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We propose an auxiliary space method for the solution of the indefinite problem
arising from mixed method finite element discretizations of scalar elliptic problems. The
proposed technique uses conforming elements as an auxiliary space and utilizes special
interpolation operators for the transfer of residuals and corrections between the spaces.
We show that the corresponding method provides optimal solver for the indefinite
problem by only solving symmetric and positive definite auxiliary problems. We apply
this preconditioner to the mixed form discretization of Richards’ equation linearized
with the L-scheme. We provide numerical tests validating the theoretical estimates.
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1. Introduction

This paper is on uniform preconditioning of the linear systems resulting from the lowest order mixed finite element
discretizations of the Darcy equation. This is motivated as such systems need to be solved repeatedly during simulations
involving numerical solution of nonlinear equations, and in particular, Richards’ equation. Richards’ equation [1] is used
in many applications to model the flow of water through an unsaturated porous medium. L. Richards [1] derived it in
an attempt to develop a model of groundwater dynamics that incorporates nonlinear capillary effects without having to
model the air as an unknown itself; it can be seen as a simplification of two phase flow in which the air phase is assumed
to have constant pressure, and the effects of air saturation on the flow of the water phase are reflected by both water
content and hydraulic conductivity as functions of water pressure head [2]. Numerical simulations based on this equation
are used in agricultural, geochemical, and nuclear-waste-disposal applications, among others [3]. It is a natural nonlinear
extension of Darcy’s Law, with the nonlinearity being present in the hydraulic conductivity of the solid matrix. In many
cases, the linear relation Darcy flow imposes is an over-simplification, as the material properties can depend on the flow
in a nonlinear fashion.

Given a bounded region Ω ⊂ R
d, d = 2, 3, filled with a porous material, such as soil, and partially saturated with

water, we denote the pressure head of the fluid as our primary unknown Ψ (x, t), the water content at a particular point
as θ (x, t, Ψ ) (scaled so that θ = 0 implies relatively dry soil and θ = 1 implies fully saturated soil), the hydraulic
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conductivity of the porous medium as K (x, t, θ ), and f (x, t) as a source term. The formulation of the Richards’ equation
we use to describe the pressure head at any point in Ω with boundary ∂Ω = ΓD ∪ ΓN is the following:

∂tθ (Ψ )− div(K (θ (Ψ ))∇(Ψ + z)) = f , (x, t) ∈ Ω × [0, T ), (1)

Ψ (·, t) = gD(x, t), (x, t) ∈ ΓD × [0, T ),

K (θ (Ψ ))∇(Ψ + z) · ν = gN (x, t), (x, t) ∈ ΓN × [0, T ),

θ (Ψ (x, 0)) = θ0, (x, t) ∈ Ω × {0}.

This is a nonlinear elliptic–parabolic equation with potential degeneracies in both the parabolic and elliptic terms. As
such, its well posedness is a rather involved matter. We point the reader to the classical results in [4], and [5] for more
details on existence and uniqueness of solutions to such degenerate elliptic–parabolic equations. We also note that in
some very special cases, closed form analytic solutions can be found [6].

The numerical solution of the Richards’ equation involves two main steps: linearization and discretization. Several
linearization techniques can be used, and the ones we focused on are combined with the implicit Euler discretization in
time to yield a sequence of discrete problems whose solutions approximate the pressure head. Well known linearizations
used in practice are the Newton–Raphson and Picard methods. Additionally, there are some specialized linearization
techniques such as the modified Picard method [7], and the L-scheme [8]. The former method treats the conductivity
as in a Picard iteration and uses a lumped-mass matrix for the discretization of the time derivative of the water content.
The latter further simplifies the linearization by replacing the time derivative term with an upper bound. The convergence
rate of the L-scheme is slower than Newton–Raphson, but it is much more robust in the choice of the initial guess, and
much cheaper to compute, as the Jacobian is replaced with an upper bound for all iterations. For a recent review of these
and other linearization schemes for Richards’ equation we refer to [8].

As discretization strategies, finite elements have been suggested in several works (see [9–12], and [8]) and we focus
on mixed finite elements as our discretization. It is well known that different choices of physical parameters have notable
effect on both the accuracy of discretization and the efficiency of the linear solvers involved [13–15]. This is especially true
in the case of saturated–unsaturated media: near saturation fronts, the PDE switches type and the coefficients K (θ (Ψ ))
and θ (Ψ ) may develop steep gradients or even become singular for certain materials [14,15].

Many different approaches have been taken to accommodate such scenarios, including interpolation techniques for
the parameters to make numerical computations more amenable [11,13]. Alternatively, there have been many advances
in making the numerical schemes more robust [7,8,10].

It is also clear that the nonlinear iterations and the transient character of the problem require repeated solution of ill-
conditioned, large scale linear systems. Their optimal solution demands preconditioners which are robust with respect to
physical and discretization parameters and the changing type of the Richards’ equation across the computational domain.

In this paper we propose an auxiliary space preconditioner for the lowest order mixed finite-element discretization
and show that it is uniform. Auxiliary space preconditioners have been a popular trend in the design of fast solvers for
Darcy flow and other mixed methods. We refer to [16,17] for classical results on such methods. In our presentation, we
follow the framework outlined in [18] and the techniques proposed in this work have been used to solve different mixed
methods, including the Darcy flow [19], flow in fractured porous media [20], time-dependent Maxwell equations [21],
and Biot’s equations [22].

As auxiliary space, we utilize the conforming (Lagrange) linear finite elements on a simplicial mesh. An application of
the preconditioner requires a relaxation step followed by solving systems corresponding to discretizations of the same
problem with piece-wise linear continuous elements, which involves solving a system with significantly fewer degrees of
freedom.

The rest of the paper is organized as follows. In Section 2, we present the mixed form of the Richards’ equation and its
discretization. We then linearize it and develop the Schur iteration that we use to precondition the full mixed system on
each iteration. In Section 3, we introduce our auxiliary space preconditioner for the approximate Schur complement solve
in the Schur iteration, and prove its uniformity. Section 4 closes by showing some test results that numerically verify our
preconditioner works as intended for various choices of θ , K , and initial and boundary data.

