple single-chain-
in-mean-field model without explicit entanglements can at least qualitatively capture even

dramatic strain hardening, although failing badly to predict behavior near the yield point.
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The Origin of Strain Hardening in Glassy Polymers. The strain hardening observed in crosslinked
rubbers is entanglement- and crosslink-driven at modest Weissenberg numbers because sub-
entangled chain segments relax rapidly compared to the inverse strain rate. In glasses, this is no
longer the case, since even the post-yield Weissenberg number WiP is typically high; in both our
MD and HBD simulations it is WiP ~ 10°. Here we have defined Wip = TP € = at5,€, where 5 is
the steady state value of the segmental relaxation time. (It has been shown by fluorescence
spectroscopy>’%? that the segmental relaxation time usually approaches a plateau value 75, (€) at
strains beyond the yield strain for uniaxial extension at constant €.) By solving Eq. 1 at steady
state, we obtain Wir = a/(v/3p) = 323, which in our model is independent of strain rate, but in a
real glass should increase logarithmically with strain rate. At such high WiP, we have seen that the
highly stretched strands discussed above first begin to appear at a strain of € ~ 0.5, and become
increasingly prominent as stress and strain increase, especially for € >~ 1.0 Strain hardening in
polymer glasses does not require fully formed folded kinks,> but only their precursors, the highly
stretched strands. Note also that since a & N2, decreasing the chain length decreases the
Weissenberg number. As WiP decreases, the glassy polymer acts more like a melt, and strain
hardening weakens (and is delayed). The predicted gradual decrease in strain hardening as Nk
decreases — or equivalently, saturation of strain hardening as Nk increases — shown in Fig. 5(d)

is consistent with results from MD simulations.?>-2”

Previous studies?®?® have noted that polymer chain connectivity and uncrossability require
polymer glasses to deform plastically on length scales over which chains deform subaffinely, and

postulated that the increasingly subaffine deformation as strain increases drives the dominant
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dissipative component of strain hardening. Our results extend this picture by making the role
played by strand-stretching much more explicit and by showing that the subaffine deformation and
strand-stretching are nearly quantitatively captured by our single-chain-in-mean-field model. Both
MD and HBD simulations show that the characteristic subaffine-affine crossover chemical
distance (n*) increases with strain. Larger plastic events have larger activation energies (i.e.
require more work to activate), which means that stress must increase with strain. Our results
clarify that the reason entanglements are not primary in this picture is that the chemical length
scale controlling the onset of strain hardening (n*) remains below the rheological entanglement
length N.. Our observation (in Fig. 2(a)) of n* ~ N./3 in the early stages of strain hardening is
consistent with the earlier observation? that the length scale over which strands are pulled taut in
stable crazes is ~ Ne/3 rather than ~ Ne. While Kramer concluded long ago that experimental results
for strain hardening over a wide range of temperatures in systems with a wide range of
entanglement densities dictate n* < N,?° the underlying microscopic phenomenology has not
heretofore been made so specific. Note that we do nof claim that strong strain hardening can occur
in experiments on unentangled systems — it is now well established that an entanglement network

is required to prevent brittle fracture before the onset of strain hardening.!>!722:47

Since HBD uses a very simplistic model for the glassy segmental mode (that is coupled to the
polymeric mode only through a friction coefficient), while the MD simulations are resolved at or
below the level of the segmental mode, the good agreement between the two models in both their
chain configurations shown in Fig. 2 and in their strain hardening in Figs. 5 and 6 is strong evidence
that the polymer configurations and strain hardening are not sensitive to the finer details of the

glassy dynamics. In addition, the insensitivity of the results to the inclusion of entanglements
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(which are present in the MD simulations but not in the HBD simulations) provides further
evidence that the polymeric modes in deformed glasses — at least for highly flexible polymers —
can be modeled using simple bead-spring chains without explicit entanglements. On the other
hand, the segment-scale model used above is clearly inadequate for prediction of yielding and
strain softening. Furthermore, although the hardening stress of F(€)-1] arises largely from the
highly stretched strands as detailed above, it is ultimately governed by the friction exerted on those
strands by surrounding segments, and this friction in turn depends strongly on the glassy modes.

