
A Multi-criteria Approximation Algorithm for Influence Maximization

with Probabilistic Guarantees

Maleq Khan∗ Gopal Pandurangan† Nguyen Dinh Pham‡ Anil Vullikanti§ Qin Zhang¶

Abstract

The well-studied influence maximization problem involves

choosing a seed set of a given size, which maximizes the

expected influence. However, such solutions might have

a significant probability of achieving low influence, which

might not be suitable in many applications. In this paper, we

consider a different approach: find a seed set that maximizes

the influence set size with a given probability. We show

that this objective is not submodular, and design a greedy,

multi-criteria approximation algorithm for this problem with

rigorous approximation guarantees. We also evaluate our

algorithm on multiple datasets, and show that they have

similar or better quality as the ones optimizing the expected

influence, but with additional guarantees on the probability.

1 Introduction

A large number of phenomena, e.g., the spread of
influence, fads and ideologies on social networks, can be
modeled as a diffusion process on a graph; see, e.g., [7,
13]. From a given seed set S (a subset of vertices), it is
assumed that the influence spreads under a well-studied
probabilistic diffusion model called the Independent
Cascade (IC) model (see Sections 1.1 and 2.1); the size
of the final influenced set, denoted I(S), is taken as
the influence of S. An optimization problem that has
been extensively studied is the influence maximization
problem, stated as follows: find a seed set S of size
k, so that the expectation, E[I(S)], is maximized—
this is referred to as the MaxExpInf problem. The
seminal work by Kempe, Kleinberg and Tardos [12] was

∗Department of Elec. Engg. & Computer Science, Texas A&M
University-Kingsville, TX, USA. E-mail: maleq.khan@tamuk.edu.
†Department of Computer Science, University of Houston,

Houston, TX 77204, USA. E-mail: gopalpandurangan@gmail.com.
Supported, in part, by NSF awards CCF-1527867, CCF-1540512,

IIS-1633720, CCF1717075, and BSF award 2016419.
‡Department of Computer Science, University of Houston,

Houston, TX 77204, USA. E-mail: aphamdn@gmail.com.
§Dept. of Computer Science, and Biocomplexity In-

stitute, University of Virginia, Charlottesville, VA, USA.
E-mail: vsakumar@virginia.edu.
¶Department of Computer Science, Indiana University, Bloom-

ington, IN, USA. E-mail: qzhangcs@indiana.edu. Supported in
part by NSF IIS-1633215 and CCF-1844234.

the first to give a constant-factor approximation to the
MaxExpInf problem. Later, Borgs et al. [1] improved
the run time by proposing a nearly-optimal algorithm
that had the same approximation guarantee. There
has been a lot of work on many variants of influence
maximization for several diffusion models; see, e.g.,
[13, 7] for details.

However, there are instances, in which the expected
influence set is large, but the variance is also high,
which is not desirable. A common way to understand
the variance in a random variable is by examining
its quantiles. Motivated by this, we focus on the
problem of finding a seed set S of size k such that δ
- the quantile value (for a given δ, 0 < δ ≤ 1) of
I(S) is maximized — we denote this by Mδ(I(S))=
max{α|Pr[I(S) ≥ α] ≥ δ}. The focus of this paper
is to find S that maximizes Mδ(I(S)); we refer to this
as the MaxProbInf problem.

In this paper, we study the structure of Max-
ProbInf problem, and develop efficient approximation
algorithms for it. Our contributions are the following.
1. We formalize a natural notion of influence maxi-
mization with probabilistic guarantees as the quantile
value. We also study the structure of solutions to Max-
ProbInf, and what effect the probabilistic guarantees
have.
2. We develop a multi-criteria approximation algo-
rithm, MultiCritMdelta, with approximation guar-
antees. We also design and analyze an efficient sampling
method to estimate Mδ(I(S)) for any given seed set S.

A main technical novelty of our work is the analysis
of our multi-criteria approximation algorithm. We use
the Sample Average Approximation (SAA) technique
from stochastic optimization (see, e.g., [19]), which
involves constructing samples G1, . . . , GN of the graph,
as per the Independent Cascade model. Since it is
known that Mδ(I(S)) is not submodular [25], we define
a different type of submodular function Fλ(S), using
the saturation technique of [14]. We show that finding
a minimum cost set S that ensures Fλ(S) ≥ δλ is
sufficient to give a multi-criteria approximation—this
problem is a variant of the standard submodular cover
problem. However, the problem does not satisfy an

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

important technical requirement in the submodular
cover problem, and we need to modify the analysis of
[24] to account for this difference.
3. Finally, we evaluate our methods on several datasets.
Not surprisingly, the solutions to Mδ(I(S)) computed
using MultiCritMdelta have similar or higher (up
to 10% in some cases) quantile values than the Max-
ExpInf solution. We also observe that the running time
of MultiCritMdelta is significantly faster (about 10
times faster) compared to the standard algorithm that
implements MaxExpInf (due to Kempe et al [13]) and
comparable to the run time of the Borgs et al [1] which is
a nearly-optimal algorithm for influence maximization
under the expectation measure. In fact, we also observe
that our solutions have similar or better expected in-
fluence value, than the MaxExpInf solution (though
this objective was not being optimized); additionally,
we get bounds on the probability. In particular, we find
that for many instances with low activation probabili-
ties, the seed set output by MultiCritMdelta yields
even better (by up to 10%) expected influence value
than the MaxExpInf solution, computed using the ap-
proximation algorithm of [12] or [1] which both give a
constant-factor approximation to the optimal expected
influence.

1.1 Related Work The works by [12], [13], were the
first to formulate the problem of influence spreading
as a discrete optimization problem. They consider two
main diffusion models: Independent Cascade (which we
adopt in this paper) and Linear Threshold. Works in
these models include two main optimization problems:
maximizing the expected influence with constraints on
the seed set (usually size), and minimizing the seed set
(according to some measurement) to achieve a target
expected influence. These problems are at least NP-
hard, [13]. In [4], it was shown that computing the
expected influence is #P-hard.

The approach proposed by [12], using submodular
set function and greedy heuristic, gives a (1− 1/e− ε)-
approximation to the maximizing the expected influ-
ence problem. The error ε is due to Monte Carlo es-
timation of the expected influence, which is the main
issue in practice, where large real world graphs discour-
age excessive sampling. Borgs et al. [1] propose an
algorithm with nearly optimal theoretical runtime of
O((m+n)kε−2 log n) while retaining the same approxi-
mation guarantee. The technique is to sample reversed
influence, which is adopted and improved upon in other
works, e.g., [21], [20], [18]. While reversed influence
sampling has a theoretical guarantee for the expecta-
tion problem, it is not extendable to our probabilistic
Mδ(I(S)). Another approach, proposed by [16], is to

estimate expected influence as a Riemann sum, using
O(nε2polylog(n)) samples which can be implemented in
parallel by using MapReduce.

Other models are also studied, for example, fixed
threshold models [2], [10], time-restricted diffusion
model [11], [3], [5], continuous-time diffusion model [6],
and diffusion in dynamic network [23].

