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Abstract

Background: Most statistical methods used to identify cancer driver genes are
either biased due to choice of assumed parametric models or insensitive to
directional relationships important for causal inference. To overcome modeling
biases and directional insensitivity, a recent statistical functional chi-squared test
(FunChisq) detects directional association via model-free functional dependency.
FunChisq examines patterns pointing from independent to dependent variables
arising from linear, non-linear, or many-to-one functional relationships.
Meanwhile, the Functional Annotation of Mammalian Genome 5 (FANTOMS5)
project surveyed gene expression at over 200,000 transcription start sites (TSSs)
in nearly all human tissue types, primary cell types, and cancer cell lines. The
data cover TSSs originated from both coding and noncoding genes. For the vast
uncharacterized human TSSs that may exhibit complex patterns in cancer versus
normal tissues, the model-free property of FunChisq provides us an
unprecedented opportunity to assess the evidence for a gene's directional effect
on human cancer.

Results: We first evaluated FunChisq and six other methods using 719 curated
cancer genes on the FANTOMDb data. FunChisq performed best in detecting
known cancer driver genes from non-cancer genes. We also show the capacity of
FunChisq to reveal non-monotonic patterns of functional association, to which
typical differential analysis methods such as t-test are insensitive. Further
applying FunChisq to screen unannotated TSSs in FANTOMS5, we predicted 1108
putative cancer driver noncoding RNAs, stronger than 90% of curated cancer
driver genes. Next, we compared leukemia samples against other samples in
FANTOMS5 and FunChisq predicted 332/79 potential biomarkers for

lymphoid /myeloid leukemia, stronger than the TSSs of all 87/100 known driver
genes in lymphoid /myeloid leukemia.

Conclusions: This study demonstrated the advantage of FunChisq in revealing
directional association, especially in detecting non-monotonic patterns. Here, we
also provide the most comprehensive catalog of high-quality biomarkers that may
play a causative role in human cancers, including putative cancer driver
noncoding RNAs and lymphoid/myeloid leukemia specific biomarkers.

Keywords: FunChisq; non-monotonic directional association; human cancer;
cancer driver gene; noncoding RNA; leukemia; biomarker

Background

Greatly outnumbering coding genes, noncoding RNA (ncRNA) genes remain elu-

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

sive in our understanding of their function. Among various ncRNAs, microRNA, *°


mailto:joemsong@cs.nmsu.edu

Zhong and Song

long noncoding RNA, and enhancer RNA are the most heavily studied and some®
are deregulated in cancer [1, 2, 3]. Due to technical challenges caused by their?
typically low abundance, ncRNA profiles of cancer are yet widely available. For®
example, even in The Cancer Genome Atlas (TCGA) project [4], the expression of*
non-polyadenylated ncRNAs in tumor samples is not provided. Encouragingly, the®
Functional Annotation of Mammalian Genome 5 (FANTOMS) project [5] measured®
promoter-level transcriptome data at 209,911 transcription start sites (T'SSs) in 7527
human samples covering all major human tissue types, primary cell types, and no-2
tably many cancer cell lines represented by 225 samples. Such a sampling diversity®
captured a wealth of system dynamics. Additionally, technical variations introduced*®
in data acquisition are minimal because all samples in the project were sequenced!
at the same facility housed in RIKEN, Japan. More than half (107,139) of the TSSs'?
are unannotated, pointing to most likely novel ncRNAs. Therefore, the FANTOM5®
data set opens up an enormous opportunity to study the role for ncRNAs in cancer.*

