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Abstract

We explore sequence determinants of enzyme activity and specificity in a major enzyme family of terpene synthases. Most
enzymes in this family catalyze reactions that produce cyclic terpenes—complex hydrocarbons widely used by plants
and insects in diverse biological processes such as defense, communication, and symbiosis. To analyze the molecular
mechanisms of emergence of terpene cyclization, we have carried out in-depth examination of mutational space around
(E)-b-farnesene synthase, an Artemisia annua enzyme which catalyzes production of a linear hydrocarbon chain. Each
mutant enzyme in our synthetic libraries was characterized biochemically, and the resulting reaction rate data were
used as input to the Michaelis–Menten model of enzyme kinetics, in which free energies were represented as sums of
one-amino-acid contributions and two-amino-acid couplings. Our model predicts measured reaction rates with high
accuracy and yields free energy landscapes characterized by relatively few coupling terms. As a result, the Michaelis–
Menten free energy landscapes have simple, interpretable structure and exhibit little epistasis. We have also developed
biophysical fitness models based on the assumption that highly fit enzymes have evolved to maximize the output of
correct products, such as cyclic products or a specific product of interest, while minimizing the output of byproducts.
This approach results in nonlinear fitness landscapes that are considerably more epistatic. Overall, our experimental and
computational framework provides focused characterization of evolutionary emergence of novel enzymatic functions in
the context of microevolutionary exploration of sequence space around naturally occurring enzymes.
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Introduction
Quantitative understanding of molecular mechanisms of pro-
tein evolution is a major challenge in evolutionary biology and
protein engineering. Availability and diversity of evolutionary
paths leading to proteins with novel biochemical functions
are ultimately determined by a complex pattern of energetic
interactions between amino-acid (aa) residues within the pro-
tein, as well as protein–ligand interactions (Bridgham et al.
2009; McLaughlin et al. 2012; Stiffler et al. 2015; Tamer et al.
2019). These interactions contribute to creating complex fit-
ness landscapes typically characterized by significant epistasis
(Anderson et al. 2015, 2019; Miton and Tokuriki 2016;
Sarkisyan et al. 2016; Adams et al. 2019; Poelwijk et al.
2019) and, to some extent, by higher-order effects which
cannot be described in terms of pairwise couplings (Sailer
and Harms 2017a, 2017b; Tamer et al. 2019; Yang et al. 2019).

The emergence of novel catalytic functions is a paramount
example of evolutionary expansion with profound biological

implications. Here we focus on the evolution of ring-forming
reactions in terpene synthases (TPSs), a major family of
enzymes found in a variety of plants and insects (Tholl
2006, 2015). Cyclic terpenes comprise hundreds of stereo-
chemically complex mono- and polycyclic hydrocarbons;
they are involved in pollination, plant and insect predator
defense mechanisms, and symbiotic relations. They are also
widely used as flavors, fragrances, and medicines; a well-
known example of the latter is artemisinin, a naturally occur-
ring antimalarial drug extracted from Artemisia annua.
Terpenes and terpenoids are the primary constituents of
many essential oils in medicinal plants and flowers; examples
include a-bisabolol, a monocyclic sesquiterpene alcohol
which forms the basis of a colorless viscous oil from
Matricaria recutita (German chamomile) and Myoporum
crassifolium, and zingiberene, a monocyclic sesquiterpene
which is the predominant constituent of ginger oil.

Enzymes in the TPS family are capable of converting sev-
eral universal substrates into a diverse variety of terpene
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products. For example, amorpha-4,11-diene synthase (ADS)
produces amorpha-4,11-diene, the bicyclic hydrocarbon
precursor of artemisinin, from farnesyl pyrophosphate
(FPP), a linear substrate. From an evolutionary point of
view, the emergence of the terpene cyclization mechanism
served as a crucial step toward creating a major family of
enzymes capable of producing diverse and complex meta-
bolic products. Thus, understanding of the evolutionary
mechanisms and pathways leading to novel TPS products
will enable us to gain deeper insights into enzyme evolution
and molecular evolution in general.

In order to investigate TPS evolution in A. annua system-
atically, we have previously used structure-based combinato-
rial protein engineering (SCOPE) (Dokarry et al. 2012) to
construct a library with ADS mutations within 6 Å of the
active site of (E)-b-farnesene synthase (BFS), which catalyzes
the conversion of FPP into the linear hydrocarbon (E)-b-far-
nesene, an aphid alarm pheromone (Salmon et al. 2015). BFS
shares 49% amino acid sequence identity with ADS. A subset
of mutants in the library that were soluble and exhibited
some biochemical activity in the initial screening were char-
acterized in-depth in terms of their spectrum of terpene
products (using gas chromatography–mass spectrometry,
GC–MS) (O’Maille et al. 2004; Garrett et al. 2012) and the
total kinetic rates of substrate conversion into product (using
the malachite green assay, MGA) (Vardakou et al. 2014).
Although we have not observed significant amorpha-4,11-
diene production in any of the mutants, we have identified
several TPSs which produce sizable quantities of a-bisabo-
lol—a major product of TPS enzymes in A. annua and
Asteracea plants. Consequently, in this work, we have focused
on a highly specific a-bisabolol-producing mutant, which
contains five mutations with respect to the A. annua BFS.
We used SCOPE to create a library of 25 proteins containing
all combinations of mutations that bridge BFS and the novel
a-bisabolol-producing enzyme, BOS, thereby constructing a
complete map of all mutational pathways that connect the
two enzymes in the subspace in which each of the 5 amino
acids can be either in the wild-type or the mutant state.
Through our mutagenesis studies, we discovered a single-
residue substitution (T429G) which imparts a robust and
specific a-bisabolol synthase (BOS) activity in the presence
of the Y402L gateway mutation that we previously identified
as a key mutation necessary to activate cyclization (Salmon
et al. 2015).

To characterize the biophysical landscape of our mutant
libraries, we have developed a novel approach using the
Michaelis–Menten model of enzyme kinetics (Nelson et al.
2004; Bozlee 2007), which has allowed us to express enzymatic
reaction rates in terms of the corresponding free energies.
Similar to spin-glass models widely used in statistical mechan-
ics (Binder and Young 1986; Mezard and Montanari 2009), we
have expanded the free energies in terms of one- and two-
body (pairwise) energetic parameters, which correspond to
single-amino-acid contributions and amino-acid couplings,
respectively. We have fit the model to the available enzyme
kinetic rate data and demonstrated that it is capable of both
reproducing experimental measurements of kinetic rates and

making novel predictions. Thus, there is no need to include
higher-order terms such as three-body interactions into our
free energy description. Moreover, the number of nonzero
pairwise terms is low, making free energy landscapes surpris-
ingly easy to model and interpret.

We have used our spin-glass-like models of Michaelis–
Menten landscapes to develop a hierarchy of biophysical
models of enzyme fitness, interpreting the latter in terms of
the protein’s ability to catalyze reactions beneficial to the cell,
while minimizing production of deleterious or unwanted
by-products. We have found that, compared with the free
energy landscapes, biophysical fitness landscapes are more
epistatic. Nonetheless, the extent of epistasis and the degree
of roughness are relatively limited in our reconstructed
fitness landscapes compared with some of the previous
work (Miton and Tokuriki 2016; Poelwijk et al. 2019; Tamer
et al. 2019). This may be due to the fact that our synthetic
libraries do not explore the full spectrum of aa substitutions
and focus on mutations in the immediate vicinity of the
naturally occurring A. annua BFS sequence, emphasizing
“micro” rather than “macro” evolutionary trends. Overall,
we find that the emergence of terpene cyclization can be
explained using compact, interpretable models with a rela-
tively small number of free parameters.

Results

Elucidation of Residue Substitutions Essential for
a-Bisabolol Synthesis
In previous work, we elucidated residue networks underlying
the emergence of terpene cyclization in A. annua by sampling
natural sequence variation in the background of A. annua (E)-
BFS (Salmon et al. 2015). Specifically, we used structural anal-
ysis to identify 24 variable positions within 6 Å of the BFS
active site center that differed between BFS and ADS (sup-
plementary fig. S1, Supplementary Material online). Using
SCOPE (Dokarry et al. 2012), we constructed a mutant library
which was designed to introduce ADS mutations into the BFS
sequence at the 24 positions. In the initial screening step,
enzymes in the library were tested for solubility and biochem-
ical activity. We found that the ADS mutation at position 474
produced an inactive enzyme (all residue numbers are relative
to the A. annua BFS sequence). In addition, A395G and
G431A mutations which do not correspond to the ADS se-
quence were inadvertently introduced into the library (likely
due to polymerase chain reaction [PCR] artifacts), resulting in
biochemically active enzymes. Next, we carried out in-depth
characterization of �100 variants of biochemically active
enzymes which had one or more mutations at the 25 posi-
tions (including 395 and 431 but excluding 474). In the pro-
cess of this characterization, we consistently observed cyclic
terpene products present among the broader Asteraceae TPS
enzyme family. Chief among these products, with detectable
levels of production in several enzyme variants, was a-bisa-
bolol, a monocyclic sesquiterpene alcohol. One variant that
contained five amino acid substitutions produced especially
high levels of a-bisabolol (61%) (fig. 1A). This observation was
notable, given that a-bisabolol is the product of a dedicated
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TPS enzyme in A. annua and in other Asteracea plants.
Artemisia annua BFS is most closely related to BOS from
Matricaria recutita and the two enzymes share 70% sequence
identity at the amino acid level, consistent with their close
evolutionary relationship.