Therefore we now turn our attention to developing a better segment-scale model.

Improved Predictions of Stress Near the Yield Point are Possible if the Segmental Model if
Improved. The above successes of our simplified modeling, in particular in the agreement of MD
and HBD simulations of chain configurations shown in Fig. 1 and quantified in Fig. 2, and the
hardening in Figs. 5 and 6 does not carry over to the prediction of yielding behavior. (For additional
details, see “Drawbacks of single-mode segmental model” in the SI for details.) This is both
because the rejuvenation model is overly simplified and because use of a single relaxation time
ignores the heterogeneity of the segmental dynamics, whose rates of molecular rearrangements
vary significantly across spatial and temporal scales.’*>%° Thus, we need improvements in our
description of the dynamics at the segmental level to include, at the least, the effects of stretched
exponential relaxation (known as the Kohlrausch-Williams-Watts, or KWW function) on the
nonlinear deformation behaviors, especially for loading and unloading. We believe that this could
be achieved by employing multiple segmental relaxation times (as opposed to the single one

assumed previously) within the abovementioned ‘“glassy solvent” description of segmental

N

dynamics. Since the characteristic probe relaxation time 7,),

p and the stretching exponent 8 of a
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KWW function has been accurately measured by fluorescence spectroscopy at each instant
deformation time,’*®> we here construct a small set of distinct Maxwell modes from the
decomposition of these KWW functions into a discrete spectrum of Maxwell time constants with
the corresponding amplitude of each mode tuned iteratively at given 75, and f. In this way, we
extend the single-mode segmental dynamics in the original HBD model,*> whose relaxation time

is governed by the fluidity equation, to a discrete spectrum of modes with relaxation times derived

N

from the decomposition of the stretched exponential function at given 7,,,

p and B, i.e.,

o; +v-Vo; =a; Vv +(Vv)" - 0] — (6] — D/} (20)
5 =Gy Ci(of - 1)
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In the above, o} stands for the segmental configuration tensor for mode j with the corresponding
amplitude Cj and characteristic time 7; determined by a genetic algorithm, whose details are given
in the SI. M = 3 is the total number of segmental modes used here to represent the KWW function
with experimental determined time-dependent t,,,, and B. This means that ; and 77 are also time
dependent, and in a properly invariant constitutive equation would need to be rendered functions
of one or more internal variables, or by using strain history integrals, as have been developed in
the literature.%® Here, we leave them as functions of time to illustrate how better stress predictions
might be made possible by improving the model of the glassy mode. We note that similar

predictions could be made, up to the yield point, by making them functions of segmental stress
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rather than time. The glassy and polymeric configuration tensors 0']’7’5 contribute to the stress (2P9)

through their moduli GPS, where the polymeric stress tensor is obtained from the forces and
configurations of the HBD springs, using the standard Kramers formula as discussed in our earlier
work.?? The waiting time ty is controlled by how long the sample has been aged since the last
deformation. Thus, assuming that rejuvenation remains governed by the deformation-rate-
dependent fluidity equation (Eq. (1)), the values of G* and t. are obtained in this new version of

the model by fits to the experimental stress-strain curve using 7., and f directly measured from

fluorescence spectroscopy.

Note that the above multimode Maxwell model with time-dependent relaxation times only
accounts for spatial heterogeneity at a mean-field level: namely, only to the extent that the
decomposed stretched exponential represents an average of the segmental relaxation function over
the spatial distribution of microdomains. In addition, we do not attempt here to develop a properly
invariant full constitutive model for segmental relaxation. Instead we employ experimental
segmental-relaxation data for a specific strain history and attempt to predict its effects on polymer
relaxation and stress strain curves for the same strain history. The time-dependence of the
relaxation times and moduli would be different for other strain histories and could only be obtained
by measurements in those histories. In fact, since we continue to use the overly simple rejuvenation
model in Eq. (1), the revised segmental model, with parameters from an experiment at one
particular strain rate, will not properly capture the strain rate dependence of stress near the yield
point at other strain rates. However, since the time dependence of the segmental relaxation
spectrum must in any event be obtained experimentally, there is no use repairing the rejuvenation