Most statistical methods used to identify cancer marker genes [6, 7] are either™®
biased due to parametric model choices, insensitive to directional causal relation-'®
ships, or unable to reveal non-monotonic patterns. Table 1 summarizes advantages'’
and disadvantages of several widely used biomarker detection methods. A symmet-'®
ric association test reveals no directionality of a pattern, and thus cannot infer'®
causality. Differential gene expression analysis methods are often unable to de-*
tect non-monotonic patterns from gene to phenotype, commonly seen in biologi-*!
cal systems. Logistic regression can fit a nonlinear function but requires a correct??
parametric model. To overcome these issues, the functional chi-squared test (Fun-23
Chisq) [8, 9, 10] is a recently developed statistical test for directional association via®*
model-free functional dependency. The FunChisq test statistic is computed from a*
contingency table, where the row variable represents independent variable X and*®
the column variable for dependent variable Y. When both X and Y are numeric?’
or ordinal, we can define the monotonicity of a pattern. X to Y is monotonically®
increasing/decreasing if Y never decreases/increases as X increases. X to Y is?
non-monotonic if ¥ can both increase at one point and decrease at another as X*°
increases. The FunChisq test statistic is maximized by either one-to-one or many-to-**
one non-constant functions from X to Y given marginal sums of dependent variable
Y. Thus, FunChisq is sensitive to both monotonic and non-monotonic functional®
patterns. The original FunChisq test established an asymptotic chi-squared null®*
distribution for the test statistic [8]. An exact functional test using the same test>
statistic has been developed to compute its statistical significance based on an ex-°
act, instead of asymptotic, null distribution [9]. We also introduce function index & f,37
derived from the FunChisq statistic, to measure the effect size of functional depen-*
dency. The relationship of the index to the p-value of the FunChisq test statistic is*
analogous to that of fold-change to p-value in differential gene expression analysis.*
The pair of fold change and p-value is often visualized together in a volcano plot.*!
Similarly, examining both the function index and the FunChisq p-value disfavors*
patterns either weak in functional dependency or statistically insignificant, leading*?

. . . 44
to increased confidence in causal inference.

The Heritage Provider Network (HPN)-Dialogue for Reverse Engineering Assess-*®

ments and Methods (DREAM) network inference challenges aimed to decipher®

Page 2 of 12



Zhong and Song Page 3 of 12

Table 1 Comparison of widely used biomarker detection methods.

Methods Advantages Disadvantages 2

Pearson’s chi-squared test  Model free No directionality 3

t-test No discretization No non-monotonicity

Wilcoxon test Nonparametric No non-monotonicity 4

Logistic regression Nonlinear; Requires a parametric model 5
No discretization

DESeq?2; edgeR Generalized linear model  Requires a parametric model 6

7
8

causal gene networks connecting signaling proteins in human breast cancer [11].9
It evaluated network inference approaches employed or designed by about 80 par-1o0
ticipating teams for their effectiveness on revealing signaling networks. On the ini1
silico data from a non-linear dynamical system model, FunChisq performed the best12
among all submissions. On the experimental phosphoprotein data measured fromis
cancer cell lines in response to stimuli, prior biological knowledge about molecularia
interactions was allowed to be integrated. Notably, FunChisq, without incorporating1s
any prior information, was ranked the 7th after six methods all using prior knowl-1s
edge. In the post-challenge evaluation, combining prior knowledge with FunChisq17
led to substantial better performance over the best performer on the experimentalis
data [11]. The outstanding performance of FunChisq supports its practicality in19
causal inference. Its advantage in distinguishing interaction directionality and sen-20
sitivity to non-monotonic patterns motivated us to study genes involved in cancer21
using FANTOMS5 data. 22
On FANTOMS5 data, we first evaluated FunChisq and six other methods using 71923
curated cancer genes. FunChisq performed best in detecting known cancer driver24
genes from non-cancer genes. We also show the capacity of FunChisq to reveal2s
non-monotonic patterns, to which typical differential analysis method such as t-26
test are insensitive. We further applied FunChisq on unannotated human TSSs in27
FANTOMS5, and predicted 1108 ncRNAs as putative cancer drivers. They have2s
directional association to cancer stronger than 90% of the curated cancer driver29
genes. Next, we compared leukemia samples against other samples in FANTOM530
and FunChisq predicted potential biomarkers for lymphoid leukemia and for myeloid3t
leukemia, stronger than all known driver genes of the two leukemia types. 32
This study demonstrates that FunChisq indeed detected many non-monotonic33
TSS-cancer association patterns, to which previous methods may be blind. As the34
TSS-cancer associations are predicted by directional functional dependency with-35
out assuming a parametric model, we have provided the most comprehensive and36
unbiased catalog of high-quality noncoding and coding RNA TSSs that may be3”
causative factors to human cancers. 38

39

Results 40

FunChisq is powerful in detecting known human cancer genes 4

We evaluated the performance of FunChisq and six other tests in distinguishing®?
719 curated cancer genes on FANTOMS5 human data. The six other tests include®
Pearson’s chi-squared test [12], Wilcoxon test [13], t-test [14], logistic regression [15],*
DESeq2 [16], and edgeR. [17]. The curated cancer genes were obtained from Cancer*®

