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ABSTRACT

The time-to-event response is commonly thought of as survival analysis, and typically concerns statistical
modeling of expected life span. In the example presented here, alfalfa leafcutting bees, Megachile
rotundata, were randomly exposed to one of eight experimental thermoprofiles or two control
thermoprofiles, for one to eight weeks. The incorporation of these fluctuating thermoprofiles in the
management of the bees increases survival and blocks the development of sub-lethal effects, such as
delayed emergence. The data collected here investigates the question of whether any experimental
thermoprofile provides better overall survival, with a reduction and delay of sub-lethal effects. The study
design incorporates typical aspects of agricultural research; random blocking effects. All M. rotundata
prepupae brood cells were randomly placed in individual wells of 24-well culture plates. Plates were
randomly assigned to thermoprofile and exposure duration, with three plate replicates per thermoprofile x
exposure time. Bees were observed for emergence for 40 days. All bees that were not yet emerged prior
to fixed end of study were considered to be censored observations. We fit a generalized linear mixed
model (GLMM), using the SAS® GLIMMIX Procedure to the censored data and obtained time-to-
emergence function estimates. As opposed to a typical survival analysis approach, such as Kaplan-Meier
curve, in the GLMM we were able to include the random model effects from the study design. This is an
important inclusion in the model, such that correct standard error and test statistics are generated for
mixed models with non-Gaussian data.

INTRODUCTION

Survival analysis is a class of methods for which the outcome variable of interest is time until an event
occurs. Time is measured from beginning (time=0) until the event occurs or the observation time ends.
All subjects are observed, even if the subject does not experience the event, the length of time in the
study is also recorded. A common goal in a survival analysis study is not only whether an event
occurred, but also when it occurred. For example, a subject that lives 5 years after an experimental
treatment is different from a subject that lives only 1 month after treatment. An analysis that only counted
death events would ignore the equally valuable information about survival time.

Additionally, survival analysis methods allow for some incomplete time to event information in the study.
These observations are referred to as censored observations, and they occur when a subject does not
experience the event before the end of the study, the event occurs before the indicated start of the study,
or if the observations are assessed at infrequent intervals such that the exact timing of the event is
unknown. Censoring is uninformative if it occurs when the reasons for removal are unrelated to the event
and it does not bias the parameter estimates and statistical inference. Informative censoring occurs when
the reasons for removal are related to the event.

Conventional statistical methods are not appropriate for analysis of the time-to-event and censoring
response variables. Logistic regression ignores the timing of events, and cannot handle time-dependent
variables. Linear regression cannot handle censored observations or time-dependent variables, and is
also inappropriate because time-to-event data often has a non-Gaussian distribution. Additionally, we
introduce random model effects, which if not accounted for appropriately, we will introduce conditional vs.
marginal model issues, standard error issues, and test statistic issues that is observed for other mixed
models with non-Gaussian data (Gbur et al., 2012).

A successful survival analysis might provide the researcher with the ability to estimate and interpret
survival probability; compare survival among different groups; assess the relationship between the
survival time distribution and the time-independent and time-dependent explanatory variables; and



possibly predict the time until the event. The methods described in this paper analyze the time-to-event
response with left censored observations, within the generalized linear mixed model (GLMM), to estimate
survival probability. Additionally, the relationship of temperature regime treatments to the time-to-event
response are explored.

RESEARCH PROBLEM AND STUDY DESIGN

The researchers of this study hypothesized that exposing the solitary alfalfa leafcutting bee (Megachile
rotundata) to an optimal temperature thermoprofile improves survival and decreases the development of
sub-lethal effects (such as wing deformity). The researchers are also interested in any possible delay in
the time to emergence as a first screening for sublethal effects. Thorough details of this research and the
data referenced in this proceedings are provided in Yocum et al. (2019).

