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ABSTRACT
As severe dropout in single-cell RNA sequencing (scRNA-seq) de-
grades data quality, current methods for network inference face
increased uncertainty from such data. To examine how dropout in-
fluences directional dependency inference from scRNA-seq data, we
thus studied fourmethods based on discrete data that aremodel-free
without parametric model assumptions. They include two estab-
lished methods: conditional entropy and Kruskal-Wallis test, and
two recent methods: causal inference by stochastic complexity and
function index. We also included three non-directional methods
for a contrast. On simulated data, function index performed most
favorably at varying dropout rates, sample sizes, and discrete lev-
els. On an scRNA-seq dataset from developing mouse cerebella,
function index and Kruskal-Wallis test performed favorably over
other methods in detecting expression of developmental genes as a
function of time. Overall among the four methods, function index
is most resistant to dropout for both directional and dependency
inference. The next best choice, Kruskal-Wallis test, carries a direc-
tional bias towards a uniformly distributed variable. We conclude
that a method robust to marginal distributions with a sufficiently
large sample size can reap benefits of single-cell over bulk RNA
sequencing in understanding molecular mechanisms at the cellular
resolution.

CCS CONCEPTS
• Mathematics of computing → Nonparametric statistics; • Ap-
plied computing → Biological networks.
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1 INTRODUCTION
Measuring RNA abundance in individual cells, single-cell RNA se-
quencing (scRNA-seq) provides an unprecedented resolution to
study molecular mechanisms underlying different cell types within
a tissue. This enables biology inquires impossible with bulk RNA
sequencing, where one measurement of a transcript represents
the total of that transcript over all cells in a sample. One such in-
quiry is cell-type-specific gene network inference. This opportunity
is however hampered by a great deal of uncertainty in the read-
out of transcript abundance in scRNA-seq. Dropout, also known
as observed zeros, is a limitation of current scRNA library prepa-
ration techniques [10]. It refers to RNA molecules in a cell not
being captured for reverse transcription—a necessary step during
library preparation. It leads to a multitude of zero transcript levels
for a gene in 30–90% cells [2]. Several popular network inference
software packages developed without considerations of dropout
amounted to nearly random guessing on scRNA-seq data [7]. Net-
work inference after data imputation remains unexplored for a risk
of false positives due to a circular argument [1].

Necessary to many network inference applications are both di-
rectional and dependency inference between two random variables
𝑋 and 𝑌 , which can represent levels of gene expression or covari-
ates in scRNA-seq experiments. In directional inference, we test 𝑌
being a function of𝑋 versus𝑋 being a function of𝑌 ; in dependency
inference, we test 𝑌 being a function of 𝑋 versus 𝑋 and 𝑌 being
statistically independent. Existing methods that simultaneously
address both types of inference are mostly parametric regression
analysis [9]. With the throughput of one scRNA-seq experiment
approaching millions of cells, it is feasible to study complex nonlin-
ear patterns model-free without predefined mathematical models.
Thus, we focus on model-free statistics based on discrete data here.
The established conditional entropy and the recent causal inference
by stochastic complexity (CISC) [4] are popular choices for direc-
tional inference applicable to discrete data. Kruskal-Wallis test [11],
based on the discrepancy between group rank means, can do both
directional and dependency inference. However, it is not optimized
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to capture functional dependency (𝑓 :𝑋→𝑌 ), favoring monotonic
over non-monotonic functions.

A recently introduced measure called function index claims func-
tional optimality—it is maximized if and only if 𝑌 is a non-constant
function of𝑋 [12, 18, 35]. Measuring the effect size of the functional
chi-squared statistic (FunChisq) [18, 33, 36], function index ranges
from 0 to 1 and has been used for analyzing bulk transcriptome
sequencing data [12, 35]. Similar to other dependency measures,
function index is minimized if and only if 𝑋 and 𝑌 are empirically
independent.

