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Abstract

Background: Most statistical methods used to identify cancer driver genes are
either biased due to choice of assumed parametric models or insensitive to
directional relationships important for causal inference. To overcome modeling
biases and directional insensitivity, a recent statistical functional chi-squared test
(FunChisq) detects directional association via model-free functional dependency.
FunChisq examines patterns pointing from independent to dependent variables
arising from linear, non-linear, or many-to-one functional relationships.
Meanwhile, the Functional Annotation of Mammalian Genome 5 (FANTOM5)
project surveyed gene expression at over 200,000 transcription start sites (TSSs)
in nearly all human tissue types, primary cell types, and cancer cell lines. The
data cover TSSs originated from both coding and noncoding genes. For the vast
uncharacterized human TSSs that may exhibit complex patterns in cancer versus
normal tissues, the model-free property of FunChisq provides us an
unprecedented opportunity to assess the evidence for a gene’s directional effect
on human cancer.

Results: We first evaluated FunChisq and six other methods using 719 curated
cancer genes on the FANTOM5 data. FunChisq performed best in detecting
known cancer driver genes from non-cancer genes. We also show the capacity of
FunChisq to reveal non-monotonic patterns of functional association, to which
typical differential analysis methods such as t-test are insensitive. Further
applying FunChisq to screen unannotated TSSs in FANTOM5, we predicted 1108
putative cancer driver noncoding RNAs, stronger than 90% of curated cancer
driver genes. Next, we compared leukemia samples against other samples in
FANTOM5 and FunChisq predicted 332/79 potential biomarkers for
lymphoid/myeloid leukemia, stronger than the TSSs of all 87/100 known driver
genes in lymphoid/myeloid leukemia.

Conclusions: This study demonstrated the advantage of FunChisq in revealing
directional association, especially in detecting non-monotonic patterns. Here, we
also provide the most comprehensive catalog of high-quality biomarkers that may
play a causative role in human cancers, including putative cancer driver
noncoding RNAs and lymphoid/myeloid leukemia specific biomarkers.

Keywords: FunChisq; non-monotonic directional association; human cancer;
cancer driver gene; noncoding RNA; leukemia; biomarker

Background
Greatly outnumbering coding genes, noncoding RNA (ncRNA) genes remain elu-

sive in our understanding of their function. Among various ncRNAs, microRNA,
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long noncoding RNA, and enhancer RNA are the most heavily studied and some

are deregulated in cancer [1, 2, 3]. Due to technical challenges caused by their

typically low abundance, ncRNA profiles of cancer are yet widely available. For

example, even in The Cancer Genome Atlas (TCGA) project [4], the expression of

non-polyadenylated ncRNAs in tumor samples is not provided. Encouragingly, the

Functional Annotation of Mammalian Genome 5 (FANTOM5) project [5] measured

promoter-level transcriptome data at 209,911 transcription start sites (TSSs) in 752

human samples covering all major human tissue types, primary cell types, and no-

tably many cancer cell lines represented by 225 samples. Such a sampling diversity

captured a wealth of system dynamics. Additionally, technical variations introduced

in data acquisition are minimal because all samples in the project were sequenced

at the same facility housed in RIKEN, Japan. More than half (107,139) of the TSSs

are unannotated, pointing to most likely novel ncRNAs. Therefore, the FANTOM5

data set opens up an enormous opportunity to study the role for ncRNAs in cancer.

Most statistical methods used to identify cancer marker genes [6, 7] are either

biased due to parametric model choices, insensitive to directional causal relation-

ships, or unable to reveal non-monotonic patterns. Table 1 summarizes advantages

and disadvantages of several widely used biomarker detection methods. A symmet-

ric association test reveals no directionality of a pattern, and thus cannot infer

causality. Differential gene expression analysis methods are often unable to de-

tect non-monotonic patterns from gene to phenotype, commonly seen in biologi-

cal systems. Logistic regression can fit a nonlinear function but requires a correct

parametric model. To overcome these issues, the functional chi-squared test (Fun-

Chisq) [8, 9, 10] is a recently developed statistical test for directional association via

model-free functional dependency. The FunChisq test statistic is computed from a

contingency table, where the row variable represents independent variable X and

the column variable for dependent variable Y . When both X and Y are numeric

or ordinal, we can define the monotonicity of a pattern. X to Y is monotonically

increasing/decreasing if Y never decreases/increases as X increases. X to Y is

non-monotonic if Y can both increase at one point and decrease at another as X

increases. The FunChisq test statistic is maximized by either one-to-one or many-to-

one non-constant functions from X to Y given marginal sums of dependent variable

Y . Thus, FunChisq is sensitive to both monotonic and non-monotonic functional

patterns. The original FunChisq test established an asymptotic chi-squared null

distribution for the test statistic [8]. An exact functional test using the same test

statistic has been developed to compute its statistical significance based on an ex-

act, instead of asymptotic, null distribution [9]. We also introduce function index ξf ,

derived from the FunChisq statistic, to measure the effect size of functional depen-

dency. The relationship of the index to the p-value of the FunChisq test statistic is

analogous to that of fold-change to p-value in differential gene expression analysis.