The work closest to ours is presented by Zhang et
al. [25]. They introduce the Seed minimization with
probabilistic coverage guarantee (SM-PCG) problem:
find the smallest seed set S that ensures that Pr[I(S) ≥
η] ≥ P , where η and P are parameters. They also
give an additive approximation to the minimum seed
set size needed for a given η, P , and show that the
solutions achieve similar expected influence, but with
the additional guarantee on the probability. They
show that the size of the output seed set, compared
to the optimal one, incurs both a multiplicative error of
(lnn+O(1)) and an additive error of O(

√
n), under the

assumption that the standard deviation of the influence
is O(

√
n). In contrast, our goal is different — we want

to maximize influence with probabilistic guarantee, with
a constraint on the seed set size. Our multi-criteria
approximation does not incur additive error, and does
not rely on assumption about the distribution. There
are two limitations of their work. First, the additive
approximation is O(

√
n), which can be quite large.

In contrast, influence maximization has typically been
studied for bounded seed set sizes, which, ideally, should
be small. Second, the achievable influence η is not
known a priori, and so the algorithm would have to be
run for multiple η values to understand a tradeoff.

2 Preliminaries

2.1 Model and Problem Definition Consider a
graph G with n nodes and m directed edges. This graph
models a network of influence, where an edge (u, v) has
a weight (probabiltiy) 0 ≤ p(u, v) ≤ 1, indicating how
likely u influences v. The problem of interest is to
analyze how influence is propagated in the network. We
use the well-studied Independent Cascades (IC) model
with discrete time to model the spread of influence
which we explain below [12].

At any given time t, the nodes have one of three
states: active, newly active, inactive. At time t, let
At be the set of active nodes, St be the set of newly
active nodes, and the rest be inactive. Each node
u ∈ St can activate each of its inactive neighbors v
with a probability p(u, v). Let Ut be the set of nodes
activated in this step. At time t+1, At+1 = At∪Ut, and
St+1 = Ut. Starting from an initial configuration of a
seed set S = S0, we apply the process until time τ where
Uτ = ∅, indicating no new nodes can be activated.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

We denote I(S) = |Aτ | as the influence of the set S.
More generally, we have a weight wv for each node v,
and w(I(S)) =

∑
v∈Aτ wv is the total weight of the

influence set I(S). For simplicity, we will focus on the
unweighted version of the problem; all our results hold
for the weighted version as well, with natural changes
in bounds. We note that I(S) is a random variable that
depends on S (and the underlying diffusion process).

As mentioned in Section 1, the MaxExpInf prob-
lem, maximizing E[I(S)], is a coarse optimization. In
particular, it does not give probabilistic guarantees on
the influence of the chosen seed set. To get a better idea
of I(S), we may need to estimate the variance, or even
to acquire the distribution of I(·). However, this task is
usually quite difficult and costly.

In this paper, we propose another measure which
could be more useful: given a threshold probability δ,
find a seed set S such that the δ-quantile value of I(S)
is maximized. This measure gives direct probabilistic
guarantees on the random variable I(S).1 More for-
mally, for some set S, and a threshold δ, define the
following measure:

(2.1) Mδ(I(S)) = max{a|Pr[I(S) ≥ a] ≥ δ}

The new optimization problem, referred to as Max-
ProbInf is defined in the following manner: given an
instance (G = (V,E), B,w, δ), find a (seed) set S such
that we:

(2.2)

maximize Mδ(I(S))

subject to
∑
i∈S

wi ≤ B.

The goal of this paper is to study the above optimization
problem and design algorithms for it. In our analysis,
the omitted proofs are given in the appendix.

2.2 Comparison with MaxExpInf As mentioned,
the standard influence maximization problem, MaxEx-
pInf, is defined as following [13]: given an instance
(G = (V,E), k), find a set S ⊆ V of size at most k
such that E[I(S)] is maximized.

A natural question is whether one could find a
solution to the problem of maximizing Mδ(I(S)), i.e.,
MaxProbInf by solving MaxExpInf. We show below
that, in general, the solutions of these two problems can
be quite different.

Lemma 2.1. There exist instances (G, k, δ), for which
E[I(S∗)]
Mδ(I(S∗))

is arbitrarily large, where S∗ is an optimum

solution to the MaxExpInf problem.

1Note that one can obtain a one-sided probability bound from

expectation using Markov’s inequality; but this usually quite
weak.

Proof. In appendix.

2.3 Hardness We observe that MaxProbInf is NP-
hard to approximate within a factor of (1− 1/e), which
is similar to the hardness of the MaxExpInf problem.

Lemma 2.2. It is NP-hard to obtain an approximate
solution to the MaxProbInf problem, within a factor
of (1− 1/e).

Proof. In appendix.

3 A Multi-criteria Approximation Algorithm
for Computing MaxProbInf

Motivated by the hardness from Lemma 2.2, and the
non-submodularity of Mδ(I(S)) [25], we consider a
multi-criteria approximation algorithm, which relaxes
the seed set size k, as well as the probability param-
eter δ. Specifically, we consider the following vari-
ant of the MaxProbInf problem: find S such that
Mδ(I(S)) ≥ γMδ′(I(S∗)) and |S| ≤ βk, where S∗ is an
optimal solution, and γ < 1, β > 1 are the relaxation
parameters, and δ′ > δ.

3.1 Using submodularity and the sample av-
erage approximation technique MaxProbInf is a
stochastic optimization problem. We reduce this to
a deterministic problem using the sample average ap-
proximation technique: assume we have N samples
G1, . . . , GN of the graph G = (V,E); Gi = (V,Ei) is the
ith sample, and is obtained by picking each edge e ∈ E
independently with probability p(e). Let Fi(S) denote
the total influence due to S in graph Gi – this equals
the sum of the sizes of the components containing nodes
in S in sample Gi. For any S ⊆ V , let hδ(S) be the δ-
quantile value estimated from these samples in the fol-
lowing manner: suppose the samples are ordered so that
F1(S) ≥ . . . ≥ FN (S). Then hδ(S) = FbδNc(S). Let S∗

be the optimum solution that maximizes Mδ(I(S)).

Lemma 3.1. Given δ ∈ (0, 1), then for any ε ∈
(0, 1), there exists N = Ω(n log n) such that hδ(S) ∈
[Mδ(1+ε)(I(S)),Mδ(1−ε)(I(S))], for all S ⊆ V , with high
probability.

Proof. Let us fix some set S. Let L be the number
of Fi which is greater than the (1 − ε)δ quantile, and
let R be the numberer of Fi which is greater than the
(1 + ε)δ quantile. We have: µL = E[L] = (1 − ε)δN
and µR = E[R] = (1 + ε)δN . hδ(S) will fall outside the
desired range if either L > (1 + ε)δN or R < (1− ε)δN .
Let ES indicates such failure event. Probability of failure
is:

Pr[ES] ≤ Pr[L > µL(1+
2ε

1− ε
)]+Pr[R < µR(1− 2ε

1 + ε
)]

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Applying Chernoff bound:

Pr[ES] ≤

(
e2ε/(1−ε)

(1+ε
1−ε)

1+ε
1−ε

)(1−ε)δN

+

(
e−2ε/(1+ε)

(1−ε
1+ε)

1−ε
1+ε

)(1+ε)δN

Since the bases of the exponents are in the range
(0, 1) for 0 < ε < 1, we have:

(3.3) Pr[ES] ≤ e−cN for some c > 0

With 2n possible set S, let E2n indicates the event that
at least one set has the wrong hδ(.) estimation. By
union bound:

(3.4) Pr[E2n] ≤ e−cN2n = e−cN+n ln 2

Thus, when N = Ω(n log n), with probability of 1 −
O(n−1), all hδ(S) are correctly estimated.