We evaluated the performance of these methods on both sim-
ulated data and real scRNA-seq data in contrast to Pearson’s chi-
squared test, mutual information, and Pearson’s correlation. The
performance is measured by percentage of incorrect directions
and areas under the receiver-operating characteristic (ROC) and
precision-recall (PR) curves. New from previous scRNA-seq dropout
studies, we delved into how dropout rates, sample sizes, and discrete
levels can influence the performance. We revealed that function
index performed robustly relatively to other methods in both direc-
tional and dependency inference. We also observed that increasing
the sample size can remediate dropout to a demonstrated extent.
Our findings suggest that with a sufficient sample size one can
make an informed choice of method for directional dependency
inference to overcome dropout in scRNA sequencing to a definite
advantage.

2 METHODS
2.1 Function index
As function index was just recently introduced [12, 18, 35], we
provide its formulation and a justification on its application to
scRNA-seq data. Let 𝑋 and 𝑌 be two discrete random variables of 𝑟
and 𝑠 levels, respectively. Given 𝑛 pairs of (𝑋,𝑌 ) observations, the
FunChisq test is defined on the 𝑟 ×𝑠 contingency table formed by 𝑋
being the row variable and 𝑌 being the column variable. The value
at row 𝑖 and column 𝑗 of the table, 𝑛𝑖 𝑗 , denotes the number of pairs
with 𝑋 = 𝑖 and 𝑌 = 𝑗 . We use 𝑛𝑖 · for the sum of row 𝑖 and 𝑛 · 𝑗 for
the sum of column 𝑗 . The FunChisq test statistic is defined by

𝜒2
𝑓
(𝑋 → 𝑌 ) =

𝑟∑
𝑖=1

𝑠∑
𝑗=1

[𝑛𝑖 𝑗 − (𝑛𝑖 ·/𝑠)]2

𝑛𝑖 ·/𝑠
−

𝑠∑
𝑗=1

[𝑛 · 𝑗 − (𝑛/𝑠)]2

𝑛/𝑠 (1)

Mathematical and statistical properties of FunChisq are derived
in [18, 33, 36]. Function index is designed to measure the effect
size of functional dependency independent of sample size. It was
first introduced and applied to bulk transcriptome data analysis in
[12, 18, 35]. The function index 𝜉 𝑓 is defined by the square root of
the ratio of FunChisq test statistic to its maximum attainable value:

𝜉 𝑓 =

√√√
𝜒2
𝑓
(𝑋 → 𝑌 )

𝑛(𝑠 − 1) −∑𝑠
𝑗=1 [𝑛 · 𝑗 − (𝑛/𝑠)]2/(𝑛/𝑠)

(2)

The numerator and denominator within the square root scale with
𝑛. Thus function index is independent of sample size, suitable for
measuring the effect size. It is proven [18] that 𝜉 𝑓 ∈ [0, 1] is min-
imized if and only if 𝑋 and 𝑌 are empirically independent and
maximized if and only if 𝑌 is a non-constant function of 𝑋 . We thus

call function index asymmetrically functionally optimal. A larger
𝜉 𝑓 indicates a stronger functional dependency of 𝑌 on 𝑋 .

On data with a large sample size, 𝑃-value is not necessarily effec-
tive: a test statistic tends to have a small 𝑃-value but with a weak
effect. Thus a quantitative measure of effect size is important [27].
As single-cell data are considered “big data", where effect size sta-
tistics are more relevant [3], exploring function index usage on
scRNA-seq data is justified.

2.2 Implementations of all seven methods
The R package FunChisq [34] implements function index within the
function fun.chisq.test(). Function index is returned in the func-
tion output. Details including examples on the function usage are
provided in package documentation. Conditional entropy and mu-
tual information [8] are implemented as functions condentropy()
and mutinformation() in the R package infotheo [16]. Pear-
son’s chi-squared test [20], Kruskal-Wallis test [11] and Pearson
correlation test [26] are available via R functions chisq.test(),
kruskal.test() and cor.test() in the package stats [21]. CISC
was ported to R from the provided Python implementation [4]. Pear-
son’s correlation is included as a baseline for comparison.

3 RESULTS
To understand how the dropout rate, the sample size, and the
discrete level can influence directional dependency inference, we
present the performance of the seven methods on simulated and
real scRNA-seq datasets.