2. Discretization and linearization

In [10,12,23,24], the mixed finite-element method has been used to solve the Richards’ equation (1). The mixed form
of (1) is:

∂tθ (Ψ )− div q = f , (x, t) ∈ Ω × [0, T ),

K−1(θ (Ψ ))q−∇(Ψ + z) = 0, (x, t) ∈ Ω × [0, T ),

Ψ (·, t) = gD(x, t), (x, t) ∈ ΓD × [0, T ), (2)

q · ν = gN (x, t), (x, t) ∈ ΓN × [0, T ),

θ (Ψ (x, 0)) = θ0, (x, t) ∈ Ω × {0}.
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The implicit Euler method with time step τ gives the following sequence of problems

θ (Ψ n)− τ div qn = τ f n + θ (Ψ n−1),

K−1(θ (Ψ n))qn −∇(Ψ n + z) = 0,

where (·)n is the value of the argument at timestep tn := nτ .
By introducing H(div, Ω) := {r ∈ L2(Ω)|div r ∈ L2(Ω)}, we consider the following variational formulation of this

problem: Find (Ψ n, qn) ∈ L2(Ω)× H(div, Ω) such that for every (v, r) ∈ L2(Ω)× H(div, Ω),

(θ (Ψ n), v)− τ (div qn, v) = τ (f n, v)+ (θ (Ψ n−1), v), (3)

(K−1(Ψ n)qn, r)+ (Ψ n + z, div r) = (gD, r)∂Ω ,

where (·, ·) denotes the usual L2 inner product, and (·, ·)∂Ω is the usual boundary inner product. For the sake of simplicity,
we focus on solving (3) with boundary conditions ΓD = ∂Ω, gD = 0 in space, and assuming for simplicity that the map
θ (Ψ ) is invertible at time t = 0, so that some initial pressure head Ψ0 can be found in d dimensions (d = 2 or 3).

Our choice of discretization for the variational problem is the lowest order mixed finite elements, namely, the standard
Raviart–Thomas-Nédélec elements [25–27]. The primary purpose of choosing this discretization is the desirable property
of conservation of mass, both globally and locally [25]. However, the drawback is the introduction of many more degrees
of freedom in the form of the local fluxes, qn.

We assume for simplicity that Ω is a Lipschitz polyhedron (polygon in 2D) formed by a union of shape-regular simplices
T ∈ Th: Ω = ∪T∈Th

T . We then choose subspaces Sh ⊂ L2(Ω) and Qh ⊂ H(div, Ω), spanned by piecewise constant basis
functions for Ψ n and first order Raviart–Thomas basis functions for qn, respectively. Thus, our fully discrete problem for
each timestep is finding a solution (Ψ n

h , qnh) ∈ Sh × Qh such that for every (ϕ, η) ∈ Sh × Qh,

(θ (Ψ n
h ), ϕ)− τ (div qnh, ϕ) = τ (f n, ϕ)+ (θ (Ψ n−1

h ), ϕ), (4)

(K−1(Ψ n
h )q

n, η)+ (Ψ n + z, div η) = (gD, r)∂Ω .

To linearize (4), we linearize the primal form of (1) using the L-scheme mentioned earlier. Each linear problem then
is written in mixed form. The corresponding mixed form L-scheme is as follows: Find (Ψϵ, qϵ) ∈ Sh×Qh so that for every
(ϕ, η) ∈ Sh × Qh,

(LθΨϵ, ϕ)− τ (div qϵ, ϕ) = τ (f , ϕ)+ (θn−1, ϕ)− ((θn,j−1)Ψ
n,j−1
h , ϕ)+ τ (div q

n,j−1
h , ϕ), (5)

(K−1(Ψ
n,j−1
h )qϵ, η)+ (Ψϵ, div η) = −(K−1(Ψ

n,j−1
h )q

n,j−1
h , η)− (Ψ

n,j−1
h , div η). (6)

We then update,

Ψ
n,j

h = Ψ
n,j−1
h + Ψϵ, q

n,j

h = q
n,j−1
h + qϵ .

Here, (·)n,j is the jth iterate of the iterative solution method being implemented to solve at timestep n. In [8] it is shown
that the choice of Lθ = supΨ |θ

′(Ψ )| gives a convergent and robust nonlinear iteration. It is also clear from the above mixed
formulation that on every time step nτ we need to solve several indefinite problems corresponding to the discretization
of the mixed form of the L-scheme.

2.1. Preconditioner for the mixed system

For each time step, the resulting fully discrete linear system that needs to be solved on every non-linear iteration has
the following form:

[
Aqq BT

div

Bdiv −Dθ

](
qϵ

Ψϵ

)
=

(
f̃

g̃

)
, (7)

where Aqq ← τ (K−1(Ψ
n,j−1
h )q, η), Bdiv ← τ (div q, ϕ), and Dθ ← (LθΨ , ϕ).

To solve this system, we use an inexact Uzawa-type iterative solver which we refer to as the Schur iteration, which
utilizes an approximation S̃R of the pressure Schur complement of the system, SR := −(Dθ + BdivA

−1
qq B

T
div). Such iteration

for the indefinite problem is given in Algorithm 2.1 . We note that this method only requires solutions of systems with
S̃R and Aqq.

Algorithm 2.1 (Schur Iteration). Given initial guess
(
q0ϵ , Ψ 0

ϵ

)
, we use the following recurrence relation to define(

qk+1ϵ , Ψ k+1
ϵ

)
in terms of the kth iterates:

1. Solve Aqqu = f̃ − BT
divΨ

k
ϵ ;

2. Solve,

S̃Rv = (̃g + DθΨ
k
ϵ − Bdivu); (8)
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3. Update Ψϵ as Ψ k+1
ϵ = Ψ k

ϵ + ωRv and then solve again with Aqq, namely, solve

Aqqw = −B
T
divv;

4. Update qϵ as qk+1ϵ = u+ w.

In order for our iterative scheme to be uniformly convergent with respect to mesh size and other physical parameters,
as a minimum, we need S̃R to be spectrally equivalent to SR. One way of doing this, on shape regular meshes, is to replace
Aqq with its diagonal, and define

S̃R := −
(
Dθ + Bdivdiag(Aqq)

−1BT
div

)
. (9)

We now show that Algorithm 2.1 converges for certain choice of ωR; this proof is similar in approach to many standard
approaches in the literature on iterative methods (see, e.g. Young [28]).

Lemma 2.2. For sufficiently small ωR, the iterates Ψ k
ϵ and qkϵ obtained by Algorithm 2.1 converge to the solution of (7).

Proof. We first consider Ψ k+1
ϵ −Ψ k

ϵ . Note that if

(
qϵ

Ψϵ

)
is a solution to (7), then Aqqqϵ+BT

divΨϵ = f̃ and Bdivqϵ−DθΨϵ = g̃ .

