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ABSTRACT

During the common-envelope binary interaction, the expanding layers of the gaseous

common envelope recombine and the resulting recombination energy has been suggested

as a contributing factor to the ejection of the envelope. In this paper, we perform a comparative

study between simulations with and without the inclusion of recombination energy. We use

two distinct setups, comprising a 0.88- and 1.8-M� giants, that have been studied before and

can serve as benchmarks. In so doing, we conclude that (i) the final orbital separation is not

affected by the choice of equation of state (EoS). In other words, simulations that unbind

but a small fraction of the envelope result in similar final separations to those that, thanks

to recombination energy, unbind a far larger fraction. (ii) The adoption of a tabulated EoS

results in a much greater fraction of unbound envelope and we demonstrate the cause of this

to be the release of recombination energy. (iii) The fraction of hydrogen recombination energy

that is allowed to do work should be about half of that which our adiabatic simulations use.

(iv) However, for the heavier star simulation, we conclude that it is helium and not hydrogen

recombination energy that unbinds the gas and we determine that all helium recombination

energy is thermalized in the envelope and does work. (v) The outer regions of the expanding

common envelope are likely to see the formation of dust. This dust would promote additional

unbinding and shaping of the ejected envelope into axisymmetric morphologies.

Key words: hydrodynamics – methods: numerical – stars: AGB and post-AGB – stars: evolu-

tion.

1 IN T RO D U C T I O N

A common-envelope interaction (Paczynski 1976; Ivanova et al.

2013) occurs when the orbital separation between two stars de-

creases to the extent that they come to share the same envelope.

The existence of compact evolved binaries implies that in at least a

fraction of all common-envelope interactions, the envelope is fully

ejected. Yet, hydrodynamic simulations that utilize an ideal equation

of state (EoS) do not unbind a sufficient fraction of the envelope

to allow us to conclude that the binary will survive (e.g. Reichardt

et al. 2019).

� E-mail: thomas.reichardt@students.mq.edu.au

† JSPS International Research Fellow (Graduate School of Science, Kyoto

University).

Nandez, Ivanova & Lombardi (2015) and Ivanova & Nandez

(2016) simulated common-envelope interactions between a 1.8-

M� star, and a range of companions with masses between 0.05

and 0.36 M� by using a tabulated EoS that captures the effects

of recombination energy. Ivanova & Nandez (2016) reported that,

with a companion mass of 0.36 M�, approximately half of the

envelope is ejected by 50 d after the end of the fast inspiral. The

remaining bound envelope material is subsequently ejected over a

time-scale of approximately 700 d after the end of the fast inspiral.

This later ejection is presumably at the hand of the recombination

energy released, which is immediately and completely thermalized

thanks to the adiabatic approximation adopted by those simulations.

Nandez et al. (2015) also noted that the same simulation unbound

only about half of the envelope when utilizing an ideal gas EoS with

radiation pressure, but a comparison between simulations with and

without recombination energy was not presented by them.
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5334 T. A. Reichardt et al.

The idea that the photons released during recombination could

be used as an energy source to help with envelope unbinding was

originally suggested by Lucy (1967) and Roxburgh (1967). Han,

Podsiadlowski & Eggleton (1994) and Harpaz (1998), in particular,

considered the expanding envelopes of pulsating asymptotic giant

branch (AGB) stars and whether recombination energy could

facilitate the ejection of the envelope in these single stars, leading

to the formation of planetary nebulae. Harpaz (1998), however,

argued that recombination energy cannot be used in the ejection of

the AGB envelope, because the envelope becomes transparent when

it recombines, hence the energy will be transported out immediately

by radiation.

Ivanova, Justham & Podsiadlowski (2015) used one-dimensional

(1D) stellar models to simulate common-envelope inspirals by

injecting energy into the stellar envelope of a 1.6-M� star with

a radius of 100R� (simulating the inspiral of a 0.3-M� companion).

They concluded that the efficiency of the hydrogen recombination

energy in unbinding the envelope depends on a number of choices

in their models, but that the role of helium recombination energy

is clearer: about 90 per cent of photons from helium recombination

are used to expand the common envelope.

Using a similar methodology based on 1D models, Sabach et al.

(2017), Grichener, Sabach & Soker (2018), and Soker, Grichener &

Sabach (2018) utilized 1D common-envelope simulations, carried

out in MESA, to argue that only a fraction of the energy released

by recombination of hydrogen and helium can be used to eject

the common envelope, as the energy will be transported out

through photon diffusion and convection. They estimated that only

approximately 20 per cent of the recombination energy can be

utilized in the ejection of the common envelope, by comparing

the time-scales of envelope expansion and energy transport.

Ivanova (2018) countered that the majority of recombination

energy can be used to eject the envelope. They reasoned that the

ratio of the radiation flux to the convective flux is small in most parts

of the envelope, hence there is little reason to consider the effect

of photon diffusion. Rather, it can be shown that the dominant

transport mechanism in the region where recombination energy is

released is actually convection. They further argued that even the

maximum convective flux becomes very inefficient for transporting

recombination energy in regions where the ionization fraction is

about 0.2. As a result, they concluded that the majority of the

recombination photons will not be transported out of the envelope,

hence they are destined to be thermalized and able to do work,

increasing the expansion rate of the envelope.

In order to resolve the debate of how much recombination energy

can be used to do work as opposed to how much should be radiated

away, a full treatment of radiation transport in common-envelope

simulations should be implemented. Some work in this direction

is being carried out (Zhu et al. 2019). This line of work presents

considerable challenges, chiefly because of the wall clock time

required for these simulations (weeks to months without including

radiation transport).

In this work, we perform several simulations to quantify some

of the effects of recombination energy, with the aim of determining

how it should be used in 3D adiabatic codes in the absence of

a reasonable treatment of radiation transport (as is the case for

Ivanova & Nandez 2016 and Nandez & Ivanova 2016). We start by

investigating where and when the gas is unbound with respect to

where and when the recombination energy of both hydrogen and

helium is released.

We present two sets of simulations. The first set uses the initial

conditions utilized by Passy et al. (2012), but also studied in Iaconi

et al. (2017,2018) and Reichardt et al. (2019). This provides a well-

studied setup to which we can compare the effects of recombination

energy. The second set is a direct comparison with the work of

Nandez & Ivanova (2016), so as to calibrate our work and technique

to theirs and ensure that our conclusions are compatible. Each set

contains two simulations carried out with an ideal gas EoS and two

with a tabulated one based upon the EoS used in the 1D stellar

evolution code MESA (Paxton et al. 2011a). In this way, we have a

direct comparison of the unbinding dynamics.

In Section 2, we describe the simulation setup, giving details

of the tabulated EoS. In Section 3, we describe the results of

the simulations, including giving results of resolution and other

numerical tests. After this, in Section 4.1, we analyse the location

of the delivery of recombination energy and compare it with where

particles are being unbound (Section 4.1), and where recombination

energy is being released (Section 4.3). In Section 5, we move on

to testing whether or not the use of the recombination is physically

realistic. In Section 6, we discuss the apparent emergence of a

dusty shell in the ejecta of the common-envelope interaction. We

summarize and conclude in Section 7.

2 SI M U L AT I O N S

We performed a series of four simulations of the common-envelope

interaction. We used two different primary stars in these simulations.

The first was a 0.88-M� red giant branch star with a 0.39-M� core

and initial radius of about 80R�, used also in the simulations of

Passy et al. (2012), Iaconi et al. (2017), and Reichardt et al. (2019).

This star will henceforth be referred to as the P12 star. The second

stellar setup had a greater initial mass of 1.80 M�, with a 0.32-M�
core and an initial radius of 16R�. This second star, which we will

refer to as the N16 star, is one of the setups used in the common-

envelope simulations of Nandez et al. (2015), Ivanova & Nandez

(2016), and Nandez & Ivanova (2016). We chose this star because

Ivanova & Nandez (2016) note that it unbinds the entirety of the

envelope. We have, in fact, utilized the exact stellar structure kindly

provided by that group, so as to minimize the difference between

the two simulations.