The pair of fold change and p-value is often visualized together in a volcano plot.

Similarly, examining both the function index and the FunChisq p-value disfavors

patterns either weak in functional dependency or statistically insignificant, leading

to increased confidence in causal inference.

The Heritage Provider Network (HPN)-Dialogue for Reverse Engineering Assess-

ments and Methods (DREAM) network inference challenges aimed to decipher
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Table 1 Comparison of widely used biomarker detection methods.

Methods Advantages Disadvantages

Pearson’s chi-squared test Model free No directionality
t-test No discretization No non-monotonicity
Wilcoxon test Nonparametric No non-monotonicity
Logistic regression Nonlinear;

No discretization
Requires a parametric model

DESeq2; edgeR Generalized linear model Requires a parametric model

causal gene networks connecting signaling proteins in human breast cancer [11].

It evaluated network inference approaches employed or designed by about 80 par-

ticipating teams for their effectiveness on revealing signaling networks. On the in

silico data from a non-linear dynamical system model, FunChisq performed the best

among all submissions. On the experimental phosphoprotein data measured from

cancer cell lines in response to stimuli, prior biological knowledge about molecular

interactions was allowed to be integrated. Notably, FunChisq, without incorporating

any prior information, was ranked the 7th after six methods all using prior knowl-

edge. In the post-challenge evaluation, combining prior knowledge with FunChisq

led to substantial better performance over the best performer on the experimental

data [11]. The outstanding performance of FunChisq supports its practicality in

causal inference. Its advantage in distinguishing interaction directionality and sen-

sitivity to non-monotonic patterns motivated us to study genes involved in cancer

using FANTOM5 data.

On FANTOM5 data, we first evaluated FunChisq and six other methods using 719

curated cancer genes. FunChisq performed best in detecting known cancer driver

genes from non-cancer genes. We also show the capacity of FunChisq to reveal

non-monotonic patterns, to which typical differential analysis method such as t-

test are insensitive. We further applied FunChisq on unannotated human TSSs in

FANTOM5, and predicted 1108 ncRNAs as putative cancer drivers. They have

directional association to cancer stronger than 90% of the curated cancer driver

genes. Next, we compared leukemia samples against other samples in FANTOM5

and FunChisq predicted potential biomarkers for lymphoid leukemia and for myeloid

leukemia, stronger than all known driver genes of the two leukemia types.

This study demonstrates that FunChisq indeed detected many non-monotonic

TSS-cancer association patterns, to which previous methods may be blind. As the

TSS-cancer associations are predicted by directional functional dependency with-

out assuming a parametric model, we have provided the most comprehensive and

unbiased catalog of high-quality noncoding and coding RNA TSSs that may be

causative factors to human cancers.

Results
FunChisq is powerful in detecting known human cancer genes

We evaluated the performance of FunChisq and six other tests in distinguishing

719 curated cancer genes on FANTOM5 human data. The six other tests include

Pearson’s chi-squared test [12], Wilcoxon test [13], t-test [14], logistic regression [15],

DESeq2 [16], and edgeR [17]. The curated cancer genes were obtained from Cancer

Gene Census [18] in COSMIC Release v83. The ground truth in the evaluation
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was generated with true cancer driver genes and non-cancer-associated genes. For

each cancer driver gene, we extracted its representative TSS, which was the most

transcribed among all TSSs of the same gene. However, non-cancer-associated genes

are not typically reported in the literature. Thus, excluding curated cancer genes, we

randomly picked the same number of TSSs—most likely non-cancer TSSs. Then we

evaluated all seven methods for their performance in revealing true cancer driver

gene TSSs. DESep2 and edgeR were tested on raw read count data, while the

other methods on discrete data transformed from expression data in the unit of

tags per million (TPM). Specifically, we used the R package Ckmeans.1d.dp [19,

20] to discretize the log-transformed TPM abundance from all samples for each

TSS, before which numbers of discretization levels for each gene were automatically

determined by R package mclust [21] by fitting a finite Gaussian mixture model.