Gene Census [18] in COSMIC Release v83. The ground truth in the evaluation*®
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was generated with true cancer driver genes and non-cancer-associated genes. For®
each cancer driver gene, we extracted its representative TSS, which was the most?
transcribed among all TSSs of the same gene. However, non-cancer-associated genes®
are not typically reported in the literature. Thus, excluding curated cancer genes, we*
randomly picked the same number of TSSs—most likely non-cancer TSSs. Then we®
evaluated all seven methods for their performance in revealing true cancer driver®
gene TSSs. DESep2 and edgeR were tested on raw read count data, while the’
other methods on discrete data transformed from expression data in the unit of®
tags per million (TPM). Specifically, we used the R package Ckmeans.Id.dp [19,’
20] to discretize the log-transformed TPM abundance from all samples for each®
TSS, before which numbers of discretization levels for each gene were automatically™*
determined by R package mclust [21] by fitting a finite Gaussian mixture model. 12

The performance of the seven methods on detecting cancer TSSs from FANTOM5'
data is summarized in Figure 1. The receiver operating characteristic (ROC) curves™
in Figure 1a and precision-recall (PR) curves in Figure 1b indicate that FunChisq®
outperformed the other six methods. We repeated the same evaluation on 100 dif-*®
ferent sets of randomly selected non-cancer TSSs. Figure lc,d show that the areas
under the ROC and PR curves of FunChisq are markedly better than all other™®
six methods, demonstrating the advantage of FunChisq. The fact that directional™®
FunChisq scored better than directionless Pearson’s chi-squared test suggests the®
importance of direction in detecting cancer genes. FunChisq also performed much®
better than the other five methods (Wilcoxon test, t-test, DESeq2, edgeR, and lo-*
gistic regression) not designed for detecting non-monotonic patterns, suggesting the®
importance of detecting such patterns when analyzing cancer driver gene expression,**
as demonstrated in the next subsection. »
26
27

FunChisq is sensitive to non-monotonic patterns

On the whole-body FANTOMS5 human transcriptome data, we showcase non-22

monotonic interaction patterns between TSS abundance of two known cancer genes,29
KATG6A (also known as MYST3 and MOZ) [22] and BRAF [23], and their cancer®
status of human samples in Figure 2. The non-monotonicity was detected only by
FunChisq, while approaches based on comparison of means, such as t-test, would*
fail, because the means of non-monotonic patterns between cancer and non-cancer®
samples may not differ significantly. KAT6A has been implicated to either promote®*
or inhibit senescence [24], important for tumor formation and growth [25]. KAT6A %
is associated with oncogenesis [22] in both leukemia [26, 27, 28, 29] and breast®
cancer [30], because of dysregulation of its histone acetyltransferase activity or its®”
aberrant expression. KAT6A was also hypothesized to suppress tumor when severe®
DNA damage happened [31, 24]. Thus, KAT6A may both promote and suppress>®
cancer, playing competing roles depending on the cellular context. BRAF has long*
been established as a proto-oncogene [32]. However, BRAF paradoxically inhibits*!
stem cell renewal [33]; also in BRAF-driven mouse model of colon cancer, tumor*?
formation is suppressed [33]. Therefore, BRAF may either promote or inhibit can-*
cer depending on the context. Both examples illustrate the capacity of FunChisq**
in recognizing non-monotonic patterns, which t-test and other statistical analysis*®

methods based on the comparison of group means may not manage to differentiate.*®
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FunChisq is empirically efficient in runtime !