It turns out approximating the function hδ(S) di-
rectly is hard; in particular, it is not submodular, and
thus a greedy strategy might not work. Instead, we will
consider a slight variant, using ideas from the result of
Krause et al. [14] on minimum cost submodular cover
problem. Let λ be a “guess” of Mδ(I(S∗)), where S∗

is an optimal solution. Define the truncated function
Fi,λ(S) = min{Fi(S), λ}, and

Fλ(S) =
1

N

∑
i

Fi,λ(S).

A critical observation is that the truncated func-
tions are submodular, formally:

Lemma 3.2. (see [9]) The functions Fi,λ(S) and Fλ(S)
are monotone and submodular.

We show that maximizing Fλ(S) is good enough for
our purpose, due to the following property.

Lemma 3.3. If hδ(S) ≥ λ, then Fλ(S) ≥ δλ. On the
other hand, if Fλ(S) ≥ δλ, then hδ/2(S) ≥ δλ/2.

Proof. The “if” part: let A = {i : Fi,λ(S) ≥ λ}. Since
hδ(S) ≥ λ, it follows that |A| ≥ δN . This implies

Fλ(S) =
1

N

∑
i

Fi,λ(S) ≥ 1

N

∑
i∈A

Fi,λ(S)

≥ 1

N
(λδN) = λδ

The “only if” part: let B = {i : Fi,λ(S) ≥ δλ/2}.
We have:

λ|B|+
∑
i6∈B

δλ/2 ≥
∑
i∈B

Fi,λ(S) +
∑
i6∈B

Fi,λ(S)

Algorithm 1 Algorithm SimpleGreedy

1: function SimpleGreedy(G(V,E), w, δ′, n,N)

2: for each guess λ do

3: Sλ ← ∅
4: C ← δ′λ
5: while Fλ(Sλ) < C do

6: Pick node j that minimizes
wj

Fλ(Sλ∪{j})−Fλ(Sλ)
7: Sλ ← Sλ ∪ {j}

return Sλ = Sλ,δ′ that maximizes Fλ(Sλ)

= Fλ(S)N ≥ δλN.
This implies

λ|B|+ (N − |B|)δλ/2 ≥ δλN,

so that
|B|λ(1− δ/2) ≥ Nδλ/2

Therefore,

|B| ≥ Nδ/2

1− δ/2
≥ Nδ/2

This implies hδ/2(S) ≥ δλ/2. �

Lemma 3.3 motivates the following strategy in
order to maximize hδ(·) (which is sufficient for solving
MaxProbInf, due to Lemma 3.1): find S such that
Fλ(S) ≥ δλ and cost(S) =

∑
j∈S wj is minimized,

where wj is the weight of node j. This is a variant
of the minimum cost submodular cover problem [8],
which involves finding a minimum cost set S such that
F (S) = F (V) for a submodular function F (·), where V
is the universe.

Algorithm 1 describes SimpleGreedy, which
guesses λ, and greedily computes a set Sλ. This algo-
rithm is the same as that for the standard minimum cost
submodular cover problem, except that the stopping
condition is Fλ(Sλ) ≥ δλ, instead of Fλ(Sλ) = Fλ(V).
We show, however, that the same guarantee can be ob-
tained by appropriately modifying the analysis of the
minimum cost submodular cover problem.

For a constant δ′ ∈ (0, 1), let S∗δ′ =
argmaxS,cost(S)≤khδ′(S), and λ∗δ′ = hδ′(S

∗
δ′).

Lemma 3.4. Let S∗δ′ and λ∗δ′ be as defined above. Let
set Sλ be the solution returned by algorithm Simple-
Greedy for some λ, when the probability parameter is
set to δ′. Then, we have: (1) λ ≥ λ∗δ′ , (2) Fλ(Sλ) ≥
λ∗δ′δ

′, and (3) cost(S) = O(ln (Nλ))cost(S∗).

Our proof of Lemma 3.4 is a variation of the proof
by Wolsey [24]. For notational simplicity, we drop
the subscript λ in Fλ(S) below. Let ρj(S) = F (S ∪
{j}) − F (S). First observe that the following IP is
feasible: (IP) min

∑
j wjxj such that for all S ⊆ V ,

with xj ∈ {0, 1} we have
∑
j 6∈S ρj(S)xj ≥ C − F (S).

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Lemma 3.5. The program (IP) is valid, i.e., the opti-
mum solution SIP satisfies F (SIP) ≥ C and SIP has
the minimum cost.

The dual program of the linear relaxation of (IP) is the
following

(D) max
∑
S

(C − F (S))yS such that∑
S:j 6∈S

ρj(S)yS ≤ wj for all j

yS ≥ 0

Observe that the algorithm actually picks element j
which minimizes

wj
ρj(S)

. We construct an approximate

dual solution. Suppose the greedy algorithm picks
elements {j1, . . . , j`}. Let Si = {j1, . . . , ji}. Define

θi =

{ wji
F (Si)−F (Si−1)

=
wji

ρji (Si−1)
, for i < `,

wj`
C−F (Si−1)

, for i = `.

Define

yS =


θ1, if S = S0 = ∅,
θi+1 − θi, if S = Si for 0 < i < `,

0, otherwise.

Observe that the dual solution ySi covers the cost of the
solution S`:∑

S

(C − F (S))yS =
`−1∑
i=0

(C − F (Si))ySi

=
`−1∑
i=0

(C − F (Si))(θi+1 − θi)

=
`−1∑
i=1

θi(F (Si)− F (Si−1)) + θ`(C − F (S`−1))

=
`−1∑
i=1

wji + wj` = cost(S`).

Next, we observe that the dual constraints are approx-
imately feasible. First, consider any j ∈ V − S`. We
have∑
S:j 6∈S

ρj(S)yS =
∑̀
i=0

ρj(Si)ySi

= ρj(S0)θ1 +
`−1∑
i=1

ρj(Si)(θi+1 − θi)

=
`−1∑
i=1

θi(ρj(Si−1)) + θ`ρj(S`−1)

≤
`−1∑
i=1

wj
ρj(Si−1)− ρj(Si)

ρj(Si−1)
+ wj ,

because θi ≤ wj
ρj(Si−1)

by construction, for each i ≤ `.
For x ∈ (0, ρj(∅)), define h(x) = 1

ρj(Si−1)
, if

ρj(Si) < x ≤ ρj(Si−1). Let

δ = min
S:ρj(S)>0

ρj(S) = min
S:ρj(S)>0

F (S + j)− F (S) ≥ 1

N
.