3.1 Performance on simulation studies
Generating ground truth and noise-free tables. To evaluate the perfor-
mance of both directional and dependency inference, we simulated
50,000 contingency tables at five dropout rates, five table sizes, and
five sample sizes. For directional inference evaluation, we generated
(1) 100 many-to-one functional patterns from 𝑋 to 𝑌 to represent
true directional patterns and (2) the transpose of the 100 many-
to-one patterns, which we also call one-to-many non-functional
patterns, to represent false directional patterns. For dependency
inference evaluation, we generated (3) 100 functional patterns as
true dependent patterns and (4) another 100 patterns where 𝑋 and
𝑌 were independent as false dependent patterns. The four table
types as illustrated in Figure 1 are generated as contingency tables
by the R function simulate_tables() [24] at varying sample sizes
and table sizes. In each contingency table, 𝑋 and 𝑌 are always the
row and column variables, respectively. Functional tables have a
uniform marginal for 𝑋 ; one-to-many tables have a uniform mar-
ginal for 𝑌 ; independent tables have uniform marginals for both 𝑋

and 𝑌 .

Mimicking noise and simulating dropout. To simulate biological
variations or technical noise not due to dropout, we applied house
noise at level 0.2 to all tables. This noise level estimated from bulk
transcriptome data [32] represents a possible scenario for real data.
The first row of Figure 1 shows four table types with noise but no
dropout.

We randomly chose samples at a given percentage, or dropout
rate, in each variable to reassign them to the first level that is
analogous to zero expression level. Figure 1 illustrates how an
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Figure 1: Four table types with noise and dropout. Each table has 10,000 samples at a house noise level of 0.2. Each column
illustrates a table type. Dropout rates are 0, 0.3 and 0.9 for each row. The maximum value in each table row is marked by an
extra box to indicate the best functional patterns from 𝑋 (row) to 𝑌 (column). A cell in a darker shade has more samples in it.
Many-to-one versus one-to-many tables are used in directional inference. Functional versus independent tables are used in
dependence inference.

increasing dropout rate gradually erases the signal in the tables
within each column.

Performance of directional inference. We first compared the four
asymmetric measures on inferring direction. Figure 2 shows per-
centages of incorrect directions for all four methods over 100 pairs
of a many-to-one functional table and its transpose. Even though
dropout rates are highly variable, a typical scRNA-seq experiment
can have about 50% dropout on average [2]. At a fixed dropout
rate of 50% and a fixed table size of 5×5, more importantly,function
index has a significant drop in error ratefrom 36% to 15% when
the sample size increased from 100 to 100K, while other methods
have insignificant or no drop in the error rate, not being able to
benefit from larger sample sizes (Figure 2a). All methods, except
CISC, reduce error rates over decreasing dropout rates at a fixed
sample size of 10,000 and a fixed table size of 5×5 (Figure 2b) or
increasing discrete levels at a fixed dropout rate of 50% and a fixed
sample size of 10,000 (Figure 2c). Surprisingly, CISC makes no cor-
rect prediction at 0% dropout and its accuracy is always close to a
random guess. Overall, function index makes the fewest number of
mistakes.

Next, we evaluated how well a method ranks directions among
multiple tables including their transpose at varying sample sizes,
dropout rates and discrete levels. The metrics are area under the
ROC curve (AUROC) and area under the PR curve (AUPR). As
expected, the three symmetric methods are ineffective (Figure 3).
As seen in Figure 2, CISC is unable to determine directionality.
Kruskal-Wallis test is always third in terms of both AUROC and
AUPR.

Function index benefited the most from increased sample sizes
in AUROC at the dropout rate of 50% and the table size of 5×5 (Fig-
ure 3a,b). Although second to conditional entropy in AUPR at small
sample sizes, it catches up at large sample sizes.

All performance worsens over increasing dropout rates at sam-
ple size 10,000 and table size 5×5 (Figure 3c,d). Function index is
notably better than other methods in AUROC; however second to
conditional entropy in AUPR.

