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ABSTRACT

During the common-envelope binary interaction, the expanding layers of the gaseous
common envelope recombine and the resulting recombination energy has been suggested
as a contributing factor to the ejection of the envelope. In this paper, we perform a comparative
study between simulations with and without the inclusion of recombination energy. We use
two distinct setups, comprising a 0.88- and 1.8-My, giants, that have been studied before and
can serve as benchmarks. In so doing, we conclude that (i) the final orbital separation is not
affected by the choice of equation of state (EoS). In other words, simulations that unbind
but a small fraction of the envelope result in similar final separations to those that, thanks
to recombination energy, unbind a far larger fraction. (ii) The adoption of a tabulated EoS
results in a much greater fraction of unbound envelope and we demonstrate the cause of this
to be the release of recombination energy. (iii) The fraction of hydrogen recombination energy
that is allowed to do work should be about half of that which our adiabatic simulations use.
(iv) However, for the heavier star simulation, we conclude that it is helium and not hydrogen
recombination energy that unbinds the gas and we determine that all helium recombination
energy is thermalized in the envelope and does work. (v) The outer regions of the expanding
common envelope are likely to see the formation of dust. This dust would promote additional
unbinding and shaping of the ejected envelope into axisymmetric morphologies.

Key words: hydrodynamics — methods: numerical —stars: AGB and post-AGB —stars: evolu-
tion.

Nandez, Ivanova & Lombardi (2015) and Ivanova & Nandez

1 INTRODUCTION (2016) simulated common-envelope interactions between a 1.8-

A common-envelope interaction (Paczynski 1976; Ivanova et al.
2013) occurs when the orbital separation between two stars de-
creases to the extent that they come to share the same envelope.
The existence of compact evolved binaries implies that in at least a
fraction of all common-envelope interactions, the envelope is fully
ejected. Yet, hydrodynamic simulations that utilize an ideal equation
of state (EoS) do not unbind a sufficient fraction of the envelope
to allow us to conclude that the binary will survive (e.g. Reichardt
et al. 2019).
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M, star, and a range of companions with masses between 0.05
and 0.36 M by using a tabulated EoS that captures the effects
of recombination energy. Ivanova & Nandez (2016) reported that,
with a companion mass of 0.36 Mg, approximately half of the
envelope is ejected by 50d after the end of the fast inspiral. The
remaining bound envelope material is subsequently ejected over a
time-scale of approximately 700 d after the end of the fast inspiral.
This later ejection is presumably at the hand of the recombination
energy released, which is immediately and completely thermalized
thanks to the adiabatic approximation adopted by those simulations.
Nandez et al. (2015) also noted that the same simulation unbound
only about half of the envelope when utilizing an ideal gas EoS with
radiation pressure, but a comparison between simulations with and
without recombination energy was not presented by them.
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The idea that the photons released during recombination could
be used as an energy source to help with envelope unbinding was
originally suggested by Lucy (1967) and Roxburgh (1967). Han,
Podsiadlowski & Eggleton (1994) and Harpaz (1998), in particular,
considered the expanding envelopes of pulsating asymptotic giant
branch (AGB) stars and whether recombination energy could
facilitate the ejection of the envelope in these single stars, leading
to the formation of planetary nebulae. Harpaz (1998), however,
argued that recombination energy cannot be used in the ejection of
the AGB envelope, because the envelope becomes transparent when
itrecombines, hence the energy will be transported out immediately
by radiation.

Ivanova, Justham & Podsiadlowski (2015) used one-dimensional
(1D) stellar models to simulate common-envelope inspirals by
injecting energy into the stellar envelope of a 1.6-Mg star with
aradius of 100R, (simulating the inspiral of a 0.3-Mg, companion).
They concluded that the efficiency of the hydrogen recombination
energy in unbinding the envelope depends on a number of choices
in their models, but that the role of helium recombination energy
is clearer: about 90 per cent of photons from helium recombination
are used to expand the common envelope.

Using a similar methodology based on 1D models, Sabach et al.
(2017), Grichener, Sabach & Soker (2018), and Soker, Grichener &
Sabach (2018) utilized 1D common-envelope simulations, carried
out in MESA, to argue that only a fraction of the energy released
by recombination of hydrogen and helium can be used to eject
the common envelope, as the energy will be transported out
through photon diffusion and convection. They estimated that only
approximately 20 per cent of the recombination energy can be
utilized in the ejection of the common envelope, by comparing
the time-scales of envelope expansion and energy transport.