We measured the total runtime of the seven methods evaluating the relationship?
of all TSSs to cancer, as summarized in Table 2. The input to each method is the®
FANTOMS5 data covering 209,911 TSSs across 752 samples, including 527 cancer*
cell lines and 225 normal primary /tissue cells. The program ran on a single thread®
of a server with 12x2.40GHz Intel(R) Xeon(R) CPU E5645 and 192GB RAM under®
openSUSE Leap 15.0 OS. FunChisq, Pearson’s chi-squared test, Wilcoxon test and”
t-test took the least time of less than 10 minutes. Logistic regression and edgeR took®
much longer time fitting default models. DESeq2 costed most time due to raw read®
count normalization, dispersion estimation, and generalized linear model fitting. In1°
summary, the empirical runtime comparison suggests that FunChisq is practically1!

efficient. 12
Table 2 Empirical runtime of seven methods in evaluating association of 209,911 transcription 13
start sites with cancer. The methods are sorted in the increasing order of runtime. 14
Methods Runtime 15
t-test 2m 26s 16
Pearson’s chi-squared test  8m 32s 17
FunChisq 8m 40s
Wilcoxon test 8m 41s 18
edgeR 43m 44s
Logistic regression 44m 01s 19
DESeq2 54h 08m 20
21
22
FunChisq reveals putative cancer driver noncoding RNAs 23

The latest FANTOMS5 annotation has identified most coding genes in the human,,
genome. Thus, we hypothesize that the majority of the 107,139 unannotated TSSsog
may belong to potential novel ncRNAs. To identify the directional effect from TSS,q
to cancer, we applied FunChisq on the expression of each TSS in cancer versus,,
non-cancer samples to report function indices and p-values. Figure 3 shows the,g
distribution of function index of representative TSSs from the 719 known cancer

29
genes, versus that of all other T'SSs. The two distributions demonstrate that known,
cancer T'SSs have a greater average function index than other T'SSs, indicating that
the cancer status has stronger dependency on known cancer T'SSs than other TSSs. ,
Rather than picking a fixed function index cutoff, we selected the threshold at 90 33
percentile of known cancer TSS function index values (Figure 3). The criterion is_,
stringent to select the most relevant candidates. At the 90 percentile function index35
cutoff of 0.40 and an adjusted p-value threshold of 0.05, we selected 1108 unanno-_
tated TSSs with a directional effect on cancer status. Thus they are stronger than37
90% of representative T'SSs of all known cancer driver genes, constituting putative38
cancer driver ncRNAs. Figure 4 shows two such predicted ncRNAs, one with a_
monotonic interaction pattern with cancer status and the other a non—monotonic40
pattern. All 1108 predicted noncoding cancer T'SSs are listed in Additional file 1.41
We expect cancer biologists to find these ncRNA biomarkers interesting and to
apply either RNA silencing or gene editing to study their functions in cancer. :j

Putative cancer-type specific biomarkers for lymphoid and myeloid leukemias o

Both lymphoid and myeloid leukemia samples have the largest sample size among45
all cancer types sequenced by the FANTOMS5 project. We contrast samples of a*®
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cancer type and all remaining samples which also include other cancer types, such®
that the markers identified are only specific to the cancer type of interest. This?
strategy is only possible with FANTOMS5 data in that they cover all major tissue,?
cell, and cancer types in human. 4

We first searched for potential biomarkers of lymphoid leukemia by testing the®
directional effect of each TSS on lymphoid leukemia status. Among all 752 sam-°
ples from FANTOMS5, there are 23 lymphoid leukemia and 48 related normal lym-’
phoid samples. We divided the samples into two groups: the first group contains®
23 lymphoid leukemia samples and the second group has all other 729 samples (in—9
cluding the 48 normal lymphoid samples and all cancer types other than lymphoid™®
leukemia). We then performed the FunChisq test on each TSS to hunt for ones on™!
which lymphoid leukemia status functionally depend. By requiring a p-value under*?
0.05 and a function index greater than all 87 known lymphoid leukemia driver gene13
TSSs, we identified 332 putative lymphoid leukemia biomarkers. 14

Next we performed the same procedure to search for biomarkers for myeloid15
leukemia by contrasting the 28 myeloid leukemia samples with the remaining®®
724 samples (including 26 normal myeloid samples and all cancer types other’
than myeloid leukemia). We detected 79 statistically significant putative myeloid *®
leukemia biomarkers, with a p-value no more than 0.05 and function index glreater19
than the TSSs of all 100 known myeloid leukemia driver genes. 20

Figure 5 illustrates the expression patterns of four biomarker candidates that®
are distinct between the specific leukemia and other samples. Only in lym-*?
phoid leukemia, pl@SNX9 is under-expressed but not in any other samples (Fig—23
ure Ha); hg 153880.1 is mostly highly expressed only in lymphoid leukemia (Fig—24

ure 5b). p4@LMO2 is exclusively highly expressed in myeloid leukemia (Figure 5¢);*

hg_35610.1 also exhibited the highest expression in myeloid leukemia (Figure 5d). 2