To identify which residues were responsible for the ob-
served a-bisabolol activity, we designed a library, M5, that
consisted of all combinations of the five amino acid muta-
tions (25 ¼ 32 sequences in total) bridging BFS and our pre-
viously discovered a-bisabolol-producing BFS variant, BOS
(fig. 1A and B). Using SCOPE, we synthesized the M5 library
and verified clones by sequencing. Next, we characterized all
recombinant enzymes for product specificity by GC–MS
(O’Maille et al. 2004; Garrett et al. 2012) and measured their
kinetic properties using MGA (Vardakou et al. 2014).
Consistent with the observations based on the A. annua
BFS 6 Å library discussed above (Salmon et al. 2015), the
Y402L substitution was essential for product cyclization: In
the absence of Y402L, all mutants produced linear terpene
products. Of the cyclic-producing variants, two product pro-
files were evident, either a multiple product profile (as seen
with the Y402L single mutant) or a-bisabolol as the dominant
product in the profile (fig. 1C). We found that a-bisabolol
product specificity was primarily attributable to a single ad-
ditional mutation T429G in the Y402L background (fig. 1C),
whereas the presence of additional mutations (T319A,
H555R, and E557G) had weaker effects on product specificity.
However, kinetic analysis revealed that the total kinetic rate
kcat was affected significantly by the additional mutations in
the T429G/Y402L background. In particular, the C-terminal
H555R mutation was very detrimental to catalytic activity.
Alone, H555R resulted in a 66% reduction in enzyme activity
compared with the BFS wild-type (BFS-WT) enzyme, and in
combination with the other mutations, enzyme activity was
further reduced to between 1% and 6% of BFS-WT activity. In
comparison, the a-bisabolol-producing Y402L/T429G mutant
(69% of the total output is a-bisabolol) has moderate catalytic
activity (26% of BFS-WT activity) comparable with other na-
tive and specific TPS enzymes. Guided by these results, we

sought to build quantitative models of enzyme kinetics and
energetics, utilizing both the M5 library and the larger collec-
tion of BFS mutants from our previous study (Salmon et al.
2015).

Quantitative Description of Enzyme Libraries
We consider two libraries of mutant enzymes in this work.
Each enzyme in the library can have mutations at up to L
variable positions compared with the wild-type sequence,
with the amino-acid at each position found in one of the
two states: wild-type (WÞ or mutant (M). Thus, each enzyme
sequence Sj can be represented by

Sj ¼ A1
jð ÞA2

jð Þ . . . AL
jð Þ; j ¼ 1; . . . ;N;

where Ak
jð Þ ¼ ½W;M� is the amino acid at position k in se-

quence j and N is the total number of sequences in a given
library. Note that k numbers variable positions rather than
absolute amino acid positions within a sequence, and that the
rest of the sequence outside the L positions is invariant. For
each enzyme in both libraries, reaction rates for n ¼ 11 dis-
tinct products (kcat;i; i ¼ 1; . . . ; n) have been obtained us-
ing GC–MS and MGA (several other products had negligibly
low rates and are therefore excluded from this study). The
first library, the A. annua BFS 6 Å library which we shall refer
to as M25, contains kcat;i values for 92 distinct sequences,
including the wild-type, with mutations at up to 25 variable
positions (Salmon et al. 2015). The second library, which was
described above as the M5 library, contains 25 ¼ 32 sequen-
ces, including the wild-type, for all possible combinations of
mutations at five positions (319, 402, 429, 555, and 557) which
separate BFS from the novel a-bisabolol-producing enzyme,
BOS, originally found in the M25 library. The combined library
contains N ¼ 122 distinct sequences, including BFS-WT, with
mutations at one or more among 25 variable positions (sup-
plementary table S1, Supplementary Material online).

FIG. 1. Discovery of BOS activity in the Artemisia annua BFS library. (A) A phylogenetic tree of BFS variants from Salmon et al. (2015) was created
using ClustalW (Larkin et al. 2007). The resulting tree was annotated using the Interactive Tree of Life (Letunic and Bork 2019) according to the
percentage of a-bisabolol products produced (orange bars). The M5 mutant is labeled explicitly. (B) Structural positions of residue substitutions in
the M5 mutant used for the M5 library synthesis and characterization. (C) GC chromatograms of select members of characterized mutants, with
major products indicated.
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Enzyme Kinetics
We have modeled enzymatic reaction rates using the
Michaelis–Menten model of enzyme kinetics (Nelson et al.
2004; Bozlee 2007). According to this model, enzymes catalyze
chemical reactions in a two-step process. The first step is a
reversible reaction where a substrate molecule binds the
enzyme’s active site. In the second reaction, assumed to be
irreversible, substrate is transformed into product and re-
leased from the enzyme. In general, TPSs in our libraries cat-
alyze multiple reactions simultaneously starting from the
same substrate. We assume that the first step is the same
in all these reactions since it involves only the substrate and
the enzyme:

Here, S is the substrate, E is the enzyme, Pi’s are the products,
and kcat;i denotes the reaction rate for product i. Each reac-
tion rate kcat;i of an enzyme with sequence Sj depends on the
Gibbs free energies G3 and G4;i (fig. 2A):

kcat;i Sj

� �
¼ Biexp �

G4;i Sj

� �
� G3 Sj

� �
kBT

� �
; (2)

where Bi is the reaction rate for product i in the absence of
the free energy barrier, kB is the Boltzmann constant, and T is
the temperature. As discussed above, we assume that G3 is
independent of the product for a given enzyme, whereas G4;i

is product-specific. Note that the total reaction rate is given

by kcat Sj

� �
¼
P

i kcat;i Sj

� �
and that the probability ci of pro-

ducing product i is therefore ci Sj

� �
¼ kcat;i Sj

� �
=kcat Sj

� �
.

Thus, the observed reaction rates are given by
kobs

cat;i Sj

� �
¼ ci Sj

� �
kcat Sj

� �
, where ci Sj

� �
are relative abun-

dances inferred from GC–MS data and kcat Sj

� �
are measured

using MGA (supplementary table S1, Supplementary Material
online). In the MGA, the kcat Sj

� �
values were predicted using

a linear fit to enzyme velocities at a fixed substrate concen-
tration and a series of enzyme concentrations. These experi-
ments were carried out in triplicate but due to nonlinearities
and/or noise in the data not all measurement series could be
reliably fit to extract the kcat values, resulting in one to three
independent kcat Sj

� �
measurements that were subsequently

averaged to compute kobs
cat;i Sj

� �
. Likewise, the GC–MS experi-

ments were carried out in triplicate, with the relative abun-
dances ci Sj

� �
averaged prior to being employed in the

computation of product-specific kinetic rates. We find that
the enzymes in the combined library are characterized by a
wide range of kinetic rates depending on the product type
(supplementary fig. S2, Supplementary Material online; note
that all reaction rates are divided by the observed total reac-
tion rate of the wild-type BFS sequence, kobs

cat WTð Þ).

Inference of Enzyme Energetics with a Pairwise Model
To model enzyme kinetics and energetics, we have employed
a pairwise model inspired by spin-glass models in statistical
physics (Binder and Young 1986; Mezard and Montanari
2009). Such models have been extensively used to study pro-
tein stability and protein–protein interactions (Haq et al.
2009, 2012; Weigt et al. 2009; Morcos et al. 2011). Unlike these
previous approaches, which typically use protein sequence
alignments as input to generating novel sequences and scor-
ing the existing ones, our model is designed to predict reac-
tion rates kcat;i as a function of the enzyme’s sequence. For a
given enzyme, we represent the Gibbs free energies G3 and

FIG. 2. Reaction rate prediction with the pairwise model. (A) Michaelis–Menten model of enzyme kinetics. Shown are free energy profiles for
converting substrate S into products P1 . . . Pn , catalyzed by the enzyme E. G1, G2, G3; and G4;ik are free energies at the various stages of the
enzymatic reactions, and k�1, k1, and kcat;ik are the corresponding reaction rates as shown in the inset (product indices i1 . . . in are sorted in the
decreasing order of G4;ik in the panel). Each reaction rate kcat;ik depends on the difference between free energies G4;i and G3 (eq. 2). Inset shows the
corresponding kinetic rates of the Michaelis–Menten reaction. (B) Michaelis–Menten reaction rates predicted using the pairwise model with
cross-validation (see Materials and Methods for details). The dotted line has unit slope.
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G4;i for each product i as a sum over single-aa terms and two-
aa coupling terms:

G3 Sj

� �
¼
X L

k¼1
Hk Ak

jð Þ
� �

þ
X

k;lð ÞEkl Ak
jð Þ; Al

jð Þ
� �

;

G4;i Sj

� �
¼
X L

k¼1
hk

ið Þ Ak
jð Þ

� �
þ
X

ðk;lÞekl
ið Þ Ak

jð Þ; Al
jð Þ

� �
;

(3)

where Hk=hk
ið Þ and Ekl=ekl

ið Þ are one-aa and two-aa contri-
butions to G3 and G4;i, respectively, and the ðk;lÞ sum in the
second term on the right-hand side runs over all pairs of var-
iable amino acids in each sequence. This is a set of N nþ1ð Þ
¼1;464 equations for the combined data set. To reduce the
number of parameters, we set all terms containing one or two
wild-type amino acids to zero: Hk Wð Þ¼hk

ið Þ Wð Þ¼0,
Ekl W;Wð Þ¼Ekl W;Mð Þ¼Ekl M;Wð Þ¼0, ekl

ið Þ W;Wð Þ¼ekl
ið Þ

W;Mð Þ¼ekl
ið Þ M;Wð Þ¼0 (Morcos et al. 2011). This guarantees

that all G3 and G4;i values are zero automatically for wild-type
sequences, while leaving enough degrees of freedom to model
one-aa effects (through the HkðMÞ=hk

ið ÞðMÞ terms) and two-
aa couplings (through the EklðM;MÞ=ekl

ið ÞðM;MÞ terms). For
the combined library and for all Gibbs free energies G3 and
G4;i, this procedure yields up to nþ1¼12 nonzero one-aa
terms at each of L¼25 variable positions and, similarly, up
to 12 nonzero two-aa coupling terms at each of Lp¼138 pairs
of variable positions. Note that, by construction, only two-aa
couplings for pairs of positions at which all four aa combina-
tions are available: W;Wð Þ, W;Mð Þ, M;Wð Þ; and M;Mð Þ are
included into the model. To avoid overfitting, we fit the model
using a modified version of the MATLAB implementation of
the Least Absolute Shrinkage and Selection Operator (LASSO)
method (Tibshirani 1997; Bishop 2006) with separate penalties
for one-body terms and two-body couplings. The optimal
values of penalty term prefactors were obtained using 4-fold
cross-validation (see Materials and Methods for details).