The P12 input stellar profile was evolved in the 1D stellar

evolution code MESA (Paxton et al. 2011b). The N16 star was also

evolved with MESA by Nandez et al. (2015). Before mapping these

profiles into the computational domain, we use the procedure laid

out by Ohlmann et al. (2017) to produce more stable giant stars

in hydrodynamic simulations. For each star, we choose a radius

from the centre (6� for P12, 2R� for N16), at which we cut the

stellar profile. Within this radius, the profile is recreated with a

modified Lane–Emden equation using an index n = 3, which is set

to transition smoothly to the original profile at the cutoff radius.

This modified Lane–Emden equation includes a contribution from

a softened gravitational potential typically used in the core of a

simulated giant star.

The new 1D profiles were then mapped into the 3D computational

domain of the smoothed particle hydrodynamics (SPH) code PHAN-

TOM (Price et al. 2018), with all stars containing approximately

1.4 × 105 SPH particles. A point mass particle is placed in the

centre of the star, with a gravitational softening length equal to half

of the cutoff radius for the modified profile. Therefore, for the P12

star, the core had a mass of 0.39 M� and a softening length of hsoft

= 3R�. However, for the N16 star, the softening length was hsoft

= 1R�, larger than the 0.15R� softening length used by Ivanova

& Nandez (2016). As the masses of the core particles are set to be

consistent with the modified Lane–Emden profile, they may differ

MNRAS 494, 5333–5349 (2020)
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Recombination energy in common-envelope interactions 5335

Table 1. Initial conditions for our simulations. The first three characters in the Model column denote which star was

used (P12 or N16), the fourth character denotes which EoS (I for ideal gas and M for the tabulated EoS from MESA) and

the suffix h means that the point mass particles had softening lengths of 0.5R�, instead of 1R�, npart is the number of

particles in the simulation, R1 is the radius of the star in the simulation after stabilization in the computational domain,

M1 is the mass of the primary star, M1,c is the primary’s core mass, Mgas is the total gas mass in the simulation, M2 is

the mass of the companion, ainit is the initial orbital separation, and EoS shows which EoS was used.

Model npart R1 M1 M1,c Mgas M2 ainit EoS

(R�) (M�) (M�) (M�) (M�) (R�)

P12I 1.4 × 105 81 0.88 0.39 0.49 0.6 100 Ideal

P12M 1.4 × 105 88 0.88 0.39 0.49 0.6 100 Tabulated

N16I 1.4 × 105 16 1.80 0.320 1.479 0.36 31.37 Ideal

N16M 1.4 × 105 17 1.80 0.320 1.479 0.36 31.37 Tabulated

N16Ih 1.4 × 105 15 1.80 0.313 1.487 0.36 31.37 Ideal

N16Mh 1.4 × 105 16 1.80 0.313 1.487 0.36 31.37 Tabulated

slightly from the desired value. Our core particle mass of 0.320 M�is

slightly larger than the 0.318 M� of Ivanova & Nandez (2016).

Our choice of softening length was dictated by prohibitively

long computational times associated with small softening lengths.

However, we did perform simulations with a smaller softening

length of hsoft = 0.5R� for both companion and core particles, with

an associated primary core mass of 0.313 M� (see Section 3.4).

The velocities in our stars were damped over five dynamical

time-scales, after which the stars were evolved with no damping in

the computational domain for another five dynamical time-scales.

During this time they showed no significant expansion, proving that

our stars are sufficiently stable.

Our SPH particles were assumed to have a constant chemical

composition, defined by the hydrogen, helium, and metal mass

fractions. The compositions were taken from the atmospheres of

the input stellar profiles, calculated by MESA. For the P12 star, the

composition is set to be X = 0.67, Y = 0.31, and Z = 0.02, and

for the N16 star, we have X = 0.68, Y = 0.30, and Z = 0.02.

These compositions were used as inputs to the tabulated EoS used

by MESA, which we utilized in two of our four simulations (see

Section 2.1 for details). We note that while we do not experiment

with abundances, the helium mass fraction could vary between

∼0.24 and 0.45, almost a factor of 2. With that, there would be a

concomitant change in the amount of recombination energy from

helium (and an inverse change for hydrogen), which could have a

repercussion on the outcome of the simulation.

A companion star was then initialized in the computational

domain as a second point mass particle, with a softening length

equal to that of the core of the primary star. For the P12 simulations,

the initial orbital separation is set to 100 R�, which is just greater

than the initial radius of the primary star. The N16 simulations

were initialized with an orbital separation of 31.37R�, matching the

initial separation used by Nandez & Ivanova (2016). We will adopt

the notation referring to the ideal and tabulated EoS simulations

with the suffixes I and M, respectively. With this convention,

simulations P12I and P12M refer to the P12 setup with the ideal

and tabulated equations of state, respectively; similarly, simulations

N16I and N16M are the N16 simulation with the ideal and tabulated

EoS, respectively. For the N16 simulations, we also include the

suffix h if the point mass particles have a softening length of hsoft

= 0.5R�. The initial parameters of all of these simulations are

listed in Table 1. Our N16M simulation will be compared to the

models of Ivanova & Nandez (2016) and Nandez & Ivanova (2016),

which they called BF36 and 1.8G0.32C0.36D, respectively). We

will adopt their naming convention, and refer to their model as

BF36.

2.1 The tabulated EoS

Our simulations employ two distinct equations of state. The first is

the standard ideal gas EoS, written in the form

P = ρ(γ − 1)u, (1)

where P is gas pressure, ρ is the gas density, γ = 5
3

is the adiabatic

index, and u is the specific internal energy.

The second EoS is adapted from the EoS used in the 1D stellar

evolution code MESA (Paxton et al. 2011b). The MESA EoS is

constructed from several other equations of state. In the regions,

where ionization is important, the OPAL and SCVH EoS tables

are used (see section 4.2 of Paxton et al. 2011b). The OPAL EoS

(Rogers, Swenson & Iglesias 1996; Rogers & Nayfonov 2002)

is obtained by an ‘activity-expansion’1 of the grand canonical

ensemble, which includes the effects of ionization and dissociation.

The OPAL EoS has been used in the common-envelope simula-

tions of Ohlmann et al. (2017). The SCVH EoS (Saumon, Chabrier

& van Horn 1995) is constructed for hydrogen–helium mixtures

and includes effects of temperature and pressure on ionization and

dissociation. It is intended for use in very low-mass stars, as well

as brown dwarfs and giant planets.

The two sets of tables overlap in a central region, within which

a smooth transition is constructed between the OPAL and SCVH

tables (for a visualization of this region, see fig. 1 of Paxton et al.

2011b). These tables together cover a region defined by −17.2 ≤
log W ≤ −2.9 and 2.1 ≤ log T ≤ 8.2, where T is temperature and

log W ≡ log Pgas − 4log T is a variable introduced to allow the tables

to save space by making them rectangular, as this relation describes

the approximate Pgas–T relationship of many stars. Outside the

regions covered by these tables, the HELM and PC equations of

state are utilized, both of which are constructed with the assumption

of complete ionization. The MESA EoS tables accept ρ and T, or P

and T, as inputs, returning the internal energy, u, and many other

quantities, such as the entropy S and �1 = (∂ln P/∂ln ρ)S.

However, PHANTOM, like many hydrodynamic codes, evolves the

specific internal energy of the gas, using the EoS to determine the

pressure. For this reason, we constructed tables using the MESA EOS

module (Paxton et al. 2011b), which would accept ρ and u from

PHANTOM and return the pressure and temperature. Aside from the

aforementioned pairs of input to the tables (ρ and T or P and T),

the MESA EOS module contains a subroutine, which accepts uin and

1Describing this method is outside the scope of this paper, though the reader

is referred to Rogers (1994), and references therein.

MNRAS 494, 5333–5349 (2020)
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5336 T. A. Reichardt et al.

Figure 1. Various quantities as functions of specific internal energy and density using the tabulated EoS. The two rectangles bound all values of density and

specific internal energy encountered in our simulation domains.