Ivanova (2018) countered that the majority of recombination
energy can be used to eject the envelope. They reasoned that the
ratio of the radiation flux to the convective flux is small in most parts
of the envelope, hence there is little reason to consider the effect
of photon diffusion. Rather, it can be shown that the dominant
transport mechanism in the region where recombination energy is
released is actually convection. They further argued that even the
maximum convective flux becomes very inefficient for transporting
recombination energy in regions where the ionization fraction is
about 0.2. As a result, they concluded that the majority of the
recombination photons will not be transported out of the envelope,
hence they are destined to be thermalized and able to do work,
increasing the expansion rate of the envelope.

In order to resolve the debate of how much recombination energy
can be used to do work as opposed to how much should be radiated
away, a full treatment of radiation transport in common-envelope
simulations should be implemented. Some work in this direction
is being carried out (Zhu et al. 2019). This line of work presents
considerable challenges, chiefly because of the wall clock time
required for these simulations (weeks to months without including
radiation transport).

In this work, we perform several simulations to quantify some
of the effects of recombination energy, with the aim of determining
how it should be used in 3D adiabatic codes in the absence of
a reasonable treatment of radiation transport (as is the case for
Ivanova & Nandez 2016 and Nandez & Ivanova 2016). We start by
investigating where and when the gas is unbound with respect to
where and when the recombination energy of both hydrogen and
helium is released.

We present two sets of simulations. The first set uses the initial
conditions utilized by Passy et al. (2012), but also studied in Iaconi
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etal. (2017,2018) and Reichardt et al. (2019). This provides a well-
studied setup to which we can compare the effects of recombination
energy. The second set is a direct comparison with the work of
Nandez & Ivanova (2016), so as to calibrate our work and technique
to theirs and ensure that our conclusions are compatible. Each set
contains two simulations carried out with an ideal gas EoS and two
with a tabulated one based upon the EoS used in the 1D stellar
evolution code MESA (Paxton et al. 2011a). In this way, we have a
direct comparison of the unbinding dynamics.

In Section 2, we describe the simulation setup, giving details
of the tabulated EoS. In Section 3, we describe the results of
the simulations, including giving results of resolution and other
numerical tests. After this, in Section 4.1, we analyse the location
of the delivery of recombination energy and compare it with where
particles are being unbound (Section 4.1), and where recombination
energy is being released (Section 4.3). In Section 5, we move on
to testing whether or not the use of the recombination is physically
realistic. In Section 6, we discuss the apparent emergence of a
dusty shell in the ejecta of the common-envelope interaction. We
summarize and conclude in Section 7.

2 SIMULATIONS

We performed a series of four simulations of the common-envelope
interaction. We used two different primary stars in these simulations.
The first was a 0.88-Mg, red giant branch star with a 0.39-Mg core
and initial radius of about 80Ry, used also in the simulations of
Passy et al. (2012), laconi et al. (2017), and Reichardt et al. (2019).
This star will henceforth be referred to as the P12 star. The second
stellar setup had a greater initial mass of 1.80 Mg, with a 0.32-Mg
core and an initial radius of 16R. This second star, which we will
refer to as the N16 star, is one of the setups used in the common-
envelope simulations of Nandez et al. (2015), Ivanova & Nandez
(2016), and Nandez & Ivanova (2016). We chose this star because
Ivanova & Nandez (2016) note that it unbinds the entirety of the
envelope. We have, in fact, utilized the exact stellar structure kindly
provided by that group, so as to minimize the difference between
the two simulations.

The P12 input stellar profile was evolved in the 1D stellar
evolution code MESA (Paxton et al. 2011b). The N16 star was also
evolved with MESA by Nandez et al. (2015). Before mapping these
profiles into the computational domain, we use the procedure laid
out by Ohlmann et al. (2017) to produce more stable giant stars
in hydrodynamic simulations. For each star, we choose a radius
from the centre (6o for P12, 2R, for N16), at which we cut the
stellar profile. Within this radius, the profile is recreated with a
modified Lane—Emden equation using an index n = 3, which is set
to transition smoothly to the original profile at the cutoff radius.
This modified Lane-Emden equation includes a contribution from
a softened gravitational potential typically used in the core of a
simulated giant star.