The study design: In the prepupae stage, each individual brood cell was inspected for developmental
stage. Cells were placed individually in wells of 24-well culture plates. Plates were randomly assigned to
thermoprofile treatment. There were 10 thermoprofiles (eight experimental and two controls), eight
exposure duration to the thermoprofiles (one to eight weeks), and initiation of the exposure at two
developmental stages (eye-pigmented pupae and emergence-ready adults). Once a week, three plates
from each temperature treatment were transferred to constant 29°C to resume development. The
individual bees within plates were observed weekly, every other day, and adult emergence date and sex
were recorded for approximately 40 days. Our statistical model includes the treatment x week factors as
fixed effects, and the individual plates observed are random blocking effects. The treatment and design
features are necessary to include in the model to adequately interpret the relationship of the thermoprofile
exposure to emergence.

The continuous day of emergence is the time point at which the event occurred. It is the “survival” time
that is of interest. During the observation period, if a wasp emerged, these are recorded as a death (or
censored) event at day = {. If emergence did not occur prior to the end of the study time period, the death
is presumed to have occurred during the treatment phase of the study, prior to day 0 of the observation
stage for emergence. These observations are left censored. A binary censored variable observation is
recorded for all subjects, either the subject is censored or not censored. In our data, we coded C=0 if the
observation is censored, and C=1 if the observation is not censored. For the following data exploration
and analysis components, results from the emergence-ready adults is presented.

DATA EXPLORATION

Usually the first step in the analysis of time-to-event (“survival’) data is to estimate and plot the survival
function. The Kaplan-Meier method is able to incorporate the continuous days to emergence and binary
censored observations to compute the probability of emergence at a given time t. The LIFETEST
procedure computes and plots survival functions, and also tests for differences between survival
functions. The TEST functionality within PROC LIFETEST is not appropriate for this example, as the
random block effect is not taken into account with this method. You are able to identify the temperature
treatment, week in storage, or a treatment x week combined variable to define the strata for the analysis.
This approach is recommended here to explore a simplistic survival curve and tabulate summary statistics
prior to building the GLMM with post-hoc comparisons. Details of this procedure and approach are
thoroughly described in Allison (2010).

Here is an example of PROC LIFETEST code where the temperature treatment is the variable defining
the strata. The TIME statement indicates the time-to-event variable and the censoring variable. The
parenthetical 0 value corresponds to the censoring value used in the data file to identify censored
observations:

proc lifetest data=data plots=survival;
time TimetoEmerge * C _Emerge (0);
strata treatment;

run;



Table 1 is a Censored Summary output table generated from the preceding code. For each of the 10
temperature treatments, you can explore the total emergence and censored observations. Recall that in
the system being studied here, the FAILED column is actually the bees that successfully emerged, and
the CENSORED column is indicative of those observations that did not emerge during the observation
period.

Summary of the Number of Censored and Uncensored Values

Percent

Stratum treatment Total Failed Censored Censored
1 6-120C 12;12squ 576 245 331 57.47

2 6-120C 12;12wav 576 244 332 57.64

3 6-120C 18;06 squ 576 232 344 59.72

4 6-120C 18,06 wav 576 209 367 63.72

5 6-180C 12;12squ 576 458 118 20.49

6 6-180C 12;12wav 576 350 226 39.24

7 6-180C 18,06 squ 576 390 186 32.29

8 6-180C 18,06 wav 576 398 178 30.90

9 60C hold 576 134 442 76.74

10 FTR 576 273 303 52.60
Total 5760 2933 2827 49.08

Table 1. Summary of the Number of Censored and Uncensored Values from PROC LIFETEST

The summary table does not account for random effects, and only the information based upon the
temperature treatment is reported; however, you can still utilize this information to validate the input data.
We expected stratum 5 treatment (6-18°C 12;12 squ) to have a high level of emergence, and it does in
comparison to the other treatments. We need to know more about possible interactions with the storage
time duration, which is explored with the GLMM.