ρ in to query the tables. As the tables are constructed in a fashion

that has u as an output, this subroutine also requires an initial guess

for the temperature Tguess, which is used as a starting point for

Newton–Raphson iterations. The tables are queried with Tguess and

ρ in, returning a value of the specific internal energy uout, which

is compared to uin. Also returned is the gradient of the specific

internal energy with respect to temperature, at constant density. This

information is enough to iterate the temperature until uout returned

by the calls to the tables matches the input uin. If no solution is found

within the maximum number of iterations, then upper and lower

bounds for the temperature are utilized in the bisection method

of root finding, which is often slower, but guarantees a root is

found. When a value of T is found such that uin matches uout, then

P, �1, and the other EoS values can also be returned from the

tables.

The new tables cover a region defined by −10 ≤ log V ≤ 12

and 10 ≤ log u ≤ 17, where u is the specific internal energy and

log V ≡ log ρ − 0.7log u + 20 is again a new variable introduced to

make use of the approximate relationship between ρ and u in stars,

saving space in the tables. The tables are produced for hydrogen

mass fractions of X = 0, 0.2, 0.4, 0.6, and 0.8, each with metals

mass fractions of Z = 0, 0.02, and 0.04. We wrote a set of routines to

query these tables from within PHANTOM. We plot the pressure, �1

and temperature returned by our tabulated EoS tables in Figs 1(a)–

(c), respectively, when the tables are queried through PHANTOM. In

Fig. 1(d), we show a comparison of the gas pressure returned by

our tabulated EoS to the equivalent pressure from the ideal gas EoS.

The differences here lie primarily in the fact that the ideal gas EoS

has constant mean molecular weight. The ranges of ρ and u over

the course of the entire P12M and N16M simulations are overlaid

as rectangles, showing that the limits fall well within the boundaries

of the tables. We also plot contours to give a better understanding

of how the returned values change with ρ and u.

3 R ESULTS

Here, we analyse the behaviour of the simulations as they undergo

the fast inspiral and the subsequent phase of slow inspiral. We

examine the decrease in bound mass in each simulation, and

particularly note the differences between simulations with different

equations of state.

3.1 Energy and angular momentum

Energy conservation for the P12I and P12M simulations is approx-

imately at the 0.1 per cent level, while for the N16I and N16M

simulations are at about the 2 per cent level. The total angular

momentum in all of the simulations is conserved to about 0.1 per

cent. We list key energy and angular momentum values, in Table 2

and compare them to the values given by Ivanova & Nandez (2016).

The total energy budget of our N16M simulation differs from the

MNRAS 494, 5333–5349 (2020)
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Table 2. Values of energies and angular momenta at the beginning of the simulations. The model column is the same as in

Table 1. Epot, Eth + r = Etherm + Erad, and Erec are the gravitational potential energy, the sum of thermal and radiation energies,

and the recombination energy of the red giant’s envelope, respectively. Eorb, Etot, and Jtot are the orbital energy, the total energy,

and the total angular momentum of the binary system, respectively.

Model Epot Eth + r Erec Eorb Ebin Etot Jtot

(1046 erg) (1046 erg) (1046 erg) (1046 erg) (1046 erg) (1046 erg) (1052 erg s)

P12I − 5.12 2.43 − −1.82 −2.68 −3.67 2.61

P12M − 5.25 2.53 1.27 −1.80 −2.71 −2.28 2.61

N16I − 85.4 42.0 − −3.94 −43.3 −47.3 1.49

N16M − 87.0 43.3 4.35 −4.07 −43.7 −42.7 1.49

N16Ih − 86.8 43.0 − −3.91 −43.8 −47.7 1.49

N16Mh − 88.5 44.4 4.37 −4.00 −44.1 −43.1 1.49

BF36a − 88.1 44.0 4.68 −3.91 −44.2 −43.4 1.49

aSimulation presented in Ivanova & Nandez (2016).

total energy of BF36 by less than 1 per cent, and the total angular

momentum budget differs by less than 0.1 per cent.

We define how we have calculated the various energy components

within this work. Within PHANTOM, and most other SPH codes, each

particle i has a mass mi, a density ρ i, a specific internal energy ui,

and a specific gravitational potential energy φi, along with position

and velocity vectors, xi and vi . The total gravitational potential

energy is calculated as

Epot =
∑

i

miφi, (2)

which sums the potential energies of each particle in the simulation.

We determine the thermal and radiation energies in the tabulated

EoS simulations as follows:

Etherm =
∑

i

mi

3

2

kBTi

μimH

, (3)

Erad =
∑

i

mi

aT 4
i

ρi

, (4)

where kB ≈ 1.38 × 10−16 erg K−1 is Boltzmann’s constant, Ti is the

temperature of the particle, μi is the mean molecular weight of the

particle, and mH ≈ 1.67 × 10−24 g is the mass of a hydrogen atom.

The total recombination energy reservoir available in the star can

be calculated by performing the following sum:

Erec =
∑

i

Ei;rec, (5)

where the recombination energy of a single-particle Ei; rec, is given

by

Ei;rec = miNA

(

XxH IIχ
0
H +

Y

4

[

χ0
He (xHe II + xHe III) + χ1

HexHe III

]

)

,

(6)

where mi is the mass of the particle, NA = 6.02 × 1023 mol−1

is Avogadro’s number, X and Y are the hydrogen and helium

mass fractions of the SPH particle, xH II is the fraction of ionized

hydrogen, and xHe II and xHe III are the fractions of singly and

doubly ionized helium, respectively. χ0
H = 13.6 eV is the ionization

energy of neutral hydrogen and χ0
He = 26.4 eV and χ1

He = 54.4 eV

are the ionization energies of neutral and singly ionized helium,

respectively. Here, we neglect the contributions of elements heavier

than helium, as these contributions will be small. The quantities

miNAX and 1
4
miNAY estimate the number of atoms of hydrogen

and helium that are present within one SPH particle.

The orbital energy is determined using the same method as

Nandez et al. (2015). That is, we calculate

Eorb =
1

2

⎛

⎝μ|v1 − v2|2 +
∑

i

miφi −
∑

j

mjφ
RL1
j -

∑

k

mkφ
RL2
k

⎞

⎠,

(7)

where μ = M1M2/(M1 + M2) is the reduced mass of the binary

system and v1 and v2 are the velocity vectors of the two core

particles. The second term in equation (7) expresses the total

gravitational potential energy of the system by summing over all

particles i, while the third and fourth terms subtract the components

relating to the gravitational attraction of particles within both Roche

lobes (summing over the particles in RL1, index j, and the particles in

RL2, with index k). The remainder is the portion of the gravitational

potential energy, which contributes to the orbital energy.

We calculate the binding energy of our star by summing the

thermal, radiation, and gravitational potential energies of the star in

isolation:

Ebin = Etherm + Erad + Epot. (8)

Note that we do not include the recombination energy. In the ideal

gas EoS simulations, we calculate the binding energy without the

radiation pressure term, as our simulations do not include it.

Both the gravitational potential energy and the sum of thermal

and radiation energies of our N16M primary red giant differ by

about 1 per cent from the primary star used in BF36. The largest

disparity comes from the approximately 7 per cent difference in the

recombination energy term. This can potentially be explained by the

fact that we assigned the same hydrogen and helium mass fractions

to all of our SPH particles, while Ivanova & Nandez (2016) used

the abundances of their input MESA profile to assign different H and

He mass fractions to each of their particles.

Finally, the orbital energy in our simulation is larger than for the

BF36 simulation of Nandez & Ivanova (2016) by approximately

4 per cent. This is likely due to the fact that our star stabilizes at

a slightly larger radius. In conclusion, we can state that the initial

conditions of our N16M simulation are sufficiently similar to those

of the BF36 model to enable the comparison of key quantities.

3.2 The orbital separation evolution

The orbital evolution for our simulations can be seen in the top

panels of Fig. 2, where the left-hand and right-hand columns are for

the P12 and N16 simulations, respectively. The blue lines in both
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5338 T. A. Reichardt et al.

Figure 2. Top row: orbital separation of the two-point mass particles. Bottom row: evolution of the bound mass in each simulation. In the legend, the subscripts

refer to the criterion used to determine if a particle was unbound. The subscripts P, K, U, T, and R refer to potential, kinetic, total internal, thermal, and radiation

energies, respectively. That is, for the subscript PK, the mass is unbound if the sum of its potential and kinetic energies are positive. Left-hand column: P12

simulations. Right-hand column: N16 simulations. The blue lines refer to simulations with the ideal EoS, and the red lines to simulations with the tabulated

EoS. In the case of the ideal gas, the thermal and internal energies are the same (that is, the subscripts U and T refer to the same energy).

columns correspond to simulations utilizing the ideal EoS, while

the red lines pertain to the tabulated EoS simulations.