Therefore,

`−1∑
i=1

ρj(Si−1)− ρj(Si)
ρj(Si−1)

=

∫ ρj(∅)

0

h(x)dx

≤
∫ δ

0

1

δ
dx+

∫ ρj(∅)

δ

1

x
dx = 1 + ln

ρj(∅)
δ
≤ 1 + ln(Nλ),

since ρj(∅) ≤ F (j) ≤ λ. This implies∑
S:j 6∈S

ρj(S)yS ≤ (2 + ln (Nλ))wj .

Next, suppose j ∈ Sr for some r. Then, ρj(Sr) =
F (Sr+1) − F (Sr) = 0. Let r′ < r be the largest index
such that ρj(Sr′) > 0. In that case, the dual constraint
for j can be written as

∑
S:j 6∈S

ρj(S)yS =

r′∑
i=0

ρj(Si)ySi

=
r′+1∑
i=1

θi(ρj(Si−1)− ρj(Si))

≤
r′+1∑
i=1

wj
ρj(Si−1)ρj(Si)

ρj(Si−1)
≤ 1 + ln (Nλ),

as before. Therefore, 1
αy is a feasible solution, for

α = 2 + lnNλ, which completes the proof for Lemma
3.4. �

Finally, we put everything together to obtain an
approximation to the MaxProbInf problem.

Theorem 3.1. Let δ ∈ (0, 1) be a constant, and let k
be a parameter. Let Soptδ denote an optimum solution
to the MaxProbInf problem for parameter δ, i.e.,
Mδ(I(Sopt)) ≥ Mδ(I(S′)), for all |S′| ≤ k. For
any ε ∈ (0, 1), there exists N = Ω(n log n) such
that if set S is the solution computed by algorithm
SimpleGreedy with parameter δ′ = 2δ/(1 − ε), we
have Mδ(I(S)) ≥ δ

1−εM2δ(1+ε)/(1−ε)(I(Sopt2δ/(1−ε))), and

|S| = O(k log n) The running time of SimpleGreedy
is O(n2mk log2 n).

Proof. Using Lemma 3.4, for the unweighted case,
cost(S) = |S|. Let S∗δ′ = argmaxS,|S|≤khδ′(S), and
λ∗δ′ = hδ′(S

∗
δ′) defined similarly. We have λ ≥ λ∗δ′ ,

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Algorithm 2 k-Influence set by MultiCritMdelta

1: function MultiCritMdelta(G(V,E), k, δ, n,N)

2: l← 1

3: h← n
4: for step← [1 . . . logn] do

5: S ← ∅
6: λ← (l + h)/2
7: C ← δλ, and F (S)← Fλ(S)

8: while F (S) < C do
9: Pick node j that minimizes

wj
F (S∪{j})−F (S)

10: S ← S ∪ {j}
11: feasible if |S| ≤ k ln(Nλ) : l← λ

12: infeasible if |S| > k ln(Nλ): h← λ
return S

and Fλ(S′) ≥ λδ′. By Lemma 3.3, this implies that

hδ′/2(S) ≥ λδ′/2 ≥ λ∗δ′δ′/2 = δ′

2 hδ′(S
∗
δ′).

By Lemma 3.1, we have Mδ′(1−ε)/2(I(S)) ≥
hδ′/2(S). Next, hδ′(S

∗
δ′) ≥ hδ′(S

opt
δ′), by definition

of S∗δ′ . Again, by Lemma 3.1, we have hδ′(S
opt
δ′) ≥

Mδ′(1+ε)(I(Soptδ′)). Combining all these, we get

Mδ′(1−ε)/2(I(S)) ≥ δ′

2
Mδ′(1+ε)(I(Soptδ′))

Setting δ′ = 2δ/(1 − ε), we get the approximation
guarantee Mδ(I(S)) ≥ δ

1−εM2δ(1+ε)/(1−ε)(I(Sopt2δ/(1−ε))).

The algorithm may need to check all n possible
values of λ, each check constructs a set of size O(k log n).
The number of samples N = Ω(n log n) is sufficient
for high probability of success, by adjusting the union
bound from equation 3.4:

Pr[Failure] ≤ e−cNn2nk log n =

ke−cN+lnn+n ln 2+ln log n = 1−O(n−1)

The complexity for one sample is O(m), and total time
complexity is: O(Nnmk log n) = O(n2mk log2 n).

3.2 Fast implementation of algorithm Multi-
CritMdelta. The pseudocode is shown in Algorithm
2. To improve the running time, we use binary search
as follows. With a given λ, an iteration decides if it
is feasible to construct S such that Fλ(S) = C = δλ,
with a log factor constraint on the size of S. If it is
the case, λ is a feasible value, and S is a feasible solu-
tion for maxFλ(·) problem. Starting with λ = n/2, the
binary search increases or decreases λ as per the feasi-
bility. The output is a feasible value and the respective
set. Lemma 3.4 shows the approximation guarantee of
this algorithm.

4 Computing Mδ(I(S)) for a fixed set S

In this section, we show how to compute an approxima-
tion of Mδ(I(S)) for a fixed set S, efficiently. It is known
that computing Mδ(I(S)) exactly even for a fixed set S
is #P-Hard [25]. However, we show that we can esti-
mate Mδ(I(S)) by using Monte-Carlo sampling.

4.1 Monte-Carlo approximation of Mδ(.) Firstly,
it will be useful to consider the following general prob-
lem of estimating Mδ(.) for a random variable that takes
values between 0 and 1 (both included).

(4.5)

0 ≤ X ≤ 1 a random variable,

0 < δ ≤ 1 a probability threshold,

find Mδ(X) = sup{a|Pr[X ≥ a] ≥ δ}.

We define Mδ(X) in a way that is valid for both
discrete and continuous distributions. Indeed, let FX be
the cumulative distribution of X, if FX is continuous,
we can define: Mδ(X) = sup{a|Pr[X ≥ a] = δ}, and
the solution is given by: Mδ(X) = F−1X (1− δ).

In general, we cannot afford finding the distribution
function, thus, we apply a Monte Carlo sampling to give
an (ν, ε, ζ)-approximation of Mδ(X).

Definition 4.1. M̃δ(X, ν, ε, ζ) is an (ν, ε, ζ)-
approximation of Mδ(X) if the following inequality
holds, with (confidence) probability 1− ζ,

(4.6) Mδ+η(X)− ν ≤ M̃δ(X, ν, η, ζ) ≤Mδ−η(X) + ν

Notice that both the approximation errors η and ν
are additive, i.e. absolute values. In the general setting,
an additive error is less desirable to a multiplicative
error, since we do not know the order of the estimated
parameter in advance. We need the absolute errors for
the design and analysis of our efficient sampling method,
and we observe that this is not an issue for the specific
influence problem. First, δ is a given constant, and we
can convert between multiplicative and additive error,
ε = η

δ , or η = δε. Second, for the influence problem, X
is a discrete random variable in [0, n], thus we can set
ν = 1

n to have a tighter bound.
We now describe the estimation by sampling. The

idea is to perform binary search to find the best value
of a, the approximation. Initially, we guess a = 1/2,
then verify if Pr(X ≥ a) ≥ δ. If the test is confirmed,
we make the next guess as a = 3/4, otherwise, we guess
a = 1/4. Continue until the step of the guess is smaller
than ν.