We have,

Ψ k+1
ϵ − Ψϵ = Ψ k

ϵ + v − Ψϵ

= Ψ k
ϵ + ωR̃S

−1
R

⎡
⎢⎣Bdivqϵ − DθΨϵ  

g̃

+DθΨ
k
ϵ − BdivA

−1
qq (f̃ − BT

divΨ
k
ϵ )

⎤
⎥⎦− Ψϵ

= Ψ k
ϵ − Ψϵ + ωR̃S

−1
R

⎡
⎢⎣Bdivqϵ + Dθ (Ψ

k
ϵ − Ψϵ)− BdivA

−1
qq (Aqqqϵ + BT

divΨϵ  
f̃

−BT
divΨ

k
ϵ )

⎤
⎥⎦

= Ψ k
ϵ − Ψϵ + ωR̃S

−1
R

[
Dθ (Ψ

k
ϵ − Ψϵ)+ BdivA

−1
qq B

T
div(Ψ

k
ϵ − Ψϵ)

]

= (I − ωR̃S
−1
R SR)(Ψ

k
ϵ − Ψϵ).

Thus, in order for Ψ k
ϵ → Ψϵ as k → ∞, it is necessary and sufficient ρ(I − ωR̃S

−1
R SR) < 1. Obviously, this inequality is

satisfied if ωR is sufficiently small, namely,

0 < ωR <
2

ρ (̃S−1R SR)
. (10)

On the other hand, for qk+1ϵ − qϵ we have

qk+1ϵ = u+ w = A−1qq (f̃ − BT
divΨ

k
ϵ )− A−1qq B

T
divv

= A−1qq (Aqqqϵ + BT
divΨϵ − BT

divΨ
k
ϵ )− A−1qq B

T
divv

= qϵ + A−1qq B
T
div(Ψϵ − Ψ k

ϵ − v) = qϵ − A−1qq B
T
div(Ψ

k+1
ϵ − Ψϵ).

As a result from this relation we get

qϵ − qk+1ϵ = A−1qq B
T
div(Ψ

k+1
ϵ − Ψϵ).

Thus, since Ψ k
ϵ → Ψϵ and A−1qq B

T
div is a bounded operator with our choice of finite-element spaces, qkϵ → qϵ as well. □

Clearly, (10) holds, provided that ωR is sufficiently small and Aqq is spectrally equivalent to a diagonal matrix, such as
diag(Aqq). Results along these lines are found in [29] and [30]. These works provide two simple techniques for estimating
the parameter ωR elementwise. Furthermore, we would like to point out that while using the diagonal of Aqq in (9)

is sufficient to show spectral equivalence between S̃R and SR, there are also techniques that provide more accurate
approximation. We refer to [30] for constructing diagonal (mass lumping) approximations to Aqq which also gives a finite
element solution with same accuracy as the mixed FE discretization without mass lumping.

To conclude this section, let us point out that in our formulation S̃R and SR are, in fact, negative definite. However
below often we discuss preconditioning of positive definite (−̃SR) and (−SR). To avoid proliferation of sign changes from
now on we refer to (−SR) and (−̃SR) as Schur complement and approximate Schur complement, respectively.

3. Auxiliary space preconditioner

To motivate the auxiliary space preconditioner for (8), we observe that the bilinear form generated by S̃R is a weighted
‘‘graph’’ Laplacian for Ψ corresponding to taking differences of the values of Ψ on neighboring elements across their
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common face. The weights are given by integrating K at each element. Similar formulation for continuous piece-wise

linear Lagrange elements, even for discretized convection–diffusion equations, are derived in [31] (see also [32] and

discussion there for M-matrix relatives of discretized elliptic operators). The idea we advocate here is to use the Lagrange

elements as auxiliary space for the piece-wise constants (P0) space using the tools developed in [16,17], and [18] to

analyze such an auxiliary space preconditioner. Overall, our aim is to combine the nodal discretization (continuous FE)

with a simple smoother and properly constructed interpolation map to precondition the P0 system. This preconditioner

offers two distinct advantages. First, we show that it is uniform with respect to the mesh size and the time step τ .

Second, the number of vertices of any lattice Th with no hanging nodes is smaller than the number of simplices forming

the triangulation. This can be seen by considering the case of a uniform lattice of size h of the unit square [0, 1]d with

N = h−1 being an integer. The number of simplices in the mesh is d!Nd, while the number of vertices is (N + 1)d. Thus,

the number of degrees of freedom of our auxiliary space is on the order of 1
d!

the number of degrees of freedom of the

S̃R system that must be solved on each step of our Schur iteration 2.1.

Next, to define the auxiliary space preconditioner, we follow the notation in [18] and introduce the following

components.

• The fictitious space V̄ = Sh × Vh, with Vh ⊂ H1
0 (Ω) being the space of piece-wise linear and continuous functions

with zero trace on the boundary. For typical elements p ∈ Sh and v ∈ Vh we have

p =
∑

T∈Th

pTχT , v =

N∑

j=1

vjφj, (11)

with {χT }T∈Th
being the set of characteristic functions for each simplex in the triangulation Th, which form a basis for

Sh, and {φj}
N
j=1 being the standard piecewise-linear Lagrange tent functions defined to be 1 on one of the N vertices

forming the triangulation, and 0 at every other vertex, which form a basis for Vh.

• The map between the auxiliary space and Sh, Π =
(
I ΠJ

)
, with ΠJ : Vh → Sh. The action of ΠJ amounts to taking

the average per element T of the values of v on its vertices j ∈ T , namely, given v ∈ Vh, v =
∑N

i=1 viφi, we define

[ΠJ (v)]T := pT =
1

d+ 1

∑

j∈T

vj, ΠJ (v) =
∑

T

pTχT , for all v ∈ Vh.

• Our smoother is the Jacobi smoother, which just uses the diagonal of S̃R (which may be scaled if needed);

D̃S = diag(̃SR) : Sh → S ′h.

The preconditioner B is then

B = Π

(
D̃S 0
0 AE

)−1
Π∗ = D−1

S̃
+ΠJA

−1
E Π∗J , (12)

where AE denotes the linearization and discretization of (1) on the auxiliary space Vh.

Given a right hand side r , an algorithm for the action of B is as follows.

Algorithm 3.1 (Auxiliary Space Preconditioner B: z ← Br).

1. Transfer the right hand side r to the auxiliary space Vh: rVh ← Πr ,

2. Solve the auxiliary problem on Vh: eVh ← A−1E rVh ,

3. Transfer the correction eVh back to Sh: z ← Π∗eVh ,

4. Smooth the correction with Jacobi iteration: z ← z + D−1
S̃

(r − S̃Rz).