The corresponding Kaplan-Meier survival curve (Figure 1) is the graphical representation of the same
input data. You can identify when initial emergence occurs for the 10 temperature treatments, and follow
each emergence pattern. The default Y-axis label ‘Survival Probability’ is the Probability of Emergence
Event. With 10 possible stratum in the plot, the extreme probabilities are perhaps the easiest to interpret.
Emergence appears to begin on or about day 15 in treatment ‘6-18° 12:12 squ’ with 50% emergence on
or about day 16. Emergence for treatment ‘6°C hold’ appears to begin on or about day 16 with 50%
emergence on or about day 21:
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Figure 1. Kaplan-Meier Survival Curve from PROC LIFETEST

EXPONENTIAL SURVIVAL GLMM FOR CENSORED DATA

For the treatment and experiment designs that are described previously, the GLMM becomes a useful
tool for obtaining estimates of the survivor and hazard functions. The hazard function is the
instantaneous risk or potential that an event will occur at time ¢, given that a subject has survived up to
time t. It takes the form of the number of events per interval of time. Itis a constant rate (A) regardless of
the time, not a probability, which ranges from zero to infinity. The purpose of the data inquiry that we
present does not focus on interpretation of hazard rate, so little discussion on the topic occurs here,
except to mention where calculations are accomplished. For examples on hazard function and fitting
proportional hazards regression models, see Hosmer et al. (2008).

The elements of a GLMM remain unchanged for time-to-event data. The approach and description
provided here closely follows examples provided in Stroup (2013). The components of the model for
these data are:

1. Linear predictor: this is the structure of the experimental design, randomization of how the
treatment is applied; in model form, n;;, = n;; + r(ab);j, + ab;;, where r is the k" random block
effect ‘plate’, a is the i" temperature thermoprofile ‘treatment’, and b is the jt* duration of
exposure ‘week’. We use the “cell means” form of the model since our interest lies on the
interaction of temperature treatments and duration of exposure, rather than on the partitioned
main effects.

2. Distribution(s): encompasses all random effects in the linear predictor, here r(ab);j, and ab;; are
i.i.d. N(0,02); the observations are conditional on the random model effects, and the response
variable, survival time (y; ;) ~ independent Exponential(u;j,). Note on distributions of survival
analysis: The Poisson provides a theoretical starting point for developing time-to-event
distributions. This process leads directly to the exponential distribution, which can be easily
generalized to the gamma distribution.

3. Link Function: n;;, = log(ui]-k), this is the natural or canonical parameter — always a function of
the mean, but a better candidate for regression and ANOVA-like models than the mean.

Initially, you should verify that the exponential (or gamma) distribution provides an adequate fit for the
time-to-event response variable. This is achieved by determining if ® = 1 is a plausible value for the
scale parameter, i.e. fit the exponential distribution and determine if there is evidence of over- or under-
dispersion.



The GLIMMIX statements for the exponential model are:

proc glimmix method=laplace data=data;
class treatment week plate;
model TimetoEmerge = treatment*week / dist=exponential;
random intercept / subject = plate(treatment*week);
covtest/cl (type=plr) ;

run;

The only output of interest for this question is the scale parameter (®), which is the Pearson X?/df,
located in the ‘Fit statistics for conditional distribution’ output table (Table 2):

Fit Statistics for Conditional Distribution
-2 log L(C_Emerge |r. effects) 5935.95
Pearson Chi-Square 99.75
Pearson Chi-Square / DF 0.76

Table 2. Fit Statistics for Conditional Distribution.

Values close to 1, with a confidence interval containing 1 are optimal. Our data appears to err on the
under-dispersion boundary, with the Pearson X2/df = 0.76, 95% confidence interval: [0.51, 0.97].
Perhaps the potential under-dispersion is influenced by the large proportion of censored observations, we
have less variation in the data than the model predicted. However, the proportion of censored
observations in this study was not unremarkable in the context of the biology of the system. More
importantly, there is no evidence of over-dispersion, which is often encountered when fitting simple
parametric models, such as those based on the Poisson distribution. There is no evidence to suggest
that the gamma distribution is a better fit, and no evidence of over-dispersion, so the analysis moves
forward utilizing the exponential model approach.