Consider one iteration, with some fixed a, we need
an estimation for the unknown probability p = Pr(X ≥
a). We proceed similarly to the proof of Lemma 3.1,
with a different form of Chernoff bound, which is more

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

convenient to bound the number of samples. Take
N samples X1, X2, · · · , XN , where N will be specified
later. Define N indicator random variables Zi, where
Zi = 1 if the sample Xi ≥ a, 0 otherwise. Let
Z =

∑N
i=1 Zi. We have µZ = E[Z] = Np. Using

Chernoff bound[17], we bound the empirical probability
p̄ = Z

N , within some multiplicative error κ:

Pr(|Z −Np| ≥ κNp) ≤ 2exp

(
− κ2

2 + κ
Np

)
⇐⇒ Pr (|p̄− p| ≥ κp) ≤ 2exp

(
− κ2

2 + κ
Np

)
.

With the desired error η = κp ⇐⇒ κ = η
p , the tail

bound becomes:
(4.7)

Pr (|p̄− p| ≥ η) ≤ 2exp

(
− η2

2p+ η
N

)
≤ 2exp

(
−η

2N

3

)
.

Given |p̄ − p| ≥ η, clearly we have: p̄ − η ≥ δ =⇒
p ≥ δ, and p̄+η < δ =⇒ p < δ. This method leaves an
undecided region when p̄− η < δ ≤ p̄+ η. As we allow
η error around δ, we can simplify the decision rule:

If p̄ ≥ δ =⇒ increase a;

If p̄ < δ =⇒ decrease a.
(4.8)

Algorithm 3 shows the pseudo code for the approx-
imation. The following lemma states the guarantee
bound as per equation 4.6.

Lemma 4.1. Assuming algorithm 3 is successful, it re-
turns an (ν, η, ζ)-approximation of Mδ(X).

Proof. The decision rule in equation 4.8 ensures this
invariance: if the guess increases then at least p ≥
δ − η, if the guess decreases then at least p ≤ δ + η.
This invariance holds for every iteration. At the final
iteration, the bounds are offset by ±ν by the precision
of the binary search, taking the conservative case, we
have the approximation 4.6.

The next lemma states the number of samples
required for succeeding with probability at least 1 − ζ.

Lemma 4.2. Algorithm 3 is successful with probability
of at least (1 − ζ) using N ≥ 3

η2 log ν−1(ln(log ν−1) +

ln(2ζ−1)) samples.

Proof. Let Niter be the number of samples in one
iteration. From the bound in equation 4.7, using union
bound for log 1

ν iterations, we require:

2exp

(
−η

2Niter
3

)
log

1

ν
≤ ζ

⇐⇒ η2Niter
3

≥ ln log
1

ν
+ ln

2

ζ

Thus the total number of samples is:

N = Niter log
1

ν
≥ 3

η2
log

1

ν

(
ln log

1

ν
+ ln

2

ζ

)

Algorithm 3 Approximate Mδ(X) with confidence
(1− ζ)

1: function MDelta(X[0, 1], δ, ν, η = εδ, ζ)
2: N ← 3

η2 log ν−1(ln(log ν−1) + ln(2ζ−1)
3: l← ν
4: h← 1
5: while h− l ≥ ν do
6: mid = (h+ l)/2
7: X1, · · · , XN ← samples of X
8: p̄ = 1

N (#Xi, Xi ≥ mid)
9: if p̄ ≥ δ then l← mid

10: else h← mid
return l

4.2 Approximation of Mδ(I(.)) We now apply the
binary search for Mδ(I(.)) approximation. Since influ-
ence is a discrete random variable bounded by the size
n of the graph, we set ν = 1/n, to obtain the following
corollary.

Corollary 4.1. Given a graph with n nodes, and
seed set S, for given parameters δ, η, and ζ. Using
N ≥ 3

η2 log n(ln log n + ln(2ζ−1)) samples, Algorithm

3 finds an approximation of Mδ(I(S)) with success

probability 1− ζ, such that: Mδ+η(I(S)) ≤ M̃δ(I(S)) ≤
Mδ−η(I(S)).

Proof. Direct application of lemma 4.1 with ν = 1/n.

As an example, for the approximation to succeed with
high probability, we set ζ = 1/n, and the number of
samples required will be N = O(log2 n).

Combining the binary search method with the
multicriteria approximation, we have the MultiCrit-
Mdelta as listed in Algorithm 2, with the following
approximation guarantee and runtime complexity.

Theorem 4.1. Let δ ∈ (0, 1) be a constant, and
let k be a parameter. Let Soptδ denote an opti-
mum solution to the MaxProbInf problem for pa-
rameter δ, i.e., Mδ(I(Sopt)) ≥ Mδ(I(S′)), for all
|S′| ≤ k. For any ε ∈ (0, 1), there exists N =
O(log2 n) such that, if set S is the solution com-
puted by algorithm MultiCritMdelta with param-
eter δ′ = 2δ/(1 − ε), we have, with high probabil-
ity, Mδ(I(S)) ≥ δ

1−εM2δ(1+ε)/(1−ε)(I(Sopt2δ/(1−ε))), and

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

|S| = O(k log n). The running time of MultiCrit-
Mdelta is O(mk log n(lnn+ ln lnn)).

Proof. Let AS,λ denote the event that the probability
Pr[I(S) ≥ λ] can be estimated with absolute error
η = δε. The correctness of the algorithm depends on
the validation of the feasible λ, which requires all events
AS,λ to succeed for all S, λ during the course of the
algorithm.

Assume M = o(n), the number of samples taken in
the for-loop of Algorithm 2. By the greedy construction
of the feasible S, the algorithm needs to check O(n)
candidate sets. The number of iterations is the relaxed
size of S, |S| = O(k ln(Mλ)) = O(k ln(n2)). Thus
the total number of events is: O(2nk lnn log n). From
equation 4.7, we take a union bound for the failure of
all events:

2exp(−η
2M

3
)O(2nk lnn log n) ≤ ζ

For success w.h.p, we set: ζ = 1/n

−η
2M

3
≥ lnn+O(lnn+ ln log n)

=⇒ M = O(
3

η2
(lnn+ ln log n))

We verify that M = o(n) as previously assumed. Thus
the total number of samples is: N = O(3

η2 log n(lnn +

ln log n)) = O(3
ε2δ2 log n(lnn + ln log n)). The running

time is dominated by the complexity of the sampling,
which is Nm = O(mk log n(lnn+ ln log n)) where m is
the number of edges.