By examining Fig. 2, we see that, in both simulation setups,

the orbital evolution is relatively unaffected by the choice of EoS.

Table 3 gives values for the orbital separations just after the inspiral

and at the end of the simulations. In the P12I and P12M simulations,

the orbital separations 50 d after the end of the inspiral are 18.8 and

18.6R�, respectively, while for the N16I and N16M simulations, the

separations are 0.60 and 0.58R�, respectively. Indeed, by the end of

the simulations, N16I and N16M simulations have almost identical

orbital separations of 0.51 and 0.49R�, respectively, while the P12I

final separation is somewhat smaller than the P12M simulation (12.5

and 14.5R�, respectively).2 The slight variations could easily be due

to the fact that the initial stellar structures have stabilised at slightly

2We note that all separations attained by the N16 simulations are so small

that if the companion were a main-sequence star, it would fill its Roche

lobe and likely result in a merger even if the common envelope were ejected

completely.

different radii with the different equations of state. This suggests

that the amount of orbital energy deposited into the envelope during

the dynamic inspiral is independent of the EoS. We conclude that

any extra unbinding that occurs with the tabulated EoS is not caused

by the input of extra orbital energy.

3.3 The evolution of the unbound mass

The strictest criterion for determining whether or not mass is

unbound from the system is to use the threshold Ekin + Epot >

0. Assuming that unbound SPH gas particles are not trapped below

a layer of bound particles to which they can transfer kinetic energy,

this means that the unbound material will never return to interact

with the compact binary system. Some portion of the internal energy

of the gas particle can also be included in the energy balance, which

results in a greater amount of unbound mass (see the comparison

carried out by Iaconi et al. 2017).

For the simulations using an ideal gas EoS, the internal energy

of the gas corresponds exactly to its thermal energy, that is,

the disordered kinetic energy of the gas particles (rather than

MNRAS 494, 5333–5349 (2020)
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Recombination energy in common-envelope interactions 5339

Table 3. We present the bound mass in the envelope of the primary at two times during the simulations and for different definitions of unbound mass. If

the energy of the particle is negative, it is marked as bound to the system. The subscripts ‘P’, ‘K’, ‘U’, ‘T’, and ‘R’, refer to potential, kinetic, total internal,

thermal, and radiation energies, respectively, which are summed to give the particle energy relevant to unbinding. Eu,tot and Ju,tot are the total energy and

angular momentum of the unbound material, respectively, when summing the kinetic, potential, and thermal energies to determine unbound material. Eorb is the

orbital energy of the binary system. Columns t and a refer to the time from the beginning of the simulation and orbital separation at which these measurements

were taken. All masses are given as percentages of the total gas mass in their simulations (which are given in Table 1).

Model Mb,PK Mb,PKU Mb,PKT Mb,PKTR Eu,tot Ju,tot Eorb t a

(%) (%) (%) (%) (1046 erg) (1052 erg ) (1046 erg) (d) (R�)

Values at 50 d after the end of their dynamical inspiral

P12I 84 84 − − 0.15 0.54 −3.76 300 18.8

P12M 69 6.1 65 61 0.52 0.99 −3.31 359 18.6

N16I 93 93 − − 1.11 0.42 −59.1 157 0.60

N16M 92 76 90 90 1.76 0.51 −59.5 158 0.58

N16Ih 87 81 − − 1.49 0.59 −54.3 157 0.47

N16Mh 55 26 50 50 7.19 0.91 −59.7 138 0.43

Values at the end of the simulations

P12I 41 37 − − 0.39 1.51 −3.68 1843 12.5

P12M 12 2.0 6.1 2.0 1.24 2.05 −3.19 1843 14.5

N16I 92 93 − − 1.09 0.41 −52.8 922 0.51

N16M 63 1.4 45 43 2.72 1.24 −50.0 922 0.49

N16Ih 43 37 − − 2.09 1.79 −52.4 553 0.37

N16Mh 0.2 0.0 <0.1 <0.1 15.8 1.50 −61.1 553 0.44

the bulk motion of the gas). Therefore, the total gas energy,

comprising kinetic, potential, and thermal energies can be used

to determine whether the gas is bound or unbound. However, in

those simulations that use the tabulated EoS, the internal energy

of the gas does not only include the thermal energy, but also

the energy associated with radiation and that associated with the

possible recombination of hydrogen, helium, and metals. While the

gas remains ionized, the recombination energy is latent, and does not

affect the system’s dynamics. Therefore, including recombination

energy in the internal energy overestimates the amount of unbound

gas. On the other hand, when expanding envelope gas recom-

bines, the latent energy is released and immediately thermalized,

therefore contributing to the thermal energy of the gas. For fully

recombined gas, using the internal energy of the gas is therefore

equivalent to using the thermal and radiation energies in ideal gas

simulations.

Because of the complexities of determining whether SPH parti-

cles are unbound and the difficulties in comparing simulations using

different equations of state, we calculate the amount of unbound gas

using four criteria. These are (i) the strict mechanical limit, including

only kinetic and potential energies; (ii) the sum of kinetic, potential,

and thermal energies (with utherm = 3kBT/2μmH, where kB is the

Boltzmann constant, T is the temperature, μ is the mean molecular

weight, and mH is the mass of a hydrogen atom); (iii) the sum of

kinetic, potential, thermal, and radiation energies (utherm + aT4/ρ,

where a is the radiation constant and ρ is the density); and (iv) the

sum of kinetic, potential, and gas internal energy (which includes

the latent recombination energy term in the case of the tabulated

EoS). For the two simulations using the ideal gas EoS, we can only

use the first two criteria [(criteria (ii) and (iv) are actually identical,

and the simulations do not include the effects of radiation pressure,

hence we cannot use criterion iii)].

Values of the bound masses calculated using these criteria are

presented in Table 3. The ideal gas simulations consistently have

similar or more mass remaining bound to the system, both 50 d

after the inspiral and at the end of the simulations. We note that, at

the end of the P12M simulation, only 12 per cent of the gaseous

common envelope is still bound, while for the N16M simulation 63

per cent is still bound [(note that these two figures are upper limits

because we are using the strictest criterion (i)]. In contrast, the

ideal gas EoS counterpart simulations P12I and N16I have 41 and

92 per cent of the envelope still bound, respectively. The difference

between the two equations of state is considerably starker at the

end of the simulations (Table 3). This suggests that the majority of

the unbinding that occurs during the inspiral is not influenced by

recombination energy, and is instead a direct result of the injection

of orbital energy, while further unbinding after the fast inspiral is

aided by the release of recombination energy.

We plot the evolution of the bound mass, using all four criteria

in the lower two panels of Fig. 2. We note two interesting features.

First, when using the tabulated EoS, the mass is unbound at a much

greater rate than when using the ideal EoS. This is true regardless

of which criterion we use to define the bound mass. Secondly, as

expected, the unbinding rate when using the tabulated EoS is by

far the largest if the entire internal energy budget is used in the

definition. However, this implies that all gas fully recombines, and

that the entire recombination energy budget is used to unbind the

gas.

The P12M simulation unbinds almost the entire envelope by the

time at which we end it, no matter what the definition of the bound

mass (see the red lines in the bottom left-hand panel of Fig. 2). On

the other hand, the N16M simulation only unbinds a large fraction

of the envelope, if we use the full internal energy expression, which

includes the latent recombination energy. If we use any of the other

three definitions, the unbinding is only marginally larger than when

using an ideal gas EoS.

Nandez & Ivanova (2016) concluded that the entire envelope is

unbound. To determine whether gas is unbound, they used the sum

of gas kinetic, potential, and internal energies (our fourth criterion),

which includes the latent recombination energy of ionized gas. As

we have described above, this criterion overestimates the fraction

of unbound gas.

Below we delve further into possible reasons why different

criteria lead to such difference in the amount of unbound gas.
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5340 T. A. Reichardt et al.