At increasing table sizes with the sample size at 10,000 and the
dropout rate at 50% (Figure 3e,f), both conditional entropy and
function index show an overall increasing trend. Function index
is notably better than all other methods in AUROC, while both
function index and conditional entropy perform similarly in AUPR.
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Figure 2: Percentage of incorrectly inferred directions on simulated data at varying dropout rates, sample sizes and table sizes.
Function index exhibits a definite advantage over other directionalmeasures with increasing (a) sample sizes, (b) dropout rates,
and (c) table sizes, except at the smallest sample size or the highest dropout rate.
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Figure 3: Directional inference performance on simulated data at varying dropout rates, sample sizes and table sizes. The effect
of sample size: (a) AUROCs and (b) AUPRs. The effect of dropout rate: (c) AUROCs and (d) AUPRs. The effect of discrete level:
(e) AUROCs and (f) AUPRs.

Performance of dependency inference. Figure 4 presents the perfor-
mance of the five methods on dependency inference. Sample sizes,
dropout rates, and table sizes are setup identically with directional
inference (Figure 3). In Figure 4a,b, Pearson’s correlation noticeably
underperforms at small sample sizes, followed by Kruskal Wallis
test and CISC. In Figure 4c,d, function index, Pearson’s chi-squared
test and mutual information demonstrate robustness to dropout
with perfect performance at a large sample size. Conditional en-
tropy, CISC and Kruskal-Wallis test experience a major degradation
in performance at higher dropout. Pearson’s correlation consis-
tently underperformsat all dropout rates. In Figure 4e,f, function

index, Pearson’s chi-squared test and mutual information still main-
tain perfect performance. Conditional entropy and CISC did poorly
at smaller table sizes. Pearson’s correlation consistently underper-
forms at all table sizes. In summary, function index is also effective
for dependency inference. If directionality is not a concern, Pear-
son’s chi-squared test and mutual information can also be used at
large sample sizes, while conditional entropy and CISC should be
avoided.

3.2 Genes for mouse cerebellar development
We also evaluated the performance of the seven methods for de-
tecting directional dependency of gene on time on a developing
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Figure 4: Dependency inference performance on simulated data at varying dropout rates, sample sizes and table sizes. The
effect of sample size: (a) AUROCs and (b) AUPRs. The effect of dropout rate: (c) AUROCs and (d) AUPRs. The effect of discrete
level: (e) AUROCs and (f) AUPRs.

murine cerebellum (Cb) scRNA-seq dataset, profiled at 12 develop-
ment time points [6], using an independent ground truth from the
Mouse Genome Database (MGD) [5].

The ground truth and data preprocessing. From theMGD,we selected
271 genes important to murine Cb development as the ground truth.
These genes are associated with GO term cerebellum development
(GO:0021549) or the term abnormal Cb development.

As in [6], cells with fewer than 3,500 unique molecular indices
(UMIs) or greater than 15,000 UMIs were removed, accounting for
dead or multiple cells in one droplet. Cells containing over 10%
mitochondrial UMIs were removed. Zero-expression, mitochon-
drial, and ribosomal protein genes were removed. Raw counts were
normalized by𝑈𝑐,𝑔 = log2 (𝑈𝑐,𝑔 ·𝑈𝑚/𝑈𝑐 +1), where𝑈𝑐,𝑔 is the UMI
count for gene 𝑔 in cell 𝑐 ,𝑈𝑐 is the UMI count for cell 𝑐 and𝑈𝑚 is
the median UMI across all cells.

To identify cell types, 1000 most overdispersed genes were se-
lected by a 𝑍 -score for dispersion [15]. Ward hierarchical cluster-
ing [30] and dynamic tree cut [13, 14] were used to group cells by
expression of the 1000 genes. Expression profiles of known marker
genes were used to assign clusters to cell types [6], including pro-
genitor cells and granule neuron precursors (GNPs).

We only used cells identified as progenitors or GNPs, as most
progenitors would eventually differentiate into a granule neuron
[17], making these two cell types relatively consistent and homoge-
nous over development stages. Also, progenitors were abundant at
earlier stages and GNPs were so at later stages [6], spanning the full
developmental range. Together progenitors and GNPs comprised
of over half of the total ∼40,000 captured cells.

The normalized expression values for each of 271 selected gene
in progenitor cells and GNPs were optimally discretized using

Ckmeans.1d.dp [25, 29]. To avoid bias between genes due to table
size, we clustered each gene into 12 levels, equal to the number of
time points. Genes with fewer than 12 unique values were used as
discrete variable directly.