We find that our fitting procedure yields sparse solutions
for Michaelis–Menten free energy landscapes. Indeed, our
collection of models for G3 and G4;i fitted to the combined
data set with optimal one-body and two-body penalties con-
tains a total of 113 out of nþ 1ð ÞL ¼ 300 possible one-body
terms and just 54 out of ðnþ 1ÞLp ¼ 1; 656 possible two-
body couplings, that is, on average, 9.4 out of 25 possible one-
body terms and 4.5 out of 138 possible two-body couplings
per free energy landscape (see supplementary table S2,
Supplementary Material online, for all model parameters).
Thus, the observed kcat;i values of 11 products for 122 differ-
ent sequences (1,342 kcat;i values in total) are described using
just 178 parameters: 113 one-body terms, 54 two-body cou-
plings, and 11 sequence-independent offsets Ci (see Materials
and Methods for details). The model fits the reaction rate
data with R2 ¼ 0:99 (fig. 2B). Note that we typically report
reaction rates relative to kobs

cat WTð Þ, the observed total reac-
tion rate of the wild-type sequence: ~kcat;i Sj

� �
¼ kcat;i Sj

� �
=

kobs
cat WTð Þ and ~k

obs

cat;i Sj

� �
¼ kobs

cat;i Sj

� �
=kobs

cat WTð Þ are the pre-
dicted and observed relative reaction rates for product i.

Since product-specific reaction rates vary widely depend-
ing on the product type (supplementary fig. S2,

Supplementary Material online), we expect that, for a partic-
ular product, the complexity of the model and, correspond-
ingly, the number of nonzero one-body terms and two-body
couplings will be correlated with the number of enzyme
variants capable of making that product. Indeed, we find
that the model complexity is the highest for the original
BFS product, (E)-b-farnesene, which is produced at nonzero
rate by most enzymes (supplementary fig. S3, Supplementary
Material online). This is not surprising since free energy land-
scapes for a given product that are based on just a few en-
zyme variants with detectable output should be easier to
model and require fewer fitting parameters (supplementary
table S2, Supplementary Material online).

We observe that at 24 out of 25 positions under consid-
eration (position 559 being the sole exception), mutating a
residue results in a change in one or, more typically, several
single-aa contributions to product-specific free energy land-
scapes (supplementary fig. S4, Supplementary Material on-
line). Interestingly, changes in G3 are predominantly
negative, meaning that the mutations tend to have adverse
effects on the overall values of reaction rates (eq. 2). The only
exception to this rule is position 402. A Y402L mutation at
this position does not just increase the total reaction rate due
to the product-independent lowering of the free energy bar-
rier, it also rebalances the enzyme specificity toward the cyclic
products, by lowering the relative reaction rates for linear
products (E)-b-farnesene (the original BFS product) and ner-
olidol and increasing the relative reaction rates for cyclic
products zingiberene, b-bisabolene, and a-bisabolol (supple-
mentary fig. S4, Supplementary Material online). Thus, 402
plays a role of a “gateway” cyclization-unlocking mutation
between enzymes producing linear and cyclic products.
Other key positions which promote production of cyclic
products are 324 and 429. Finally, note that mutations at
10 out of 25 positions result in single-aa terms that suppress
(E)-b-farnesene production.

In addition to single-aa terms, the structure of the free
energy landscapes is shaped by 54 nonzero coupling terms
between pairs of aa positions, 48 of which affect G4;i values
and the other 6 correspond to G3 (supplementary fig. S5A,
Supplementary Material online). Interestingly, most of the
G4;i nonzero couplings contribute to a single free energy
landscape corresponding to (E)-b-farnesene—the original
linear product of the wild-type BFS enzyme. Out of the 48
two-aa G4;i terms which determine enzyme specificity, 10
increase reaction rates for cyclic products and only 2 decrease
those rates; for linear products, 21 terms contribute to a rate
increase and 15 to a rate decrease. Overall, the values tend to
be more negative for cyclic products (supplementary fig. S5B,
Supplementary Material online), meaning that, as a rule, two-
body terms tend to promote cyclization. As shown in sup-
plementary figure S5C, Supplementary Material online, only
8 aa pairs affect more than one free energy landscape: for
example, the 398–429 coupling simultaneously increases the
reaction rates of cyclic products a-exo-bergamotene and zin-
giberene. Correspondingly, 37 aa pairs have a single nonzero
coupling term and therefore mutations at these positions
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affect only one free energy landscape. The remaining 93 pairs
of positions do not contribute to the free energies at all.

Since the total number of potentially nonzero fitting
parameters is greater than the number of reaction rate
measurements, we have carried out additional checks of
the validity of the LASSO approach by randomly sampling
the parameters of the pairwise model from distributions
obtained by fitting the model to the actual kcat;i data (see
Materials and Methods for details). These randomly
sampled parameters were subsequently used to generate
artificial values k0cat;i of reaction rates. The input parameters
were then recovered using the LASSO approach with
cross-validation, identical to the procedure used to fit exper-
imentally observed reaction rates. We were able to accurately
predict both the parameters of the model (supplementary fig.
S6A, Supplementary Material online) and the corresponding
free energy values (supplementary fig. S6B, Supplementary
Material online), demonstrating that our approach does
not suffer from overfitting.

Finally, we have demonstrated the predictive power of the
pairwise model by testing its ability to predict reaction rates
of novel enzyme sequences, after training the model on only a
part of the available data. Specifically, we have randomly cho-
sen 82 enzyme sequences and trained the model with the
LASSO constraint and cross-validation as described above,
using the ~k

obs

cat;i values corresponding to those sequences as
input. The model was subsequently used to predict the ~kcat;i

values for the remaining 40 enzyme sequences which were
not used in training the model, with R2 ¼ 0:92 (supplemen-
tary fig. S7A, Supplementary Material online). Since the pre-
diction is dominated by several datapoints with larger values
of kinetic rates, we have also examined the distribution of the
differences between predicted and observed kinetic rate val-
ues (supplementary fig. S7B, Supplementary Material online)
and the R2 values of partial data sets obtained by sorting the
set of observed kinetic rates by magnitude (supplementary
fig. S7C, Supplementary Material online). We find that the
prediction errors are in fact higher for the outliers.
However, as expected, for very low kinetic rates, the errors
become comparable to the predicted values themselves. As a
result, the R2 values are low until some of the large-value
outliers are included into the data set.

Structure of Michaelis–Menten Free Energy
Landscapes
The sparseness of the free energy models described above
translates into Michaelis–Menten free energy landscapes
with simple and interpretable structure. To illustrate this
point, we first focus on the G4 landscape for the cyclic
product a-bisabolol (fig. 3A–C). In the combined library,
this landscape is controlled by 14 one-aa and 3 two-aa model
parameters; among one-aa parameters, 5 are above 1 kBT,
and 3 of those, at positions 324, 402, and 429, enhance relative
reaction rates for a-bisabolol by lowering the G4 barrier
(fig. 3A). In comparison to these leading one-aa contributions,
two-aa terms play a secondary role. Consequently, in the M5
library, where the amino acid mutations are restricted to
positions 319, 402, 429, 555, and 557, the structure of the

free energy landscape is largely determined by the states of
amino acids at positions 402 and 429 (a third position, 555,
plays a secondary role) (red bars in fig. 3A). Thus, the G4

landscape is divided into four distinct sectors, with the
wild-type BFS sequence (TYTHE at the five variable positions)
being �3:2 kBT less favorable for a-bisabolol production
than the five-point mutant, ALGRG (fig. 3B). However, other
sequences in the same cluster, such as ALGHG and TLGHG,
are characterized by even lower G4 barriers. In fact, as noted
above, it is sufficient to carry out just two mutations, Y402L
and T429G, in order to obtain an a-bisabolol-producing
enzyme.

Although the specificity of a given enzyme is controlled by
the relative heights of the G4 barriers for each product, its
overall output also depends on the height of the G3 barrier
which we have assumed to be independent of the product
type. Similar to the G4 landscape for a-bisabolol, the G3 free
energy landscape in the combined library is a function of just
20 one-aa and 5 two-aa model parameters, with only 4 one-aa
parameters, at positions 320, 322, 555, and 402, above 1 kBT
(fig. 3D). Two of these positions, 402 and 555, are variable in
the M5 library and hence the amino acid states at these
positions largely determine the structure of the G3 free energy
landscape (red bars in fig. 3D and E; positions 429 and 319 play
a secondary role). Interestingly, although positions 319 and
557 are characterized by small (319) and zero (557) one-aa
contributions, they shape the free energy landscape through a
two-aa term. We observe that the five-point mutant, ALGRG,
is lower in the overall output than the wild-type sequence,
TYTHE: the corresponding G3 value is lower by �1:2 kBT,
which makes the kinetic barrier higher overall. The Y402L
mutation is the only major contributor to lowering the
free energy barrier (fig. 3D); consequently, the TLGHE
double mutant discussed above (Y402L/T429G) favors both
a-bisabolol production and high overall output.

