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Using both coarse-grained (CG) and fine-grained (FG) simulations we show how strain hardening 

in polymeric glasses under uniaxial extension arises from highly stretched strands that form as the 

polymer chains deform subaffinely on increasing length scales as strain increases. The coarse-

grained simulations are performed using the hybrid Brownian Dynamics method (HBD) [Zou, W. 

& Larson, R. G. Soft Matter 2016, 3, 3853-3865] with 10-30 coarse-grained springs per polymer 

chain, while the fine-grained simulations employ the Kremer-Grest bead-spring model with 600 

beads per chain. We find that the HBD model accurately predicts how the MD chain configurations 

evolve during deformation despite being a single-chain-in-mean-field model that does not account 

for entanglements or monomer-level structure. We show using both models that the glassy strain 

hardening modulus	GR	is much larger than the melt plateau modulus GN because chain segments 

become highly stretched at modest Hencky strain (ϵ	<	~1) owing to the high interchain friction in 

the glass. HBD model predictions of strain hardening match those of the MD simulations in shape 

and magnitude, relative to the flow stress, which is the stress just beyond the yield point, for several 

deformation protocols, and also capture the increase in strain hardening with increasing chain 

length that saturates in the long chain limit. As deformation proceeds, chains begin to form kinks 

or folds (starting at a Hencky strain ϵ	~	1.6) analogous to those produced in extensional flows of 

dilute and entangled polymer solutions. We identify “entangled kinks” in the MD simulations; 

these do not appear to strongly influence strain hardening,	but may be important in delaying 

fracture. Motivated by these results, we improve upon HBD’s ability to accurately capture stress-

strain curves at small strains through yielding and strain softening by extending the theory to 

multiple segmental relaxation modes, whose strain-dependent relaxation times are obtained from 

small-molecule probe relaxation experiments by Ediger and coworkers [Bending, B. & Ediger, M. 

D. J. Polym. Sci. B 2016, 54, 1957-1967]. This produces excellent agreement between the HBD 
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model and experimental stress-strain curves through the yield point, but requires segmental 

relaxation data for each experiment. Future work should aim at developing a constitutive equation 

for the segmental relaxation.	
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Introduction	

 

Glassy materials possess remarkable properties such as high stiffness and transparency, good 

corrosion resistance, low permeability, as well as ease of fabrication,1-2 making them ubiquitous 

in both traditional and emerging material applications.3,4,5,6 The growing demand for low-cost, 

lightweight materials with sufficient mechanical strength has led to increasing use of polymeric 

glasses as substitutes for inorganic materials such as silicon and metals. However, polymeric 

glasses tend to fail in a catastrophic, brittle fashion through avalanche-like plastic deformation, 

often manifested as crazing and necking. This often makes their ductility significantly lower than 

that of conventional metals, which can render them useless for many applications.7 To ensure their 

mechanical stability for a variety of loading environments, several methods for strengthening 

polymeric glasses are available, for example, mechanical preconditioning,8,9 subglass-transition-

temperature annealing,10 etc. However, the complicated interplay of chemistry,11,12 

entanglement/crosslink density,13 severity of confinement,14 as well as thermomechanical history 

in determining ultimate mechanical properties of polymeric glasses make it extremely difficult to 

ensure the above stability-enhancing procedures are reliable.4,5,15  Moreover, the still-rapid pace of 

development of new glasses with remarkable performance, including vapor-deposited “ultra-

stable” polymer glasses,3 plasticizer-mediated glasses,15 and rigid polymer-cast “superionic” 

films,16 show that we are still far from a complete understanding of how polymers’ molecular 

structure affects the macroscopic mechanical properties of their bulk glassy state. For example, 

while it is well known that the restrictions imposed by the strength and directionality of covalent 

bonds along chain backbones (which distinguish polymeric from small-molecule glasses) play a 

critical role when a polymer glass is subjected to large strains,3,17-19 the details remain highly 
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controversial.20,21 Progress towards predicting the performance of polymeric glasses under large 

deformation therefore requires an explicit accounting both short-range segmental dynamics and 

long-range polymeric ones, as well as the interaction of the two. 

	

Glasses composed of short polymer chains are prone to brittle fracture, while those composed of 

well-entangled chains are usually more ductile, especially if they exhibit pronounced post-yield 

strain hardening.22 Understanding the source of strain hardening is thus a reasonable starting point 

for improving the strength of polymeric materials. Molecular dynamics simulations are 

particularly useful in this effort because they provide complete detail on chain configurations, local 

strain variations, multiscale anisotropy, and any other measure of plastic deformation one can 

imagine. Targeted coarse-grained simulations7,23-30 have also been used to investigate glassy-

polymeric strain hardening in considerable detail over the past decade. Three results from these 

simulations that are potentially critical for achieving a general understanding of strain hardening 

are: (i) For strains between yield and the onset of supralinear, “Langevin” hardening, the stress	σ	

is primarily dissipative (viscoplastic); (ii) for any given polymer, although the plastic flow stress	

σf	and strain hardening modulus	GR	each depend significantly on temperature and strain rate, they 

remain linearly related to each other as these parameters are varied; (iii) in bidisperse mixtures 

where a weight fraction	f	of chains have length	N	<	Ne	and the remaining chains have length	N	>>	

Ne	(where	Ne	is the rheological entanglement length measured in number of monomers),	σ(ϵ)	~=	

fσshort(ϵ)	+	(1-f)σlong(ϵ), where	σshort(ϵ)	and σlong(ϵ)	are the respective responses for	f	=	1	and	f	=	0, 

up to the onset of Langevin hardening. Results (i-ii) are corroborated by experiments.31,32 While 

result (iii) is difficult to test directly for	f	>~	0.5	owing to the tendency of short chains to produce 
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defects that lead to brittle fracture in experiments,33 it is consistent with Kramer’s argument20 that 

entropic elasticity is not the primary source of strain hardening.			

 

The least-well-understood aspect of strain hardening is the physical origin of the ratio	F(ϵ)	 =	

σ(ϵ)/σf	for large strains. Haward suggested34 that	GR	>>	GN	because the magnitude of	GR	is set by 

the density of uncrossable chain contours	ρc, which is much larger than the entanglement density 

ρe. Both these densities increase with chain stiffness, as does	F(ϵ).34 In neat high-polymer glasses,	

GR	 depends linearly on entanglement density,35 which suggests that entanglements dominate 

hardening in glasses just as they do in rubbers. This assumption has been employed in many 

models of glassy polymer mechanics, including the highly successful 8-chain model of Arruda and 

Boyce.36 On the other hand, in bidisperse mixtures	ρe	and	GN	are quadratic in (1-f), but	[F(ϵ) -1]	is 

linear in (1-f),24 which suggests that entanglements are less important. In fact, the linear 

dependence of hardening modulus on long-chain weight fraction suggests that hardening results 

from stresses produced by individual chains deforming in a very viscous medium.24  

 

Taken together, results (i-iii) imply that much of glassy-polymeric strain hardening response can 

be captured by theories in which a glass-physics model for the segment-scale dynamics is coupled 

to a single-chain-in-mean-field model for the large-scale chain configurations. Such models reflect 

the fact that the primary forces in polymer glasses are short-ranged and the evolution of chain-

scale structure under deformation is strongly coupled to the evolution of segment-scale structure. 