The new 1D profiles were then mapped into the 3D computational
domain of the smoothed particle hydrodynamics (SPH) code PHAN-
TOM (Price et al. 2018), with all stars containing approximately
1.4 x 10° SPH particles. A point mass particle is placed in the
centre of the star, with a gravitational softening length equal to half
of the cutoff radius for the modified profile. Therefore, for the P12
star, the core had a mass of 0.39 M, and a softening length of /.
= 3Ry. However, for the N16 star, the softening length was /g
= 1R, larger than the 0.15Rg softening length used by Ivanova
& Nandez (2016). As the masses of the core particles are set to be
consistent with the modified Lane-Emden profile, they may differ
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Table 1. Initial conditions for our simulations. The first three characters in the Model column denote which star was
used (P12 or N16), the fourth character denotes which EoS (I for ideal gas and M for the tabulated EoS from MESA) and
the suffix h means that the point mass particles had softening lengths of 0.5R, instead of 1R, npa is the number of
particles in the simulation, R; is the radius of the star in the simulation after stabilization in the computational domain,
M) is the mass of the primary star, M1 ¢ is the primary’s core mass, Mgy is the total gas mass in the simulation, M> is
the mass of the companion, ajy; is the initial orbital separation, and EoS shows which EoS was used.

Model Tpart R M, M ¢ Mgas My Qinit EoS
(Ro) Mp) Mop) Mop) Mp) (Ro)
P121 14 x 10° 81 0.88 0.39 0.49 0.6 100 Ideal
P12M 14 x 10° 88 0.88 0.39 0.49 0.6 100 Tabulated
N1e6l 14 x 10° 16 1.80 0.320 1.479 0.36 31.37 Ideal
N16M 1.4 x 10° 17 1.80 0.320 1.479 0.36 31.37 Tabulated
N16Ih 1.4 x 10° 15 1.80 0.313 1.487 0.36 31.37 Ideal
N16Mh 14 x 10° 16 1.80 0.313 1.487 0.36 31.37 Tabulated

slightly from the desired value. Our core particle mass of 0.320 Mgis
slightly larger than the 0.318 M, of Ivanova & Nandez (2016).

Our choice of softening length was dictated by prohibitively
long computational times associated with small softening lengths.
However, we did perform simulations with a smaller softening
length of s = 0.5R for both companion and core particles, with
an associated primary core mass of 0.313 Mg, (see Section 3.4).

The velocities in our stars were damped over five dynamical
time-scales, after which the stars were evolved with no damping in
the computational domain for another five dynamical time-scales.
During this time they showed no significant expansion, proving that
our stars are sufficiently stable.

Our SPH particles were assumed to have a constant chemical
composition, defined by the hydrogen, helium, and metal mass
fractions. The compositions were taken from the atmospheres of
the input stellar profiles, calculated by MESA. For the P12 star, the
composition is set to be X = 0.67, Y = 0.31, and Z = 0.02, and
for the N16 star, we have X = 0.68, Y = 0.30, and Z = 0.02.
These compositions were used as inputs to the tabulated EoS used
by MESA, which we utilized in two of our four simulations (see
Section 2.1 for details). We note that while we do not experiment
with abundances, the helium mass fraction could vary between
~0.24 and 0.45, almost a factor of 2. With that, there would be a
concomitant change in the amount of recombination energy from
helium (and an inverse change for hydrogen), which could have a
repercussion on the outcome of the simulation.

A companion star was then initialized in the computational
domain as a second point mass particle, with a softening length
equal to that of the core of the primary star. For the P12 simulations,
the initial orbital separation is set to 100 Ry, which is just greater
than the initial radius of the primary star. The N16 simulations
were initialized with an orbital separation of 31.37R,, matching the
initial separation used by Nandez & Ivanova (2016). We will adopt
the notation referring to the ideal and tabulated EoS simulations
with the suffixes I and M, respectively. With this convention,
simulations P12I and P12M refer to the P12 setup with the ideal
and tabulated equations of state, respectively; similarly, simulations
N16I and N16M are the N16 simulation with the ideal and tabulated
EoS, respectively. For the N16 simulations, we also include the
suffix h if the point mass particles have a softening length of /g
= 0.5Ry. The initial parameters of all of these simulations are
listed in Table 1. Our N16M simulation will be compared to the
models of Ivanova & Nandez (2016) and Nandez & Ivanova (2016),
which they called BF36 and 1.8G0.32C0.36D, respectively). We
will adopt their naming convention, and refer to their model as
BF36.

2.1 The tabulated EoS

Our simulations employ two distinct equations of state. The first is
the standard ideal gas EoS, written in the form

P =p(y — Du, 6]

where P is gas pressure, p is the gas density, y = 2 is the adiabatic
index, and u is the specific internal energy.