5 Empirical Evaluation

We examine the empirical performance of MultiCrit-
Mdelta on real world social networks. For a base line
method, we also implement ProbInf-Heu, which sim-
ply constructs the seed set greedily, using algorithm 3
to maximize Mδ(I(.)) in every step. Also, we compare
the quality of the result seed sets with the solutions of
MaxExpInf, maximizing influence expectation. Beside
the naive direct sampling method of MaxExpInf [13],
referred to as NaiveInf, we use DSSA [18], one of the
state-of-the-art algorithms, based on reverse sampling
[1]. There are other efficient alogrithms, see [1, 4, 21, 20]
for example. However, we reemphasize that our problem
is different from maximizing the influence expectation,
and thus running time comparison is for reference only.

We implemented MultiCritMdelta, ProbInf-
Heu, and NaiveInf in C++ with OpenMP. The source
code is available at https://github.com/ngpham/

probinf. For DSSA, we used the implementation made

public from [18]. The execution is carried out on a ma-
chine with 24 cores and 16GB of memory.

We study the following questions. (1) How does
Mδ(I(S)) depend on |S| and δ? (2) How are the
actual execution times compared to one another and
to the theoretical bounds? (3) How does the solution to
our algorithms compare with that to the MaxExpInf
problem, in terms of both the ExpInf and Mδ(I(.))
objectives?

5.1 Experimental Setup

5.1.1 Data sets We use four social network data
sets, which were crawled from public sources, as pro-
vided by [15]. The basic statistics of the data sets can
be found in Table 1.

5.1.2 Parameters of the Algorithms In Naive-
Inf, we used 104 samples, following the claim in [13]
that these many samples suffice for datasets of this scale,
although the worst case bound is O(n2) samples. In
DSSA, we set the desired multiplicative error to 0.1 (no-
tice that for large input, in scale of millions and over, it
is recommended to set this factor to 0.5 [18]).

For our algorithms, ProbInf-Heu and Multi-
CritMdelta, we take η = 0.1, which is the additive
error for the probability guarantee δ (as discussed in
Section 4). Following Theorem 4.1, we choose the num-
ber of samples to be 100×log(n), where n is the number
of nodes of the input graph. Finally, recall that Mul-
tiCritMdelta can relax the size of the seed set by a
multiplicative factor of ln(n). In order to make the com-
parison reasonable, we run it with a smaller budget, so
that the final seed set size (after the relaxation) is within
the bound of k; this follows the approach in other works
which obtain bicriteria approximation results, e.g., [14].

5.1.3 Model parameters. We use the Independent
Cascade (IC) model, with the standard setting widely
used in the literature, where edge activation proba-
bility is set to the reverse of its incident node de-
gree. We also experiment with activation probabilities
of 0.01, 0.05, 0.1, and two random settings, where the ac-
tivation probability of each edge is picked uniformly ran-
domly in the range [0.001, 0.05] and [0.001, 0.01]. This
setup is to understand the effect of sparsity of the acti-
vation.

For ProbInf-Heu and MultiCritMdelta, we
conduct two sets of experiments. The first one is config-
ured with probability guarantee δ in {0.2, 0.5, 0.7, 0.9}.
We observe that the resulting seed sets qualities do
not vary much with δ (consistent with the observation
in [25]), and, therefore, report most of our results for

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

1 5 10 15 20 25 30 35 40
50

100

150

200

250

300

350

seed set size

av
er

a
g
e

in
fl

u
en

ce

MaxExpInf

ProbInf-Heu

MultiCritMdelta

(a) Facebook data set.

1 5 10 15 20 25 30 35 40

4,000

6,000

8,000

10,000

12,000

seed set size
av

er
a
g
e

in
fl

u
en

ce

MaxExpInf

ProbInf-Heu

MultiCritMdelta

(b) Twitter data set.

300 350 400 450
0

0.2

0.4

0.6

0.8

1

1− δ

influence

p
ro

b
a
b

il
it

y

MaxExpInf

ProbInf-Heu

MultiCritMdelta

(c) Facebook dataset.

10,000 11,000 12,000 13,000 14,000
0

0.2

0.4

0.6

0.8

1

1− δ

influence

p
ro

b
a
b

il
it

y

MaxExpInf

ProbInf-Heu

MultiCritMdelta

(d) Twitter dataset.

Figure 1: Comparison of three algorithms outputs. For ProbInf-Heu and MultiCritMdelta algorithms, the seed sets
are optimized with δ = 0.7. Edges activation are random values in the range [0.001, 0.05]. Figures (a) and (b) show the
average influence versus seed set size. Figures (c) and (d) show the Empirical cumulative distribution function (ECDF) of
influence of seed sets of size 40. The vertical color bars indicate the mean values of the corresponding data. The further
to the right around probability = 1 − δ = 0.3, the better the influence guarantee.

0.2 0.4 0.6 0.8

300

400

500

600

δ

M
δ
(I

(.
))

Slashdot dataset

ProbInf-Heu

MultiCritMdelta

0.2 0.4 0.6 0.8

700

800

900

1,000

δ

M
δ
(I

(.
))

Pokec dataset

Figure 2: Varying δ, with random edge activation in range [0.001, 0.01]. For each algorithm, we report the guarantee
influence of the output seed sets of size 15, 30, and 40.

δ = 0.7 because of limited space. In the second set of
experiments, we try ProbInf-Heu and MultiCrit-
Mdelta with extreme values of δ, which are very close
to 0 or 1.

For the constraint on size of the seed set, k, we
experiment with all values in [0, 40]. It is known from
the literature (e.g., [18]) that the influence is quickly
saturated when one increases k, such that increasing
the seed set does not have significant gain.

5.2 Results and Evaluation We compare the algo-
rithms by asserting the quality of the output seed sets on
the original graph. Recall from section 4.1 that knowing
the distribution function would give us complete under-
standing of I(.), and Mδ(I(.)) can be inferred. Thus,
with (fixed) result seed sets, we compute and compare
the expected influences, and the empirical cumulative
distribution functions (ECDF) [22].

Table 1: Data sets.

Data set Nodes Edges Diameter

Facebook 4039 88234 8
Twitter 81306 1768149 7
Slashdot 77360 905468 10
Pokec 1632803 30622564 11

5.2.1 Comparison with MaxExpInf solution.
The experiment results with edge activation ran-
domly in the range [0.001, 0.05], are shown in Fig-
ure 1. Since DSSA has the same estimation guaran-
tee with NaiveInf, we will refer to these solutions as
MaxExpInf. The seed sets are computed by their
respective algorithms, where both ProbInf-Heu and
MultiCritMdelta has δ set to 0.7. In Figures 1a and
1b, we observe that MultiCritMdelta gives the best
seed sets, while ProbInf-Heu gives comparable or bet-

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

1 5 10 15 20 25 30 35 40

1,000

2,000

3,000

4,000

seed set size

av
er

a
g
e

in
fl

u
en

ce

MaxExpInf

ProbInf-Heu

MultiCritMdelta

(a) Slashdot data set.

1 5 10 15 20 25 30 35 40

2,000

4,000

6,000

8,000

10,000

12,000

seed set size
av

er
a
g
e

in
fl

u
en

ce

MaxExpInf

ProbInf-Heu

MultiCritMdelta

(b) Pokec data set.