To investigate the effect of these mutations on other prod-
ucts, we have considered G4 free energy landscapes for the
wild-type linear product, (E)-b-farnesene, and another cyclic
product of practical importance, zingiberene (supplementary
fig. S8, Supplementary Material online). Interestingly, the (E)-
b-farnesene landscape is characterized by 17 one-aa and 28
two-aa terms and thus can be expected to be more epistatic
(supplementary fig. S8A, Supplementary Material online), al-
though its projection onto M5 sequences is fairly sparse, being
mainly determined by aa states at positions 402 and 429
(supplementary fig. S8B, Supplementary Material online). As
expected, the TLGHE double mutant (Y402L/T429G) and
especially the five-point mutant, ALGRG, are characterized
by sharply decreased levels of (E)-b-farnesene production.
Correspondingly, the best (E)-b-farnesene producing
enzymes are those with aa at positions 402 and 429 left in
the wild-type state. The G4 free energy landscape for zingi-
berene is determined almost exclusively by one-aa contribu-
tions (supplementary fig. S8D, Supplementary Material
online), of which aa states at positions 402, 429, and 555
structure the landscape’s projection onto M5 sequences.
Since the Y402L mutation is the only one favorable for zingi-
berene production, sequences in the “LT” cluster (shown in
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FIG. 3. Michaelis–Menten free energy landscapes. (A) The values of all one-aa and two-aa nonzero parameters in the G4 pairwise expansion for a-
bisabolol fitted to the combined library data. Positions and position pairs that occur in the M5 library are marked in boldface and highlighted in red.
(B) The free energy landscape for a-bisabolol G4 values on the M5 library, which contains all combinations of mutant and wild-type amino acids at
positions 319, 402, 429, 555, and 557. Each node on the landscape is labeled by a string of amino acids at the five positions. Nodes that differ by a
single-amino-acid substitution are connected by an edge. The arrows and circles above the landscape indicate the number of mutations away from
the wild-type A. annua BFS sequence TYTHE. Each node is colored according to the G4 value for a-bisabolol. In each column, sequences are sorted
according to the values of one-aa contributions at positions 402, 429, and 555, which are the three largest among the five positions considered
(supplementary fig. S4, Supplementary Material online). From top to bottom, sequences with a given number of mutations with respect to the
wild-type sequence are sorted in the following order at 3 middle positions: WWW, WWM, WMW, WMM, MWW, MWM, MMW, and MMM.
Sequences in each column which are the same at 3 middle positions and therefore differ only at positions 1 and 5 appear in the order W. . .W,
W. . .M, M. . .W, and M. . .M. Note that some sequences will be missing from these ordered lists because they do not have the right number of
mutations. All nodes are sorted into four clusters on the basis of amino acids at positions 402 and 429, which have the largest one-aa contributions
among five positions in the M5 library (A). These positions are highlighted in boldface in each sequence; all sequences are color coded according to
their cluster assignments. (C) Predictions of G4 for a-bisabolol on the combined library. All nodes are arranged in circles according to the number of
mutations away from the wild-type A. annua BFS sequence. Nodes are clustered on the basis of positions 402, 429, and 555 in the order WWW,
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red in supplementary fig. S8E, Supplementary Material on-
line), which includes a single mutant TLTHE, are best zingi-
berene producers.

It is also informative to consider the free energy landscapes
on all sequences from the combined library. In figure 3C, nodes
are arranged radially around the wild-type sequence according
to the number of mutations. Sequences are clustered into
eight sectors on the basis of aa states at positions 402, 429,
and 555, which contribute the most when both one-aa and
two-aa terms are taken into account. In addition to 122
sequences in the combined data set, we have made predic-
tions for 69 additional sequences which were chosen to fill in
the gaps in mutational pathways connecting experimentally
characterized sequences. Clusters VII and VIII, which have
both Y402L and T429G mutations (cluster VII has H, whereas
cluster VIII has R at position 555), are enriched the most in a-
bisabolol-producing enzymes (fig. 3C). These clusters, along
with clusters V and VI, tend to contain sequences that are
least favorable for (E)-b-farnesene production due to the
Y402L mutation (supplementary fig. S8C, Supplementary
Material online). For zingiberene, the most favorable sequen-
ces are concentrated in cluster V, although the G4 free energy
barrier is rarely lowered by more than 1 kBT (supplementary
fig. S8F, Supplementary Material online). Finally, sequences
with higher values of G3 (which is beneficial for the overall
output) tend to be found in clusters V and VII (fig. 3F). In
summary, sequences in cluster VII (fig. 3C and F) are the best
candidates for a-bisabolol production in the combined library;
specific candidates can be chosen based on how critical it is to
produce a-bisabolol specifically (as opposed, e.g., to a mixture
of a-bisabolol, zingiberene, and other cyclic products).

Epistasis on Free Energy Landscapes
The notion of epistasis is closely related to the extent of
nonlinearity and ruggedness observed in fitness or energy
landscapes (Weinreich et al. 2005; Carneiro and Hartl 2010;
Manhart and Morozov 2014). In its most basic form, epistasis
involves aa states at two distinct positions in the sequence. In
the case of two-aa states (such as the W and M states con-
sidered in this work), epistatic interactions allow for a simple
geometric interpretation (fig. 4A). Note that the no-epistasis
scenario implies the absence of an energetic or a fitness cou-
pling between the two sites, whereas the other three scenarios
(magnitude, sign, or reciprocal sign epistasis) are controlled by
the magnitude and the sign of the relevant coupling terms. In
our case, only the MM coupling can be nonzero by construc-
tion; however, the two aa sites in question are embedded into

longer sequences and therefore the amount and the type of
epistasis may also be affected by the two-aa terms in which
one of the partners is outside the current pair.

Since the magnitude and the sign of epistasis between
two aa sites depend on the rest of sequence, we
have focused our attention on the subsets of sequences
which are identical outside the two positions i and j
for which epistatic interactions are computed. At
these two positions, data have to be available for all
four aa states: ðW;WÞ, ðW;MÞ, M;Wð Þ; and ðM;MÞ.
These requirements result in four sequence subsets

of the same size n: Tij W;Wð Þ ¼ ½S 1ð Þ
1 ; S

1ð Þ
2 ; . . . ; S

1ð Þ
n �,

Tij W;Mð Þ¼½S 2ð Þ
1 ;S

2ð Þ
2 ;...;S

2ð Þ
n �, Tij M;Wð Þ¼½S 3ð Þ

1 ;S
3ð Þ

2 ;...;S
3ð Þ

n �,
and Tij M;Mð Þ¼½S 4ð Þ

1 ;S
4ð Þ

2 ;...;S
4ð Þ

n � (fig. 4B). Thus, four

sequences S
1ð Þ

m , S
2ð Þ

m , S
3ð Þ

m ; and S
4ð Þ

m (m¼1;...; nÞ are the
same everywhere except at positions i and j, where the aa
identities are ðW;WÞ, ðW;MÞ, M;Wð Þ; and ðM;MÞ, respec-
tively. In general, there are several sets of such sequences for
a given pair of positions i and j, yielding n>1.

Next, we compute the free energies �Gij W;Wð Þ,
�Gij M;Wð Þ, �Gij W;Mð Þ, and �Gij M;Mð Þ which are simply
the G3 or G4 free energy values averaged over all sequences
in the corresponding Tij subset. Finally, we define the
differences of the averaged free energies along each edge
in the geometric shapes of figure 4A:
D1¼ �Gij W;Mð Þ� �Gij W;Wð Þ, D2¼ �Gij M;Wð Þ� �Gij W;Wð Þ,
D3¼�Gij M;Mð Þ��Gij M;Wð Þ, and D4¼�Gij M;Mð Þ��Gij W;Mð Þ.
Then, the four epistasis types can be succinctly summarized
as follows: D1¼D3 and D2¼D4 correspond to the absence
of epistasis, otherwise sgnðD1Þ¼sgnðD3Þ and sgnðD2Þ
¼sgnðD4Þ represent magnitude epistasis, sgnðD1Þ6¼sgnðD3Þ,
sgnðD2Þ¼sgnðD4Þ or sgnðD1Þ¼sgnðD3Þ, sgnðD2Þ6¼sgnðD4Þ
represent sign epistasis (the two cases correspond to two
opposite pairs of edges in fig. 4A, panel III), and
sgnðD1Þ6¼sgnðD3Þ, sgnðD2Þ6¼sgnðD4Þ correspond to the
reciprocal sign epistasis.

Note that on fitness landscapes, sign epistasis can signifi-
cantly affect genotype accessibility by making some evolu-
tionary trajectories unavailable or unlikely (Weinreich et al.
2005), whereas reciprocal sign epistasis is a necessary condi-
tion for the existence of multiple local maxima (Poelwijk et al.
2011). However, here we consider free energy landscapes
where the presence of epistasis simply means that free ener-
gies are not a sum of single-aa terms but involve pairwise
interactions. We define an epistatic score ESij as the absolute
magnitude of the difference between the D values on the two

FIG. 3. Continued
WWM, WMW, WMM, MWW, MWM, MMW, and MMM for clusters I–VIII, respectively. These three positions were chosen since they have the
highest position score: Pi ¼ ha�bisabolol

i þ
P

j 6¼i jea�bisabolol
ij j þ Hi þ

P
j6¼i jEij j, which represents the sum of the absolute magnitudes of all one-aa

and two-aa model parameters associated with position i. Nodes in the same cluster are connected by an edge if their sequences differ by a single-
amino-acid substitution. Within each cluster and each circular shell, nodes are sorted so as to minimize the number of edges crossing each other.
Large circles denote sequences in the combined data set, whereas small circles show sequences for which G4 values were predicted. Each node is
colored according to the G4 value for a-bisabolol. (D–F) Same as (A–C) but for the G3 free energy landscape. Note that in (E), all nodes are sorted as
in (B) to enable visual comparisons. However, the nodes are classified into four clusters (and their sequences are color coded) on the basis of amino
acids at positions 402 and 555, which have the largest one-aa contributions to G3 among five positions in the M5 library (D). Nodes in (F) are
classified into the same clusters and appear in the same order within each cluster as nodes in (C).
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pairs of opposite edges in the geometric shapes shown in
figure 4A:

ESij ¼ D4 � D2 ¼ D3 � D1; (4)

such that ESij ¼ 0:0 in the case of no epistasis, and positive
otherwise.