3.4 Simulations with smaller softening length

The softening length dictates the strength of the interaction between

the gas particles and the cores, introducing a second parameter,

after the resolution, that may alter results. Unfortunately, the large

wall clock times of these simulations have precluded a proper

convergence test. However, here we compare our N16I and N16M

simulations, using a softening length hsoft = 1R�, with simulations

using hsoft = 0.5R�. We call the small-hsoft simulations N16Ih and

N16Mh (see Table 1).

The ideal gas, smaller softening length simulation N16Ih, unbinds

6 per cent more gas by 50 d after the end of the dynamic inspirals

compared to the corresponding simulation with a larger softening

length (N16I) and 49 per cent more by the end of the simulation. In

the case of simulations using a tabulated EoS, the small softening

length simulation, N16Mh, unbinds approximately 37 per cent

more by 50 d after inspiral than the corresponding large softening

length simulation (N16M) and 63 per cent more by the end of the

simulation.

We suggest two reasons for this dramatic difference. Shortly after

the dynamic inspiral during the N16Ih and N16Mh simulations, the

binary acquires a 10 km s−1 velocity in the positive z-direction,

while concomitantly a plume of gas moves in the negative z-

direction (linear momentum, energy, and angular momentum in

these simulations are conserved to better than the 3 per cent

level). We attribute this to initial asymmetries in the SPH particle

distribution about the orbital plane, which become exaggerated in

the stronger gas–core interaction of the smaller softening length

simulations. The displacement of the binary from the orbital plane

and concomitant movement of some of the gas in the opposite

direction reduces the gravitational potential energy of the system,

leading to an increase in the unbound mass.

A second effect is that the more rapid expansion of the gas in the

N16Mh simulation compared to the N16M one leads to a release of

recombination energy earlier on, leading to the faster unbinding we

observe. In fact, even in simulation N16M, with a larger softening

length, the unbound mass using any of the definitions is still

decreasing by the end of the simulation, implying that more, or

all, of the envelope gas could be unbound if the simulation were

continued for a longer time.

We note finally an unresolved issue that was already described

by Reichardt et al. (2019). In both the simulations with the large

and small softening lengths, the gas particles directly around the

sinks have SPH smoothing lengths of approximately 0.2 R�. This

is smaller than both the large- and small-tested softening lengths of

the cores (1 and 0.5R�, respectively), implying that the softening

lengths are resolved by the gas in both cases. This said, the smaller

softening length is significantly less resolved and this may have an

impact on the simulations. More simulations are needed to test this

effect.

In conclusion, the smaller softening length leads to a faster

interaction and earlier unbinding. However, if simulations were

evolved for longer, it does appear that, independent of the softening

length, recombination energy would lead to unbinding the great

majority of the envelope.

4 THE C AU SE AND EFFECT RELATIONSHI P

B E T W E E N R E C O M B I NAT I O N EN E R G Y A N D

ENVELOP E U N BINDING

To determine whether or not it is the released recombination energy

that is responsible for the extra amount of unbound gas, we here

determine the locations of gas unbinding and different ionization

stages of hydrogen and helium. We can then use this information to

ascertain the amount of recombination energy being released, and

check whether or not this released energy is spatially coincident

with newly unbound gas.

4.1 Where is gas recombining?

To determine the ionization state of hydrogen and helium as a

function of envelope depth and of time we use the Saha equation:

ni+1ne

ni

=
2

λ

gi+1

gi

exp

[

−
εi+1 − εi

kBT

]

, (9)

where ni, gi, and εi are the number density, degeneracy of states,

and ionization energy of ions in the ith state of ionization, re-

spectively, ne is the number density of electrons. The parameter

λ ≡
√

h/(2πmekBT ), where h is Planck’s constant, me is the mass

of an electron, kB is Boltzmann’s constant, and T is the temperature.

We can track the recombination of both hydrogen and helium by

simultaneously solving three Saha equations for HI, HeI, and He II.

By tracking the ionization fractions of both hydrogen and helium,

we can begin to understand whether it is hydrogen or helium

recombination energy that is available for unbinding the envelope.

Fig. 3 shows the radial distributions of H II and He II in time in both

the P12M and N16M simulations. Below the band of He II in the

bottom panels of Fig. 3, the helium is entirely in the form of He III,

and above the band, it has fully recombined to neutral helium. To

create these plots, we have calculated the ionization fractions for

each SPH particle in the simulation, and then averaged the resulting

values in radial bins emanating from the core of the primary. We

can clearly see that, in both systems, hydrogen begins to recombine

in the envelope shortly after the beginning of the dynamic inspiral.

However, as could be expected, the helium recombination zones do

differ between the simulations. In the P12M simulation, the initial

star has some helium recombination occurring near the outer layers,

while the helium in the N16M star is initially completely in the form

of He III. The N16M simulation has a short period of mass transfer

before the fast inspiral, during which some gas particles are ejected

from the system. In this ejected gas, He III quickly recombines to

He II. In both simulations, recombination fronts of both hydrogen

and helium form. After forming in the ejecta from the dynamic

inspiral, these fronts remain at fairly constant radii from the central

binary. Counter to some expectations, the zones do not appear to

move inwards. Rather, gas flows outwards from the central binary

through these zones, recombining and releasing energy as it moves

through the front. This release of recombination energy will be

addressed in Section 4.3.

4.2 Where is the gas being unbound?

Next we compared the locations where particles are being unbound

with the recombination fronts seen in Section 4.1. We call an SPH

particle unbound by using criterion (ii), which is equivalent to

criterion (iv) in the ideal gas EoS case (see Section 3.3). Criterion

(ii) includes only the mechanical energy and the thermal portion of

the internal energy. We do not include radiation energy, as our ideal

EoS does not include the effects of radiation pressure.

Fig. 4 shows the radial locations at which particles are being

unbound in the simulations. These particles were then tracked

backwards in time to determine the time and location at which they

were last bound to the system. The bottom panels of these plots

show the cumulative amount of permanently unbound material in
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Recombination energy in common-envelope interactions 5341

Figure 3. The ionization stages of H and He in the P12M (left-hand column) and N16M simulations (right-hand column), as a function of radius and time.

Top row: radially averaged amount of H II as a fraction of the total amount of H. Bottom row: radially averaged amount of He II as a fraction of the total amount

of He. The radii are centred on the core of the primary star. The black line depicts the distance of the companion from the core of the primary.

the simulations. The common feature between the two panels of

Fig. 4 is that all the simulations display a strong unbinding event

at the beginning of the fast inspiral, which is driven primarily by

the transfer of orbital energy into the gas. This particular feature

shows up in all simulations of the common envelope, regardless of

which EoS is being used. It is visible in Fig. 2, as a drop in the

bound mass during the fast inspiral. However, in both the P12I and

N16I simulations, the unbinding after the inspiral is quite weak,

being limited primarily to the action of shocks propagating through

the material. In comparison, both the P12M and N16M simulation

display copious unbinding after the inspiral.

To determine the actual cause of the extra unbinding observed in

the simulations that use our tabulated EoS, we compare the location

where particles become unbound to the recombination zones of

hydrogen and helium. In Fig. 5, we show the significant zones of

partial ionization for both hydrogen and helium from Fig. 3. We

overplot the red points from Fig. 4 in greyscale. This reveals that

aside from the initial unbinding at the hand of orbital energy, the

gas unbinding coincides with areas where hydrogen and helium are

recombining.

In the P12M simulation (left-hand panel of Fig. 5), the unbinding

of particles is spatially coincident with the base of the hydrogen

recombination zone and both helium recombination zones. How-

ever, for the N16M simulation (right-hand panel of Fig. 5), un-

binding occurs primarily in, or just above, the He III recombination

zone.

Soker et al. (2018) have argued that much of the hydrogen

recombination energy is lost from the system through radiation and

convection. Even if this were true, our simulations indicate that, for

these setups, unbinding is promoted more by the recombination of

helium than of hydrogen. Since the helium recombination zone is

at a greater depth in the star, the energy released there is less likely

to escape. Much of the gas experiencing hydrogen recombination

has already been unbound at an earlier stage in these simulations,

when it was deeper in the envelope of the primary. We suggest

that for these simulations, it is the helium recombination energy

that more strongly affects the unbinding of gas from the binary

system.