1,000 2,000 3,000 4,000
0

0.2

0.4

0.6

0.8

1

1− δ

influence

p
ro

b
a
b

il
it

y

MaxExpInf

ProbInf-Heu

MultiCritMdelta

(c) Slashdot dataset.

11,000 12,000 13,000 14,000
0

0.2

0.4

0.6

0.8

1

1− δ

influence

p
ro

b
a
b

il
it

y

MaxExpInf

ProbInf-Heu

MultiCritMdelta

(d) Pokec dataset.

Figure 3: Comparison of three algorithms outputs, complement of Figure 1. For ProbInf-Heu and MultiCritMdelta
algorithms, the seed sets are optimized with δ = 0.7. Edges activation are random values in the range [0.001, 0.05]. Figures
(a) and (b) show the average influence versus seed set size. Figures (c) and (d) show the Empirical cumulative distribution
function (ECDF) of influence of seed sets of size 40. The vertical color bars indicate the mean values of the corresponding
data. The further to the right around probability = 1 − δ = 0.3, the better the influence guarantee.

0.2 0.4 0.6 0.8

40

60

80

100

δ

M
δ
(I

(.
))

Facebook dataset

ProbInf-Heu

MultiCritMdelta

0.2 0.4 0.6 0.8
1,000

1,500

2,000

δ

M
δ
(I

(.
))

Twitter dataset

Figure 4: Varying δ, with random edge activation in range [0.001, 0.01]. For each algorithm, we report the guarantee
influence of the output seed sets of size 15, 30, and 40. This figure complement Figure 2.

ter sets, versus MaxExpInf solutions.
The other experimental results are presented in Fig-

ure 3, and Figure 4. Figure 3 shows solutions quali-
ties (the same as Figure 1), using Slashdot and Pokec
datasets. We notice that for the Pokec dataset, Max-
ProbInf solutions do not have significant advantage
over MaxExpInf solutions. As per the existential proof
of Lemma 2.1, we infer that there could be graphs such
that MaxProbInf and MaxExpInf solutions are close
to each other. The experimental result on the Pokec
dataset implies that this is one such graph. Figure 4
shows the effects of varying δ (similar to Figure 2), us-
ing Facebook and Twitter datasets.

5.2.2 Execution time. One of the main advantages
of MultiCritMdelta and ProbInf-Heu algorithms
is that their execution times are much smaller compared
to NaiveInf, while the qualities of the solutions ob-
tained are similar or better. In fact, the MultiCrit-

Mdelta algorithm is also faster than ProbInf-Heu.
The execution time depends on the number of samples.
Each sample complexity depends on the density of the
graph, and the edge activation probability. We note
that both MultiCritMdelta and ProbInf-Heu al-
gorithms need significantly less number of samples com-
pared to that of the algorithm of [13]. We also observe
that MultiCritMdelta asymptotic running time is
close to that of DSSA, especially when the activation is
dense. DSSA has the advantage that it can stop early,
by verifying the current estimation error, thus, for net-
work with low activation, it achieves the best runtime.
MultiCritMdelta, on the other hand, has to ensure
the probabilistic guarantee, and does not check for early
termination.

We notice that the variation of δ does not have much
affect on the running time, and only report that for
δ = 0.7, as shown in Table 2. Also, DSSA runs out
of memory on the Pokec dataset, with the most dense

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

Table 2: Execution Time, for k = 40, δ = 0.7 (applied for ProbInf-Heu and MultiCritMdelta), and various
edge activation probabilities. The random probability is uniformly in the range [0.001, 0.05]. Execution time is
measured in seconds.

Dataset Algorithm
Activation

1/deg rand 0.01 0.05 0.1

Facebook

NaiveInf 144 150 138 162 182
ProbInf-Heu 19 24 22 24 26
DSSA 3 3 5 5 7
MultiCritMdelta 8 9 9 9 10

Twitter

NaiveInf 3319 3483 3014 4038 4216
ProbInf-Heu 662 690 634 799 879
DSSA 193 216 221 223 230
MultiCritMdelta 225 242 249 252 260

Slashdot

NaiveInf 1913 1906 1825 2130 2517
ProbInf-Heu 411 402 383 438 506
DSSA 83 80 84 92 96
MultiCritMdelta 227 225 223 232 242

Pokec

NaiveInf 58685 59445 53703 68646 75530
ProbInf-Heu 19921 20067 16951 19723 22600
DSSA 5118 5580 5972 6233 —
MultiCritMdelta 6436 6553 6537 6850 6670

activation setting (0.1). We believe this is due to our
hardware limit of 16GB memory.

5.2.3 Probabilistic guarantees We study the
probabilistic guarantees of the different algorithms
through empirical cumulative distribution functions
(ECDF) [22]. Due to space constraint, we only report
the results for the case where edge activation are picked
randomly in the range [0.001, 0.05], with δ = 0.7. We
take the solutions for k = 40 and fit their ECDF’s by
kernel density estimation with Gaussian kernel. These
are plotted in figures 1c and 1d, together with vertical
lines indicating the respective mean values. The mea-
surement Mδ(.) can be asserted by the ECDF at prob-
ability (1− δ). For example, with δ = 0.7, in figure 1d,
MultiCritMdelta seed set and ProbInf-Heu seed
set is guarantee to have an influence higher than 12100
for 70% of times, which is better than MaxExpInf seed
set corresponding value of 10800. Generally, the further
the ECDF to the right, around probability (1 − δ), the
higher the quality of the seed set as per Mδ(.).

5.2.4 Effects of varying δ. This is only applied
to ProbInf-Heu and MultiCritMdelta. Figure 2
shows the influence guarantee computed by both algo-
rithms for δ ∈ {0.005, 0.01, 0.05, 0.1, 0.95, 0.995}, with
k ∈ {15, 30, 40}. We observe that, for a fixed seed set

S, the Mδ(I(S)) value from ProbInf-Heu decreases
steadily with δ, with sharp decrease when δ is closer to
1. In contrast, the Mδ(I(S)) value from MultiCrit-
Mdelta is quite insensitive to δ. Further, ProbInf-
Heu has higher Mδ(I(S)) than MultiCritMdelta for
small values of δ. In particular, MultiCritMdelta
gives good solution in most of the scenarios, except
when δ is close to 0 or 1, due to the 1/2 factor in ap-
proximating δ.

6 Conclusion

Our results on the MaxProbInf problem suggest that
the quality of solutions to influence maximization can be
improved by adding probabilistic requirements. We de-
velop the first rigorous approximation algorithms with
guarantee bound and efficient running time. Our ex-
perimental results show that our algorithms outperform
the naive greedy algorithm for the MaxExpInf prob-
lem by an order of magnitude, while at the same time
there is improvement in the expected influence as well.
The results suggest that optimizing based on the Max-
ProbInf criterion using the MultiCritMdelta algo-
rithm can be a better way to solve the influence maxi-
mization problem.

One possible improvement is to incorporate the re-
verse sampling method [1] and its variation, for exam-
ple, the early stop detection [18]. It will be good to

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

quantify which theoretical bounds and guarantees can
be achieved for Mδ(I(.)) following that direction.