Consistent with the above discussion of Michaelis–
Menten landscape structure and appearance, all free energy
landscapes are characterized by a limited amount of epistasis.
Indeed, in our combined data set, we find only 16 pairs of
positions i and j for which the above analysis of epistatic
interactions can be carried out: 5

2

� �
¼ 10 pairs come from

the M5 library, with 23 ¼ 8 sequences in each Tij subset, 1
pair (402–430) has 3 sequences in each Tij subset, and 5 more
pairs occur on the background of a single sequence. Since
there are 12 distinct free energy landscapes, we have 192
potentially epistatic instances in our data set. Out of those,
only 15 pairs are characterized by nonzero ESij, with 13 exhib-
iting magnitude epistasis, 1 showing sign epistasis (positions
430–467 on the G3 landscape, with ES430�467 ¼ 0:03 kBT),
and 1 more demonstrating reciprocal sign epistasis (positions

430–467 on the G4 landscape for cis-a-bergamotene, with
ES430�467 ¼ 0:44 kBT) (supplementary table S3,
Supplementary Material online). Interestingly, 10 out of 13
pairs with magnitude epistasis occur on the (E)-b-farnesene
landscape (consistent with its higher complexity, cf., supple-
mentary fig. S3, Supplementary Material online), and 2 other
instances occur on the G3 landscape. Thus, (E)-b-farnesene
production by the enzyme variants in our mutant library is
characterized by more pronounced deviations from single-aa
additivity in the corresponding free energy landscape than
production of cyclic terpenes.

To investigate whether higher levels of free energy epistasis
occur in pairs of residues that are close to each other in 3D
space, we have plotted the 15 pairs of residues with nonzero
ESij scores versus the corresponding Ca � Ca distances in
figure 4C. Although the two residues in pairs with top 3 ESij

values do tend to be closer to each other than 15.8 Å, the
average distance between all 138 pairs under consideration
(cf., the vertical dashed line in fig. 4C), the overall trend is
rather weak, especially if all pairs that are close to each other
in the linear sequence, such as 555–557, are excluded from

FIG. 4. Epistasis on free energy landscapes. (A) The four types of epistasis in a two-site system. The aa at each site can be in either W or M state. Panel
I: no epistasis, with each mutation contributing the same amount to the total free energy (or fitness) regardless of the aa state at the other site.
Panel II: magnitude epistasis, where the magnitude but not the sign of the aa free energy (or fitness) contribution depends on the aa state at the
other site. Panel III: sign epistasis, where for one of the sites, the sign (and, in general, the magnitude) of the aa free energy (or fitness) contribution
depends on the aa state at the other site. Panel IV: reciprocal sign epistasis, where the aa free energy (or fitness) contribution at both sites depends
on the aa state at the other site. (B) Schematic representation of a set of sequences S

ðaÞ
k divided into four subsets TijðA; BÞ of equal size, where

A; B ¼ ½W;M�. The sequence subsets are used to calculate the epistasis score ESij for aa positions i and j, as described in the text. Note that outside
the positions i and j, sequences in each subset are exactly the same. (C) Plot of the free energy epistasis scores ESij versus the Ca � Ca spatial
distances (in Å) between aa positions i and j. All epistasis scores with magnitudes<0:01 were excluded from the plot. A vertical dashed gray line at
15.8 Å shows the average Ca � Ca distance for all 138 aa pairs considered in this work.
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the consideration. For example, the 319–555 pair on the (E)-
b-farnesene landscape exhibits significant magnitude epista-
sis, despite the fact that these residues are separated by more
than 20 Å. Remarkably, the 430–467 pair appears as epistatic
on 3 free energy landscapes, with the corresponding ESij

scores ranked 1, 3, and 15 by absolute magnitude (out of
15 pairs with nonzero ESij; cf., supplementary table S3,
Supplementary Material online).

Strong epistasis between positions 430 and 467 can be
readily rationalized by their spatial proximity in the BFS struc-
tural model (fig. 5A). The residues in the 430–467 pair are
within van der Waals distance (<3 Å) from each other and are
located at the bottom of the active site, making direct con-
tacts with the isopropenyl tail of the FPP substrate. As such,
substitutions at these positions are expected to be interde-
pendent, with hydrophobic contacts likely accounting for the
physical interactions between the two residues, at least in BFS.

Fitness Models
We have developed a class of biophysical fitness models based
on the Michaelis–Menten theory of enzyme kinetics and en-
ergetics. We start with an assumption that all products pro-
duced by a given enzyme can be classified into correct and
incorrect. Making a correct product results in a fitness gain
while making an incorrect product results in a fitness loss due
to the necessity of its removal or degradation. In a biotechnol-
ogy setting, products are classified into correct and incorrect by
the researcher in a context of a specific project, whereas in a
cellular setting the needs of the cell and the associated fitness
gains and losses may be time or environment dependent. Thus,
in general, a single enzyme’s fitness F is given by a weighted
sum over fitness gains and losses associated with each product:

F ¼
X

i2correct

aini �
X

i2incorrect

bini; (5)

where ni is the number of product molecules of type i
produced per unit time and ai and bi are the

corresponding fitness gains and losses per product mole-
cule. Note that ai ¼ a

0

i � c, bi ¼ b
0

i þ c, where c > 0 is
the fitness cost of making or acquiring a substrate mole-
cule (e.g., c is expected to be close to 0 if the substrate
molecules are abundant in the environment). We assume
that ai > 0; 8i or, in other words, that benefits of making
the correct products outweigh all the associated costs
(products that are less valuable than substrates can be
accounted for in the second term on the right-hand side).
In the absence of information on product-specific
rewards and penalties, we set all fitness gains and losses
to be product independent, which makes the fitness a
weighted difference between the total number of correct
and incorrect product molecules produced per unit time:

F ¼ a
X

i2correct

ni � b
X

i2incorrect

ni: (6)

Note that in a cellular setting, fitness gains and losses
may depend on the number of produced molecules:
ai ¼ aiðniÞ; bi ¼ biðniÞ. For example, fitness may be
maximized only if a given molecule’s production rate is close
to optimal; overproduction may lead to diminished returns
and even sign reversal. Although such extensions are easy to
model within our framework, here we focus on the product
type- and product rate-independent scenario (eq. 6). For sim-
plicity, we label all cyclic products as correct and all noncyclic
products as incorrect; alternative scenarios such as a single
correct product (favoring specific enzymes typically found in
nature) can be easily considered.

Within the Michaelis–Menten framework, ni is given by
the reaction velocity per enzyme molecule:

ni ¼ kcat;i
c

KM;i þ c
; (7)

where KM;i is the Michaelis constant and c is the substrate
concentration. Thus,

V429

Y402

Y430

V467

A B

FIG. 5. Structural basis of epistasis on free energy landscapes. Shown are ribbon diagram cutouts of the BFS structural homology model (created in I-
TASSER [Zhang 2008; Yang et al. 2015]) with docked FPP substrate (mesh) (Salmon et al. 2015). Magnesium ions (purple spheres) coordinate the
pyrophosphate moiety at the top of the active site. (A) Amino acids at positions 430 and 467 interact with each other and with the isopropenyl tail
of the substrate at the bottom of the active site. (B) Amino acids at positions 402 and 429 are in spatial proximity with each other and with the
isopropenyl tail of the substrate.
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F cð Þ¼a
X

i2cyclic

kcat;i
c

KM;iþc
�b

X
i2non�cyclic

kcat;i
c

KM;iþc
: (8)

In the high substrate-concentration limit (c � KM;i; 8i),
the enzyme velocity reaches its maximum value and the ex-
pression for fitness becomes

FðcÞ ¼ a
X

i2cyclic

kcat;i � b
X

i2non�cyclic

kcat;i: (9)

In this limit, fitness is simply a function of the enzyme’s
reaction rates and is independent of the substrate concentra-
tion. In the low substrate-concentration limit (KM;i � c; 8i),

F cð Þ ¼ c a
X

i2cyclic

kcat;i

KM;i
� b

X
i2non�cyclic

kcat;i

KM;i

" #
(10)

In this case, fitness is proportional to the substrate con-
centration c and depends on both reaction rates and
Michaelis constants. Moreover, if the height of all the G3–
G4;i barriers is low, such that kcat;i � k�1; 8i, fitness
becomes approximately independent of the reaction rates
and the product type: kcat;i=KM;i � k1, and the overall en-
zyme velocity is determined by the height of the G1–G2 free
energy barrier (fig. 2A).

Note that if we do not know anything about substrate
concentration a priori, we can assume that it is uniformly
distributed in the ½cmin; cmax� range. Then, the expected value
of F is given by

�F ¼ 1

cmax � cmin

ðcmax

cmin

dc FðcÞ: (11)

If cmax � KM;i; 8i, the integral in equation (11) is domi-
nated by the high substrate-concentration limit and we again
recover equation (9). Therefore, we focus on the high substrate-
concentration case (eq. 9) in the subsequent analysis.

Structure of the Fitness Landscape and Epistatic
Interactions
We have computed fitness values for each sequence in the
combined library using equation (9). Since the overall scale of
each term and therefore the absolute magnitude of the fitness
contribution cannot be determined from our analysis alone,
we have set a ¼ 1, b ¼ 1 and have shifted all fitness values
such that the fitness of the wild-type BFS sequence, TYTHE, is
exactly zero (see fig. 6A for the fitness landscape on the M5
library). We have chosen to use predicted rather than observed
reaction rates in equation (9); switching to the experimentally
observed rates would have made little difference since our
model predicts reaction rates kcat;i with high accuracy (fig. 2B).