4.3 Where is recombination energy being released?

In addition to knowing where the recombination fronts are, we

can also calculate, using equation (6), where recombination energy

is being released. Once again we radially bin the particles, and

determine the change in recombination energy from the last code

output. As our simulations have different lengths of time between

code dumps, we divide the recombination energy delivered by the
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5342 T. A. Reichardt et al.

Figure 4. Radial location and time at which particles become unbound for the P12 (left-hand panel) and N16 (right-hand panel) simulations, showing the extra

unbinding that takes place at late times for the two simulations using the tabulated EoS (red) compared to the idea gas EoS (blue). The particles are binned to

show the relative strength of the unbinding events. In the main panels, the two lines represent the separation of the companion from the primary. The bottom

panels give the cumulative sum of the unbound mass in the plot above.

Figure 5. The correlation between unbinding of gas and recombination zones in the P12M (left-hand panel) and N16M (right-hand panel) simulations. In

black, we overplot the locations and times at which particles are permanently unbound, that is, the red dots in Fig. 4. The coloured zones represent the partially

ionized regions for H and He, as seen in Fig. 3.

time between dumps, resulting in a rate of recombination energy

release. These profiles are shown in Fig. 6, where red areas show

positive values, i.e. a net release of recombination energy, and

blue areas represent negative values, i.e. particles being ionized.

The lower panels of Fig. 6 show the net rate of recombination

energy release at each moment of the simulation. The release of

recombination energy per second is approximately an order of

magnitude larger in the N16M simulation than the P12M simulation.

This is likely due to the fact that there is more gas mass in the N16

simulations, and the ejection of gas during the inspiral is more rapid,

causing gas to recombine more rapidly.

In Fig. 6, we see that, immediately after the inspiral, a clear

boundary forms between areas where recombination energy is

being released (red) and areas where it is being captured (blue)

located at approximately the original orbital radius. This capture of

recombination energy is due to the ionization of He II. It shows that

gas is ionized initially close to the companion, from which shocks

emanate moving outwards. In both simulations, this feature begins

to dissipate quickly, reaching a point when the gas is no longer

undergoing much ionization, and recombination is only happening

at larger radii.

There is a large release of recombination energy associated with

the fast inspiral of the companion and the subsequent expansion of

the envelope layers. In the P12M simulation, some of this energy

release occurs inside the atmosphere of the giant star, just below

the orbit of the companion. This may be due to the expansion of

the innermost layers in response to the expansion of the layers

above. This feature does not occur in the N16M simulation, which

undergoes a less sudden inspiral due to its larger initial orbital

separation. Further, the N16M star comprises only He III, hence the
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Recombination energy in common-envelope interactions 5343

Figure 6. Recombination energy release rate in the P12M (left-hand panel) and N16M (right-hand panel) simulations, determined by plotting the change in

recombination energy for each gas particle from one code output to the next. Positive numbers on the colour bar show that there has been a net decrease in the

recombination energy of the gas, hence the energy has been released. The bottom panel is the total rate of recombination energy release at each time in the

simulation.

helium recombination is less sensitive to small changes in the stellar

structure than the P12M star. However, after the initial inspiral, in

both the P12M and N16M simulations, the recombination energy is

released primarily above the orbit of the companion as the envelope

expands and cools.

4.4 Is the gas being unbound because of recombination

energy?

Even if we can confirm that the tabulated EoS simulations are un-

binding more material, we cannot yet confirm that the recombination

energy is the trigger for this extra ejection. To investigate this, in

Fig. 7, we again plot the recombination energy being released in

the simulation, and overplot in grayscale the particles that became

unbound and remain unbound for the rest of the simulation, as was

shown in Fig. 4.

Looking at the left-hand panel of Fig. 7, we can see that there

are a couple of strong events where gas is being ionized (rendered

in blue), suggesting that a shock is moving through the material.

These are sites where we would expect particles to be unbound even

without recombination, due to the increase in thermal energy of the

gas as the shock moves through it.

The release of recombination energy happens when the gas is

expanding and cooling, as can occur in the wake of shocks. Without

the extra recombination energy input, these gas particles would

likely not be unbound in great numbers. This is observed in the left-

hand panel of Fig. 4, where the release of recombination energy for

the P12M simulation enhances particle unbinding in these locations

when compared to the P12I simulation. This suggests that the input

of energy through shocks and recombination behind the shock may

help to unbind the envelope.

On the other hand, the unbinding of particles in the N16M

simulation aligns very closely with the strong release of helium

recombination energy, as is presented in the right-hand panel of

Fig. 7. Contrasting with the unbinding that takes place in the N16I

simulation (visible in Fig. 4), where there is no extra input of energy,

the particles are unbound almost exclusively during the inspiral.

Clearly, the helium recombination energy plays a strong role in

unbinding this portion of the envelope.

It appears that helium recombination energy may be sufficient to

account for the extra unbinding in the tabulated EoS simulations. In

simulation P12M, helium recombination has released 3.4 × 1045 erg

by 50 d after the inspiral (Table 4). At the same time in the P12I

simulation, 84 per cent of the envelope remains bound. If we were

to add the released helium recombination energy to maximize the

number of unbound particles [(i.e. to raise the energy of the least

bound particles to zero by criterion (ii)], we could reduce the bound

envelope to 27 per cent of the gas mass, which is significantly

smaller than the 65 per cent in the P12M simulation (Table 3). A

similar calculation can be carried out for the N16 simulations. This

would leave a bound envelope of 78 per cent, which again is lower

than the approximately 90 per cent that is actually bound in the

N16M simulation at the same point. In both cases, this maximum

amount of unbinding is effectively impossible, as it implies that

only the least bound particles are supplied with precisely enough

energy to unbind them. However, it does show that the helium

recombination can supply enough energy to account for the extra

unbinding that takes place in the simulations that use our tabulated

EoS.

We note that, by the same reasoning, hydrogen recombination

also delivers enough energy to fully account for the envelope

unbinding. However, because of the stratification of the recom-

bination zones, gas flowing through the hydrogen recombination

zone would be already unbound by having passed through the

helium recombination zone, and thus would likely have received

the necessary energy to unbind it.

5 TH E F R AC T I O N O F R E C O M B I NAT I O N

E N E R G Y T H AT C A N D O WO R K

In the previous sections, we have demonstrated that the inclusion of

recombination energy in our simulations has caused an additional

amount of envelope to become unbound. Our simulations are

adiabatic and any released recombination photons are immediately
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5344 T. A. Reichardt et al.

Figure 7. Released recombination energy in the N16M simulation from Fig. 6. The grey dots again represent the newly, permanently unbound particles from

Fig. 4.

Table 4. Hydrogen and helium recombination energy (�EH
rec and �EHe

rec)

released by 50-d post-inspiral (tin) and the end of the simulation (tf).

Model tin �EH
rec,in �EHe

rec,in tf �EH
rec,f �EHe

rec,f

(d) (1046 erg) (1046 erg) (d) (1046 erg) (1046 erg)

P12M 359 0.23 0.34 1843 0.71 0.41

N16M 158 0.09 0.45 922 0.56 1.61

N16Mh 138 0.15 1.20 553 1.31 1.70

thermalized into the gas, thus the energy is allowed to do work.

Here, we estimate the opacity of the gas in post-processing, and

use it to calculate how much of the recombination energy would

be radiated away, following the approach of Grichener et al. (2018)

and Soker et al. (2018). However, we use quantities from our 3D

simulations rather than relying on the 1D approach as they did.

Grichener et al. (2018) and Soker et al. (2018) expressed the

photon diffusion time out of a recombination zone as

tdiff =
3τ�R

c
, (10)

where τ is the optical depth outwards from the recombination zone,

�R is the depth of the recombination zone below the photosphere,

and c is the speed of light. Soker et al. (2018) also employed

the convective time-scale, which is defined instead as the time-

scale over which recombination photons may be removed from the

common envelope by convection alone. Our simulations do not

correctly capture the effects of convection, so we take instead the

minimum possible convection time-scale, given by

tmin;conv =
∫ Rphot

R

dr

cs(r)
, (11)

where Rphot is the radial location of the photosphere, R is the radial

location of the partial ionization zone, and cs(r) is the local sound

speed. Soker et al. (2018) then defined the energy transport time-

scale as the minimum of the photon diffusion and convective time-

scales:

ttrans = min(tdiff, tmin;conv). (12)

The third relevant time-scale is the envelope expansion time-scale,

which is approximately of the order of the orbital time-scale at the

surface of the giant:

texp ≈
2πR1

vkep

, (13)

where R1 is the radius of the primary star and vkep is the Keplerian

velocity at this radius. This time-scale is important because, if the

envelope expands on a similar time-scale to ttrans, then more of

the recombination energy will be utilized in the expansion of the

envelope.