The second EoS is adapted from the EoS used in the 1D stellar
evolution code MESA (Paxton et al. 2011b). The MESA EoS is
constructed from several other equations of state. In the regions,
where ionization is important, the OPAL and SCVH EoS tables
are used (see section 4.2 of Paxton et al. 2011b). The OPAL EoS
(Rogers, Swenson & Iglesias 1996; Rogers & Nayfonov 2002)
is obtained by an ‘activity-expansion’! of the grand canonical
ensemble, which includes the effects of ionization and dissociation.

The OPAL EoS has been used in the common-envelope simula-
tions of Ohlmann et al. (2017). The SCVH EoS (Saumon, Chabrier
& van Horn 1995) is constructed for hydrogen—helium mixtures
and includes effects of temperature and pressure on ionization and
dissociation. It is intended for use in very low-mass stars, as well
as brown dwarfs and giant planets.

The two sets of tables overlap in a central region, within which
a smooth transition is constructed between the OPAL and SCVH
tables (for a visualization of this region, see fig. 1 of Paxton et al.
2011b). These tables together cover a region defined by —17.2 <
logW < —2.9 and 2.1 <logT < 8.2, where T is temperature and
log W= log P, — 4log T'is a variable introduced to allow the tables
to save space by making them rectangular, as this relation describes
the approximate Pg,—T relationship of many stars. Outside the
regions covered by these tables, the HELM and PC equations of
state are utilized, both of which are constructed with the assumption
of complete ionization. The MESA EoS tables accept p and T, or P
and 7, as inputs, returning the internal energy, u#, and many other
quantities, such as the entropy S and I'y = (dln P/d1ln p)s.

However, PHANTOM, like many hydrodynamic codes, evolves the
specific internal energy of the gas, using the EoS to determine the
pressure. For this reason, we constructed tables using the MESA EOS
module (Paxton et al. 2011b), which would accept p and u from
PHANTOM and return the pressure and temperature. Aside from the
aforementioned pairs of input to the tables (p and T or P and T),
the MESA EOS module contains a subroutine, which accepts u;, and

! Describing this method is outside the scope of this paper, though the reader
is referred to Rogers (1994), and references therein.
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Figure 1. Various quantities as functions of specific internal energy and density using the tabulated EoS. The two rectangles bound all values of density and

specific internal energy encountered in our simulation domains.

pin to query the tables. As the tables are constructed in a fashion
that has u as an output, this subroutine also requires an initial guess
for the temperature Tgyes, Which is used as a starting point for
Newton—Raphson iterations. The tables are queried with Tgyes and
pin, Teturning a value of the specific internal energy uoy, which
is compared to u;,. Also returned is the gradient of the specific
internal energy with respect to temperature, at constant density. This
information is enough to iterate the temperature until #,, returned
by the calls to the tables matches the input u;,. If no solution is found
within the maximum number of iterations, then upper and lower
bounds for the temperature are utilized in the bisection method
of root finding, which is often slower, but guarantees a root is
found. When a value of T is found such that u;, matches i, then
P, I';, and the other EoS values can also be returned from the
tables.

The new tables cover a region defined by —10 < logV < 12
and 10 < logu < 17, where u is the specific internal energy and
log V=log p — 0.7logu + 20 is again a new variable introduced to
make use of the approximate relationship between p and u in stars,
saving space in the tables. The tables are produced for hydrogen
mass fractions of X = 0, 0.2, 0.4, 0.6, and 0.8, each with metals
mass fractions of Z =0, 0.02, and 0.04. We wrote a set of routines to
query these tables from within PHANTOM. We plot the pressure, I";
and temperature returned by our tabulated EoS tables in Figs 1(a)—
(c), respectively, when the tables are queried through PHANTOM. In
Fig. 1(d), we show a comparison of the gas pressure returned by
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our tabulated EoS to the equivalent pressure from the ideal gas EoS.
The differences here lie primarily in the fact that the ideal gas EoS
has constant mean molecular weight. The ranges of p and u over
the course of the entire P12M and N16M simulations are overlaid
as rectangles, showing that the limits fall well within the boundaries
of the tables. We also plot contours to give a better understanding
of how the returned values change with p and u.

3 RESULTS

Here, we analyse the behaviour of the simulations as they undergo
the fast inspiral and the subsequent phase of slow inspiral. We
examine the decrease in bound mass in each simulation, and
particularly note the differences between simulations with different
equations of state.