To discretize the problem on the auxiliary space, we wish to use a discretization on Vh that formulates the diffusion

operator on vertices as differences along edges of elements, as that facilitates the analysis we use to prove the uniformity

of our preconditioner. Our choice is to discretize using edge averaged finite elements, or EAFE [31] (see also [33] for

such a discretization in 2D). While standard Lagrange elements can also be used, our choice is motivated by the fact

that such discretizations are robust with respect to jumps in the coefficient K , as they use harmonic averages of the

coefficient K along edges. The second reason is that such discretizations can be used for higher order, e.g., Newton–

Raphson linearizations of the Richards’ equation, which result in discrete convection–diffusion problems and EAFE

provides accurate discretization in this case too. Moreover, for symmetric linearizations like the L-scheme, as shown

in [31] and [33] this discretization guarantees monotone discretizations under reasonable conditions on the mesh. For

details on such geometric conditions we refer the reader also to [34], and [35].

In what follows we need to use spectrally equivalent forms of AE and S̃R which are as follows.

(AEv, w) =
∑

e∈Th

ωeδevδew and (̃SRp, s) =
∑

f∈Th

df (pT+ − pT− )(sT+ − sT− ). (13)
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where for an edge e connecting vertices i and j (where we assume that i > j without loss of generality), we define
δef = f (i)− f (j), and for a face f ∈ Th, an assigned ordering of Th, and a function f ∈ Sh, we take f+ and f− to be the value
of f at the higher (resp. lower) numbered simplex sharing the face. Direct computations yield

df = τ

[∫

Ω

K−1|φf |
2 dx

]−1
.

A is well known, for the symmetric problem the weight

ωe = τ

[
1

|τe|

∫

e

K−1 ds

]−1
ω̃e,

with |τe| being the length of edge e, and ω̃e, defined in [31], equation (2.5) uses geometric properties of the individual
simplices, namely the angle between faces across edges and lengths of edges opposite these angles. The scaling of both of
these coefficients is hd−2 and, as is immediately seen, the ratio of these terms is independent of h and τ , only dependent
on mesh geometry and average values of K over edges versus over elements.

Taking s = p and v = w, we arrive at

(AEv, v) =
∑

e∈Th

ωe(δev)
2 and (̃SRp, p) =

∑

f∈Th

df (pT+ − pT− )
2. (14)

Next, we show that (12) is a uniform preconditioner for the problem (8) under certain assumptions. To this end, we
introduce the following notation,

• Ωi is the subdomain consisting of simplices sharing vertex i, Ωi = ∪T∋iT ,

• Fi is the set of faces containing vertex i, Fi = {f ∋ i},

• Ni is the number of simplices sharing vertex i,

• N
f

i is the number of faces in Fi,

• For an edge e with vertices i and j, Ni∪j is the number of simplices in Ωi ∪Ωj, and Ni∩j is the number of simplices
in Ωi ∩Ωj.

To prove that this auxiliary space preconditioner is uniform, it is sufficient to prove the following three properties of the
transfer operators ΠJ , the auxiliary problem AE , and the smoother D̃S hold independent of h.

Lemma 3.2 (Estimate for the Transfer Operator). There exists cJ > 0 such that

(̃SRΠJv, ΠJv)
2 ≤ c2J (AEv, v), ∀v ∈ Vh, (15)

with cJ independent of mesh size.

Proof. Let v ∈ Vh. To show (15), we use the definition of ΠJ and the relation (14),

(̃SRΠJv, ΠJv)
2 =

∑

f∈Th

df

⎛
⎝ 1

d+ 1

∑

i∈T+

vi −
1

d+ 1

∑

j∈T−

vj

⎞
⎠

2

=
∑

f∈Th

df

(d+ 1)2
(vf ,+ − vf ,−)

2,

where vf ,+ and vf ,− are the values of v at the vertices in T+ and T− opposite face f , respectively. These vertices are not
connected by any edge in Th, but can be connected via two edges e+ ∈ T+ and e− ∈ T−. Using this fact we can relate the
two bilinear forms:

∑

f∈Th

df

(d+ 1)2
(vf ,+ − vf ,−)

2 =
∑

f∈Th

df

(d+ 1)2
(δe+v + δe−v)

2

≤
∑

f∈Th

2df

(d+ 1)2

[
(δe+v)

2 + (δe−v)
2
]
≤

2Dκe

(d+ 1)2

∑

e∈Th

ωe(δev)
2

= c2J (AEv, v),

with D being a scaling constant changing from the weights df to ωe that is independent of discretization parameters h and
τ , and κe being an upper bound on the number of times an edge can be used on the sum over faces, κe = maxe∈Th

2Ni∩j.
Thus, this cJ is indeed independent of mesh size. □

Remark 3.3. Note that the estimate for κe is conservative. In three dimensions, one can almost always use different edges
to connect the points e+ and e−, so that in practice, cJ is smaller.
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Lemma 3.4 (Continuity of the Smoother).

∃ c̃SR > 0 : (̃SRv, v) ≤ c2
S̃R
(D̃Sv, v), ∀v ∈ Sh.

with c̃SR independent of mesh size.

Proof. Given S̃R is symmetric positive definite (SPD), we use the Cauchy–Schwarz inequality using the standard Euclidean
basis {ei} to obtain

|̃S
ij

R | = |(̃SRei, ej)| = |(ei, ej )̃SR | ≤ ∥ei∥̃SR∥ej∥̃SR =

√
S̃ iiR S̃

jj

R .

Next, using this inequality we obtain

⏐⏐⏐[D−1/2
S̃

S̃RD
−1/2

S̃
]ij

⏐⏐⏐ = |̃S
ij

R |√
S̃ iiR S̃

jj

R

≤ 1. (16)

Therefore, we have

c̃SR = max
v∈Sh

(̃SRv, v)

(D̃Sv, v)
= max

w=D
1/2

S̃
v∈Sh

(D
−1/2

S̃
S̃RD
−1/2

S̃
w, w)

(w, w)

= ρ

(
D
−1/2

S̃
S̃RD
−1/2

S̃

)
≤ ∥D

−1/2

S̃
S̃RD
−1/2

S̃
∥∞.