Similar to the free energy landscapes discussed above, the
fitness landscape has interpretable structure: Creation of cy-
clic products is enabled by a single gateway mutation, Y402L,
so that a single-point mutant, TLTHE, exhibits a significant
jump in fitness. Sequences with L at position 402 and G or T
at position 429 are the best producers of cyclic products;
however, the five-point mutant, ALGRG, has somewhat lower
fitness, largely because its overall reaction rate is lower (fig. 3E).
On the one hand, the relatively straightforward structure of
the fitness landscape is expected since the reaction rates in
equation (9) depend on the G3 and G4 free energy values,
which are determined by just a few nonzero two-aa terms. On
the other hand, fitness is a nonlinear function of the free
energies, which can lead to epistasis even if the underlying
free energy model has no pairwise and higher-order interac-
tions (Manhart and Morozov 2013, 2015a).
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FIG. 6. Michaelis–Menten fitness landscape. (A) Fitness landscape for the M5 library. All fitness values were computed using equation (9) with
a ¼ 1, b ¼ 1 and predicted (rather than observed) reaction rates kcat;i . The landscape is presented as in figure 3B, with the nodes sorted in the same
order to facilitate visual comparisons. Each node is color coded according to its fitness value. (B) Plot of the fitness epistasis scores ESij versus the
Ca � Ca spatial distances (in Å) between aa positions i and j. A vertical dashed gray line at 15.8 Å shows the average Ca � Ca distance for all 138 aa
pairs considered in this work.
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To study the amount of epistasis on our fitness landscape,
we have computed epistatic scores ESij using equation (4) for
the 16 pairs of positions identified earlier in the epistatic
analysis of free energy landscapes (fig. 6B). The only difference
with the previous analysis is that fitness values rather than
free energy values were averaged in each Tij subset. We find
that, consistent with the nonlinear nature of the fitness func-
tion, all 16 pairs exhibit some level of epistasis (supplementary
table S3, Supplementary Material online). Interestingly, nine
pairs show sign epistasis and seven pairs exhibit reciprocal
sign epistasis (no pairs show magnitude epistasis, cf., supple-
mentary table S3, Supplementary Material online), indicating
that the fitness landscape is indeed rougher than the free
energy landscapes considered earlier and that, as a conse-
quence, single-point mutation evolutionary trajectories are
expected to be significantly constrained. We do not observe
a prominent correlation between fitness epistatic scores and
the corresponding Ca � Ca distances (fig. 6B): although the
430–467 and 402–429 pairs ranked first and third by the
absolute magnitude of the epistatic score are separated by
less than the average distance between all aa pairs, the
residues in the 402–555 pair, which is ranked second, are
nearly 25 Å apart. Strikingly, the 402–555 pair does not con-
tribute to epistasis on any of the free energy landscapes
(fig. 4C and supplementary table S3, Supplementary
Material online). Thus, considerable long-range couplings
can be created purely through nonlinearities in the fitness
function. In contrast, the 430–467 pair is the most significant
contributor to epistatic interactions on the free energy
landscapes and its residues are in direct contact with one
another (figs. 4C and 5A).

Similar to the 403–467 pair, residues 402 and 429 are
within 5 Å of one another and make direct contacts with
the FPP substrate (fig. 5B). Given their shared role in forming
one side of the active site, the residues in the 402–429 pair are
positioned to influence substrate folding and guide product
formation. The role of residue 402 in activating cyclization
stems from its interaction with the first isoprene unit of the
substrate, which enables an initial isomerization reaction.
Residue 429 resides deeper in the binding pocket and there-
fore more likely influences substrate folding. Together, the
402–429 pair enables cyclization of a substrate conformation
that readily undergoes 1,6 cyclization while the reaction is
terminated by water capture, likely associated with magne-
sium ions positioned near the mouth of the active site. In
sum, the fact that the 402–429 pair shows strong epistasis in
cyclic product formation is entirely consistent with its struc-
tural role in the active site.

Given the large distance between residues at positions 402
and 555 (�25 Å), we thought to rationalize the potential
physical basis for interactions in the 402–555 pair through
a network analysis of the BFS protein structure, whose pur-
pose is to delineate the intervening interactions (supplemen-
tary fig. S9, Supplementary Material online). The network
analysis identified three shortest pathways with four edges,
likely not mutually exclusive, that connect residues 402 and
555 (supplementary fig. S9B, Supplementary Material online).
Pathway 1 involves interactions exclusively between aa in the

protein structure, whereas pathways 2 and 3 depend on in-
tervening connections through the isopropenyl chain of the
FPP substrate. Interestingly, pathway 2 transits through 429,
the gateway residue that controls cyclic product synthesis.
Pathway 3 transits through position 327, a conserved catalytic
aspartic acid of the DDxxD motif. Subtle misalignment of the
pyrophosphate-magnesium complex coordinated by the
DDxxD motif, propagated through this interaction network,
may provide an explanation for reduced catalytic efficiency
observed upon aa substitution at position 555.

Discussion
In this work, we presented synthesis and characterization of a
library of mutant TPSs designed to explore the evolutionary
mechanisms that underlie emergence of terpene cyclization.
We explored the mutational space of this major enzyme fam-
ily using BFS from A. annua, which catalyzes production of
the linear hydrocarbon (E)-b-farnesene, as a starting point. A
subset of soluble and biochemically active enzymes from the
initial SCOPE libraries (Dokarry et al. 2012) was subjected to
in-depth characterization using GC–MS (O’Maille et al. 2004;
Garrett et al. 2012) and MGA (Vardakou et al. 2014). This
enabled us to obtain reaction rates for 11 products, 7 of which
are cyclic. The final library is a combination of two indepen-
dent data sets: a previously published partial map of muta-
tional pathways connecting BFS to ADS, which catalyzes
production of amorpha-4,11-diene, a bicyclic terpene
(Salmon et al. 2015), and a complete map of mutational
pathways between BFS and BOS, an a-bisabolol-producing
synthetic enzyme initially identified in the BFS-to-ADS screen.
The combined library has 122 enzyme sequences, with amino
acids mutated at�25 positions compared with BFS. At each
variable position, the corresponding aa can only be either in
the wild-type (BFS) or mutant state, resulting in the effective
aa alphabet of size 2. Detailed biochemical characterization of
all enzymes in the combined library has enabled us to carry
out quantitative synergistic modeling of enzyme energetics
and evolution.

We have described each enzyme variant in the library using
the Michaelis–Menten model of enzyme kinetics (Nelson
et al. 2004; Bozlee 2007). The Michaelis–Menten framework
allows us to express enzymatic reaction rates and the overall
reaction velocity in terms of free energies assigned to various
enzymatic states (fig. 2A). These free energies are closely
related to the free energies of protein folding and binding
which have been extensively explored using protein engineer-
ing methods (Wells 1990; Serrano et al. 1993; Zhang et al.
1995), with DDG data available for multiple proteins (Thorn
and Bogan 2001). These studies have revealed that effects of
multiple mutations on protein energetics are nearly additive,
especially if the mutations are distant from each other in the
linear sequence (Istomin et al. 2008). Consequently, the as-
sumption of independent energetic contributions of residues
at different sites has been extensively used in biophysical
models of protein evolution that express organismal fitness
in terms of protein energetics (Zeldovich et al. 2007; Serohijos
and Shakhnovich 2014; Manhart and Morozov 2015a, 2015b;
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Bershtein et al. 2017). In the light of these findings, we
expected Michaelis–Menten free energies to be approxi-
mately additive as well, with two-aa coupling terms playing
a secondary role. To check this hypothesis, we have repre-
sented the free energies as a sum of one- and two-aa con-
tributions which we treated as fitting parameters. The
resulting model, supplemented with a LASSO constraint
which is designed to minimize the number of nonzero fitting
parameters (Bishop 2006), was fit to the reaction rate data,
reproducing it with a high degree of accuracy (fig. 2B).

As expected, the free energy model has very few nonzero
two-aa terms: on average, just 4.5 out of 138 coupling param-
eters contribute to a given free energy landscape. For exam-
ple, the a-bisabolol G4 landscape is controlled by three
coupling parameters (fig. 3A). Interestingly, the (E)-b-farne-
sene G4 landscape is by far the most nonadditive as it is
characterized by 32 nonzero coupling terms, followed by
the G3 landscape with 6 couplings (supplementary fig. S5A,
Supplementary Material online). Since both of these land-
scapes affect reaction rates of the linear product of BFS, (E)-
b-farnesene, which is still produced to variable extent by
nearly every enzyme in the combined library (supplementary
table S1, Supplementary Material online), it is conceivable
that the corresponding free energies have been fine-tuned
by evolution, resulting in a more complex, nonlinear free en-
ergy landscape. On the other hand, free energy landscapes for
the cyclic products are less epistatic because fewer enzyme
variants are capable of producing any one of these products
at appreciable rates (supplementary table S1, Supplementary
Material online). These findings imply that novel enzymatic
functions can evolve quickly through pathways that do not
require immediate establishment of intricate networks of aa
interactions. However, these networks start to play an increas-
ingly prominent role as the novel enzyme is optimized for
efficiency and specificity in the course of evolution.

We have sought to quantify the extent of ruggedness on
the Michaelis–Menten free energy landscapes by considering
epistatic interactions between various aa pairs. The notion of
epistasis, including higher-order epistasis, has been extensively
studied in the context of fitness landscapes (Phillips 2008; Haq
et al. 2009; Chou et al. 2011; Weinreich et al. 2013; Anderson
et al. 2015; Miton and Tokuriki 2016; Sarkisyan et al. 2016;
Sailer and Harms 2017a, 2017b; Adams et al. 2019; Tamer et al.
2019; Yang et al. 2019). Epistasis can profoundly alter evolu-
tionary dynamics on fitness landscapes by restricting the
availability of evolutionary trajectories (Weinreich et al.
2005) and by creating local maxima that can trap or slow
down evolving populations (Poelwijk et al. 2011). We have
extended the idea of epistasis to the free energy landscapes; as
with fitness, aa pairs have been classified into no epistasis,
magnitude epistasis, sign epistasis, and reciprocal sign epista-
sis categories (fig. 4A) (Manhart and Morozov 2014). We have
also introduced an epistatic score ESij, which is zero in the
case of no epistasis and positive otherwise (eq. 4). Note that in
general this score depends not only on the magnitude of the
two-aa term between residues i and j but also on the coupling
to the residues outside the i; j pair.