3.1 Energy and angular momentum

Energy conservation for the P12 and P12M simulations is approx-
imately at the 0.1 per cent level, while for the N16I and N16M
simulations are at about the 2 per cent level. The total angular
momentum in all of the simulations is conserved to about 0.1 per
cent. We list key energy and angular momentum values, in Table 2
and compare them to the values given by Ivanova & Nandez (2016).
The total energy budget of our N16M simulation differs from the
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Table 2. Values of energies and angular momenta at the beginning of the simulations. The model column is the same as in
Table 1. Epor, Eth + r = Etherm + Erad, and Ee. are the gravitational potential energy, the sum of thermal and radiation energies,
and the recombination energy of the red giant’s envelope, respectively. Eqomp, Eior, and Jyo are the orbital energy, the total energy,
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and the total angular momentum of the binary system, respectively.

Model Epnt Etn +r Erec Eorb Ebin Etor Jrot
(10% erg) (10% erg) (10% erg) (10% erg) (10% erg) (10% erg) (107 erg s)
P12I —5.12 243 - —1.82 —2.68 —3.67 261
P12M —525 2.53 1.27 —1.80 —2.71 —2.28 261
N16I —854 42.0 - —3.94 —433 —473 1.49
N16M —87.0 43.3 435 —4.07 —43.7 —427 1.49
N16Ih —86.8 43.0 - —3.91 —43.8 —47.7 1.49
N16Mh —88.5 44.4 437 —4.00 —44.1 —43.1 1.49
BF36“ —88.1 44.0 4.68 —3.91 —442 —43.4 1.49

“Simulation presented in Ivanova & Nandez (2016).

total energy of BF36 by less than 1 per cent, and the total angular
momentum budget differs by less than 0.1 per cent.

We define how we have calculated the various energy components
within this work. Within PHANTOM, and most other SPH codes, each
particle i has a mass m;, a density p;, a specific internal energy u;,
and a specific gravitational potential energy ¢;, along with position
and velocity vectors, x; and v;. The total gravitational potential
energy is calculated as

Epu =Y _ mi¢, )

which sums the potential energies of each particle in the simulation.
We determine the thermal and radiation energies in the tabulated
EoS simulations as follows:

3 kgT;
Etherm = iy ’ 3
" IZm 2 pimy 3)
aT}
Eq = m; : s (4)
2"

where kg A~ 1.38 x 10719 erg K~! is Boltzmann’s constant, T} is the
temperature of the particle, i, is the mean molecular weight of the
particle, and my ~ 1.67 x 1072* g is the mass of a hydrogen atom.

The total recombination energy reservoir available in the star can
be calculated by performing the following sum:

Erec = Z Ei:reCa (5)

where the recombination energy of a single-particle Ej, ., is given
by

Y
Ejee = m;Np (XXHIIXI(-)] + Z [X]E)[e (XHen + Xtem) + X].l[exHem]> s
(6)

where m; is the mass of the particle, No = 6.02 x 10%* mol™!
is Avogadro’s number, X and Y are the hydrogen and helium
mass fractions of the SPH particle, xy, is the fraction of ionized
hydrogen, and xy.; and xp., are the fractions of singly and
doubly ionized helium, respectively. x} = 13.6 eV is the ionization
energy of neutral hydrogen and xj}, = 26.4¢eV and x},, = 54.4eV
are the ionization energies of neutral and singly ionized helium,
respectively. Here, we neglect the contributions of elements heavier
than helium, as these contributions will be small. The quantities
m;NaX and im,-NAY estimate the number of atoms of hydrogen
and helium that are present within one SPH particle.

The orbital energy is determined using the same method as
Nandez et al. (2015). That is, we calculate

1 RL RL
Eot = 5 | nlvn _v2|2+IZmi¢i —Zj:m_,-qb,- ‘-ijmwk 2,

(M

where © = MiM,/(M, + M,) is the reduced mass of the binary
system and v, and v, are the velocity vectors of the two core
particles. The second term in equation (7) expresses the total
gravitational potential energy of the system by summing over all
particles i, while the third and fourth terms subtract the components
relating to the gravitational attraction of particles within both Roche
lobes (summing over the particles in RL,, index j, and the particles in
RL,, with index k). The remainder is the portion of the gravitational
potential energy, which contributes to the orbital energy.

We calculate the binding energy of our star by summing the
thermal, radiation, and gravitational potential energies of the star in
isolation:

Evin = Etherm + Eraa + Epol- (8)

Note that we do not include the recombination energy. In the ideal
gas EoS simulations, we calculate the binding energy without the
radiation pressure term, as our simulations do not include it.