From the inequality (16) it follows that ∥D
−1/2

S̃
S̃RD
−1/2

S̃
∥∞ is bounded by the number of nonzeros per row in S̃R, which can

be bounded by the number of faces an element has, i.e., (d+ 1). □

Lemma 3.5 (Stable Decomposition). F.or every p ∈ Sh, there exist p0 ∈ Sh and wJ ∈ Vh such that p = p0 +ΠJwJ and

(D̃Sp0, p0)+ (AEwJ , wJ ) ≤ c20∥p∥
2

S̃R
, (17)

where c0 > 0 should be small and independent of mesh size.

Proof. To bound the first term on the left hand side of (17), we set the value of wJ ∈ Vh at a vertex i to equal the average
of the values of p ∈ Sh on the simplices T which surround the vertex i. More precisely,

Vh ∋ wJ =
∑

i

[wJ ]iφi, [wJ ]i =
1

Ni

∑

T∈Ωi

pT .

By the definition (14) and rearranging the decomposition of p, for each T ∈ Th

[p0]T = [p−ΠJwJ ]T = pT −
1

d+ 1

∑

i∈T

[wJ ]i

= pT −
1

d+ 1

∑

i∈T

1

Ni

∑

T ′∈Ωi

pT ′

=
1

d+ 1

∑

i∈T

1

Ni

∑

T ′∈Ωi

(pT − pT ′ ).

We now make the following estimate for this fixed T , using two applications of Cauchy–Schwarz:
⎛
⎝pT −

1

d+ 1

∑

i∈T

1

Ni

∑

T ′∈Ωi

pT ′

⎞
⎠

2

=

⎛
⎝ 1

d+ 1

∑

i∈T

1

Ni

∑

T ′∈Ωi

(pT − pT ′ )

⎞
⎠

2

≤
1

(d+ 1)2n2
T

⎛
⎝∑

i∈T

∑

T ′∈Ωi

(pT − pT ′ )

⎞
⎠

2

≤
1

(d+ 1)nT

∑

i∈T

∑

T ′∈Ωi

(pT − pT ′ )
2.
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with nT = mini∈T Ni. For each simplex T ′ ∈ Ωi, we expand the difference (pT − pT ′ ) as a telescoping sum of differences
across faces,

∑
f∈Fi(T ,T ′)(pT+− pT−). To define this set of faces Fi(T , T ′), we must first define a chain of pairwise–adjacent

simplices {Tj}
Ji
j=1 ⊂ Ωi of minimal length, with T1 = T and TJi = T ′. Then for this chain,

Fi(T , T ′) = {f ∈ Fi : fj = Tj+1 ∩ Tj, j = 1, . . . , Ji − 1}.

Denoting N
f

Fi(T ,T ′)
as the number of faces in Fi(T , T ′), we get the following:

⎛
⎝pT −

1

d+ 1

∑

i∈T

1

Ni

∑

T ′∈Ωi

pT ′

⎞
⎠

2

≤
1

(d+ 1)nT

∑

i∈T

∑

T ′∈Ωi

(pT − pT ′ )
2 =

1

(d+ 1)nT

∑

i∈T

∑

T ′∈Ωi

⎛
⎝ ∑

f∈Fi(T ,T ′)

(pT+ − pT−)

⎞
⎠

2

≤
1

(d+ 1)nT

∑

i∈T

∑

T ′∈Ωi

N
f

Fi(T ,T ′)

∑

f∈Fi(T ,T ′)

(pT+ − pT−)
2. (18)

Since {Tj}
Ji
j=1 ⊂ Ωi, the length Ji of each simplex chain length connecting the simplices T and T ′ is bounded from above

by Ni/2; otherwise a shorter chain of simplices connecting T and T ′ must exist.
Given this observation, we can reorder the two innermost sums in the last inequality above:

∑

T ′∈Ωi

N
f

Fi(T ,T ′)

∑

f∈Fi(T ,T ′)

(pT+ − pT−)
2 ≤

∑

f∈Fi

(pT+ − pT−)
2

∑

T ′∈Ωi

N
f

Fi(T ,T ′)
,

which gives us the bound

∑

T ′∈Ωi

N
f

Fi(T ,T ′)

∑

f∈Fi(T ,T ′)

(pT+ − pT−)
2 ≤

F (F + 1)

2

∑

f∈Fi

(pT+ − pT−)
2, (19)

with F = maxi∈Th
maxT , T ′∈Ωi

N
f

Fi(T ,T ′)
. As each N

f

Fi(T ,T ′)
= Ji − 1, taking J = maxi∈Th

Ji it follows that F ≤ maxi∈Th

Ni

2
− 1,

which gives us a uniform estimate for F .
Combining (18) and (19) with the observation that any face f ∈ Fi, i ∈ T is shared by at most d vertices in T , and that

each face f is globally shared by at most 2 simplices in the mesh, we get the final set of inequalities,

(D̃Sp0, p0)
2 =

∑

T∈Th

dT (p0)
2
T =

∑

T∈Th

dT (p−ΠJwJ )
2

≤
dF (F + 1)D∗

(d+ 1)n

∑

f∈Th

df (pT+ − pT−)
2 = c2D∥p∥

2

S̃R
,

with n = minT∈Th
nT and D∗ = maxT ,f∈T

dT
df
, thus giving us a constant independent of mesh size due to the weights dT

and df being of the same order in h.
Now we need to bound the second term on the left hand side of (17). Taking the same definition of wJ as above, our

goal is to show (AEwJ , wJ ) ≤ c2A∥p∥
2

S̃
. Since (AEwJ , wJ ) =

∑
e∈Th

we

(
1
Ni

∑
T∈Ωi

pT −
1
Nj

∑
T ′∈Ωj

pT ′
)2

, we fix an edge e ∈ Th

to estimate each term of the sum first.