Distributions of detected biomarkers along each chromosome for lymphoid and?’
myeloid leukemias are shown in Figure 6. In lymphoid leukemia samples, chro-%
mosomes 12 contain the highest number of biomarkers, while in myeloid leukemia®
samples, chromosome 6 and 19 has much more biomarkers than others. In chronic®
lymphocytic leukemia (CLL), trisomy 12 has been reported to be the third most>!
frequent chromosomal aberration and is often present as a unique cytogenetic al-*
teration [34]. In acute myeloid leukemia (AML), trisomy chromosome 6 has been®
reported as a sole cytogenetic abnormality in AML-M5 [35], and chromosome 19%
abnormalities are commonly seen in AML-M7 [36]. Our findings of the biomarker®®
genomic locations are consistent with these known chromosomal abnormalities in*®

subtypes of leukemia, which supports potential cancer-related functions of the pu—37

tative biomarkers detected. %8
The predicted biomarkers of both lymphoid and myeloid leukemias are 1reported39

in Additional file 2 (see section Additional files). %0
a1

Discussion 42

FunChisq measures the functional strength from row variable X to column variable®
Y in a contingency table via a model-free approach. Given the column sums, a con-**
tingency table maximizes the FunChisq statistic if and only if column variable Y is a*®
non-constant mathematical function of row variable X. This theoretical optimality*®
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makes FunChisq model-free in promoting all forms of functional patterns regardless’
of parametric family, linearity, or monotonicity. This flexibility unconstrained by2
functional forms offers one a greater capacity in inferring causality with reduced®
biases than other methods. 4

The model-free property of FunChisq aligns well to the need of unbiased knowl-"
edge discovery in the analysis of vast uncharacterized human noncoding genes as’
uncovered by the FANTOMS5 project, providing us a powerful instrument to assess
objectively the evidence for a gene’s directional effect on human cancer. :
Conclusions i?
We have shown that the FunChisq statistical method is powerful in detecting direc—12
tional association, sensitive to both monotonic and non-monotonic patterns. Strong13
functional patterns provide evidence for causality. Applying the method on the14
FANTOMS5 data covering the largest number of potential noncoding genes for many
cancer types, we revealed putative cancer driver ncRNAs with a directional effect16
on cancer status stronger than 90% of all 719 curated cancer genes. Furthermore, we,
predicted 332 potential cancer biomarkers for lymphoid leukemia and 79 for myeloid18
leukemia, stronger than all known lymphoid or myeloid leukemia genes. Our study19
thus contributes a catalog of novel biomarker candidates that may signify a deeper 20

understanding of cancer biology. ot

22

Methods 03
We used the normalized functional chi-squared test with an asymptotic normal null,,
distribution to discover directional association in contingency tables [8, 11]. The testos
detects model-free functional dependency and does not need a prescribed functionalyg
form. The directional functional dependency can potentially indicate the causalyr
direction of an interaction based on the causality-by-functionality principle [37]. o

An observed r X ¢ contingency table O has r rows representing the discrete levelsas
for independent variable and ¢ columns representing the discrete levels for dependentao
variable. Let O;; denote the sample counts at row 7 and column j. Let O;. be thes:

row sum of row ¢ and O.; be the column sum of column j, defined as 32
33
(& I 34
=Y 0y and O;=7) O @,
j=1 i=1

36

Let n represent the sample size of table O. The FunChisq statistic of observed table3?
O is defined by 38

39

U 0;./c - O.j—n02
ZZ 7o Z(n//) P

which asymptotically follows a chi-squared distribution with v = (r — 1)(c — 1)®
degrees of freedom, under the null hypothesis of the row and column variables**
being statistically independent and an assumption of the dependent variable being®®

uniformly distributed. We further define the normalized FunChisq by mean-shifting*®
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and standard-deviation-scaling X?(O) to

2
x3(0) —v . . °
e (Normalized FunChisq) (3),

5

which asymptotically follows a standard normal distribution when the degrees ofe
freedom v is high [38] under the null hypothesis. Our empirical evaluation in Fig-7
ure 1 suggests that the normalized FunChisq is effective at detecting functionals
dependency even if v is small. 9