In fact, there are a number of recently developed coarse-grained theoretical models37-42 for polymer 

glasses that are constructed along these lines. Two of us (Zou and Larson) recently published one 

such coarse-grained “hybrid” model43-45 in which a one-mode Maxwellian equation for local 
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segmental relaxation with time constant (τs) was used to predict the local frictional drag that a 

“glassy solvent” exerts on an isolated-chain representing the larger-scale “polymeric” relaxation 

(with time constant	τp	=	ατs, where α is the polymer-to-segmental relaxation time ratio). With a 

simple fluidity model describing the nonlinear response of	τs	under applied deformation, the stress 

from the segmental mode was added to that produced by polymeric relaxation, whose dynamics 

were approximated by a bead-spring chain with bead drag coefficient proportional to	τs. Although 

the interplay between segmental and polymeric stresses allows this hybrid model to capture much 

of the experimental phenomenology of deformed polymeric glasses,43-45 the model ignores 

entanglements. It also ignores specific energetic terms arising from pair, covalent-bond, and 

angular interactions, all of which are known to be important in determining the overall mechanical 

properties of polymeric glasses. One might therefore expect this model to break down in the post-

yield regime, where effects of these energetic terms become increasingly important.26,28,31 On the 

other hand, there is considerable evidence that single-chain-in-mean-field models can in fact 

capture much of the physics of large-strain deformation, including strain hardening, at least up to 

the beginning of the “dramatic” (supra-Gaussian) hardening regime. Moreover, our recent work45 

suggests that Gaussian strain hardening in glasses results primarily from highly-stretched sub-

chains separated by bends or nascent fold points rather than from entanglements. Significantly, the 

model45 correctly predicts the onset of strain hardening at Hencky strains of order unity and that 

the hardening modulus	GR	 is much greater than the melt plateau modulus	GN. These findings 

suggest that the most important cause of strain hardening is the large stretch of sub-entangled 

strands of polymer chains that arises because the applied deformation rate is much greater than the 

rate at which those strands can relax their configurations. Unfortunately it is not yet possible to 

test this idea experimentally, despite the applications of many novel experimental methods to 
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deformed polymeric glasses.5,10,47,49 MD simulations, however, offer an alternative avenue for 

exploring and testing new theories, and can provide information on polymer conformations and 

entanglements.7,48 In particular, they allow testing of the assumptions and findings of our coarse-

grained hybrid-BD (HBD) model, and specifically its ability to predict coarse-grained chain 

configurations and strain hardening accurately despite neglecting entanglements and local polymer 

chain structure. Thus, in the following sections, we will find the extent to which chain deformation 

and stress predicted by a Kremer-Grest bead-spring MD simulation can be captured by a much 

coarser grained hybrid Brownian dynamics model (HBD) that is resolved at the level of 10 or more 

Kuhn steps.		

 

Simulation	Methods	

	

Molecular	Dynamics	 (MD)	Simulations. Our standard MD simulations use a flexible Kremer-

Grest bead-spring glass,51,52 consisting of Nch	= 500 chains of length NMD	= 600 monomer beads. 

Since the Kuhn length of this model is ~ 5/3 beads, each chain has NK	= 360 Kuhn segments with 

entanglement length Ne ~ 51 Kuhn segments,13 so that a chain has an average of 7-8 entanglements. 

All monomers have mass m and interact via the truncated and shifted LJ potential ULJ(r) = 4u0	∙	

[(a/r)12 - (a/r)6 - (a/rc)12 + (a/rc)6], where u0 is the intermonomer binding energy, a is the monomer 

diameter and rc = 27/6a is the cutoff radius. Covalent bonds are modeled using the FENE potential 

UFENE(r) = -(kR02/2) ∙ ln[1- (r/R0)2] with the standard parameter51 choices R0 =	1.5a and k = 30u0/a2. 

The Lennard-Jones time unit is τ = (ma2/u0)1/2, and the MD time step we employ is Δt = 0.005τ. 

As in Ref. 29, the system is first thoroughly equilibrated well above Tg (at T = 0.47u0/kB ~ 1.3Tg),52 

then slowly cooled to T	= 0.3u0/kB ~ 0.8Tg.	Since the cooling rate employed for T < Tg + 0.1u0/kB 
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is 10-6u0/kBτ, the aging time (tw) of the glass, approximated as the time between attainment of the 

glass transition at	Tg = 0.37u0/kB and the final temperature T = 0.3u0/kB is 0.07τ/10-6 = 7×104τ. 

After cooling the system, we uniaxially stretch the box containing the chains at a rate of 𝜖̇ = 2.5×10-

5/τ while symmetrically reducing its transverse dimensions to maintain constant volume. Thus, the 

strain rate times the aging time is 𝜖̇𝑡𝑤  = 1.75, which is close to unity. Throughout all these 

simulations, periodic boundaries are applied along all three directions; the monomer number 

density of the T = 0.3u0/kB glass is ρ	 =	 1.0578/a3.	All MD simulations are performed using 

LAMMPS.53  

 

Hybrid	Brownian	Dynamics	(HBD)	Simulations. On the other hand, for HBD simulations, the 

polymeric glass is represented by phantom bead-spring chains with extensible FENE springs, 

suspended in an implicit “glassy” solvent, with each bead acting as a center of force. The relaxation 

time of the glassy solvent is represented by a phenomenological fluidity equation, Eq. (1):		

	

𝜏̇𝑠 = 1 − 𝜆(𝜏𝑠 − 𝜏0𝑠)						(1𝑎)	

𝜆 = 𝜇12𝑡𝑟(𝑫:𝑫),𝑫 = [𝛻𝒗 + (𝛻𝒗);]/2						(1𝑏)	

	

Here, 𝜏0𝑠  is the fully rejuvenated relaxation time, which is fixed at the value of 6 s, which is far 

smaller than τs and so its exact value is not very important. D is the deformation rate tensor, and 

∇v is the velocity gradient. The rejuvenation parameter µ influences the strain required for the 

glassy mode to “rejuvenate” and become liquid-like under deformation. This parameter controls 

plasticity and local properties of the glass; in particular, it is roughly inversely proportional to the 

flow stress σf (which is the plateau stress immediately following the yield point),  is inversely 
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proportional to the yield strain, and influences the formation of localized “kinks” or folds in the 

chain at high strain rate in the HBD model, as shown below.  

 

Note that Eq. (1) is a highly oversimplified one-parameter model of physical ageing and 

rejuvenation that lacks detailed consideration of the thermomechanical history of the sample. In 

particular, the rate of rejuvenation is assumed to depend solely on strain-rate history, which will 

cause softening even in the linear viscoelastic regime at high frequencies. As we shall see, it leads 

to a stress overshoot on startup of flow that increases strongly with strain rate, rather than 

approximately logarithmically as in real glasses, and to a flow stress that is less sensitive to strain 

rate at high strain rates than seen in MD simulations. Eq. (1) is thus only (barely) suitable as a 

crude model for some simple nonlinear strain histories (See “Drawbacks of single-mode segmental 

model” in SI for details.) We will later replace this model with experimental measurements of 

segmental mode relaxation to predict the yielding behavior for an experimental PMMA glass. 

Future work should focus on the development, or adoption from the literature, of a better segmental 

model.  