Note that for any constant C ,

⎛
⎝ 1

Ni

∑

T∈Ωi

C −
1

Nj

∑

T ′∈Ωj

C

⎞
⎠

2

= (C − C)2 = 0. Then we have,

⎛
⎝ 1

Ni

∑

T∈Ωi

pT −
1

Nj

∑

T ′∈Ωj

pT ′

⎞
⎠

2

=

⎛
⎝ ∑

T∈Ωi∪Ωj

(pT − C)

(
χΩi

(T )

Ni

−
χΩj

(T )

Nj

)⎞
⎠

2

≤
∑

T∈Ωi∪Ωj

(pT − C)2
∑

T∈Ωi∪Ωj

(
χΩi

(T )

Ni

−
χΩj

(T )

Nj

)2

≤

⎛
⎝ ∑

T∈Ωi∪Ωj

(
χΩi

(T )

Ni

)2

+
∑

T∈Ωi∪Ωj

(
χΩj

(T )

Nj

)2

⎞
⎠ inf

C∈R
∥pΩi∪Ωj

− C1∥2
ℓ2

,
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where the first inequality is the Cauchy–Schwarz inequality and the second is due to both the Cauchy–Schwarz inequality
and the non-negativity of the terms in the second summand. Here χΩk

(T ) is the characteristic function on set Ωk, the

vector pΩi∪Ωj
= (pT1 , . . . , pTNi∪j

)T denotes the values of p on each simplex in Ωi ∪ Ωj, and 1 is the vector of the same

size as pΩi∪Ωj
with ones on each entry. It is well known that the C that will minimize the ℓ2-norm in this scenario is

the average of p over each simplex in the union, p̄ = 1
Ni∪j

∑
T∈Ωi∪Ωj

pT . Using this fact and that both
χΩk

(T )

Nk
≤ 1 and

∑
T∈Ωi∪Ωj

χΩk
(T )

Nk
= 1 for k = i, j, we can continue our estimates,

⎛
⎝ ∑

T∈Ωi∪Ωj

(
χΩi

(T )

Ni

)2

+
∑

T∈Ωi∪Ωj

(
χΩj

(T )

Nj

)2

⎞
⎠ inf

C∈R
∥pΩi∪Ωj

− C1∥2
ℓ2

≤ 2∥pΩi∪Ωj
− p̄1∥2

ℓ2
≤ 2Ni∪jDiam(Ωi ∪Ωj)(Lp, p)Ωi∪Ωj

= γ 2
P,e

∑

f∈Ωi∪Ωj

wf ,L(pT+ − pT−)
2.

The second inequality is due to the Poincaré inequality, with ∥∇p∥2
ℓ2

expressed as the bilinear form (Lp, p)Ωi∪Ωj
, which

is the local action of the graph Laplacian. The weights wf ,L are the weights required to form the local Laplacian bilinear
form across faces.

Finally, we incorporate the sum over all edges,

(AEwJ , wJ ) =
∑

e∈Th

we(δewJ )
2

≤ γ 2
P

∑

e∈Th

∑

f∈Ωi∪Ωj

wf ,L(pT+ − pT−)
2

≤ Dγ 2
P

∑

f∈Th

df (pT+ − pT−)
2 = c2A∥p∥̃S,

where γP = maxe∈Th
γP,e, D = dα D̃, with α = maxi∈Th

{# vertices ∈ Ωi} and D̃ is a scaling factor used to change from the
weights wf ,L to df , again independent of mesh size due to both weights being of the same order in h.

Taking the max of cD and cA as c0 in (17) gives us the required uniform bound, which completes the proof. □

As shown in [18] and [17], the last three lemmas guarantee that our preconditioner is uniform, as they combine to
provide the hypotheses required to apply the fictitious space lemma, introduced in [16]:

Theorem 3.6 (Fictitious Space Lemma). Assume that Π is surjective and

∃c0 > 0 : ∀v ∈ V : ∃v̄ ∈ V̄ : v = Π v̄ and ∥v̄∥Ā ≤ c0∥v∥A, (20)

∃c1 > 0 : ∥Π v̄∥A ≤ c1∥v̄∥Ā ∀v̄ ∈ V̄ . (21)

Then

c−20 ∥v∥
2
A ≤ (BAv, v)A ≤ c21∥v∥

2
A ∀v ∈ V ,

with c0 and c1 independent of mesh size.

Corollary 3.7. The auxiliary space preconditioner defined in (12) provides a uniform preconditioner for S̃R.

Proof. Taking V = Vh, V̄ = Sh × Vh and Π =
(
I ΠJ

)
as defined before. Let (v, v)A = (̃SRv, v), v ∈ Sh,

(v̄, v̄)Ā = (D̃SR
v0, v0) + (AEvh, vh), v̄ = (v0, vh) ∈ V̄ , then Lemmas 3.2 and 3.4 prove that our scheme fulfills the second

assumption (21) of Theorem 3.6, and Lemma 3.5 shows that the first assumption (20) is satisfied. Then direct application
of Theorem 3.6 shows that B is a uniform preconditioner for S̃R. □

4. Numerical tests

In our numerical tests we solved the linear system (7) for the first L-scheme iteration as outlined above with an outer
GMRES iterations preconditioned with the Schur iteration Algorithm 2.1 with relative residual tolerance 5 × 10−8. The
inner solve of S̃R system (8) is done using Preconditioned Conjugate Gradient (PCG) with the auxiliary space method
described in the previous section as preconditioner. The inner iterations were stopped when the relative residual was
smaller than 10−9. To solve the auxiliary problem AE to machine precision, we used unsmoothed aggregation algebraic
multigrid (UA-AMG) method.
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Table 1

Number of outer GMRES/average inner PCG iterations (rounded to nearest integer) for

solving the linearization of the mixed form of RE, using the analytic K and θ as described

in Test 1. Here the mesh size is h = 2−p and timestep τ = 1.

p 2 3 4 5 6

Outer/Inner 5/13 5/15 5/15 5/15 5/16

For both examples outlined below, we set Ω = [0, 2]3 with uniform tesselation Th of characteristic element size

h = 2−p, and defined an analytic solution Ψe(x, t), with source term being determined analytically by plugging in the

solution into Richards’ equation. We used Dirichlet data for Ψ (x, t) for all t > 0, Ψ (x, t)|∂Ω= Ψe(x, t), and initial condition

Ψ0 = Ψe(x, 0).

4.1. Example 1: Continuously varying K

For our first example, we chose Ψe(x, t) = −10t|x|
2,

θ (Ψ ) = exp(Ψ ), K (θ ) = (Kmax − Kmin)θ + Kmin,

with Kmin = 1 × 10−6 and Kmax = 1. Thus, K varies continuously by several orders of magnitude from the bottom of

the cube to the top.

Table 1 lists the number of outer GMRES and average inner PCG iterations for the preconditioned linear solve of the

first L-scheme step for this problem. To give some perspective on the size of the respective mesh sizes used to test, for

h = 2−6, the size of the full system is over 4.5 million DOF, with over 1.5 million pressure unknowns; the size of the

auxiliary system used to precondition (8) in the Schur iteration is around 262,000 unknowns, which is a reduction in

degrees of freedom of roughly 1/6. It should be noted that since the auxiliary system is as poorly conditioned as (8), a

preconditioner can (and should in practice) be used to solve the auxiliary problem efficiently, as the performance of the

auxiliary space preconditioner depends on solving the auxiliary problem accurately.