Three evaluation configurations. We designed three test configu-
rations: 1) Genes known to affect Cb development should be a
function of time rather than the opposite: the direction from time
to gene is true and from gene to time is false; 2) Similar to Con-
figuration 1, but with dropout injected into the time variable, as
if time is another RNA so as to mimic RNA-RNA interactions. We
did not use two RNAs due to the lack of RNA→RNA directional
ground truth specific to cell types; and 3) We randomly shuffled
the 12 time points destroying functional dependency from time to
gene. The true dependency is from original time to gene and the
false dependency is from shuffled time to gene.

For Configuration 1, we built contingency tables with time as
row and discrete gene level as column, and transposed it for the
test of directionality. For Configuration 2, the dropout rate for the
time variable of each time-gene contingency table was estimated
from the percentage of zeros in the gene ranging 20–90%. For Con-
figuration 3, false time-to-gene contingency tables were created by
randomly shuffling time points but preserving gene levels, so that
time and gene are independent.

Performance. Dropout imposed a strong impact on the performance
of directional inference, as shown by percentages of incorrect di-
rections inferred by the four asymmetric methods (Figure 5). Each
method was evaluated for choosing the correct direction from time
to gene from pairs of a time-gene contingency table versus its
transpose with (Configuration 1) and without (Configuration 2)
dropout added to the time variable. The four methods differ sharply
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Figure 5: The impact of dropout on percentages of incorrect
directions detected on cerebellar development genes by four
methods. The correct direction is from time to gene.

in response to dropout: Function index is the most stable with
an increase of 6.7% in error; conditional entropy extraordinarily
increased its error rate by 76.8%; Surprisingly, CISC and Kruskal-
Wallis test reduced in error rates by 59.7% and 21%, respectively.
Dropout turned the distribution of time variable from perfectly uni-
form to highly non-uniform. This change of marginal distribution
caused distinct responses by the methods. Function index is the
most robust to this change; conditional entropy is biased in favoring
a direction from uniform to non-uniform; CISC and Kruskal Wallis
are biased towards a direction from non-uniform to uniform.

Figure 6 depicts ROC and PR curves under the three configura-
tions. Configuration 1 (Figure 6a,b) tests directionality from time
to gene, without dropout on the time variable. Conditional entropy
has an advantage over all methods, same as explained for Figure 5:
the uniform marginal distribution of time gave an unfair favor to
conditional entropy. The negative effect of this bias is demonstrated
in Figure 7, where top genes inferred by conditional entropy are
highly uniform in time but non-uniform in gene, with nearly no
dynamics and thus uninteresting for this study. Both CISC and
Kruskal-Wallis performed worse than random guessing, suggest-
ing the adverse effect of marginal distributions as opposed to that
favoring conditional entropy. Function index is the second best in
terms of both AUROC and AUPR.

Figure 6c,d show ROC and PR curves of Configuration 2 to test
the directionality from time with dropout to gene. Conditional
entropy loses the advantage and degrades to random guessing,
as the non-uniformity of time and gene is similar. Kruskal-Wallis
becomes the best performer. Function index demonstrates relative
immunity to marginal interventions, experiencing a small drop in
performance. CISC does not improve in either AUROC or AUPR.

Configuration 3 (Figure 6e,f) reveals a major flaw with condi-
tional entropy and CISC wherein they cannot distinguish true from
randomly shuffled patterns. Meanwhile, function index performed
best, slightly outperforming well-established methods including

Pearson’s chi-squared test, Kruskal-Wallis test, mutual information,
and Pearson’s correlation.