Consistent with the previous observations in the literature
described above and the relatively straightforward, easily in-
terpretable free energy landscapes constructed in this work
(fig. 3 and supplementary fig. S8, Supplementary Material
online), we find free energy epistasis to be fairly limited in
extent, with only 15 out of 192 pairs of residues considered
exhibiting any epistasis at all, 13 of which in the magnitude
epistasis category. These findings appear to be at variance
with a recent report in which significant epistasis was ob-
served in antibody–antigen binding free energies (Adams
et al. 2019). However, we note that our analysis is effectively
limited to the two-letter alphabet and therefore our obser-
vations may change once the full spectrum of mutations is
included. Furthermore, enzyme evolution, and evolution of
specialized metabolic enzymes in particular, may be subject
to different constraints than evolution in the adaptive im-
mune system. Finally, our analysis is likely affected by the fact
that, by design, we have explored restricted sequence space
around a naturally occurring enzyme, BFS, mutagenizing posi-
tions only in the vicinity of the BFS active site (supplementary
fig. S1, Supplementary Material online). Thus, our findings
reflect “micro” rather than “macro” evolution; the latter can
be studied for example, on the basis of protein sequence
alignments involving multiple protein families and multiple
organisms. Analysis of such alignments tends to yield much
more complex models characterized by numerous nonzero
coupling terms (Haq et al. 2009; Weigt et al. 2009; Morcos
et al. 2011; Marks et al. 2012; Ferguson et al. 2013; Hart and
Ferguson 2015; Neuwald 2016). Interestingly, although there
is a certain degree of enrichment for spatial proximity in 15
strongly epistatic pairs we have identified, 7 of these pairs are
separated by >15 Å (fig. 4C), conceivably as a result of long-
range allosteric interactions mediated by networks of inter-
vening amino acids.

Even if the underlying free energy model is purely additive,
the corresponding biophysical fitness function may be char-
acterized by epistasis and local maxima if it is a nonlinear
function of the free energies, as observed in models that in-
clude protein folding stability and ligand-binding affinity as
explicit fitness determinants (Zeldovich et al. 2007; Manhart
and Morozov 2015a). We have significantly extended this
prior work by constructing a biophysical fitness landscape
in terms of free energies of the Michaelis–Menten model.
Each enzyme’s fitness is assumed to be proportional to its
total reaction velocity for the “correct” product(s), as dictated
by a given biological or biotechnological context. Creation of
incorrect products is penalized in a similar way. Thus, in this
framework, highly tuned enzymes that produce the maxi-
mum number of correct molecules and the minimum num-
ber of incorrect molecules per unit time are characterized by
high fitness values. Extensions to fitness functions in which,
for example, the optimal rates of production of correct prod-
ucts are enforced are straightforward but are not pursued
here.

As expected, the fitness landscape is much more epistatic
than the free energy landscapes due to its nonlinear nature,
with all 16 aa pairs under consideration characterized by non-
zero epistatic scores (9 of these are in the sign epistasis and 7
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in the reciprocal sign epistasis category). Thus, the fitness
landscape is rougher than its underlying free energy compo-
nents, which, depending on the balance between selection,
mutation, and genetic drift in evolving populations, may ren-
der some of the evolutionary pathways inaccessible.
Nonetheless, projecting the fitness function onto the M5 li-
brary results in a global maximum, TLTHE, and no competing
local maxima (fig. 6A). Weak correlation between epistatic
scores and spatial distances (fig. 6B) is less surprising in this
case since fitness values may depend on the states of residues
that are not necessarily energetically coupled, due to com-
pensatory mutations, as for example occurs in biophysical
fitness models that depend on the total free energy of protein
folding and binding (Zeldovich et al. 2007; Haldane et al. 2014;
Manhart and Morozov 2015a).

In conclusion, we have carried out detailed biochemical
characterization of a library of enzyme variants which explore
sequence space in the vicinity of BFS, a naturally occurring
catalyzer of the linear product (E)-b-farnesene. This charac-
terization has allowed us to construct Michaelis–Menten free
energy landscapes, study their structure quantitatively, and
use them as input to simple biophysical models of enzyme
fitness. Our analysis highlights a fundamental evolutionary
mechanism of creating epistatic interactions through
nonlinearities in the fitness function and underscores the
surprising simplicity and interpretability of enzyme energetics.
In the future, we intend to investigate the universality
of our findings by employing additional SCOPE libraries (in
particular, going beyond the two-letter alphabet explored in
this work) and by exploring sequence space around wild-
type enzymes from other protein families. Another intriguing
direction of future work will be to construct synthetic enzyme
libraries that iteratively cover more and more sequence space
starting from a wild-type enzyme such as BFS, or attempt to
bridge sequence separation between two wild-type enzymes.

Materials and Methods

Gene Library Synthesis
The BFS M5 library (25 ¼ 32 mutants) was constructed in a
three-phase SCOPE process which involves 1) fragment am-
plification, 2) library recombination, and 3) library amplifica-
tion (Dokarry et al. 2012). Fragment amplification: N-terminal
and C-terminal gene fragments were amplified by PCR using
mutagenized N- and C-terminal plasmid libraries, respec-
tively, as a template. Specific recombination primers and ge-
neric amplification primers were designed as described in
Dokarry et al. (2012). PCR was carried out using Phusion
High-Fidelity polymerase (NEB) using the following protocol:
98 �C for 3 min, followed by 30 cycles of 98 �C for 15 s, 50 �C
for 30 s, 72 �C for 1 min, and 72 �C for 10 min, then followed
by incubation at 4 �C. An aliquot of 2 ll of each reaction was
analyzed by agarose gel electrophoresis on a 2% TAE agarose
gel, and fragments were diluted 1:10 for use in the SCOPE
recombination reaction. Library recombination: Purified, di-
luted N- and C-terminal fragments were mixed together in a
1:1 ratio and recombined with 1 nM of the central fragment.
The reaction was set up as described in Dokarry et al. (2012).

Recombination PCR was carried out using Phusion High-
Fidelity polymerase (NEB) using the following protocol:
98 �C for 3 min, followed by 30 cycles of 98 �C for 15 s, fol-
lowed by a 50–70 �C ramp (50 �C at cycle 1, then þ1.5 �C/
cycle) for 30 s, followed by 72 �C for 30 s, then followed by
incubation at 4 �C. Following the reactions, the tubes were
stored on ice and used directly in the SCOPE amplification
reaction. Library amplification: An aliquot of 2.5 ll of the re-
combination reaction was used as a template for the SCOPE
amplification reaction. The reaction was set up as described in
Dokarry et al. (2012). Amplification PCR was carried out
using Phusion High-Fidelity polymerase (NEB) using the
following protocol: 98 �C for 3 min, followed by 30 cycles
of 98 �C for 15 s, 65 �C for 15 s, 72 �C for 1 min, and 72 �C
for 10 min, then followed by incubation at 4 �C. An aliquot
of 2 ll of the amplification reaction was analyzed by
agarose gel electrophoresis on a 1% TAE agarose gel.
Reaction products were PEG-precipitated into the same
volume of Tris(hydroxymethyl)aminomethane (Tris)–ethyl-
enediaminetetraacetic acid buffer, pH 8.0 (TE buffer) prior
to Gateway cloning.

Cloning of Individual Mutants
Gateway cloning was carried out in 5 ll reactions. For these
reactions, pDONR207 and pH9GW were used as the entry
vector and the destination vector, respectively. One microliter
of the BP or LR reaction was transformed into 10 ll of
Escherichia coli DH5a Library Efficiency cells (Life
Technologies) by heat shock (BP refers to attB/attP and LR
refers to attL/attR recombination sites of lambda integrase).
The transformed cells were spread on Luria broth (LB) plates
containing antibiotics and incubated at 37 �C overnight. BP
clones were confirmed by sequencing to identify mutants of
interest prior to the LR reaction. For protein expression,
pH9GW plasmids were transformed into 5 ll Escherichia
coli BL21(DE3) cells (NEB) by heat shock. Following cell re-
covery in 100 ll Super Optimal Broth (SOC), 10 ll volume of
transformed cells was spread on LB plates containing anti-
biotics and incubated at 37 �C overnight.

Protein Expression of Mutants
Single colonies were transferred to 1 ml of liquid media (LB
with kanamycin) in 96-well plates, followed by growth for
16 h with shaking at 37 �C and 230 rpm. Cultures were diluted
10-fold into 5 ml of Terrific Broth growth media with kana-
mycin in 24-well round-bottom plates covered with micro-
porous tape, followed by growth with shaking at 37 �C and
180 rpm until cultures reached OD600 	 0.8. Protein expres-
sion was induced by addition of IPTG to concentration of
0.1 mM, followed by growth with shaking at 20 �C and
180 rpm for 5 h. Cells were then harvested by centrifugation
and cell pellets were frozen at �20 �C.

Ni-NTA Affinity Chromatography Purification of
Library Proteins
Pellets from 5 ml expression cultures were resuspended by
adding 0.8 ml of lysis buffer (50 mM Tris–HCl, 500 mM NaCl,
20 mM imidazole, 10% glycerol [v/v], 10 mM b-
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mercaptoethanol, and 1% [v/v] Tween-20, pH 8) containing
1 mg/ml lysozyme and 1 mM ethylenediaminetetraacetic acid
directly to frozen pellets, followed by shaking at room tem-
perature (25 �C) at 250 rpm for 30 min. Subsequently, 10 ll of
the benzonase solution (850 mM MgCl2 and 3.78 U/
ll benzonase [Novagen]) was added, followed by additional
shaking at 250 rpm for 15 min. A 400-ll aliquot of lysate was
passed through a Whatman unifilter 96-well plate and col-
lected in another Whatman plate containing 50 ll bed-
volume (100 ll of slurry) of superflow Ni-NTA resin
(QIAgen), preequilibrated with lysis buffer using a vacuum
manifold. This step was repeated to pass the entire lysate
volume through the column. Each well was washed with
1.5 ml lysis buffer (3
 500 ll), followed by 1.5 ml wash buffer
(lysis buffer lacking Tween-20). Resin was air dried prior to
addition of 150 ll elution buffer (wash buffer containing
250 mM imidazole), followed by centrifugation at 1,500 rpm
for 2 min to recover eluted protein. The eluate was reapplied
to the column and the centrifugation step was repeated. To
calculate protein concentrations, 200 ll of Bradford reagent
(Bio-Rad) was added to a 10 ll aliquot of purified protein in a
flat-bottom 96-well microplate. The reaction was incubated
at room temperature for 5 min and the OD595 was measured
on a Varioskan Flash plate reader (Thermo Scientific). Protein
concentrations were quantified against a bovine serum albu-
min standard curve.