4.2. Example 2: Van Genuchten–Mualem (VGM) model

For the next example we use a setup given in [8] and we consider the so-called Van Genuchten–Mualem (VGM) model

for K and θ :

θ (Ψ ) =

{
θR + (θS − θR)

[
1+ |αΨ |n

] 1
n−1 , Ψ < 0,

θS, Ψ ≥ 0.
(22)

K (θ ) =

⎧
⎪⎨
⎪⎩
KSθN (Ψ )

1
2

[
1−

(
1− θN (Ψ )

n
n−1

) n−1
n

]2

, Ψ < 0,

KS, Ψ ≥ 0.

(23)

Let θN be the dimensionless water content defined as

θN (Ψ ) =
θ (Ψ )− θR

θS − θR
.

The parameters n > 1 and α are typically determined using the so called log-slope technique based on test data from

field experiments of water infiltration using different compositions of materials [36]. Elementary analysis shows that θ

is Lipschitz continuous for n > 1 at θ = 1, and that K is also Lipschitz continuous for n > 2; this corresponds to media

with sufficiently uniform pore size distribution.

For the second test related to the VGM model, we considered the same choice of test function and boundary/initial

conditions as the first, but use the VGM K and θ as defined above. The test runs for values of α, n, and KS for three different

media: Beit Netofa clay (α = 0.152, n = 1.17, KS = 8.2× 10−4), silt loam (α = 0.423, n = 2.06, KS = 5× 10−2), and clay

loam (α = 1.9, n = 1.31, KS = 6.2× 10−2). The Beit Netofa clay and the silt loam examples are from in [8], and the clay

loam example is from [13].

Note that K reduces roughly 4 orders of magnitude from the bottom of the cube to the top, roughly 8 orders for the

Beit Netofa clay, and roughly 10 orders for the clay loam. Due to the high contrast, we increased the number of V-cycles

to 60 for the auxiliary space solve.

As Table 2 shows, even for large contrast K , our preconditioner maintains its robustness, though the authors would

like to remind that getting linearization schemes to converge for such high contrast K is a different challenge that has

been well documented in the literature (e.g. [6,11,13,15]).
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Table 2

Average inner PCG iterations for Stilde solve for each of three different

media after preconditioning with aux space preconditioner. Here the mesh

size is h = 2−p and timestep τ = 1.

p 2 3 4 5 6

Beit Netofa clay 8 12 15 15 15

Silt loam 11 14 15 15 15

Clay loam 9 13 16 17 17

Acknowledgment

The authors would like to thank Anna Mazzucato for many productive discussions on the theoretical results concerning
the well-posedness of the Richards’ equation.

References

[1] L. Richards, Capillary conduction of liquids through porous medium, Physics 1 (1931) 318–333.
[2] Y. Wu, J. Kool, J. McCord, An evaluation of alternative numerical formulations for two-phase air water flow in unsaturated soils, in:Proceedings

of the American Geophysical Union Spring meeting, Montreal, 1992.
[3] P. van der Heidje, Compilation of Saturated and Unsaturated Zone Modeling Software, Tech. Rep. EPA/R-96/009, 1996.
[4] H.W. Alt, S. Luckhaus, Quasilinear elliptic–parabolic differential equations, Math. Z. 183 (3) (1983) 311–341, http://dx.doi.org/10.1007/

BF01176474.
[5] F. Otto, L1-contraction and uniqueness for quasilinear elliptic–parabolic equations, J. Differential Equations 131 (0155) (1996) 20–38.
[6] C.T. Miller, et al., Multiphase flow and transport modeling in heterogeneous porous media: Challenges and approaches, Adv. Water Resour. 21

(1998a) 77–120.
[7] M.A. Celia, E.T. Bouloutas, R.L. Zarba, A general mass-conservative numerical solution for the unsaturated flow equation, Water Resour. Res. 26

(7) (1990) 1483–1496, http://dx.doi.org/10.1029/WR026i007p01483.
[8] F. List, F.A. Radu, A study on iterative methods for solving Richards’ equation, Comput. Geosci. 20 (2) (2016) 341–353, http://dx.doi.org/10.

1007/s10596-016-9566-3.
[9] T. Arbogast, M.F. Wheeler, N.-Y. Zhang, A nonlinear mixed finite element method for a degenerate parabolic equation arising in flow in porous

media, SIAM J. Numer. Anal. 33 (4) (1996) 1669–1687, http://dx.doi.org/10.1137/S0036142994266728.
[10] L. Bergamaschi, M. Putti, Mixed finite elements and Newton-type linearizations for the solution of Richards’ equation, Internat. J. Numer.

Methods Engrg. 45 (8) (1999) 1025–1046, http://dx.doi.org/10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.3.CO;2-7.
[11] P. Forsyth, Y. Wu, K. Pruess, Robust numerical methods for saturated-unsaturated flow with dry initial conditions in heterogeneous media,

Adv. Water Resour. 18 (1) (1995) 25–38, http://dx.doi.org/10.1016/0309-1708(95)00020-J, URL http://www.sciencedirect.com/science/article/pii/

030917089500020J.
[12] I.S. Pop, F. Radu, P. Knabner, Mixed finite elements for the Richards’ equation: linearization procedure, J. Comput. Appl. Math. 168 (1–2) (2004)

365–373, http://dx.doi.org/10.1016/j.cam.2003.04.008.
[13] C.T. Miller, G.A. Williams, C. Kelley, M.D. Tocci, Robust solution of Richards’ equation for nonuniform porous media, Water Resour. Res. 34

(1998b) 2599–2610.
[14] P. Forsyth, M. Kropinski, Monotonicity considerations for saturated-unsaturated subsurface flow, SIAM J. Sci. Comput. 18 (1997) 1328–1354.
[15] M.W. Farthing, F.L. Ogden, Numerical solution of Richards’ equation: A review of advances and challenges, Soil Sci. Soc. Am. J. 81 (2017)

1257–1269.
[16] S.V. Nepomnyaschikh, Decomposition and fictitious domains methods for elliptic boundary value problems, in: Fifth International Symposium

on Domain Decomposition Methods for Partial Differential Equations, Norfolk, VA, 1991, SIAM, Philadelphia, PA, 1992, pp. 62–72.
[17] J. Xu, The auxiliary space method and optimal multigrid preconditioning techniques for unstructured grids, Computing 56 (1996) 215–235.
[18] R. Hiptmair, J. Xu, Nodal auxiliary space preconditioning in H(curl) and H(div) spaces, SIAM J. Numer. Anal. 45 (2007) 2483–2509.
[19] R.S. Tuminaro, J. Xu, Y. Zhu, Auxiliary space preconditioners for mixed finite element methods, in: M. Bercovier, M.J. Gander, R. Kornhuber, O.