Ranking time-to-gene and gene-to-time patterns. On the original
data, we applied each method to rank time-to-gene and gene-to-
time patterns for all 271 developmental genes. The gene-to-time
patterns are included to evaluate if a method can be confused by
the wrong direction. Function index and Kruskal-Wallis obtained
patterns reflective of development biology literature. Figure 7a–
d illustrate the top two time-gene interactions inferred by both
function index and Kruskal-Wallis, long established for roles in Cb
development: Id3 was present at P5 in the internal granular layer of
the Cb in the postnatal rat brain [28], consistent with the dynamic
pattern in Figure 7a. Id3 has been identified among top seven genes
over-expressed in the clusters of Cb progenitors [6]. Neurod1, a
bHLH transcription factor, is well known for Cb development via
mediating the differentiation of Cb granule cells. Neurod1 is one of
the most highly expressed genes along the GNP trajectory [6]. Its
conditional knockout led to widespread granule cell necrosis [19].
The top two genes by conditional entropy are Pou1f1 and Hoxb1
(Figure 7e,f). Their ectopic expression ormutation leads to abnormal
Cb development [22, 23, 31]. However, in the wild-type developing
Cb, these genes are suppressed; selecting them indicates inadequacy
of conditional entropy and CISC. Finally, CISC ranked Pou1f1→time
highly, suggesting a deficiency in capturing directions here.

4 DISCUSSION
Function index behaves most robustly at varying dropout rates.
Kruskal-Wallis test is biased to marginal distributions wherein it
favored a direction to a uniformly distributed variable. With a
similar bias, CISC performed poorly overall, offering no benefit in
either directional or dependency inference. Conditional entropy
carries an opposite bias to promote a direction from a uniformly
distributed variable. It seems not practical for use on real data.

From our simulation studies, it is encouraging to learn that in-
creasing the sample size can improve the quality of directional
inference. Additionally, all methods except CISC benefited from
greater discrete levels in directional inference. This implies that
even without renovating the scRNA-seq library preparation tech-
nique, one still has alternatives to deal with severe dropout. These
possibilities seem not previously reported in the literature.

We did not evaluate directional RNA-RNA interactions, which
is desirable but experimentally infeasible at present for several
reasons: Coding RNAs typically do not directly interact with each
other; a non-coding RNA can regulate another RNA but the former
typically does not have a polyA tail, thus not measured with current
scRNA-seq techniques; and the cell-type specific ground truth for
directional RNA interactions is vastly lacking. However, we expect
this situation to improve as scRNA-seq technology matures.

5 CONCLUSIONS
Although single-cell RNA sequencing moves us closer to cell-type
specific understanding of molecular mechanisms, the dropout phe-
nomenon represents a thin glass wall before reaching the goal.
Directional and dependency inference are the workhorses for a
network inference method. Although our studies suggest that the
dropout challenge is greater to the former than the latter, it may
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Fi g u r e 7: E x p r e s si o n d y n a mi c s of t o p t w o g e n e s d et e ct e d b y t h e f o u r a s y m m et ri c m e a s u r e s o n c e r e b ell a r d e v el o p m e nt d at a.
T o p t w o g e n e s b y f u n cti o n i n d e x: ( a) I n hi bit o r of D N A bi n di n g 3 g e n e ( I d 3), a n d ( b) N e u r o n al di ff e r e nti ati o n 1 (N e u r o d 1 ). T o p
t w o g e n e s b y K r u s k al- W alli s t e st a r e al s o ( c) I d 3 a n d ( d) N e u r o d 1 . T o p t w o g e n e s b y c o n diti o n al e nt r o p y: ( e) P O U d o m ai n, cl a s s
1, t r a n s c ri pti o n f a ct o r 1 g e n e ( P o u 1 f 1 ), a n d (f) H o m e o b o x B 1 g e n e (H o x b 1 ). T o p t w o g e n e s b y CI S C: ( g)P o u 1 f 1 , a n d ( h) R e v e r s e d
g e n e P o u 1 f 1 → Ti m e.

b e o v er c o m e wit h a m et h o d r o b ust t o m ar gi n al distri b uti o ns at
a s u ffi ci e ntl y l ar g e s a m pl e si z e. O ur fi n di n gs s u p p ort t h e us e of
f u n cti o n i n d e x as a b asi c st atisti c, w hi c h is b ot h r o b ust t o m ar gi n al

distri b uti o ns a n d m o d el-fr e e t o e n c o ur a g e n o v el dir e cti o n al p att er n
dis c o v er y. It e n a bl es c ell-t y p e-s p e ci fi c n et w or k c h ar a ct eri z ati o n of
m ol e c ul ar m e c h a nis ms.
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