Enzyme Vial Assay
The vial assay was performed in 2 ml screw-top glass vials
(Agilent) in a 500-ll reaction volume. Each reaction consisted
of assay buffer at pH 7.0 (25 mM 2-[N-morpholino] ethane-
sulfonic acid, 25 mM N-cyclohexyl-3-aminopropanesulfonic
acid, 50 mM Tris), 5 mM MgCl2, 100 lM farnesyl pyrophos-
phate (FPP), and enzyme (1.5–3 lM). Reactions were mixed
at room temperature and overlaid with 500 ll of hexane
(Sigma), and the caps were affixed. After an overnight incu-
bation at room temperature (25 �C), the hydrocarbon prod-
ucts were extracted by vigorous vortexing for 10 s, followed by
GC–MS analysis (Garrett et al. 2012), as described below.

Product Identification and Quantification by GC–MS
Reaction products were analyzed using a Hewlett–Packard
6890 gas chromatograph (GC) coupled to a 5973 mass
selective detector outfitted with a 7683B series injector and
autosampler and equipped with an HP-5MS capillary column
(0.25 mm i.d. 
 30 m with 0.25 lm film) (Agilent
Technologies). The sampling depth was set to 7.5 mm, placing
the needle in the center of the organic layer (near the 750 ll
level in the 2-ml glass vial). The GC was operated at a He flow
rate of 0.8 ml/min, and the mass selective detector was
operated at 70 eV. Splitless injections of 2 ll were performed
with an injector temperature of 250 �C. The GC was pro-
gramed with an initial oven temperature of 80 �C (1-min
hold), which was then increased at a rate of 20 �C/min up
to 140 �C (1-min hold), followed by a 5 �C/min ramp until
170 �C (2-min hold), followed by a 100 �C/min ramp until
300 �C (1-min hold). A solvent delay of 6 min was allowed
prior to the acquisition of MS data. Product peaks were

quantified by the integration of peak areas using Enhanced
Chemstation (version E.02.00, Agilent Technologies).
Products were identified using Massfinder 4.25, a 2D algo-
rithm that employs retention index and mass-spectral finger-
prints for compound identification.

The GC–MS data were visually inspected to identify the
peaks (compounds) to be quantified in the series of samples.
The quantification was carried out automatically and was
based on using the mass spectra to obtain chromatograms
extracted for ions (m/z) (usually 3–5) specific to each com-
pound. First, the intensities of each extracted chromatogram
were calculated using Met-Idea v2.05 (Broeckling et al. 2006),
based on a collection of (RT, m/z) pairs (supplementary table
S4, Supplementary Material online). The remainder of the
steps was carried out in Matlab 2013 (The MathWorks) using
scripts written in-house. For each extracted chromatogram,
the intensities were corrected to take into account the per-
centage signal that the ion represented in the mass spectrum,
so that, in a perfect case, the corrected intensities would be
the same for all ions and would represent the amount of the
compound present (relative quantitation). These intensities
were then averaged across ions. The percentage of the signal
represented by each compound was then calculated and the
outcome saved in a spreadsheet. In addition, a report, from
scripts written in-house, was generated which provided a
number of useful diagnostic tools, notably graphs showing
the extracted chromatograms over the relevant RT range, as
well as the correlation between the corrected intensities from
different ions. These were used to detect systematic bias
resulting from nonspecificity and/or interference between
closely eluting compounds. Whenever necessary, the list of
ions was refined so as to limit such occurrences.

MGA for kcat Apparent and Steady-State Kinetic
Measurements
Kinetic assays were performed in 96-well flat-bottomed plates
(Grenier). For kcat apparent measurements, assays of 50 ll
were conducted in the MGA buffer (vial assay buffer contain-
ing 2.5 mU of the coupling enzyme inorganic pyrophospha-
tase from Saccharomyces cerevisiae [Sigma]) using six 2-fold
serial dilutions of the purified protein. Monophosphate (Pi)
and pyrophosphate (PPi) standard curves (100–0.01 lM)
were generated using a 2-fold serial dilution in the MGA
buffer without FPP. Reactions were set up in duplicate and
incubated at room temperature for 30, 90, and 180 min.
Enzyme reactions were quenched by addition of the mala-
chite green development solution (prepared according to
Pegan et al. [2010]), incubated for 15 min, and read at
623 nm on a Varioskan Flash plate reader. For steady-state
kinetic measurements, assays of 50 ll were conducted in the
MGA buffer using serial dilutions of FPP, with a starting
concentration of 100 lM. Enzyme was added to give a final
concentration of 0.014 lM, unless otherwise stated. Standard
curves of monophosphate (Pi) and pyrophosphate (PPi) (50–
0.01 lM) were generated using serial 2-fold dilutions in the
MGA buffer without FPP. Reactions were set up on ice in
triplicate and incubated at 30 �C for 15 or 40 min, depending
on the mutant studied. Enzyme reactions were quenched by
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addition of 12 ll of the malachite green development solu-
tion, incubated for 15 min, and read at 623 nm on a Varioskan
Flash plate reader.

Second-Order Model of Reaction Rates and
Michaelis–Menten Free Energies
Using equations (2) and (3), we obtain a set of
Nn ¼ 1; 342 equations for predicting relative reaction rates:

~kcat;i Sj

� �
¼ exp � 1

kBT

X
k

hk
ið Þ Ak

jð Þ
� ���

þ
X

ðk;lÞ ekl
ið Þ Ak

jð Þ; Al
jð Þ

� �
�
X

k
Hk Ak

jð Þ
� �

�
X

k;lð Þ Ekl Ak
jð Þ; Al

jð Þ
� �

� CiÞ
i
; (12)

where ~kcat;i Sj

� �
¼ kcat;i Sj

� �
=kobs

cat WTð Þ is the predicted rela-
tive reaction rate for product i (kobs

cat WTð Þ is the observed
total reaction rate of the wild-type sequence), and the
sequence-independent offsets Ci are defined by eCi=kBT ¼ Bi

=kobs
cat WTð Þ (Bi is defined in eq. 2). This set of equations has

nþ 1ð Þ Lþ Lp

� �
þ n ¼ 1; 967 fitting parameters since there

are L one-body terms, Lp coupling terms for each G4;i and G3,
and one additional term per product for the sequence-
independent offset Ci. The predicted relative reaction rates
are fitted to ~k

obs

cat;i Sj

� �
¼ kobs

cat;i Sj

� �
=kobs

cat WTð Þ, the relative re-
action rates observed for each enzyme in the combined
library.

Since the total number of fitting variables is greater than
the number of measurements, we employ the LASSO algo-
rithm (Tibshirani 1997; Bishop 2006), which reduces the num-
ber of nonzero fitting parameters by imposing a penalty
proportional to their L1 norm. We impose different penalties
on one-body terms and two-body couplings, while the Ci

offsets are left unconstrained. The problem therefore reduces
to finding a set of fitting parameters which minimize the
following expression:

min
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where k and bk are the regularization coefficients which de-
termine the relative importance of the L1 penalty terms. We
have determined the penalty parameters k and b by 4-fold
cross-validation. All enzyme sequences Sj were randomly
partitioned into four equal-sized samples. One sample was
assigned as the test set and the other three as the training set
on which the model was fitted. This procedure was repeated
four times, with each sample used exactly once as the test set.
We varied k from 10�2:8 to 10�1:4 and b from 1 to 10. For
each pair of k and b, we calculated the mean-square error in

predicting the test set (the first term in eq. 13) and averaged it
over all four cross-validation runs (supplementary fig. S10,
Supplementary Material online). The error was minimized
for k ¼ 0:0079 and b ¼ 2:7384; these values were subse-
quently used to fit the model on the entire data set.

Generation of Synthetic Data
Since the total number of potentially nonzero fitting param-
eters is larger than the number of reaction rate measurements
in the combined library, we have additionally checked the
consistency of the LASSO procedure by fitting our model to
artificially generated data. To generate the artificial data, we
randomly chose seven nonzero one-body terms and four
nonzero couplings for each G4;i and G3 landscape and for
each enzyme sequence (all other terms were assumed to be
zero). These parameters were assigned random values based
on two Gaussian distributions which were obtained by com-
puting the mean m and the standard deviation r of the one-
body terms (m ¼ 0:24; r ¼ 0:85) and the couplings
(m ¼ �0:09; r ¼ 0:63) inferred from the combined library.
The sequence-independent offsets Ci were likewise sampled
from a Gaussian distribution with m ¼ �5:52 and r ¼ 1:96,
where the Gaussian was fit to the set of Ci’s obtained after
fitting the model to the reaction rate data in the combined
library. We have generated artificial ~k0cat;i values using these
randomly chosen parameters:

~k0cat;i Sj

� �
¼ exp � 1

kBT

X
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ið Þ Ak

jð Þ
� ���

þ
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ðk;lÞ ekl
ið Þ Ak
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� �
�
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k
Hk Ak

jð Þ
� �

�
X

ðk;lÞ Ekl Ak
jð Þ; Al

jð Þ
� �

� CiÞ þ r

�
; (14)

where r was randomly sampled from a Gaussian distribution
with m� ¼ 0:0 and r� ¼ 0:003 (r� is the mean-square error
obtained after fitting the model to the reaction rate data in
the combined library). This artificial data set was treated as
reaction rate measurements, and the parameters of the
model as well as free energy values were subsequently inferred
using LASSO with cross-validation as described above (sup-
plementary fig. S6, Supplementary Material online).

Data Availability
Additional supplementary material is available at http://
enzymes.rutgers.edu.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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