The performance of the seven methods on detecting cancer TSSs from FANTOM5

data is summarized in Figure 1. The receiver operating characteristic (ROC) curves

in Figure 1a and precision-recall (PR) curves in Figure 1b indicate that FunChisq

outperformed the other six methods. We repeated the same evaluation on 100 dif-

ferent sets of randomly selected non-cancer TSSs. Figure 1c,d show that the areas

under the ROC and PR curves of FunChisq are markedly better than all other

six methods, demonstrating the advantage of FunChisq. The fact that directional

FunChisq scored better than directionless Pearson’s chi-squared test suggests the

importance of direction in detecting cancer genes. FunChisq also performed much

better than the other five methods (Wilcoxon test, t-test, DESeq2, edgeR, and lo-

gistic regression) not designed for detecting non-monotonic patterns, suggesting the

importance of detecting such patterns when analyzing cancer driver gene expression,

as demonstrated in the next subsection.

FunChisq is sensitive to non-monotonic patterns

On the whole-body FANTOM5 human transcriptome data, we showcase non-

monotonic interaction patterns between TSS abundance of two known cancer genes,

KAT6A (also known as MYST3 and MOZ) [22] and BRAF [23], and their cancer

status of human samples in Figure 2. The non-monotonicity was detected only by

FunChisq, while approaches based on comparison of means, such as t-test, would

fail, because the means of non-monotonic patterns between cancer and non-cancer

samples may not differ significantly. KAT6A has been implicated to either promote

or inhibit senescence [24], important for tumor formation and growth [25]. KAT6A

is associated with oncogenesis [22] in both leukemia [26, 27, 28, 29] and breast

cancer [30], because of dysregulation of its histone acetyltransferase activity or its

aberrant expression. KAT6A was also hypothesized to suppress tumor when severe

DNA damage happened [31, 24]. Thus, KAT6A may both promote and suppress

cancer, playing competing roles depending on the cellular context. BRAF has long

been established as a proto-oncogene [32]. However, BRAF paradoxically inhibits

stem cell renewal [33]; also in BRAF-driven mouse model of colon cancer, tumor

formation is suppressed [33]. Therefore, BRAF may either promote or inhibit can-

cer depending on the context. Both examples illustrate the capacity of FunChisq

in recognizing non-monotonic patterns, which t-test and other statistical analysis

methods based on the comparison of group means may not manage to differentiate.
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FunChisq is empirically efficient in runtime

We measured the total runtime of the seven methods evaluating the relationship

of all TSSs to cancer, as summarized in Table 2. The input to each method is the

FANTOM5 data covering 209,911 TSSs across 752 samples, including 527 cancer

cell lines and 225 normal primary/tissue cells. The program ran on a single thread

of a server with 12×2.40GHz Intel(R) Xeon(R) CPU E5645 and 192GB RAM under

openSUSE Leap 15.0 OS. FunChisq, Pearson’s chi-squared test, Wilcoxon test and

t-test took the least time of less than 10 minutes. Logistic regression and edgeR took

much longer time fitting default models. DESeq2 costed most time due to raw read

count normalization, dispersion estimation, and generalized linear model fitting. In

summary, the empirical runtime comparison suggests that FunChisq is practically

efficient.

Table 2 Empirical runtime of seven methods in evaluating association of 209,911 transcription
start sites with cancer. The methods are sorted in the increasing order of runtime.

Methods Runtime

t-test 2m 26s
Pearson’s chi-squared test 8m 32s
FunChisq 8m 40s
Wilcoxon test 8m 41s
edgeR 43m 44s
Logistic regression 44m 01s
DESeq2 54h 08m

FunChisq reveals putative cancer driver noncoding RNAs

The latest FANTOM5 annotation has identified most coding genes in the human

genome. Thus, we hypothesize that the majority of the 107,139 unannotated TSSs

may belong to potential novel ncRNAs. To identify the directional effect from TSS

to cancer, we applied FunChisq on the expression of each TSS in cancer versus

non-cancer samples to report function indices and p-values. Figure 3 shows the

distribution of function index of representative TSSs from the 719 known cancer

genes, versus that of all other TSSs. The two distributions demonstrate that known

cancer TSSs have a greater average function index than other TSSs, indicating that

the cancer status has stronger dependency on known cancer TSSs than other TSSs.

Rather than picking a fixed function index cutoff, we selected the threshold at 90

percentile of known cancer TSS function index values (Figure 3). The criterion is

stringent to select the most relevant candidates. At the 90 percentile function index

cutoff of 0.40 and an adjusted p-value threshold of 0.05, we selected 1108 unanno-

tated TSSs with a directional effect on cancer status. Thus they are stronger than

90% of representative TSSs of all known cancer driver genes, constituting putative

cancer driver ncRNAs. Figure 4 shows two such predicted ncRNAs, one with a

monotonic interaction pattern with cancer status and the other a non-monotonic

pattern. All 1108 predicted noncoding cancer TSSs are listed in Additional file 1.