We also introduce the function index &£f to measure the effect size of FunChisqio
test: 11

12

£ =

16
The index assesses the strength of functional dependency of column variable Y ony

row variable X. It ranges from 0 to 1, with greater values representing stronger non-,g
constant functionality. The index should be used in conjunction with the p-value,q
of the test statistic to ensure both a sufficient effect and an acceptable statisticaly,

significance. o1
22
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Figure captions

Figure 1 FunChisq outperformed six widely-used methods in detecting known cancer genes
from FANTOMS data. FunChisq test, Pearson’s chi-squared test, Wilcoxon test, t-test and
logistic regression used transformed expression data. DESeq2 and edgeR used raw read count
data. (a) ROC curves of each method. (b) PR curves of each method. (c) AUROC distributions
after repeating the randomized evaluation 100 times. (d) AUPR distributions after repeating the
randomized evaluation 100 times.

Figure 2 Non-monotonic directional interaction patterns from two known cancer genes to the
cancer status of human samples. The horizontal axes are log-scaled abundance of the most
expressed TSS of each gene from FANTOMb. The vertical axes of the two top plots represent
tissue types. ‘Cancer’ indicates a sample is from a cancer cell-line, ‘Normal’ for a sample from a
non-cancer tissue. The vertical axes of the two bottom plots are the probability density of gene
expression level. FunChisq reported high statistical significance of both genes’ directional
association with cancer suggested by the low p-values, while t-test returned insignificant results
indicated by large p-values. (a) pI@KAT6A, the most transcribed TSS of known cancer gene
KATG6A, is either up- or down-regulated in 527 non-cancer samples of various tissues, but has an
intermediate level of expression in 225 samples of various cancers. (b) pI@BRAF, the most
transcribed TSS of known cancer gene BRAF, has a similar non-monotonic expression profile
directionally associated with cancer status.
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Figure 3 Distributions of function index measuring the directional association from TSSs to
cancer status. The red curve is the distribution of the index from representative TSSs of known
cancer genes to cancer status. The blue curve is the distribution of representative TSSs of
non-cancer genes to cancer status. Cancer gene TSSs apparently have more larger index values
than non-cancer gene TSSs, implying that the former group is more powerful than the latter
group at predicting cancer status. About 90% of known cancer gene representative TSSs have an
index value of less than 0.40, as indicated by the vertical red dashed line.
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Figure 4 Two unannotated transcription start sites predicted as putative cancer driver
ncRNAs. The horizontal axes are log-scaled TSS expression from FANTOMS. The vertical axes of
the two top plots represent tissue types. ‘Cancer’ indicates a sample is from a cancer cell-line,
‘Normal’ for a sample from a non-cancer tissue. The vertical axes of the two bottom plots are the
probability density of gene expression level. (a) Putative cancer ncRNA hg_112446.1 has a
monotonic pattern with cancer status. (b) Putative cancer ncRNA hg_195085.1 exhibits a
non-monotonic pattern with cancer status.
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Figure 5 Gene expression patterns of four potential leukemia biomarkers are nearly exclusively
cancer-type specific. The horizontal axes are TSS levels of gene expression from FANTOM5. The
vertical axes are sample types. (a) Putative lymphoid leukemia biomarker SNX9. (b) Putative
lymphoid leukemia biomarker hg_153880.1. (c) Putative myeloid leukemia biomarker LMOZ2. (d)
Putative myeloid leukemia biomarker hg_35610.1.
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Figure 6 Chromosomal locations of putative leukemia biomarkers. Chromosomal counts of
putative biomarkers for (a) lymphoid and (b) myeloid leukemia. Genomic maps of putative
biomarkers for (c) lymphoid and (d) myeloid leukemia.
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Additional files !
Additional file 1—Additional_file_1.xlsx 2
FunChisq predicted 1108 putative cancer driver ncRNAs with stronger directional®
effect to cancer than 90% of 719 known cancer driver genes. 4

5
Additional file 2—Additional_file_2.xlsx 6

FunChisq predicted 332 potential cancer biomarkers for lymphoid leukemia and 797
for myeloid leukemia, which were stronger than 87 known lymphoid leukemia and®
100 known myeloid leukemia driver genes. °
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