 

The total stress is given by the sum of polymeric and “segmental” contributions, Σp and Σs, where 

superscripts “p” and “s” represent “polymeric” or “segmental” mode, respectively. The segmental 

component satisfies an upper convected Maxwell model, with relaxation time τs and modulus Gs. 

The polymeric stress Σp is obtained from the BD simulations of a bead-spring chain and assigned 

a modulus Gp. This modulus Gp is a modulus per coarse-grain spring in the model, as explained in 

the SI, and therefore is inversely proportional to the number of springs used in the model. For the 

20-spring model used in most of the work here, with each spring constituting 18 Kuhn steps,	Gp 
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should be about twice the plateau modulus of the melt simulated by the MD method. The bead 

drag coefficient used in the HBD simulations of the polymer is made proportional to the 

instantaneous value of the segmental relaxation time τs whose evolution is described by Eq. (1a). 

Since the polymer chain is a Rouse chain, its longest relaxation time τp will be proportional to the 

square of the number of Kuhn steps in the chain 𝑁𝐾2 , times the local relaxation time of a single 

Kuhn segment τK, which will depend on the stiffness of the polymer. Defining αK	=	τK/τs, the ratio 

α	≡	τp/τs	= αK𝑁𝐾2  should therefore be proportional to the square of the chain length. We expect 

that it should increase with chain stiffness (for fixed NK). For flexible chains with NK = 360 (as 

employed in our MD simulations), assuming that αK	=	1	yields α	= 1.3×105, which is close to the 

value we use here (α = 8×104; see Table 1). Simulations are carried out after assigning an initial 

value, tw, to τs,	called the “waiting time”	since it is roughly the value of τs achieved after the sample 

has rested for a time tw following a previous strong deformation. It can also be considered the 

sample’s “age.” A detailed description of the model can be found in our previous work,45 and 

additional details relevant to the present study are given in the SI.  

 

As a result of coarse-graining, some of the parameters of the MD simulation are represented by 

different variables in the HBD model. The number of monomers N (or number of Kuhn steps NK) 

in the MD simulation is captured by the number of springs NHBD of the HBD model along with the 

FENE spring force law, which is sensitive to the number of Kuhn steps NK,s per spring. NK in the 

MD simulations should be equal to the product NK,s	×NHBD of the HBD model. The chain density ρ 

of the MD model is captured in the polymer modulus Gp of the HBD model as explained in the SI 

(Eq. S4). The glass age of the MD model should be similar to the “waiting time” tw of the HBD 

model. The temperature T of the MD model should influence both the glassy modulus Gs and the 
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rejuvenation parameter µ of the HBD model in some way that is yet to be explored. Finally, a 

combination of the chain stiffness of the MD model, set by a bending potential, and the chain 

length N of the MD model, should be reflected in the value of α in the BD model. While the link 

between the chain length N of the MD model and NK of the HBD model is clear (as shown explicitly 

below), the relationship between the bending potential of the MD model and α and possibly other 

parameters of the HBD model has yet to be worked out in detail. 

 

Results	and	discussion	

 

To compare MD results directly with our HBD results where a modest number of springs (NHBD	= 

10, 20, or 30) is used, the MD chain conformations need to be coarse-grained. We do this by first 

dividing the MD chain into	NHBD	sequential subsections, each containing	NMD/NHBD	MD springs 

(i.e.,	NMD/NHBD	+1	MD beads), and then map each of these onto a single coarse-grained “MDCG” 

vector connecting the endpoints of the subsection. For the “base” case in which we use	NHBD	= 20 

springs in the HBD model, we therefore map 30 MD beads with 18 Kuhn steps of an MDCG strand 

into a single HBD spring, and assign parameters to the spring so that it represents 18 Kuhn 

segments. Thus	NMDCG	= (NHBD) is the number of strands (springs) in the MDCG (HBD) model. 

From the starting state of an MD simulation, we take an initial ensemble of chain configurations 

to form the MDCG strands, and use these coordinates to form HBD bead-spring chains. We then 

run these in an HBD simulation under fast extension so that large-scale chain relaxation is 

negligible, and the overall chain conformation and stress of our coarse-grained (HBD) and fine-

grained (MD) models are only weakly dependent on the deformation rate. The “age” of the glassy 

mode of the HBD model is the “waiting time”	tw, which is set to 26.4 h = 9.5×104 s (see Table I). 
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A high extension rate of 𝜖̇ = 10-5 s-1 is applied for HBD simulations giving 𝜖̇𝑡𝑤 = 0.95, which is 

around unity, close to the corresponding value 𝜖̇𝑡𝑤 = 1.75 for the MD simulations discussed above, 

for which	𝜖̇	=	2.5×10-5/τ	and tw	=	7×104τ.		Since the relaxation time of the polymer chain	τp	is many 

orders of magnitude longer than the relaxation time of the glassy mode, which is close to tw, the 

value	𝜖̇𝑡𝑤	of around unity implies that the Weissenberg number for the entire polymer	𝜖̇𝜏𝑝	is very 

much higher than unity and nearly the same in both MD and HBD simulations. An example chain 

conformation at two Hencky strains ϵ	=	1.6 and 2.5 from both MD and HBD simulations under 

uniaxial extension are shown in Fig. 1, with the values of the HBD parameters given in Table I. 

For this comparison, as described above, the starting configuration of the HBD chain at 

equilibrium was taken as that of the MDCG chain extracted from the MD initial configuration. 

The agreement in configuration as a function of strain between the two is typical of the majority 

of the chains, with more quantitative comparisons discussed in what follows.				

 

Table 1. Standard values of model parameters for HBD simulations in Figs. 1-4. 

𝜖̇ (s-1) α	 NHBD µ NK tw (h) Gp (MPa)  Gs (MPa) 

10-5 8.0×104 20 143 360 26.4 0.67 500 

The values used here for all parameters are the same as in our previous work,45 except for α and Gp. The value of α is 

approximately 𝑁𝐾
2 , consistent with the number of Kuhn lengths in the HBD and MD chains. And Gp (= 3𝜌𝑅𝑇/𝑀H) is 

set as a typical value of the “spring modulus” Gp, where MS is the molecular weight of a single spring. To represent a 

18-Kuhn-step segment of polymer such as PMMA (a Kuhn-step molecular weight is around 611 Daltons with C∞ = 

8.22 and backbone bond molecular weight ~50 Daltons for PMMA), MS = 11K Daltons, giving Gp ≈ 0.67 MPa 

(according to the formula for the polymer stress used in Eq. 4a of our previous paper45). NK also was adjusted from 

that in the previous work slightly from 400 to 360, to match the value for the MD simulations.  
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Figure 1. Chain conformations predicted from MD simulations with/without coarse-graining (i.e., MD and MDCG 

chains) under a constant extension rate of 𝜖̇= 2.5×10-5 in LJ units and from HBD simulations with NHBD	= 20 under a 

constant extension rate of 𝜖̇ = 10-5 s-1, for an example chain at (a) ϵ = 1.6; (b) ϵ = 2.5. Blue beads are connected via 

green springs for MD, MDCG and HBD chains. Each pair of adjacent red springs in (b) contains a local “fold” or 

“kink” discussed in the text. As discussed in the text, the product 𝜖̇𝑡𝑤~1 is nearly the same in both MD and HBD 

simulations. Qualitatively similar results are also obtained by changing the level of coarse-graining, e.g. NHBD	= 10 or 

30, as shown in the SI.  