We expect cancer biologists to find these ncRNA biomarkers interesting and to

apply either RNA silencing or gene editing to study their functions in cancer.

Putative cancer-type specific biomarkers for lymphoid and myeloid leukemias

Both lymphoid and myeloid leukemia samples have the largest sample size among

all cancer types sequenced by the FANTOM5 project. We contrast samples of a
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cancer type and all remaining samples which also include other cancer types, such

that the markers identified are only specific to the cancer type of interest. This

strategy is only possible with FANTOM5 data in that they cover all major tissue,

cell, and cancer types in human.

We first searched for potential biomarkers of lymphoid leukemia by testing the

directional effect of each TSS on lymphoid leukemia status. Among all 752 sam-

ples from FANTOM5, there are 23 lymphoid leukemia and 48 related normal lym-

phoid samples. We divided the samples into two groups: the first group contains

23 lymphoid leukemia samples and the second group has all other 729 samples (in-

cluding the 48 normal lymphoid samples and all cancer types other than lymphoid

leukemia). We then performed the FunChisq test on each TSS to hunt for ones on

which lymphoid leukemia status functionally depend. By requiring a p-value under

0.05 and a function index greater than all 87 known lymphoid leukemia driver gene

TSSs, we identified 332 putative lymphoid leukemia biomarkers.

Next we performed the same procedure to search for biomarkers for myeloid

leukemia by contrasting the 28 myeloid leukemia samples with the remaining

724 samples (including 26 normal myeloid samples and all cancer types other

than myeloid leukemia). We detected 79 statistically significant putative myeloid

leukemia biomarkers, with a p-value no more than 0.05 and function index greater

than the TSSs of all 100 known myeloid leukemia driver genes.

Figure 5 illustrates the expression patterns of four biomarker candidates that

are distinct between the specific leukemia and other samples. Only in lym-

phoid leukemia, p1@SNX9 is under-expressed but not in any other samples (Fig-

ure 5a); hg 153880.1 is mostly highly expressed only in lymphoid leukemia (Fig-

ure 5b). p4@LMO2 is exclusively highly expressed in myeloid leukemia (Figure 5c);

hg 35610.1 also exhibited the highest expression in myeloid leukemia (Figure 5d).

Distributions of detected biomarkers along each chromosome for lymphoid and

myeloid leukemias are shown in Figure 6. In lymphoid leukemia samples, chro-

mosomes 12 contain the highest number of biomarkers, while in myeloid leukemia

samples, chromosome 6 and 19 has much more biomarkers than others. In chronic

lymphocytic leukemia (CLL), trisomy 12 has been reported to be the third most

frequent chromosomal aberration and is often present as a unique cytogenetic al-

teration [34]. In acute myeloid leukemia (AML), trisomy chromosome 6 has been

reported as a sole cytogenetic abnormality in AML-M5 [35], and chromosome 19

abnormalities are commonly seen in AML-M7 [36]. Our findings of the biomarker

genomic locations are consistent with these known chromosomal abnormalities in

subtypes of leukemia, which supports potential cancer-related functions of the pu-

tative biomarkers detected.

The predicted biomarkers of both lymphoid and myeloid leukemias are reported

in Additional file 2 (see section Additional files).

Discussion
FunChisq measures the functional strength from row variable X to column variable

Y in a contingency table via a model-free approach. Given the column sums, a con-

tingency table maximizes the FunChisq statistic if and only if column variable Y is a

non-constant mathematical function of row variable X. This theoretical optimality
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makes FunChisq model-free in promoting all forms of functional patterns regardless

of parametric family, linearity, or monotonicity. This flexibility unconstrained by

functional forms offers one a greater capacity in inferring causality with reduced

biases than other methods.

The model-free property of FunChisq aligns well to the need of unbiased knowl-

edge discovery in the analysis of vast uncharacterized human noncoding genes as

uncovered by the FANTOM5 project, providing us a powerful instrument to assess

objectively the evidence for a gene’s directional effect on human cancer.

Conclusions
We have shown that the FunChisq statistical method is powerful in detecting direc-

tional association, sensitive to both monotonic and non-monotonic patterns. Strong

functional patterns provide evidence for causality. Applying the method on the

FANTOM5 data covering the largest number of potential noncoding genes for many

cancer types, we revealed putative cancer driver ncRNAs with a directional effect

on cancer status stronger than 90% of all 719 curated cancer genes. Furthermore, we

predicted 332 potential cancer biomarkers for lymphoid leukemia and 79 for myeloid

leukemia, stronger than all known lymphoid or myeloid leukemia genes. Our study

thus contributes a catalog of novel biomarker candidates that may signify a deeper

understanding of cancer biology.