model until a proper complete constitutive equation for the relaxation time spectrum is developed.
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Ultimately, it will be necessary to develop a proper constitutive equation for the segmental mode
that can predict these segmental relaxation dynamics for arbitrary deformation histories, and
combine this with our polymeric model to obtain a full constitutive model of the polymer glass.
For now, however, our goal is limited to checking the extent to which a more accurate accounting
of the segmental dynamics (obtained from the experimental data), when coupled with our model

of the polymeric mode, is able to improve predictions of the strain hardening phenomenon.
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Figure 7. Comparison of HBD simulation results predicted by the empirical 3-mode segmental model with parameters
given in Table I (except using a shorter initial age of the glass tw and a larger glassy modulus Gs given below) with
stress-strain curves of Ediger and coworkers®%2 under steady uniaxial extensional straining of PMMA at 373 K with
(a) € = 1.5x10° s and (b) € = 3.1x107 5. The time-dependent probe segmental relaxation time ;,;, and stretched
exponential exponent £ taken from their smoothed fluorescence spectroscopy data are shown in the inserted plots. To
be consistent with the experimental results in references,’®* the strain along the horizontal axis is taken as the global
strain, but the simulations used the actual strain measured near the mid-point of the sample where segmental relaxation
was measured. The fitting values are (a) Gs = 900 MPa, t = 3.3 h for € = 1.5%10° s7'; and (b) Gs = 800 MPa, tw = 5.8
h for € = 3.1x107% 5!, semi-quantitatively reflecting the effects of temperature and preparation history of the testing

samples. Only values of parameters relevant to the glassy mode are important at the low strains.
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As illustrated in Fig. 7, we performed HBD simulations using this new modified segmental model
based on experimental data points for 7,,, and 8, and obtained good agreement with the
experimental stress at the beginning of startup flow. Note that since the final strains considered in
Fig. 7 are still in the pre-strain-hardening regime, the predicted mechanical responses are
dominated by the segmental dynamics with insignificant contributions from the polymeric mode,

where both 7., and § in Eq. (2) are obtained experimentally without using the simple fluidity

equation in Eq. (1). Therefore, the only relevant parameters (among all the others shown in Table
I) are tw and G%, which can be estimated directly by matching the simulation predictions with the
data from experiments. The agreement shown in Fig. 7 is much better than we can obtain with one-
mode models; Fig. S12 shows that the latter produce much stronger strain-softening, whether the
single relaxation time is obtained from the fluidity model or directly from the experimental data.
We also find that the corresponding best-fit values of both ¢, and G* (Table S1 in SI) deviate from
ranges that reflect the physical properties of a young glass. These results all indicate the importance
of a multi-mode description for development of a physics-based segmental relaxation model.
Finally, we found that the 3-mode model can predict stress-strain curves near the yielding region
that much better match those obtained the MD simulations (and experiments). Although not shown
here, the hardening behavior predicted by the 3-mode segmental model is very similar to that
predicted by the simple 1-mode model, as expected. This is not surprising, since we have shown
that the hardening modulus, when normalized by the flow stress, is insensitive to the segmental

model.

Much progress has been made recently in understanding segmental-level dynamics of both small-

molecule and polymeric glasses.’”® However, segment-scale theories such as the PNLE theory of
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Schweizer et al3%*' typically do not treat polymeric relaxation modes; indeed they typically
assume chains deform affinely above segmental scales. Efforts to obtain improved predictions of
glassy-polymeric mechanical response should therefore combine the most recent and most
accurate treatments of segment-scale physics with the larger-scale polymer physics described here
— 1in particular, the formation of highly stretched segments. A very useful future direction would
be to capture thermo-mechanical effects in an accurate model of the glassy mode, and combine
this with the description of the polymer mode described here to provide improved understanding
of the effects of thermomechanical history on the stress-strain properties of glassy polymers. It
will also be important to determine if entangled or untangled “kinks,” which require fine-grained
modeling to capture accurately, are important in determining properties of the yielded glass, such
as birefringence, thermomechanical history, and breakage stress. For example, it is quite likely
that entangled kinks will become important in the dramatic hardening regime where increasing
strand tension increases the energetic component of stress.?®?® We hope that the findings presented
here will help the community achieve a useful synthesis of these ideas and hence a more complete
understanding of polymeric glasses and their rheology, as well as some directions for further

research.