 

Non-affine	Stretching,	Mean	Stretch,	and	Highly	Stretched	Segments.	Figure 1 shows that the 

HBD simulations predict strain-dependent chain conformations similar to those produced in the 

MD simulations as long as the initial HBD configurations are obtained by coarse-graining the 

initial MD configuration. We quantify the ensemble-averaged strain-dependent configurations and 

their similarity between MD and HBD simulations in Fig. 2. Figure 2(a) shows that the mean-

squared end-to-end distance of a strand containing n Kuhn segments follows affine deformation at 

large	n, i.e.,		〈𝑅KL〉aff/〈𝑅KL〉eq	= (e2ϵ	+ 2e-ϵ)/3 as a function of strain	ϵ	in uniaxial extension, where	

〈𝑅KL〉eq	 is the mean-squared end-to-end distance at equilibrium. Although the deformation of a 

typical chain is essentially affine on large scales, the near-inextensibility of covalent bonds forces 

chains to deform sub-affinely on short scales. A continuous crossover from sub-affine to affine 
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deformation is shown by both HBD and MD results, with the crossover strand length	n*	increasing 

with strain.28 We find that even at small strain (ϵ	 ~	 0.5), subaffinity is significant for chain 

segments with	n	as large as	~	Ne/3, where	Ne	~ 51 is the number of MD Kuhn segments per 

entanglement. This result agrees with small angle neutron scatting (SANS) experiments54 on glassy 

PMMA that had been deformed into the strain hardening regime, which showed a crossover from 

subaffine to affine deformation at a length scale of about ~1/2 of the entanglement mesh size. 

Figure 2(b) shows MD and HBD results for the mean segmental stretch S(n) (=	〈𝑅KL〉0.5/nbK). Here	

S(1) = 1 because covalent bonds are inextensible and	S(n)	~	n-1/2	for large	n	because chains are 

random-walk-like. The key result illustrated here is that as the strain reaches unity and beyond,	

S(n) at the sub-entanglement scale increases dramatically. Figure 2(c) quantifies the fraction of 

“highly stretched chain segments”	Fhs(n) that have	S(n) >	Smin	(=	0.7). It is clear that	Fhs	becomes 

large around the onset of strain hardening (at	ϵ	~ 1.0, as shown later in Fig. 6), and well before 

fully-formed kinks/well-folded chains appear (at	ϵ	~ 1.6, see Figs. 3 and 4). We will show that it 

is these highly stretched chain segments (which appear as precursors to kinked or folded strands) 

that lead to the onset of strong strain hardening. While the HBD model in Fig. 2 uses	NHBD	= 20 

coarse-grained springs corresponding to 30 MD beads/springs, the SI shows that the similarity 

between the MD and HBD chain configurations is insensitive to values of	NHBD	between 10 and 

30. As also shown in both the main text and the SI, the results in Fig. 2 are also insensitive to 

rejuvenation parameter	µ	(Fig. 3) and to strain rate (Figs. S3-S6) for both the HBD and MD models. 

Although chain configurations are quite different in uniaxial compression than in extension 

(compare Figs. S7 and S8 to Figs. S1 and S2), there remains very good agreement between MD 

and HBD simulations in each case, with HBD parameters held fixed when strain rate or strain type 
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are changed. Results in the SI show good agreement between HBD and MD simulations for 

deformation affinity, strand stretch, and the fraction of highly stretched segments.		

 

	

Figure 2. Local stretching in fine-grained Kremer-Grest polymer model (solid lines) compared to that of the coarse-

grained HBD model (dotted lines) with	NHBD = 20. (a) The ratio of the mean-squared distance 〈𝑅KL〉 between monomers 

separated by n Kuhn steps to its affine value 〈𝑅KL〉aff	as a function	of n for various ϵ; values below unity indicate sub-

affine deformation. (b) The mean segmental stretch S(n) relative to full extension. (c) The fraction of “highly stretched 

segments” Fhs(n) as defined in the text with Smin = 0.7. In panel (c) at ϵ = 0.5, due to the relatively high level of coarse-

graining, the HBD model only predicts a single non-zero point, Fhs = 4.0 × 10-4 for n = 18 Kuhn steps, which is located 

outside the range of the plot. However, this value is still consistent with that from MD, i.e., Fhs = 3.4 × 10-4 at n = 18 

Kuhn steps.  

 

Kinks. We note in Fig. 1 the appearance of “kinks” or folds, i.e., highly stretched and oriented pairs 

of adjacent springs with a folded shape as denoted by red springs in Fig. 1(b) at large deformations. 

Since these “kinks” are localized, as shown below, their frequency is sensitive to the resolution of 

the HBD model and to the rejuvenation parameter µ, unlike the results in Fig. 2. Since the strain 

hardening behavior of the HBD model is relatively insensitive to both µ and to chain resolution 

(as we will show below; cf. Fig. 5), we anticipate that these kinks do not strongly influence strain 

hardening for strains that are experimentally attainable for glassy polymers (ϵ	<~2). (Localized 
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kinks do however seem to be important in the evolution of stress in molten polymers at high strain 

(ϵ > 3) and high strain rate.55) We identify kinks in both MDCG and HBD chains using coarse-

grained vectors that are compatible with the level of resolution in these models; a detailed 

description of our method is given in the SI. The average numbers of kinks per chain, Nkink(ϵ), 

thereby obtained as functions of the imposed strain for MDCG and HBD conformations are shown 

in Fig. 3(a) and (c) with three different values of NHBD and three different values of the rejuvenation 

parameter µ. Unlike the properties plotted in Fig. 3(b) and (d), Nkink(ϵ) is sensitive to both NHBD 

and µ;	it is, however, quite insensitive to the uniaxial strain rate in both MD and HBD simulations. 

Nkink(ϵ) is strongly dependent on deformation type; for example, it is far lower in uniaxial 

compression because the direction of chain stretching is perpendicular rather than parallel to the 

direction of applied strain; see Fig. S11 in the SI.   

 

For each NHBD, there is a value of µ that gives a match between Nkink(ϵ) predicted by the HBD 

model and the MD simulations, where the MD configurations have been mapped into the same 

number of “MDCG” vectors as the number of springs in the HBD model. The best match with the 

MD results is obtained roughly when the product 𝜇𝑁NOP ≅ 2800; see Fig. 3(c) and Fig. 4(a). Since 

µ controls the rate of rejuvenation, the results suggest an interesting coupling between the rate of 

rejuvenation used in the model for the segmental glassy mode and the degree of coarse-graining 

used for the polymeric mode. A high value of µ means faster mechanical rejuvenation, leading to 

a faster relaxation of local segmental modes. A sensitivity of kink formation to this value is 

explained by its effect on local motion and the locking of two neighboring segments into a kink 

that is not easily unfolded. Increasing µ makes unraveling the kink easier, and this is counter-acted 

by a smaller value of NHBD which allows more kinks to form, since there are more possible kink 
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locations when the chain has more beads. Thus, while the stretching of strands of various length 

is insensitive to coarse-graining, as shown in Fig. 2, accurate a priori resolution of numbers of 

kinks evidently requires a chain resolved at the monomer or Kuhn step level. Nevertheless, our 

coarse-grained HBD model can be tuned to produce the same Nkink(ϵ) as obtained by our fine-

grained MD model by setting  𝜇𝑁NOP ≅ 2800. 