Widlund (Eds.), Domain Decomposition Methods in Science and Engineering XVIII, in: Lecture Notes in Computational Science and Engineering,

Springer, Berlin Heidelberg, 2009, pp. 99–109.
[20] A. Budiša, X. Hu, Block preconditioners for mixed-dimensional discretization of flow in fractured porous media, 2019, arXiv preprint arXiv:

1905.13513.
[21] J. Adler, X. Hu, L. Zikatanov, Robust solvers for Maxwell’s equations with dissipative boundary conditions, SIAM J. Sci. Comput. 39 (5) (2017)

S3–S23, http://dx.doi.org/10.1137/16M1073339.
[22] J.H. Adler, F.J. Gaspar, X. Hu, C. Rodrigo, L.T. Zikatanov, Robust Block Preconditioners for Biot’s Model, in: Lecture Notes in Computational

Science and Engineering, vol. 125, Springer, 2018, pp. 3–16, arXiv:1705.08842.
[23] M.W. Farthing, C. Kees, C. Miller, Mixed finite element methods and higher order temporal approximations for variably saturated groundwater

flow, Adv. Water Resour. 26 (2003) 373–394.
[24] C.S. Woodward, C.N. Dawson, Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably

saturated porous media, SIAM J. Numer. Anal. 37 (3) (2000) 701–724, http://dx.doi.org/10.1137/S0036142996311040 (electronic).
[25] P.-A. Raviart, J.M. Thomas, A mixed finite element method for 2nd order elliptic problems, in: Mathematical Aspects of Finite Element Methods,

Proc. Conf., Consiglio Naz. delle Ricerche (CNR), Rome, 1975, in: Lecture Notes in Math., vol. 606, Springer, Berlin, 1977, pp. 292–315.
[26] J.-C. Nédélec, Mixed finite elements in R3 , Numer. Math. 35 (3) (1980) 315–341, http://dx.doi.org/10.1007/BF01396415.
[27] J.-C. Nédélec, A new family of mixed finite elements in R3 , Numer. Math. 50 (1) (1986) 57–81, http://dx.doi.org/10.1007/BF01389668.
[28] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York-London, 1971.
[29] R. Hiptmair, Finite elements in computational electromagnetism, Acta Numer. 11 (2002) 237–339.
[30] F. Brezzi, M. Fortin, L. Marini, Error analysis of piecewise constant pressure approximations of darcy’s law, Comput. Methods Appl. Mech. Eng.

195 (2006) 1547–1559.
[31] J. Xu, L. Zikatanov, A monotone finite element scheme for convection–diffusion equations, Math. Comp. 68 (228) (1999) 1429–1446, http:

//dx.doi.org/10.1090/S0025-5718-99-01148-5.
[32] J. Xu, L. Zikatanov, Algebraic multigrid methods, Acta Numer. 26 (2017) 591–721, http://dx.doi.org/10.1017/S0962492917000083.

http://refhub.elsevier.com/S0898-1221(19)30459-6/sb1
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb3
http://dx.doi.org/10.1007/BF01176474
http://dx.doi.org/10.1007/BF01176474
http://dx.doi.org/10.1007/BF01176474
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb5
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb6
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb6
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb6
http://dx.doi.org/10.1029/WR026i007p01483
http://dx.doi.org/10.1007/s10596-016-9566-3
http://dx.doi.org/10.1007/s10596-016-9566-3
http://dx.doi.org/10.1007/s10596-016-9566-3
http://dx.doi.org/10.1137/S0036142994266728
http://dx.doi.org/10.1002/(SICI)1097-0207(19990720)45:8<1025::AID-NME615>3.3.CO;2-7
http://dx.doi.org/10.1016/0309-1708(95)00020-J
http://www.sciencedirect.com/science/article/pii/030917089500020J
http://www.sciencedirect.com/science/article/pii/030917089500020J
http://www.sciencedirect.com/science/article/pii/030917089500020J
http://dx.doi.org/10.1016/j.cam.2003.04.008
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb13
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb13
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb13
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb14
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb15
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb15
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb15
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb16
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb16
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb16
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb17
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb18
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb19
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb19
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb19
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb19
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb19
http://arxiv.org/abs/1905.13513
http://arxiv.org/abs/1905.13513
http://arxiv.org/abs/1905.13513
http://dx.doi.org/10.1137/16M1073339
http://arxiv.org/abs/1705.08842
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb23
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb23
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb23
http://dx.doi.org/10.1137/S0036142996311040
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb25
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb25
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb25
http://dx.doi.org/10.1007/BF01396415
http://dx.doi.org/10.1007/BF01389668
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb28
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb29
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb30
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb30
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb30
http://dx.doi.org/10.1090/S0025-5718-99-01148-5
http://dx.doi.org/10.1090/S0025-5718-99-01148-5
http://dx.doi.org/10.1090/S0025-5718-99-01148-5
http://dx.doi.org/10.1017/S0962492917000083


416 J. Batista, X. Hu and L.T. Zikatanov / Computers and Mathematics with Applications 80 (2020) 405–416

[33] P. Markowich, M. Zlamal, Inverse-average-type finite element discretizations of self-adjoint second order elliptic problems, Math. Comp. 51

(1989) 431–449.

[34] T. Barth, Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations, Tech. Rep. 787, 1992, AGARD,

special course on unstructured grids methods for advection dominated flows.

[35] M. Bern, D. Eppstein, Mesh generation and optimal triangulation, in: Computing in Euclidean Geometry, World Scientific, 1992, pp. 23–90.

[36] M.T. Van Genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J. 44 (5) (1980)

892–898.

http://refhub.elsevier.com/S0898-1221(19)30459-6/sb33
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb33
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb33
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb34
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb34
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb34
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb35
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb36
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb36
http://refhub.elsevier.com/S0898-1221(19)30459-6/sb36

	Auxiliary space preconditioning for mixed finite element discretizations of Richards' equation
	Introduction
	Discretization and linearization
	Preconditioner for the mixed system

	Auxiliary space preconditioner
	Numerical tests
	Example 1: Continuously varying K
	Example 2: Van Genuchten–Mualem (VGM) model

	Acknowledgment
	References