Summary and Future Directions

Analyses at two different levels of resolution have provided insight into the effect of multiple

segmental relaxation times and sub-entanglement chain stretching on strain hardening and stress-

strain relationships in tensile deformations of polymeric glasses. Both our HBD model and the

finer-grained MD simulations suggest that sub-entanglement chain stretching and orientation
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trigger strain-hardening in polymeric glasses at a strain level (e ~ 1) that is much smaller than
would be required if strain-hardening originated from the affine deformation of an entangled
network. MD simulations clearly exhibit the emergence of highly-stretched segments with chain
conformations very similar to those found in HBD simulations, and indicating that strain hardening
is controlled primarily by chain stretching at high Weissenberg number, and not by entanglements
or details of the glassy dynamics. This similarity of results from both fine-grained and coarse-
grained models offers a clear explanation of the large magnitude of glassy-polymer strain-
hardening: hardening in the glassy state arises primarily from chain stretching and orientation at
scales below that of the entanglement mesh. This picture supports the notion?¢ that while
entanglements are essential for stabilizing glassy polymers against brittle fracture, they are of less

importance in strain hardening itself.

The successful prediction of chain stretching and strain hardening from our original coarse-grained
model does not extend to the yielding behavior, which requires a more accurate description of the
glassy mode than is provided in our original very simple one-mode fluidity model. We therefore
further modified our model by extending the segmental relaxation from one mode to three modes

whose dynamics were drawn from experimental measurements, namely the time-dependent values

N

of segmental relaxation time 7,),

p and stretching exponent f probed by fluorescence spectroscopy

on deforming polymeric glasses. With this revised segmental model, we observed much better
predictions in pre-yield and yielding regimes where the segmental mode contributes most of the
stress and where overshoot occurs. The new three-mode HBD model implicitly accounts for local
heterogeneity to the extent that it can be represented by stretched exponential relaxation. The

success of this more accurate segmental model, however, depends on having measured data on

33



segmental relaxation for each strain history. Thus, the model only allows good predictions of stress
in the region of yield if accurate segmental relaxation times are available from experiments. Future
work should endeavor to develop a robust segmental constitutive model that accurately predicts
the experimental segmental relaxation in arbitrary strain histories and incorporates this into HBD
simulations to get a complete depiction for polymer glasses under deformation. Testing multimode
HBD theory against MD simulations of glasses deformed well into the strain-hardening regime,
over a wide range of temperatures, for a wide range of chain stiffnesses should be particularly
useful in this effort because MD simulations allow for far more precise characterization*®% of
multiscale structural relaxation than is currently achievable experimentally. For example,
comparing results for different chain stiffnesses will allow our hypotheses about the effect of

stiffness on the Kuhn-level friction parameter aX to be directly tested.

Thus, while the work reported here leaves much left to do, it does provide some clear conclusions
about the source of strain hardening. It also provides a starting point for further work on developing
a constitutive theory that covers both plastic flow and hardening, as well as methods for analyzing

the role of entanglements near the onset of failure.
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Supporting Information

The Supporting Information contains the following information. First, we discuss how the level
of coarse-graining affects the choice of parameters, including, in particular the polymer modulus
GP and rejuvenation parameter u. Next we demonstrate that chain conformations during
deformation are insensitive to the level of coarse-graining and to the rejuvenation parameter .
Then we show that chain conformations predicted by the HBD model match those of the MD
model over a wide range of extension rates, and also for compressive deformation. Then we
describe our method for identifying kinks and entangled kink pairs; we also discuss the sensitivity
of the number of kinks to the details of the kink-identification criteria, such the kink angle and the
stretch of segments adjacent to the kink. Then we discuss the drawbacks of the single-mode
segmental model, and illustrate the need for our “three-mode model.” Then we describe our
method for converting the stretched exponential KWW function [Eq. 2(b)] into a three-model
model wherein the relaxation times and relaxation amplitudes of the three modes as a function of

time are derived from the experimental data for the (time-dependent) T;rb and f. Finally we

demonstrate a correlation between segmental mobility and £ that is derived from experimental

data.
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