 

 

Figure 3. Sensitivity of the average number of kinks Nkink(ϵ) and the degree of deformation non-affinity for HBD 

model to the level of coarse-graining NHBD and rejuvenation parameter µ. In (a), numbers of kinks are shown for 

different levels of coarse-graining of both MDCG model and the HBD model with µ = 143. In (c) the effect of the 

rejuvenation parameter µ on Nkink(ϵ) in the HBD with NHBD = 20 (colored broken lines) is compared to Nkink(ϵ) in the 

MDCG model with NMDCG = 20 (thick grey line). In (b) the non-affinity parameter is compared between the MD model 

(without coarse graining) and the HBD model with µ = 143 at different levels of coarse-graining, while in (d), a similar 

comparison is made but with different values of µ in the HBD with NHBD = 20.  
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Figure 4(a) shows Nkink(ϵ) determined in the MDCG and HBD models at different levels of coarse-

graining. Since many of these kinks will be located in the middle of the coarse-grained MDCG 

vectors, rather than near their end points, where they can form a kink, the coarse-grained chains in 

the MDCG model are likely to miss many of them. We therefore identify in Fig. 4(b) the kinks 

derived from the original (i.e., un-coarse-grained) MD chains. A fold involving only two 

neighboring bonds of the original MD chain cannot be regarded as a “kink,” but we instead require 

that an abrupt change in chain orientation must persist over multiple original MD bonds for a 

“kink” to be present. Therefore we choose any of the	NMD beads of the original chain as a putative 

kink position, and draw vectors from this bead's position to the positions of the two beads that lie 

a chemical distance	Nconn	away along the chain contour. While in the MDCG chains only MD 

beads that lie at the ends of the MDCG vectors are candidates to be “kinks,” any bead can be 

recognized as a kink in the original chain. Hence, using the original MD chain, we identify more 

kinks than in either the MDCG or HBD models, as can be seen in Fig. 4(b).		

	

The results from all three models, (HBD, MDCG, and MD) show that kinks first emerge at a strain 

that increases from ~ 0.5 to ~1.2 as the level of coarse graining increases. For	ϵ	>~ 2, the MD 

results in Fig. 4(b) show that	Nkink(ϵ) reaches a plateau, suggesting the system is approaching a 

limit in which nearly fully stretched and oriented strands are linked by kinks. Beyond this point, 

chain deformation is dominated by the unraveling of the kinks, if sample failure does not intervene 

first. Unraveling of the kinked state is seen in melts at high strains	ϵ	> 3.55,56 In glassy polymers, 

however, the stresses become so high that fracture occurs before the kinked state is reached. The 

smaller	Nkink(ϵ) in the coarse-grained MD and HBD simulations of Fig. 4(a) relative to that for 

fine-grained MD in 4(b) (where the reader should note the different scales on the y axes of Figs. 
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4(a) and 4(b)), shows that some conformational details, in particular the full	Nkink(ϵ) have been lost 

through coarse-graining.		

	

 

Figure 4. (a) Average numbers of kinks per chain Nkink(ϵ) as a function of imposed strain for MDCG and HBD models 

with different levels of coarse-graining. The values of the other parameters are the same as shown in Table I. Note 

that the values of µ are chosen to give the best match of the HBD model to the corresponding MDCG model for the 

predicted Nkink(ϵ). (b) The total number of kinks per chain vs entangled ones as a function of imposed strain in MD 

simulations. Here, the chains are not coarse-grained into MDCG vectors, but instead two vectors each encompassing 

Nconn bonds in each of the two directions along the chain are constructed starting at each bead of the original MD 

chain. The values of Nconn are taken so that NMD/Nconn matches the values of resolution NMDCG	=	NHBD	= 10, 20, 30 used 

in the coarse-grained HBD and MDCG models. 

 

Entangled	 Kinks.	To investigate the possible role of entanglements in highly strained glassy 

polymers, we wish as a first step to find which of the kinks that form in the MD simulations can 

be considered “entangled.” Here, our objective is to identify the entanglements that are localized 

at kinks since these entanglements most clearly restrict chain motion under deformation. Two 

kinks are counted as entangled when they lie within a specific distance of each other, belong to 

different chains, and mutually interwind; the details of how we identify these “entangled kink 
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pairs” are given in the SI. Of these kinks in Fig. 4(b), we find that a fraction (~ 1/3) can be identified 

as entangled kinks. While we here find little evidence that either unentangled or entangled kinks 

influence strain hardening, our method of identifying these entangled kinks in MD simulations 

could be of use in any future simulations that check for their role in the glassy dynamics of stiffer 

polymers, or in the crazing regime, where these entangled kinks may be critical in sustaining the 

integrity of the sample against fracture. 

	

	

Figure 5. Stress strain behaviors of uniaxial extension predicted by the 1-mode HBD model by varying (a) the level 

of coarse-graining NHBD	with the modulus of polymeric modes	Gp	adjusted accordingly as indicated by Eq. (S4) in the 

SI; (b) the rejuvenation coefficient µ;	(c) the Kuhn length friction ratio	αK; and (d) the number of Kuhn steps	NK.	Note 

that the effects of	αK	and	NK	are accounted by the HBD model through the ratio of polymeric to segmental relaxation 

times, i.e., α	≡	αK𝑁𝐾
2 	as well as the spring constant	NK,s. In the above four panels, the tensile stress is normalized by 

the corresponding flow stress defined at strain	ϵ	= 0.1, and all the adjustable parameters are kept at the same values as 

those in Table I unless stated otherwise. The inserts are blow-ups of the normalized stress in the small-strain region. 
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Strain	Hardening. We plot in Fig. 5 the stress predicted by the 1-mode HBD model for various 

values of model parameters, including resolution NHBD, rejuvenation parameter µ, polymer 

relaxation parameter αK, and length of chain in number of Kuhn steps NK.  The hardening behavior 

is relatively insensitive to the level of coarse graining NHBD of the model, as shown in Fig. 5(a), 

where the definition of polymer modulus Gp makes it vary inversely related to NHBD (see SI for 

details). Similarly, Fig. 5(b) shows that while the rejuvenation parameter µ strongly influences the 

elastic modulus, yield stress and yield strain, it has a relatively small effect on the degree of strain 

hardening when it is normalized by the flow stress. We note that both the flow stress and the 

hardening modulus are inversely proportional to µ. As discussed earlier, α	≡	τp/τs	 = αK𝑁𝐾2  is 

controlled by the chain length NK and by the ratio αK	=	τK/τs	of the Kuhn step relaxation time to 

the segmental relaxation time, the latter of which is set by the glassy mode in the HBD model. Fig. 

5(c) shows that at fixed NK the degree of strain hardening increases rapidly with increasing αK.  