References

[1] Christian Borgs, Michael Brautbar, Jennifer Chayes,
and Brendan Lucier. Maximizing social influence in
nearly optimal time. In Proc. of 25th ACM-SIAM
SODA, pages 946–957. SIAM, 2014.

[2] Ning Chen. On the approximability of influence in so-
cial networks. SIAM Journal on Discrete Mathematics,
23(3):1400–1415, 2009.

[3] Wei Chen, Wei Lu, and Ning Zhang. Time-critical
influence maximization in social networks with time-
delayed diffusion process. In Proc. AAAI, 2012.

[4] Wei Chen, Chi Wang, and Yajun Wang. Scalable
influence maximization for prevalent viral marketing
in large-scale social networks. In Proc. 16th ACM
SIGKDD, pages 1029–1038. ACM, 2010.

[5] Thang N Dinh, Huiyuan Zhang, Dzung T Nguyen,
and My T Thai. Cost-effective viral marketing
for time-critical campaigns in large-scale social net-
works. IEEE/ACM Transactions on Networking
(ToN), 22(6):2001–2011, 2014.

[6] Nan Du, Le Song, Manuel Gomez Rodriguez, and
Hongyuan Zha. Scalable influence estimation in
continuous-time diffusion networks. In Advances in
neural information processing systems, 2013.

[7] David Easley, Jon Kleinberg, et al. Networks, crowds,
and markets, volume 8. Cambridge university press
Cambridge, 2010.

[8] Satoru Fujishige. Submodular functions and optimiza-
tion, volume 58. Elsevier Science, 2005.

[9] Toshihiro Fujito. Approximation algorithms for sub-
modular set cover with applications. IEICE Trans. on
Information and Systems, 83(3):480–487, 2000.

[10] Sharon Goldberg and Zhenming Liu. The diffusion
of networking technologies. In Proc. 24th ACM-SIAM
SODA, 2013.

[11] Amit Goyal, Francesco Bonchi, Laks VS Lakshmanan,
and Suresh Venkatasubramanian. On minimizing bud-
get and time in influence propagation over social net-
works. Social network analysis and mining, 3(2):179–
192, 2013.

[12] David Kemp, Jon Kleinberg, and Éva Tardos. Maxi-
mizing the spread of influence through a social network.
In Proc. ACM KDD, pages 137–146, 2003.

[13] David Kempe, Jon Kleinberg, and Éva Tardos. Maxi-
mizing the spread of influence through a social network.
Theory of Computing, 11(4):105–147, 2015.

[14] Andreas Krause, H. Brendan McMahan, Carlos
Guestrin, and Anupam Gupta. Robust submodular
observation selection. JMLR, pages 2761–2801, 2008.

[15] Jure Leskovec and Andrej Krevl. SNAP Datasets:
Stanford large network dataset collection. http://

snap.stanford.edu/data, June 2014.

[16] Brendan Lucier, Joel Oren, and Yaron Singer. Influ-
ence at scale: Distributed computation of complex con-
tagion in networks. In Proc. 21th ACM SIGKDD, 2015.

[17] Michael Mitzenmacher and Eli Upfal. Probability and
Computing: Randomized Algorithms and Probabilistic
Analysis. Cambridge University Press, New York, NY,
USA, 2005.

[18] Hung T Nguyen, My T Thai, and Thang N Dinh.
Stop-and-stare: Optimal sampling algorithms for viral
marketing in billion-scale networks. In Proc. 2016
SIGMOD, pages 695–710. ACM, 2016.

[19] Chaitanya Swamy and David B Shmoys. Approxi-
mation algorithms for 2-stage stochastic optimization
problems. ACM SIGACT News, 37(1):33–46, 2006.

[20] Youze Tang, Yanchen Shi, and Xiaokui Xiao. Influ-
ence maximization in near-linear time: A martingale
approach. In Proc. 2015 ACM SIGMOD, 2015.

[21] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence
maximization: Near-optimal time complexity meets
practical efficiency. In Proc. 2014 ACM SIGMOD,
pages 75–86. ACM, 2014.

[22] George R Terrell and David W Scott. Variable kernel
density estimation. The Annals of Statistics, pages
1236–1265, 1992.

[23] Guangmo Tong, Weili Wu, Shaojie Tang, and Ding-
Zhu Du. Adaptive influence maximization in dynamic
social networks. IEEE/ACM Transactions on Net-
working (TON), 25(1):112–125, 2017.

[24] Laurence A Wolsey. An analysis of the greedy algo-
rithm for the submodular set covering problem. Com-
binatorica, 2(4):385–393, 1982.

[25] Peng Zhang, Wei Chen, Xiaoming Sun, Yajun Wang,
and Jialin Zhang. Minimizing seed set selection with
probabilistic coverage guarantee in a social network. In
Proc. 20th ACM KDD, 2014.

A Proof of Lemma 2.1

Proof. Consider the following graph G = (V,E): we
have r cliques C1, . . . , Cr. Let |Ci| = C for all i. There
is a vertex s which has edge (s, vi) for a specific vertex
vi ∈ Ci. The edges in the cliques Ci all have probability
1. The edges (s, vi) all have probability p = 2/r.

We consider k = 1. Then, E[I(s)] = prC = 2C. For
a vertex v ∈ Ci for any i, E[I(v)] ≤ C + p2rC ≤ C +
2pC < 2C if p < 1/2, which happens if r is large enough.
Therefore, the optimum solution to MaxExpInf(G, 1)
is S∗ = {s} and E[I(S∗)] = 2C.

Next, consider the MaxProbInf instance
(G, 1, 0.9). For v ∈ Ci, I(v) ≥ C. However, note
that Pr[I(s) = 1] = (1−p)r = (1− 2

r)r > 0.1 for r ≥ 10.
Therefore, for δ = 0.9, Mδ(I(S∗)) = 1. This implies
for the instance (G, 1, 0.9), the solution computed
using MaxExpInf (ignoring δ) is arbitrarily bad, com-
pared to the optimum solution to the MaxProbInf
objective. �

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

B Proof of Lemma 2.2

Proof. The proof is by a reduction from MAXIMUM
COVERAGE. An instance of this problem is a ground
set U = {u1, . . . , un}, a collection of subsets S1, . . . , Sm
of U , and parameter k. The objective is to select a set
of k subsets, whose union has the maximum size – this
is NP-hard to approximate within a factor of (1− 1/e).

We construct the same reduction as in [12]. We
construct graph G = (V,E) in the following form. We
have V = L ∪ R, where L has m nodes, corresponding
to the subsets, and R has n nodes, corresponding to
the elements in U . If ui ∈ Sj , there is a directed
edge from the node corresponding to Sj in L to the
node corresponding to ui in R. All edges have diffusion
probability 1.

Therefore, for a subset S ⊆ L of seeds, I(S) equals
the union of the corresponding subsets. We choose
δ = 1. Therefore, there is a set S of size k with
|I(S)| ≥ C with probability δ = 1 if and only if there is
a solution to COVERAGE of size at least C.

Copyright c© 2020 by SIAM
Unauthorized reproduction of this article is prohibited