Methods
We used the normalized functional chi-squared test with an asymptotic normal null

distribution to discover directional association in contingency tables [8, 11]. The test

detects model-free functional dependency and does not need a prescribed functional

form. The directional functional dependency can potentially indicate the causal

direction of an interaction based on the causality-by-functionality principle [37].

An observed r× c contingency table O has r rows representing the discrete levels

for independent variable and c columns representing the discrete levels for dependent

variable. Let Oij denote the sample counts at row i and column j. Let Oi· be the

row sum of row i and O·j be the column sum of column j, defined as

Oi· =
c∑
j=1

Oi,j and O·j =
r∑
i=1

Oi,j (1)

Let n represent the sample size of table O. The FunChisq statistic of observed table

O is defined by

χ2
f (O) =

[
r∑
i=1

c∑
j=1

(Oij −Oi·/c)2

Oi·/c

]
−

c∑
j=1

(O·j − n/c)2

n/c
(2)

which asymptotically follows a chi-squared distribution with ν = (r − 1)(c − 1)

degrees of freedom, under the null hypothesis of the row and column variables

being statistically independent and an assumption of the dependent variable being

uniformly distributed. We further define the normalized FunChisq by mean-shifting
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and standard-deviation-scaling χ2
f (O) to

χ2
f (O)− ν
√

2ν
(Normalized FunChisq) (3)

which asymptotically follows a standard normal distribution when the degrees of

freedom ν is high [38] under the null hypothesis. Our empirical evaluation in Fig-

ure 1 suggests that the normalized FunChisq is effective at detecting functional

dependency even if ν is small.

We also introduce the function index ξf to measure the effect size of FunChisq

test:

ξf =

√√√√√√ χ2
f (O)

n(c− 1)−
c∑
j=1

(O·j − n/c)2

n/c

(4)

The index assesses the strength of functional dependency of column variable Y on

row variable X. It ranges from 0 to 1, with greater values representing stronger non-

constant functionality. The index should be used in conjunction with the p-value

of the test statistic to ensure both a sufficient effect and an acceptable statistical

significance.
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4. Tomczak, K., Czerwińska, P., Wiznerowicz, M.: The Cancer Genome Atlas (TCGA): an immeasurable source of

knowledge. Contemporary Oncology 19(1A), 68–77 (2015). doi:10.5114/wo.2014.47136

5. Lizio, M., Harshbarger, J., Shimoji, H., Severin, J., Kasukawa, T., Sahin, S., Abugessaisa, I., Fukuda, S., Hori,

F., Ishikawa-Kato, S., Mungall, C.J., Arner, E., Baillie, J.K., Bertin, N., Bono, H., de Hoon, M., Diehl, A.D.,

Dimont, E., Freeman, T.C., Fujieda, K., Hide, W., Kaliyaperumal, R., Katayama, T., Lassmann, T., Meehan,

T.F., Nishikata, K., Ono, H., Rehli, M., Sandelin, A., Schultes, E.A., ’t Hoen, P.A.C., Tatum, Z., Thompson,

M., Toyoda, T., Wright, D.W., Daub, C.O., Itoh, M., Carninci, P., Hayashizaki, Y., Forrest, A.R.R., Kawaji, H.:

Gateways to the fantom5 promoter level mammalian expression atlas. Genome Biol 16, 22 (2015).

doi:10.1186/s13059-014-0560-6

6. Zhao, X.-M., Liu, K.-Q., Zhu, G., He, F., Duval, B., Richer, J.-M., Huang, D.-S., Jiang, C.-J., Hao, J.-K.,

Chen, L.: Identifying cancer-related microRNAs based on gene expression data. Bioinformatics 31(8),

1226–1234 (2015). doi:10.1093/bioinformatics/btu811

7. Lee, J.-H., Zhao, X.-M., Yoon, I., Lee, J.Y., Kwon, N.H., Wang, Y.-Y., Lee, K.-M., Lee, M.-J., Kim, J., Moon,

H.-G., In, Y., Hao, J.-K., Park, K.-M., Noh, D.-Y., Han, W., Kim, S.: Integrative analysis of mutational and

transcriptional profiles reveals driver mutations of metastatic breast cancers. Cell Discov 2, 16025 (2016).

doi:10.1038/celldisc.2016.25

8. Zhang, Y., Song, M.: Deciphering interactions in causal networks without parametric assumptions. arXiv

Molecular Networks, 1311–2707 (2013). 1311.2707

9. Zhong, H., Song, M.: A fast exact functional test for directional association and cancer biology applications.

IEEE/ACM Transactions on Computational Biology and Bioinformatics 16(3), 818–826 (2019).

doi:10.1109/TCBB.2018.2809743

10. Zhang, Y., Zhong, H., Sharma, R., Kumar, S., Song, J.: FunChisq: Chi-Square and Exact Tests for Model-Free

Functional Dependency. (2018). R package version 2.4.5-3.

https://CRAN.R-project.org/package=FunChisq. Accessed 6 December 2018.