This behavior is consistent with our suggestion that αK is a measure of the effect of chain stiffness 

on polymer relaxation time. However, the αK	-independence of the stress-strain curves for ϵ <~ 0.8 

indicates that the parameter αK	does not by itself capture all chain-stiffness effects; in real systems, 

stiffer chains produce larger F(ϵ) at far smaller strains.22,34 Figure 5(d) illustrates the effect of 

varying NK with μ and αK fixed. The increase in hardening with increasing chain length is consistent 

with both experiments57 and simulations.25,27 Note that while the onset strains for kink formation 

in Fig. 4(a) correspond roughly with the onset strains for strain hardening for each of these levels 

of resolution, as shown in Fig. 5(a) below, the strong dependence of Nkink(ϵ) on the level of coarse-

graining for higher strains in Fig. 4(a) is not reflected in the stress-strain curves. Therefore we do 

not believe that kinks, entangled or otherwise, are a principal cause of glassy strain hardening.  
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Yielding. The inserts to Fig. 5 show that the behavior of the 1-mode HBD model in the vicinity of 

the yield point is unrealistic, with an abnormally large stress overshoot. This unrealistic behavior 

becomes even more obvious when the strain rate is varied, as shown in Fig. 6. While for the lowest 

strain rate in Fig. 6(b) the magnitude of the overshoot predicted by the HBD model is comparable 

to that for the MD simulation at its lowest strain rate, the overshoot in the HBD model grows 

rapidly with increasing strain rate and quickly becomes unrealistically high. The overshoot at any 

one strain rate can be corrected by adjustment of parameters, but this leads to failure when the 

strain rate is varied. Note that in Fig. 6 the flow stress σf used to normalize the y axis is that for the 

intermediate strain rate, while in Fig. 5 each curve is normalized by its own flow stress. This allows 

the effect of strain rate on flow stress to be revealed in Fig. 6. Experiments and MD simulations 

show that σf, is roughly logarithmic in strain rate (insert to Fig. 6(a)), while the fluidity model 

shows little dependence of flow stress on strain rate if the strain rate is higher than the inverse of 

the waiting time (see the insert to Fig. 6(b)). Thus, the fluidity model gives far too strong a 

dependence of stress overshoot on strain rate, but too weak a dependence of flow stress.   
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Figure 6. Mechanical responses of uniaxial extension under three different rates as well as compression predicted from 

(a) the fine-grained Kremer-Grest polymer model and the coarse-grained HBD model with (b) 1-mode segmental 

relaxation, where the segmental mode dynamics are computed from Eqs. (1a) and (1b). The stress in the above panels 

is normalized by the flow stress at the intermediate strain rate, i.e., 𝜖̇ = 2.5×10-5 (in LJ units) for MD and 𝜖̇ = 10-5 s-1 

for HBD, which yields (a) σf = 0.854 in LJ units of u0/a3, and (b) σf	= 6.18 MPa. The inserts are blow-ups of the 

normalized stress in the small-strain region.  For these predictions, we took Gs = 480 MPa and tw = 8.3 h. 

 

This failure of the simple 1-mode HBD model to predict the behavior near yield does not seem to 

greatly influence its predictions for the strain hardening regime, which are in semi-quantitative 

agreement with the MD results. Thus, as the strain hardening region is entered, polymer stretching 

and stress are evidently rather insensitive not only to polymer coarse graining (as revealed in Fig. 

2), but also to the details of the segmental dynamics, e.g. the presence or absence of a broad 

distribution of segmental relaxation times. This is consistent with previous results which have 

shown that segment-scale relaxation becomes more homogeneous in the strain-hardening 

regime.58 The response near the yield strain, however, is very sensitive to the segmental model. 

Figure 6(b) shows that the 1-mode HBD model severely overpredicts the degree of post yield strain 

softening seen in the MD simulations. This indicates that the near-universal behavior of the non-

affinity, stretch, and fraction of highly stretched strands illustrated in Fig. 2 does not extend to the 

stress-strain behavior near the yield point, which is much more sensitive to the dynamics of the 

segmental mode. The results in Fig. 6 reinforce our claim that strain hardening is controlled 

primarily by chain stretching (at various length scales down to sub-entangled ones), and is tightly 

coupled to the glassy segment-scale dynamics. They also demonstrate that our simple single-chain-

in-mean-field model without explicit entanglements can at least qualitatively capture even 

dramatic strain hardening, although failing badly to predict behavior near the yield point. 



 

25	

	

The	Origin	of	Strain	Hardening	in	Glassy	Polymers.	The strain hardening observed in crosslinked 

rubbers is entanglement- and crosslink-driven at modest Weissenberg numbers because sub-

entangled chain segments relax rapidly compared to the inverse strain rate. In glasses, this is no 

longer the case, since even the post-yield Weissenberg number	Wip is typically high; in both our 

MD and HBD simulations it is Wip	~ 103. Here we have defined	Wip	=	𝜏S𝜖̇	=	𝛼𝜏UUU 𝜖̇, where	𝜏UUU 	is 

the steady state value of the segmental relaxation time. (It has been shown by fluorescence 

spectroscopy59-62 that the segmental relaxation time usually approaches a plateau value	𝜏UUU (𝜖̇)	at 

strains beyond the yield strain for uniaxial extension at constant	𝜖̇.) By solving Eq. 1 at steady 

state, we obtain	Wip	= 𝛼/(√3𝜇)	= 323, which in our model is independent of strain rate, but in a 

real glass should increase logarithmically with strain rate. At such high	Wip, we have seen that the 

highly stretched strands discussed above first begin to appear at a strain of	ϵ	~ 0.5, and become 

increasingly prominent as stress and strain increase, especially for	ϵ	>~ 1.0 Strain hardening in 

polymer glasses does not require fully formed folded kinks,55 but only their precursors, the highly 

stretched strands. Note also that since	𝛼 ∝ 𝑁XL , decreasing the chain length decreases the 

Weissenberg number. As Wip	decreases, the glassy polymer acts more like a melt, and strain 

hardening weakens (and is delayed). The predicted gradual decrease in strain hardening as	NK	

decreases — or equivalently, saturation of strain hardening as	NK	increases — shown in Fig. 5(d) 

is consistent with results from MD simulations.25,27 

		

Previous studies26,28 have noted that polymer chain connectivity and uncrossability require 

polymer glasses to deform plastically on length scales over which chains deform subaffinely, and 

postulated that the increasingly subaffine deformation as strain increases drives the dominant 
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dissipative component of strain hardening. Our results extend this picture by making the role 

played by strand-stretching much more explicit and by showing that the subaffine deformation and 

strand-stretching are nearly quantitatively captured by our single-chain-in-mean-field model. Both 

MD and HBD simulations show that the characteristic subaffine-affine crossover chemical 

distance (n*) increases with strain. Larger plastic events have larger activation energies (i.e. 

require more work to activate), which means that stress must increase with strain. Our results 

clarify that the reason entanglements are not primary in this picture is that the chemical length 

scale controlling the onset of strain hardening (n*) remains below the rheological entanglement 

length	Ne. Our observation (in Fig. 2(a)) of	n*	~	Ne/3 in the early stages of strain hardening is 

consistent with the earlier observation30 that the length scale over which strands are pulled taut in 

stable crazes is ~	Ne/3 rather than ~	Ne.	While Kramer concluded long ago that experimental results 

for strain hardening over a wide range of temperatures in systems with a wide range of 

entanglement densities dictate	n*	 <	 Ne,20 the underlying microscopic phenomenology has not 

heretofore been made so specific. Note that we do not claim that strong strain hardening can occur 

in experiments on unentangled systems — it is now well established that an entanglement network 

is required to prevent brittle fracture before the onset of strain hardening.15,17,22,47	