Sabach et al. (2017), Grichener et al. (2018), and Soker et al.

(2018) used these time-scales to estimate the fraction of the

recombination energy, fγ , that can be used to accelerate the gas:

fγ <

(

ttrans

ttrans + texp

)

. (14)

The diffusion time-scale increases as the star expands; hence, fγ
typically decreases over the course of the interaction. Grichener

et al. (2018) and Soker et al. (2018) continued this line of reasoning,

using a 1D simulation calculated with the stellar structure code

MESA. They evolved a 2-M� star until it was on the AGB, when

it had a mass of 1.75 M� and a radius of 250R�. They then

emulated a common envelope inspiral by injecting energy into

the envelope, causing it to inflate from 250 to about 520R�. This

expansion happens over the course of 1.7 yr, which they adopted as

the envelope expansion time-scale, texp. They discussed that from

the zones where hydrogen ionization is at about 30 per cent, the

photon diffusion time tdiff < 0.5 yr. With those values, Soker et al.

(2018) estimated that, in their case, fγ < 0.2.

In what follows, we use our simulations to make our own

assessment of whether recombination energy unbinds the envelope,

and whether it is realistic to use it to do work, as is done in codes

with no radiation transport.

5.1 The determination of the opacity

Alongside the EOS module, MESA also has an opacity module, KAP,

which returns values of κ , given an input density and temperature.

Like the EoS data, the opacity data are drawn from several different

sources, combining electron conduction, and radiative opacities.

The electron conduction opacities are given primarily by Cassisi

et al. (2007), while the radiative opacities are given by tables from

Ferguson et al. (2005, for 2.7 ≥ log T ≥ 4.5) and Iglesias & Rogers

(1993, 1996, for 3.75 ≥ log T ≥ 8.7). For temperatures log T > 8.7,

Compton scattering dominates the opacity and is calculated with

the equations of Buchler & Yueh (1976), while the low-temperature

tables of Ferguson et al. (2005) include the effects of molecules and

grains on the opacity.

MNRAS 494, 5333–5349 (2020)
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Figure 8. The opacity κ as a function of temperature and density from the

MESA opacity module. We plot the contours relative to the electron scattering

opacity κ0 = 0.2(1 + X) cm2 g−1, which is dominant in low density, low

temperature, and fully ionized gases. These contours are plotted to reflect

the plot of opacity given in fig. 3 of Paxton et al. (2011b).

The MESA opacity tables have been formatted so as to be able to be

queried by PHANTOM, with inputs of X, Z, ρ, and T, the last of which

is an output from the EoS itself. The results of querying the opacity

tables through PHANTOM are shown in Fig. 8, reproducing fig. 3 of

Paxton et al. (2011b). In principle, this can be used to estimate the

photon diffusion time-scale using equation (10), similarly to what

was done by Sabach et al. (2017), which requires the optical depth

between the recombination zone and the photosphere.

While it would be more appropriate to calculate, during the

simulations, the photosphere of the gas, as well as the optical depth

of the location of SPH particles where recombination energy is being

released, neither of these tasks are trivial. For this reason, we use the

opacity data purely in our analysis of the tabulated EoS simulations,

emphasising that it was not used during the simulations.

5.2 The determination of time-scales

The optical depth within the envelope is determined by performing

the integration

τ =
∫ r2

r1

κ(r)ρ(r)dr, (15)

where τ is the optical depth, κ is the opacity, ρ is the density,

and r1 and r2 are the locations between which the optical depth

is to be calculated. We find the photosphere by determining the

location where the optical depth τ ≈ 2
3
, when integrating in from

the outside. The time-scale of envelope expansion is determined

by measuring the size of the photosphere averaged over the three

axes. We find that the envelope approximately doubles in size within

about 50 d after the beginning of the fast inspiral, in both the P12M

and N16M simulations. Since the radial locations of recombination

zones were already determined in Section 4.1, we have all the

necessary information to estimate fγ , the fraction of recombination

energy that can be used to do work, as defined in equation (14)

(Soker et al. 2018).

Figs 9(a) and (b) show profiles for the P12M and N16M

simulations, respectively. These profiles radiate from the centre

of mass of the simulation, at 50 d after the end of the dynamic

inspiral, in the x- and z-directions (left- and right-hand columns,

respectively). The top row shows ionization fractions for hydrogen

and helium, the second row gives values of κ from the MESA opacity

tables, the third row is a comparison between the photon diffusion

time-scale tdiff and the minimum convective time-scale, tmin; conv

and the bottom row shows fγ . As mentioned previously, we used

an estimated envelope expansion time-scale of about 50 d for both

simulations.

We can see from the bottom row that, for much of the inner

portion of the simulation, the majority of the released radiation can

be used in helping to eject the envelope. There are a couple of effects

to consider here. First, our simulations do not display convection,

so we must use the minimum convective time-scale as our estimate

for how much radiation can be removed. That is, we must assume

that convection is able to remove the recombination energy at the

maximum rate, to obtain a lower limit on how much recombination

energy may be used for envelope expansion. But, as was explained

by Ivanova (2018), convection cells in giant stars typically operate

at highly subsonic velocities, while the minimum convective time-

scale implies that convection cells are moving at approximately the

local sound speed. Hence, we can say that either the convective

time-scale is longer in real systems, or as stated by Ivanova (2018),

some energy would be used to accelerate the convection cells to

nearly sonic velocities. This suggests that fγ may actually be higher

than is shown in Figs 9(a) and (b), at least in the inner regions before

the diffusion time-scale takes over.

In both simulations, the recombination zone for hydrogen approx-

imately coincides with the zone where fγ begins to drop sharply. This

is due to the fact that the opacity plummets when the gas particles

are fully recombined. Given that the hydrogen recombination zone

straddles the region where fγ drops from about 0.95 to 0, we crudely

estimate that only about half of the hydrogen recombination energy

is usable, that is, fγ ≈ 0.5 for hydrogen. This estimation suggests

that only a half of the hydrogen recombination energy may be used

to expand the envelope.

On the other hand, there is a strong peak in the opacity, which

aligns with the partial ionization zones of He II and He III. The

picture is much clearer for helium. In the zones where helium

recombination energy is being released, fγ ∼ 0.95. This value is

purely driven by the minimum convective time-scale. Therefore,

we estimate that more than 0.95 of released helium recombi-

nation energy can be utilized to eject the envelope, particularly

if the convective time-scale is longer than we have calculated

here.

6 POSSI BLE DUSTY SHELL FORMATI ON

In Fig. 10, we plot a rendering of the opacity, κ , at the end of the

P12M and N16M simulations (t = 5.05 and 2.52 yr, respectively). In

the P12M simulation, we find that the central, high-opacity envelope

is surrounded by a very low opacity shell, just outside of the

black contour, where all hydrogen is fully recombined. However, an

interesting feature is also visible. Just beyond this low-opacity shell,

a higher opacity shell begins to develop from about t = 4 yr into

the P12M simulation and t = 2 yr into the N16M simulation. These

times correspond to about 3 and 1.6 yr after the dynamic inspirals of

the P12M and N16M simulations, respectively. We expect that these

shells would continue to develop if our simulations were continued

for longer.

At the end of the P12M simulation, we estimate that there is

0.19 M� outside the neutral hydrogen contour (visible in the top

panels of Fig. 10). Of this 0.19 M�, approximately 0.06 M� resides

in the high-opacity shell. In the N16M simulation (bottom panels

of Fig. 10), there are 0.14 M� outside the neutral hydrogen contour,
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5346 T. A. Reichardt et al.