11. Hill, S.M., Heiser, L.M., Cokelaer, T., Unger, M., Nesser, N.K., Carlin, D.E., Zhang, Y., Sokolov, A., Paull,

E.O., Wong, C.K., Graim, K., Bivol, A., Wang, H., Zhu, F., Afsari, B., Danilova, L.V., Favorov, A.V., Lee,

W.S., Taylor, D., Hu, C.W., Long, B.L., Noren, D.P., Bisberg, A.J., The HPN-DREAM Consortium, Mills,

G.B., Gray, J.W., Kellen, M., Norman, T., Friend, S., Qutub, A.A., Fertig, E.J., Guan, Y., Song, M., Stuart,

J.M., Spellman, P.T., Koeppl, H., Stolovitzky, G., Saez-Rodriguez, J., Mukherjee, S.: Inferring causal molecular

networks: empirical assessment through a community-based effort. Nat Methods 13(4), 310–318 (2016).

doi:10.1038/nmeth.3773

12. Pearson, K.: On the criterion that a given system of deviations from the probable in the case of a correlated

system of variables is such that it can be reasonably supposed to have arisen from random sampling.

Philosophical Magazine Series 5 50(302), 157–175 (1900)

13. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bulletin 1(6), 80–83 (1945)

14. Rice, J.: Mathematical Statistics and Data Analysis, 3rd edn. Thomas Higher Education, Belmont, CA (2006)

15. Hosmer Jr, D.W., Lemeshow, S., Sturdivant, R.X.: Applied Logistic Regression vol. 398, 3rd edn. John Wiley &

Sons, Hoboken, NJ (2013)

16. Love, M.I., Huber, W., Anders, S.: Moderated estimation of fold change and dispersion for RNA-seq data with

DESeq2. Genome Biology 15(12), 550 (2014)

17. Robinson, M.D., McCarthy, D.J., Smyth, G.K.: edgeR: A Bioconductor package for differential expression

analysis of digital gene expression data. Bioinformatics 26(1), 139–140 (2010)

18. Futreal, P.A., Coin, L., Marshall, M., Down, T., Hubbard, T., Wooster, R., Rahman, N., Stratton, M.R.: A

census of human cancer genes. Nature Reviews Cancer 4(3), 177–183 (2004)

19. Wang, H., Song, M.: Ckmeans.1d.dp: Optimal k-means clustering in one dimension by dynamic programming.

The R Journal 3(2), 29–33 (2011). doi:10.32614/RJ-2011-015

20. Song, J., Wang, H.: Ckmeans.1d.dp: Optimal and Fast Univariate Clustering. (2018). R package version 4.2.2.

https://cran.r-project.org/package=Ckmeans.1d.dp. Accessed 1 December 2018.

21. Scrucca, L., Fop, M., Murphy, T.B., Raftery, A.E.: mclust 5: Clustering, classification and density estimation

using Gaussian finite mixture models. The R Journal 8(1), 289–317 (2016). doi:10.32614/RJ-2016-021

22. Lv, D., Jia, F., Hou, Y., Sang, Y., Alvarez, A.A., Zhang, W., Gao, W.-Q., Hu, B., Cheng, S.-Y., Ge, J., Li, Y.,

Feng, H.: Histone acetyltransferase KAT6A upregulates PI3K/Akt signaling through TRIM24 binding. Cancer

Res 77(22), 6190–6201 (2017). doi:10.1158/0008-5472.CAN-17-1388

23. Sclafani, F., Gullo, G., Sheahan, K., Crown, J.: Braf mutations in melanoma and colorectal cancer: a single

oncogenic mutation with different tumour phenotypes and clinical implications. Critical Reviews in

Oncology/Hematology 87(1), 55–68 (2013)