 

Since HBD uses a very simplistic model for the glassy segmental mode (that is coupled to the 

polymeric mode only through a friction coefficient), while the MD simulations are resolved at or 

below the level of the segmental mode, the good agreement between the two models in both their 

chain configurations shown in Fig. 2 and in their strain hardening in Figs. 5 and 6 is strong evidence 

that the polymer configurations and strain hardening are not sensitive to the finer details of the 

glassy dynamics. In addition, the insensitivity of the results to the inclusion of entanglements 
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(which are present in the MD simulations but not in the HBD simulations) provides further 

evidence that the polymeric modes in deformed glasses — at least for highly flexible polymers — 

can be modeled using simple bead-spring chains without explicit entanglements. On the other 

hand, the segment-scale model used above is clearly inadequate for prediction of yielding and 

strain softening. Furthermore, although the hardening stress	σf[F(ϵ)-1]	 arises largely from the 

highly stretched strands as detailed above, it is ultimately governed by the friction exerted on those 

strands by surrounding segments, and this friction in turn depends strongly on the glassy modes. 

Therefore we now turn our attention to developing a better segment-scale model. 

 

Improved	 Predictions	 of	 Stress	 Near	 the	 Yield	 Point	 are	 Possible	 if	 the	 Segmental	Model	 if	

Improved. The above successes of our simplified modeling, in particular in the agreement of MD 

and HBD simulations of chain configurations shown in Fig. 1 and quantified in Fig. 2, and the 

hardening in Figs. 5 and 6 does not carry over to the prediction of yielding behavior. (For additional 

details, see “Drawbacks of single-mode segmental model” in the SI for details.) This is both 

because the rejuvenation model is overly simplified and  because use of a single relaxation time 

ignores the heterogeneity of the segmental dynamics, whose rates of molecular rearrangements 

vary significantly across spatial and temporal scales.59-62,65 Thus, we need improvements in our 

description of the dynamics at the segmental level to include, at the least, the effects of stretched 

exponential relaxation (known as the Kohlrausch-Williams-Watts, or KWW function) on the 

nonlinear deformation behaviors, especially for loading and unloading. We believe that this could 

be achieved by employing multiple segmental relaxation times (as opposed to the single one 

assumed previously) within the abovementioned “glassy solvent” description of segmental 

dynamics. Since the characteristic probe relaxation time 𝜏SYZU  and the stretching exponent	β	of a 



 

28	

KWW function has been accurately measured by fluorescence spectroscopy at each instant 

deformation time,59-62 we here construct a small set of distinct Maxwell modes from the 

decomposition of these KWW functions into a discrete spectrum of Maxwell time constants with 

the corresponding amplitude of each mode tuned iteratively at given 𝜏SYZU  and	β. In this way, we 

extend the single-mode segmental dynamics in the original HBD model,45 whose relaxation time 

is governed by the fluidity equation, to a discrete spectrum of modes with relaxation times derived 

from the decomposition of the stretched exponential function at given 𝜏SYZU  and	β, i.e.,		

	

[
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In the above, 𝝈]U stands for the segmental configuration tensor for mode j with the corresponding 

amplitude Cj and characteristic time 𝜏]U determined by a genetic algorithm, whose details are given 

in the SI. M	= 3 is the total number of segmental modes used here to represent the KWW function 

with experimental determined time-dependent 𝜏SYZU  and β. This means that Cj and 𝜏]Uare also time 

dependent, and in a properly invariant constitutive equation would need to be rendered functions 

of one or more internal variables, or by using strain history integrals, as have been developed in 

the literature.66 Here, we leave them as functions of time to illustrate how better stress predictions 

might be made possible by improving the model of the glassy mode. We note that similar 

predictions could be made, up to the yield point, by making them functions of segmental stress 
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rather than time. The glassy and polymeric configuration tensors 𝝈]
S,U contribute to the stress (Σp,s) 

through their moduli Gp,s, where the polymeric stress tensor is obtained from the forces and 

configurations of the HBD springs, using the standard Kramers formula as discussed in our earlier 

work.30 The waiting time tw is controlled by how long the sample has been aged since the last 

deformation. Thus, assuming that rejuvenation remains governed by the deformation-rate-

dependent fluidity equation (Eq. (1)), the values of Gs and tw are obtained in this new version of 

the model by fits to the experimental stress-strain curve using 𝜏SYZU  and β directly measured from 

fluorescence spectroscopy.  

 

Note that the above multimode Maxwell model with time-dependent relaxation times only 

accounts for spatial heterogeneity at a mean-field level: namely, only to the extent that the 

decomposed stretched exponential represents an average of the segmental relaxation function over 

the spatial distribution of microdomains. In addition, we do not attempt here to develop a properly 

invariant full constitutive model for segmental relaxation. Instead we employ experimental 

segmental-relaxation data for a specific strain history and attempt to predict its effects on polymer 

relaxation and stress strain curves for the same strain history. The time-dependence of the 

relaxation times and moduli would be different for other strain histories and could only be obtained 

by measurements in those histories. In fact, since we continue to use the overly simple rejuvenation 

model in Eq. (1), the revised segmental model, with parameters from an experiment at one 

particular strain rate, will not properly capture the strain rate dependence of stress near the yield 

point at other strain rates. However, since the time dependence of the segmental relaxation 

spectrum must in any event be obtained experimentally, there is no use repairing the rejuvenation 

model until a proper complete constitutive equation for the relaxation time spectrum is developed. 
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Ultimately, it will be necessary to develop a proper constitutive equation for the segmental mode 

that can predict these segmental relaxation dynamics for arbitrary deformation histories, and 

combine this with our polymeric model to obtain a full constitutive model of the polymer glass. 

For now, however, our goal is limited to checking the extent to which a more accurate accounting 

of the segmental dynamics (obtained from the experimental data), when coupled with our model 

of the polymeric mode, is able to improve predictions of the strain hardening phenomenon.   

 

	

Figure 7. Comparison of HBD simulation results predicted by the empirical 3-mode segmental model with parameters 

given in Table I (except using a shorter initial age of the glass tw and a larger glassy modulus Gs	given below) with 

stress-strain curves of Ediger and coworkers59-62 under steady uniaxial extensional straining of PMMA at 373 K with 

(a) 𝜖̇ = 1.5×10-6 s-1 and (b) 𝜖̇ = 3.1×10-5 s-1. The time-dependent probe segmental relaxation time 𝜏𝑝𝑟𝑏𝑠  and stretched 

exponential exponent β taken from their smoothed fluorescence spectroscopy data are shown in the inserted plots. To 

be consistent with the experimental results in references,59-62 the strain along the horizontal axis is taken as the global 

strain, but the simulations used the actual strain measured near the mid-point of the sample where segmental relaxation 

was measured. The fitting values are (a) Gs	= 900 MPa, tw	= 3.3 h for 𝜖̇ =	1.5×10-6 s-1; and (b) Gs	= 800 MPa, tw	= 5.8 

h for 𝜖̇ = 3.1×10-5 s-1, semi-quantitatively reflecting the effects of temperature and preparation history of the testing 

samples. Only values of parameters relevant to the glassy mode are important at the low strains.  
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As illustrated in Fig. 7, we performed HBD simulations using this new modified segmental model 

based on experimental data points for 𝜏SYZU  and	 β, and obtained good agreement with the 

experimental stress at the beginning of startup flow. Note that since the final strains considered in 

Fig. 7 are still in the pre-strain-hardening regime, the predicted mechanical responses are 

dominated by the segmental dynamics with insignificant contributions from the polymeric mode, 

where both 𝜏SYZU  and	β	 in Eq. (2) are obtained experimentally without using the simple fluidity 

equation in Eq. (1). Therefore, the only relevant parameters (among all the others shown in Table 

I) are	tw	and	Gs, which can be estimated directly by matching the simulation predictions with the 

data from experiments. The agreement shown in Fig. 7 is much better than we can obtain with one-

mode models; Fig. S12 shows that the latter produce much stronger strain-softening, whether the 

single relaxation time is obtained from the fluidity model or directly from the experimental data.  