As mentioned previously, the exponential model is a generalization of the Poisson; therefore, the resulting
log-likelihood for the exponential is the Poisson. The censoring random variable C has a Poisson
distribution with rate parameter A. At given time t, E(C|t) = u. = At. In the time-to-event GLMM with
censored observations, we use C as the primary response variable. The Poisson distribution is the
conditional distribution of C given the random model effects. The link is Log(u.) = log(1) + log(t).
Because the form of the log-likelihood works within the GLMM estimating equations, we use log(t) as an
offset. This is all accomplished in the GLIMMIX procedure:

proc glimmix method=laplace data=data;
class treatment week plate;
logt = log(TimetoEmerge) ;
model c_emerge=treatment*week / noint d=poisson offset=logt ;
random intercept / subject=plate (treatment*week);
run;

Notice we use the METHOD=LAPLACE option in our time-to-event data analysis. The class of models
for which a Laplace approximation can be applied in PROC GLIMMIX is few compared to models to
which Pseudo-Likelihood (PL) can be applied. Laplace works here because we have a conditional log-
likelihood (d=poisson) and G-side random effects that are assumed to be normal (0, o2) (RANDOM
statement).



The Type lll tests (Table 3) tell us that the interaction of treatment x week is statistically significant at
0=0.05.

Type lll Tests of Fixed Effects
Effect Num DF Den DF F Value Pr>F
treatment*Week 74 132 349.51 <.0001

Table 3. Type lll Tests of Fixed Effects

ESTIMATING MEANS

Our main steps with the analysis is to estimate y, the temperature x week treatment combination means,
and use the i to determine the hazard and survivor functions for each treatment. Once we generate
parameter estimates, we apply the inverse link to give us the {i for the functions of interest. Hence, taking
()" yields A for the estimable functions of interests, and in turn we can calculate the survivor and hazard
functions. This is all accomplished using LSMEANS and LSMESTIMATES statements.

The LSMEANS statement provides estimates of log(1) — the rate parameter; the ILINK option gives actual
values of the estimated hazard function for each treatment x week. The PLOTS option provides a graphic
representation of the hazard function over the duration weeks for each temperature treatment:

proc glimmix method=laplace data=data;

class treatment week plate;

logt = log(TimetoEmerge) ;

model c_emerge=treatment*week / noint d=poisson offset=logt ;

random intercept / subject=plate (treatment*week) ;

lsmeans treatment*week / ilink plots=meanplot(sliceby=treatment ilink);
run;

The output from the LSMEANS statement (first 8 observations) appears as Table 4:

treatment*Week Least Squares Means

Standard
Standard Error
treatment Week Estimate Error DF tValue Pr>|tf Mean Mean

6-120C 12;12 squ
6-120C 12,12 squ
6-120C 12;12 squ
6-120C 12,12 squ
6-120C 12;12 squ
6-120C 12;12 squ
6-120C 12;12 squ
6-120C 12;12 squ

-3.0049  0.1361 132 -22.08 <.0001 0.04954 0.006742
-3.0623  0.1280 132 -23.92 <.0001 0.04678 0.005989
-3.0140 0.1325 132 -22.76 <.0001 0.04910 0.006503
-2.9981 0.1543 132 -19.43 <.0001 0.04988 0.007697
-2.9749  0.2425 132 -12.27 <0001 0.05105 0.01238
-2.9356  0.2887 132 -10.17 <.0001 0.05310 0.01533
-3.4012 1.0000 132 -3.40 0.0009 0.03333 0.03333
-2.7726 1.0000 132 -2.77 0.0064 0.06250 0.06250

0 N O O RN =

Table 4. Treatment*Week Least Squares Means

The MEAN column shows the estimates of the hazard functions for each temperature x week treatment
combination. The ESTIMATE column shows the link predictor function — which is a value of very little
interest for the current interpretation. The following plot (Figure 2) show that across many of the
treatments (except for 6°C hold) the hazard function increases as the number of weeks exposed to
temperature treatment also increases. But what does the model tell us about emergence?
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Figure 2. Plot of inverse link (hazard function) by duration of exposure ‘Week’ sliced by
temperature thermoprofile ‘Treatment’