Figure 9. Profiles of the P12M and N16M simulations, which is 50 d after the end of their respective fast inspirals. Left-hand columns: Profiles are taken in

the positive x-direction from the primary’s core. Right-hand columns: Profiles are taken in the positive z-direction from the primary’s core. First row: ionization

fractions for hydrogen (H II/H) and helium (He II/He and He III/He). Second row: κ returned from the MESA opacity tables. Third row: comparison between the

photon diffusion time-scale, tdiff, and the minimum convective time-scale, tmin; conv. Fourth row: approximately derived profile for fγ . Each point represents

one particle, which is joined to help see the trends in the data.

0.08 M� of which is beginning to form a similar high-opacity shell.

The high-opacity shells extend between ∼20 000 and ∼26 000R�
(∼93–120 au) from the binary by the end of the P12M simulation,

and between ∼18 000 and ∼21 000R� (∼83–97 au) from the binary

by the end of the N16M simulation.

The physical reason for the increase in opacity is that dust begins

to form in the low-temperature regions near the outer boundary of

the expanding gas. In particular, the opacity tables by Ferguson et al.

(2005) supply, for a certain combination of temperature and density,

an average opacity calculated from several types of molecules and

grains.

In our simulations, we do not actually include the effects of

dust, therefore the dynamics and thermodynamics of the expanding

envelope are not affected by the formation of dust. The high-opacity

regions are instead inferred from the gas temperature, density, and

composition in post-processing of the simulations (similarly to what

was done by Iaconi et al. 2019).

Two interesting possibilities are opened by this discovery. The

first is that whatever energy leaks out of the photosphere (which in

simulations like ours is located just outside the hydrogen recom-

bination zone) will likely be intercepted by the opaque shell and

possibly result in accelerating it. The ‘dusty’ region only contains a

fraction of the envelope gas, but this fraction progressively increases

as the simulation continues.

Secondly, the morphology of the high-opacity shell is not

spherical, with regions of much lower opacity forming radiation

holes. Curiously, the P12M simulation has lower opacity regions at

the poles, while the N16M simulation has lower opacity regions at

the equator. If radiation is intercepted by this high-opacity material

and does accelerate it, it will do so unevenly, likely partaking in the

shaping of the envelope. This conclusion may be very relevant for

planetary nebula formation and shaping and add to the complex-

ity of shaping post-common envelope planetary nebulae already

studied by Garcı́a-Segura, Ricker & Taam (2018) and Frank et al.

(2018).

7 SU M M A RY A N D C O N C L U S I O N S

We have presented a comparison of simulations carried out with

ideal gas or tabulated equations of state to quantify the effects of

MNRAS 494, 5333–5349 (2020)
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Figure 10. Rendering of κ in the xy-plane (left-hand panel) and in the xy-plane (right-hand panel) of the P12M simulation (top panel) and the N16M simulation

(bottom panel). The snapshots are taken at the end of the simulations at t = 5.05 and 2.52 yr for the P12M and N16M simulations, respectively. The black

contour shows the boundary outside of which all hydrogen has recombined.

recombination energy on the common envelope binary interaction.

We have tested two different primary stars both of which were pre-

viously modelled. These simulations are still far from full radiation

transport models, but they offer valuable insight regardless. We

conclude the following:

(i) The final orbital separation is not influenced by the EoS

choice. We conclude that extra unbinding observed in simulations

that release recombination energy does not impact the orbital

inspiral. The orbital energy is typically injected earlier and at

smaller radii than where gas recombines, leaving the inspiral largely

unchanged. This conclusion is in line with what concluded by

Nandez & Ivanova (2016).

(ii) A far greater amount of envelope gas is unbound when our

tabulated EoS is used. This is more so for the 0.88-M� giant

simulation, where effectively the entire envelope is unbound, than

for the 1.8 M� one. The criterion adopted to determine whether gas

is unbound is important. We advocate the use of a criterion that

includes the thermal energy of the gas, but would suggest that a

pure mechanical energy criterion be always used as a comparison.

Like the simulations of Nandez et al. (2015) and of Nandez &

Ivanova (2016), all recombination energy is converted in work in

our adiabatic simulations.

(iii) The fraction of hydrogen recombination energy available to

unbind the envelope has been recently debated. We add incremental

(though not definitive) evidence that suggests that the amount of

hydrogen recombination energy available to do work should be of

the order of 50 per cent.

(iv) Helium recombination energy is very effective in unbinding

gas because virtually none of it can escape. This conclusion is

in line with the findings of Ivanova et al. (2015) that helium

recombination energy is efficiently used to do work and expand the

MNRAS 494, 5333–5349 (2020)
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envelope. For the case of our 1.8-M� simulation, it is the helium

recombination energy that dominates the envelope unbinding, while

for our 0.88M� giant simulation helium contributes approximately

half of the recombination energy. We note that the amount of helium

recombination energy is proportional to the helium abundance

adopted (Y = 0.3). The range of possible helium abundances

(∼0.24–0.45) would result in a similar range in the amount

of available helium recombination energy. It is remarkable how

relatively similar stars exhibit substantially different behaviours.

This cautions us against generalizing these conclusions to other

intermediate-mass stars.

(v) Dust is observed to form in the remnants of common envelope

interactions (Nicholls et al. 2013). We confirm that in the outer

layers of expanding common envelopes the conditions are such that

dust opacity dominates. In both our simulations, we observe a region

of high opacity, which we interpret as a dusty shell with prominent

axisymmetric morphologies. This may indicate that a part of the

envelope could be ejected in a dust-driven wind, as also suggested

by Glanz & Perets (2018).

(vi) We further point out that the morphologies of the two high-

opacity shells are different for the two simulations, with the least

massive star exhibiting an equatorial, torus-like structure, while the

more massive star shows high opacity at the poles. It is likely that

any energy that crosses the photosphere will be captured within

this dusty shell, which contains a few tens of solar masses of gas,

and possibly be able to accelerate it. The difference in morphology

of the high-opacity shells in the two simulations indicates that the

nebulae deriving from the ejection of the common envelopes would

have different shapes.

The extension of any of these findings to different parameter

combinations (such as higher mass primaries or differing mass ra-

tios) should be treated with caution. The relatively small differences

between the two stars in this study, leading to substantial differences

in their behaviours is a testament to this. The study of Ivanova et al.

(2015) in 1D also shows how varying the rate and location of energy

deposition changes the outcome. While 3D models, such as ours,

can reproduce the inherent asymmetries in these systems, they rely

on the limited resolution chosen because of long-running times.

Further, the interaction between the companion (or the stellar core)

and the gas is simplified by the use of point masses and softened

potential. Just what effect this has on the energy deposition and the

reaction of the envelope has not been quantified.

Finally, we note that, besides recombination energy, there may

be other energy sources and sinks that have not yet been considered

nor taken into account by simulations. For example, the impact of

magnetic fields in redistributing energy in the envelope (Regős &

Tout 1995; Tocknell, De Marco & Wardle 2014), or the effect of

convection, which would redistribute energy and possibly lead to

its removal (Wilson & Nordhaus 2019).
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APPENDI X A : R ESOLUTI ON TEST

We carried out the P12M simulation at higher resolution using

8 × 105 SPH particles to study the effect of resolution. This
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Figure A1. Comparison of orbital separation (left-hand panel) and bound mass (right-hand panel) for low-resolution (8 × 104 particles; blue) and high-

resolution (8 × 105 particles; red) P12M simulations. The bound mass labels are the same as Fig. 2.

simulation was executed using a slightly older version of PHANTOM

and a slightly less refined stellar stabilization method. We have not

repeated it with the updated code because of a large wall clock time.

We expect there to be negligible differences between outputs, but

we have none the less compared this high-resolution simulation to a

low-resolution simulation (8 × 104 SPH particles) carried out with

the same code version.

Fig. A1 shows how the orbital separation and bound mass

evolve with time for these two resolutions. The evolution of the

bound mass, using our four criteria, remains within 10–20 per cent

within the first 500 d, after which resolution effects become larger.

This suggests that the extra unbinding observed in simulations,

including recombination energy is not a resolution effect, and that

the recombination energy is indeed being used to eject the envelope.

A 10-fold increase in SPH particle number (corresponding to

approximately a doubling of linear resolution) does not alter the

behaviour of our results and the conclusions of our study.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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