24. Sheikh, B.N., Phipson, B., El-Saafin, F., Vanyai, H.K., Downer, N.L., Bird, M.J., Kueh, A.J., May, R.E.,

Smyth, G.K., Voss, A.K., Thomas, T.: MOZ (MYST3, KAT6A) inhibits senescence via the INK4A-ARF

http://dx.doi.org/10.1186/1476-4598-10-38
http://dx.doi.org/10.5732/cjc.013.10170
http://dx.doi.org/10.1038/jhg.2016.66
http://dx.doi.org/10.5114/wo.2014.47136
http://dx.doi.org/10.1186/s13059-014-0560-6
http://dx.doi.org/10.1093/bioinformatics/btu811
http://dx.doi.org/10.1038/celldisc.2016.25
http://arxiv.org/abs/1311.2707
http://dx.doi.org/10.1109/TCBB.2018.2809743
https://CRAN.R-project.org/package=FunChisq
http://dx.doi.org/10.1038/nmeth.3773
http://dx.doi.org/10.32614/RJ-2011-015
https://cran.r-project.org/package=Ckmeans.1d.dp
http://dx.doi.org/10.32614/RJ-2016-021
http://dx.doi.org/10.1158/0008-5472.CAN-17-1388


Zhong and Song Page 10 of 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

pathway. Oncogene 34(47), 5807–5820 (2015). doi:10.1038/onc.2015.33

25. O’Brien, W., Stenman, G., Sager, R.: Suppression of tumor growth by senescence in virally transformed human

fibroblasts. Proceedings of the National Academy of Sciences of USA 83(22), 8659–8663 (1986)

26. Deguchi, K., Ayton, P.M., Carapeti, M., Kutok, J.L., Snyder, C.S., Williams, I.R., Cross, N.C., Glass, C.K.,

Cleary, M.L., Gilliland, D.G.: MOZ-TIF2-induced acute myeloid leukemia requires the MOZ nucleosome binding

motif and TIF2-mediated recruitment of CBP. Cancer Cell 3(3), 259–271 (2003)

27. Aikawa, Y., Katsumoto, T., Zhang, P., Shima, H., Shino, M., Terui, K., Ito, E., Ohno, H., Stanley, E.R., Singh,

H., Tenen, D.G., Kitabayashi, I.: PU.1-mediated upregulation of CSF1R is crucial for leukemia stem cell

potential induced by MOZ-TIF2. Nat Med 16(5), 580–585 (2010). doi:10.1038/nm.2122

28. Aguiar, R.C., Chase, A., Coulthard, S., Macdonald, D.H., Carapeti, M., Reiter, A., Sohal, J., Lennard, A.,

Goldman, J.M., Cross, N.C.: Abnormalities of chromosome band 8p11 in leukemia: two clinical syndromes can

be distinguished on the basis of moz involvement. Blood 90(8), 3130–3135 (1997)

29. Borrow, J., Stanton, V.P.J., Andresen, J.M., Becher, R., Behm, F.G., Chaganti, R.S., Civin, C.I., Disteche, C.,

Dube, I., Frischauf, A.M., Horsman, D., Mitelman, F., Volinia, S., Watmore, A.E., Housman, D.E.: The

translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the

CREB-binding protein. Nat Genet 14(1), 33–41 (1996). doi:10.1038/ng0996-33

30. Yu, L., Liang, Y., Cao, X., Wang, X., Gao, H., Lin, S.-Y., Schiff, R., Wang, X.-S., Li, K.: Identification of

MYST3 as a novel epigenetic activator of ERα frequently amplified in breast cancer. Oncogene 36(20), 2910

(2017)

31. Waks, Z., Weissbrod, O., Carmeli, B., Norel, R., Utro, F., Goldschmidt, Y.: Driver gene classification reveals a

substantial overrepresentation of tumor suppressors among very large chromatin-regulating proteins. Scientific

Reports 6, 38988 (2016)

32. Eychène, A., Vianney-Barnier, J., Apiou, F., Dutrillaux, B., Calothy, G.: Chromosomal assignment of two

human B-raf (Rmil) proto-oncogene loci: B-raf-1 encoding the p94Braf/Rmil and B-raf-2, a processed

pseudogene. Oncogene 7, 1657–1660 (1992)

33. Tong, K., Pellon-Cardenas, O., Sirihorachai, V.R., Warder, B.N., Kothari, O.A., Perekatt, A.O., Fokas, E.E.,

Fullem, R.L., Zhou, A., Thackray, J.K., Tran, H., Zhang, L., Xing, J., Verzi, M.P.: Degree of tissue

differentiation dictates susceptibility to BRAF-driven colorectal cancer. Cell Rep 21(13), 3833–3845 (2017).

doi:10.1016/j.celrep.2017.11.104

34. Puiggros, A., Blanco, G., Espinet, B.: Genetic abnormalities in chronic lymphocytic leukemia: where we are and

where we go. BioMed Research International 2014, 435983 (2014)

35. Gupta, M., Radhakrishnan, N., Mahapatra, M., Saxena, R.: Trisomy chromosome 6 as a sole cytogenetic

abnormality in acute myeloid leukemia. Turk J Haematol 32(1), 77–79 (2015). doi:10.4274/tjh.2013.0119