The statement/option LSMESTIMATES / EXP provides us with exponentiated estimates of mean survival
time — which we interpret as the mean emergence. The first set of 8 weeks for temperature regime
treatment ‘6-12°C 12:12 squ’ are as follows:

proc glimmix method=laplace data=data;

class treatment week plate;

logt = log(TimetoEmerge) ;

model c emerge=treatment*week / noint d=poisson offset=logt ;

random intercept / subject=plate (treatment*week);

lsmestimate treatment*Week
'mean emerge time for 6-120C 12;12 squ wkl'
'mean emerge time for 6-120C 12;12 squ wk2'
'mean emerge time for 6-120C 12;12 squ wk3'
'mean emerge time for 6-120C 12;12 squ wk4'
'mean emerge time for 6-120C 12;12 squ wk5'
'mean emerge time for 6-120C 12;12 squ wk6'
'mean emerge time for 6-120C 12;12 squ wk7'
'mean emerge time for 6-120C 12;12 squ wk8'

[eNelNeNeNelNolNoRy

runy;



Table 5 is the LSMESTIMATE output table for the subset of observations provided in the preceding
PROC GLIMMIX statements:

Least Squares Means Estimates

Standard Exponentiated
Effect Label Estimate Error DF tValue Pr>|t| Estimate
treatment*Week mean emerge_time for 6-120C 12;12 squ 1 3.0049 0.1361 132 22.08 <.0001 20.1852
treatment*Week mean emerge_time for 6-120C 12;12squ2  3.0623  0.1280 132 23.92 <.0001 21.3770
treatment*Week mean emerge_time for 6-120C 12;12squ3  3.0140 0.1325 132 22.76 <.0001 20.3684
treatment*Week mean emerge_time for 6-120C 12;12squ4  2.9981 0.1543 132 19.43 <.0001 20.0476
treatment*Week mean emerge_time for 6-120C 12;12squ 5  2.9749 0.2425 132 12.27 <.0001 19.5882
treatment*Week mean emerge_time for 6-120C 12;12squ6 29356  0.2887 132 10.17 <.0001 18.8333
treatment*Week mean emerge_time for 6-120C 12;12squ7  3.4012 1.0000 132 3.40 0.0009 30.0000
treatment*Week mean emerge_time for 6-120C 12;12squ8 27726  1.0000 132  2.77 0.0064 16.0000

Table 5. Least Squares Means Estimates of Treatment ‘6-12°C 12:12 squ’ for Weeks 1 through 8

The EXPONENTIATED ESTIMATE column shows the estimated mean survival times, which we interpret
as the estimated mean emergence day. We use these estimates to plot the survivor (emergence)

functions for each temperature X week treatment combination. Figure 3 is modified from Yocum et al.
(2019).
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Figure 3. Plot of ‘Days to Emergence’ by the duration of exposure ‘Week’ sliced by the
temperature thermoprofile treatment

SUMMARY OF GLMM RESULTS

Some emergence-ready bees emerged during the exposure period to treatment ‘6°C hold’; these
observations are left censored, and this is exhibited in Figure 3 with no apparent emergence after week 4
of exposure. Bees emerged early from the following thermoprofiles: ‘6-12°C 12;12 squ’, ‘6-18°C 12;12
squ’ and ‘6-18°C 18;6 wav’ and are further investigated for biological effect in Yocum et al. (2019). Early
emergence started between exposure weeks 3 and 4 in the thermoprofiles ‘6-18°C 12;12 squ’ and ‘6-
18°C 18;6 wav’, with the rate of emergence increasing in the following weeks. Early emergence began
between exposure weeks 6 and 7 in the ‘6-12°C 12;12 squ’ thermoprofile. By week 8 of exposure,



emergence during low-temperature exposure reached 62% * 8.5% for ‘6-18°C 12;12 squ’, 12.7% +6.5%
for ‘6-12°C 12;12 squ’ and 9.8% + 3.6% for ‘6-18°C 18;6 waV’, respectively (modified from Yocum et al.,
2019).

CONCLUSION

Building a survival analysis, or time-to-event, model with censored observations is achievable via the
generalized linear mixed model approach described here. Time-to-event response with censored
observations are easily analyzed using methods commonly addressed in introductory survival analysis
texts. The major difference shown here is the addition of the random model effects. This example shows
how they exist because of the study design, and it is important to account for them in the model.
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