We also find that the corresponding best-fit values of both	tw	and	Gs	(Table S1 in SI) deviate from 

ranges that reflect the physical properties of a young glass. These results all indicate the importance 

of a multi-mode description for development of a physics-based segmental relaxation model.  

Finally, we found that the 3-mode model can predict stress-strain curves near the yielding region 

that much better match those obtained the MD simulations (and experiments). Although not shown 

here, the hardening behavior predicted by the 3-mode segmental model is very similar to that 

predicted by the simple 1-mode model, as expected. This is not surprising, since we have shown 

that the hardening modulus, when normalized by the flow stress, is insensitive to the segmental 

model.	

	

Much progress has been made recently in understanding segmental-level dynamics of both small-

molecule and polymeric glasses.67-69 However, segment-scale theories such as the PNLE theory of 
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Schweizer et al.38-41 typically do not treat polymeric relaxation modes; indeed they typically 

assume chains deform affinely above segmental scales. Efforts to obtain improved predictions of 

glassy-polymeric mechanical response should therefore combine the most recent and most 

accurate treatments of segment-scale physics with the larger-scale polymer physics described here 

— in particular, the formation of highly stretched segments. A very useful future direction would 

be to capture thermo-mechanical effects in an accurate model of the glassy mode, and combine 

this with the description of the polymer mode described here to provide improved understanding 

of the effects of thermomechanical history on the stress-strain properties of glassy polymers. It 

will also be important to determine if entangled or untangled “kinks,” which require fine-grained 

modeling to capture accurately, are important in determining properties of the yielded glass, such 

as birefringence, thermomechanical history, and breakage stress. For example, it is quite likely 

that entangled kinks will become important in the dramatic hardening regime where increasing 

strand tension increases the energetic component of stress.26,28 We hope that the findings presented 

here will help the community achieve a useful synthesis of these ideas and hence a more complete 

understanding of polymeric glasses and their rheology, as well as some directions for further 

research.  

 

Summary	and	Future	Directions	

 

Analyses at two different levels of resolution have provided insight into the effect of multiple 

segmental relaxation times and sub-entanglement chain stretching on strain hardening and stress-

strain relationships in tensile deformations of polymeric glasses. Both our HBD model and the 

finer-grained MD simulations suggest that sub-entanglement chain stretching and orientation 
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trigger strain-hardening in polymeric glasses at a strain level (ϵ	~ 1) that is much smaller than 

would be required if strain-hardening originated from the affine deformation of an entangled 

network. MD simulations clearly exhibit the emergence of highly-stretched segments with chain 

conformations very similar to those found in HBD simulations, and indicating that strain hardening 

is controlled primarily by chain stretching at high Weissenberg number, and not by entanglements 

or details of the glassy dynamics. This similarity of results from both fine-grained and coarse-

grained models offers a clear explanation of the large magnitude of glassy-polymer strain-

hardening: hardening in the glassy state arises primarily from chain stretching and orientation at 

scales below that of the entanglement mesh. This picture supports the notion26 that while 

entanglements are essential for stabilizing glassy polymers against brittle fracture, they are of less 

importance in strain hardening itself. 

 

The successful prediction of chain stretching and strain hardening from our original coarse-grained 

model does not extend to the yielding behavior, which requires a more accurate description of the 

glassy mode than is provided in our original very simple one-mode fluidity model. We therefore 

further modified our model by extending the segmental relaxation from one mode to three modes 

whose dynamics were drawn from experimental measurements, namely the time-dependent values 

of segmental relaxation time 𝜏SYZU  and stretching exponent β	probed by fluorescence spectroscopy 

on deforming polymeric glasses. With this revised segmental model, we observed much better 

predictions in pre-yield and yielding regimes where the segmental mode contributes most of the 

stress and where overshoot occurs. The new three-mode HBD model implicitly accounts for local 

heterogeneity to the extent that it can be represented by stretched exponential relaxation. The 

success of this more accurate segmental model, however, depends on having measured data on 
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segmental relaxation for each strain history. Thus, the model only allows good predictions of stress 

in the region of yield if accurate segmental relaxation times are available from experiments. Future 

work should endeavor to develop a robust segmental constitutive model that accurately predicts 

the experimental segmental relaxation in arbitrary strain histories and incorporates this into HBD 

simulations to get a complete depiction for polymer glasses under deformation. Testing multimode 

HBD theory against MD simulations of glasses deformed well into the strain-hardening regime, 

over a wide range of temperatures, for a wide range of chain stiffnesses should be particularly 

useful in this effort because MD simulations allow for far more precise characterization48,58 of 

multiscale structural relaxation than is currently achievable experimentally. For example, 

comparing results for different chain stiffnesses will allow our hypotheses about the effect of 

stiffness on the Kuhn-level friction parameter	αK	to be directly tested. 

 

Thus, while the work reported here leaves much left to do, it does provide some clear conclusions 

about the source of strain hardening. It also provides a starting point for further work on developing 

a constitutive theory that covers both plastic flow and hardening, as well as methods for analyzing 

the role of entanglements near the onset of failure. 
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Supporting	Information	

 

The Supporting Information contains the following information.  First, we discuss how the level 

of coarse-graining affects the choice of parameters, including, in particular the polymer modulus 

Gp and rejuvenation parameter µ. Next we demonstrate that chain conformations during 

deformation are insensitive to the level of coarse-graining and to the rejuvenation parameter µ. 

Then we show that chain conformations predicted by the HBD model match those of the MD 

model over a wide range of extension rates, and also for compressive deformation. Then we 

describe our method for identifying kinks and entangled kink pairs; we also discuss the sensitivity 

of the number of kinks to the details of the kink-identification criteria, such the kink angle and the 

stretch of segments adjacent to the kink. Then we discuss the drawbacks of the single-mode 

segmental model, and illustrate the need for our “three-mode model.” Then we describe our 

method for converting the stretched exponential KWW function [Eq. 2(b)] into a three-model 

model wherein the relaxation times and relaxation amplitudes of the three modes as a function of 

time are derived from the experimental data for the (time-dependent) 𝜏𝑝𝑟𝑏𝑠  and β. Finally we 

demonstrate a correlation between segmental mobility and β that is derived from experimental 

data.  
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