36. Nimer, S.D., MacGrogan, D., Jhanwar, S., Alvarez, S.: Chromosome 19 abnormalities are commonly seen in

AML, M7. Blood 100(10), 3838–3838 (2002)

37. Simon, H.A., Rescher, N.: Cause and counterfactual. Philosophy of Science 33(4), 323–340 (1966)

38. Box, G.E., Hunter, J.S., Hunter, W.G.: Statistics for Experimenters: Design, Innovation, and Discovery, 2nd

edn. Wiley-Interscience, New York (2005)

http://dx.doi.org/10.1038/onc.2015.33
http://dx.doi.org/10.1038/nm.2122
http://dx.doi.org/10.1038/ng0996-33
http://dx.doi.org/10.1016/j.celrep.2017.11.104
http://dx.doi.org/10.4274/tjh.2013.0119


Zhong and Song Page 11 of 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Figure captions

Figure 1 FunChisq outperformed six widely-used methods in detecting known cancer genes
from FANTOM5 data. FunChisq test, Pearson’s chi-squared test, Wilcoxon test, t-test and
logistic regression used transformed expression data. DESeq2 and edgeR used raw read count
data. (a) ROC curves of each method. (b) PR curves of each method. (c) AUROC distributions
after repeating the randomized evaluation 100 times. (d) AUPR distributions after repeating the
randomized evaluation 100 times.

Figure 2 Non-monotonic directional interaction patterns from two known cancer genes to the
cancer status of human samples. The horizontal axes are log-scaled abundance of the most
expressed TSS of each gene from FANTOM5. The vertical axes of the two top plots represent
tissue types. ‘Cancer’ indicates a sample is from a cancer cell-line, ‘Normal’ for a sample from a
non-cancer tissue. The vertical axes of the two bottom plots are the probability density of gene
expression level. FunChisq reported high statistical significance of both genes’ directional
association with cancer suggested by the low p-values, while t-test returned insignificant results
indicated by large p-values. (a) p1@KAT6A, the most transcribed TSS of known cancer gene
KAT6A, is either up- or down-regulated in 527 non-cancer samples of various tissues, but has an
intermediate level of expression in 225 samples of various cancers. (b) p1@BRAF, the most
transcribed TSS of known cancer gene BRAF, has a similar non-monotonic expression profile
directionally associated with cancer status.

Figure 3 Distributions of function index measuring the directional association from TSSs to
cancer status. The red curve is the distribution of the index from representative TSSs of known
cancer genes to cancer status. The blue curve is the distribution of representative TSSs of
non-cancer genes to cancer status. Cancer gene TSSs apparently have more larger index values
than non-cancer gene TSSs, implying that the former group is more powerful than the latter
group at predicting cancer status. About 90% of known cancer gene representative TSSs have an
index value of less than 0.40, as indicated by the vertical red dashed line.

Figure 4 Two unannotated transcription start sites predicted as putative cancer driver
ncRNAs. The horizontal axes are log-scaled TSS expression from FANTOM5. The vertical axes of
the two top plots represent tissue types. ‘Cancer’ indicates a sample is from a cancer cell-line,
‘Normal’ for a sample from a non-cancer tissue. The vertical axes of the two bottom plots are the
probability density of gene expression level. (a) Putative cancer ncRNA hg 112446.1 has a
monotonic pattern with cancer status. (b) Putative cancer ncRNA hg 195085.1 exhibits a
non-monotonic pattern with cancer status.

Figure 5 Gene expression patterns of four potential leukemia biomarkers are nearly exclusively
cancer-type specific. The horizontal axes are TSS levels of gene expression from FANTOM5. The
vertical axes are sample types. (a) Putative lymphoid leukemia biomarker SNX9. (b) Putative
lymphoid leukemia biomarker hg 153880.1. (c) Putative myeloid leukemia biomarker LMO2. (d)
Putative myeloid leukemia biomarker hg 35610.1.

Figure 6 Chromosomal locations of putative leukemia biomarkers. Chromosomal counts of
putative biomarkers for (a) lymphoid and (b) myeloid leukemia. Genomic maps of putative
biomarkers for (c) lymphoid and (d) myeloid leukemia.



Zhong and Song Page 12 of 12

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

Additional files
Additional file 1—Additional file 1.xlsx

FunChisq predicted 1108 putative cancer driver ncRNAs with stronger directional

effect to cancer than 90% of 719 known cancer driver genes.

Additional file 2—Additional file 2.xlsx

FunChisq predicted 332 potential cancer biomarkers for lymphoid leukemia and 79

for myeloid leukemia, which were stronger than 87 known lymphoid leukemia and

100 known myeloid leukemia driver genes.
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