Both the gravitational potential energy and the sum of thermal
and radiation energies of our N16M primary red giant differ by
about 1 per cent from the primary star used in BF36. The largest
disparity comes from the approximately 7 per cent difference in the
recombination energy term. This can potentially be explained by the
fact that we assigned the same hydrogen and helium mass fractions
to all of our SPH particles, while Ivanova & Nandez (2016) used
the abundances of their input MESA profile to assign different H and
He mass fractions to each of their particles.

Finally, the orbital energy in our simulation is larger than for the
BF36 simulation of Nandez & Ivanova (2016) by approximately
4 per cent. This is likely due to the fact that our star stabilizes at
a slightly larger radius. In conclusion, we can state that the initial
conditions of our N16M simulation are sufficiently similar to those
of the BF36 model to enable the comparison of key quantities.

3.2 The orbital separation evolution

The orbital evolution for our simulations can be seen in the top
panels of Fig. 2, where the left-hand and right-hand columns are for
the P12 and N16 simulations, respectively. The blue lines in both
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Figure 2. Top row: orbital separation of the two-point mass particles. Bottom row: evolution of the bound mass in each simulation. In the legend, the subscripts
refer to the criterion used to determine if a particle was unbound. The subscripts P, K, U, T, and R refer to potential, kinetic, total internal, thermal, and radiation
energies, respectively. That is, for the subscript PK, the mass is unbound if the sum of its potential and kinetic energies are positive. Left-hand column: P12
simulations. Right-hand column: N16 simulations. The blue lines refer to simulations with the ideal EoS, and the red lines to simulations with the tabulated
EoS. In the case of the ideal gas, the thermal and internal energies are the same (that is, the subscripts U and T refer to the same energy).

columns correspond to simulations utilizing the ideal EoS, while
the red lines pertain to the tabulated EoS simulations.

By examining Fig. 2, we see that, in both simulation setups,
the orbital evolution is relatively unaffected by the choice of EoS.
Table 3 gives values for the orbital separations just after the inspiral
and at the end of the simulations. In the P12I and P12M simulations,
the orbital separations 50 d after the end of the inspiral are 18.8 and
18.6R, respectively, while for the N16I and N16M simulations, the
separations are 0.60 and 0.58R, respectively. Indeed, by the end of
the simulations, N16I and N16M simulations have almost identical
orbital separations of 0.51 and 0.49R,, respectively, while the P121
final separation is somewhat smaller than the P12M simulation (12.5
and 14.5R, respectively).? The slight variations could easily be due
to the fact that the initial stellar structures have stabilised at slightly

2We note that all separations attained by the N16 simulations are so small
that if the companion were a main-sequence star, it would fill its Roche
lobe and likely result in a merger even if the common envelope were ejected
completely.
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different radii with the different equations of state. This suggests
that the amount of orbital energy deposited into the envelope during
the dynamic inspiral is independent of the EoS. We conclude that
any extra unbinding that occurs with the tabulated EoS is not caused
by the input of extra orbital energy.

3.3 The evolution of the unbound mass

The strictest criterion for determining whether or not mass is
unbound from the system is to use the threshold Ey, + Epo >
0. Assuming that unbound SPH gas particles are not trapped below
a layer of bound particles to which they can transfer kinetic energy,
this means that the unbound material will never return to interact
with the compact binary system. Some portion of the internal energy
of the gas particle can also be included in the energy balance, which
results in a greater amount of unbound mass (see the comparison
carried out by laconi et al. 2017).

For the simulations using an ideal gas EoS, the internal energy
of the gas corresponds exactly to its thermal energy, that is,
the disordered kinetic energy of the gas particles (rather than
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Table 3. We present the bound mass in the envelope of the primary at two times during the simulations and for different definitions of unbound mass. If
the energy of the particle is negative, it is marked as bound to the system. The subscripts ‘P’, ‘K’, ‘U’, ‘T’, and ‘R’, refer to potential, kinetic, total internal,
thermal, and radiation energies, respectively, which are summed to give the particle energy relevant to unbinding. Ey 1o and Jy o are the total energy and
angular momentum of the unbound material, respectively, when summing the kinetic, potential, and thermal energies to determine unbound material. Eqy, is the
orbital energy of the binary system. Columns ¢ and a refer to the time from the beginning of the simulation and orbital separation at which these measurements
were taken. All masses are given as percentages of the total gas mass in their simulations (which are given in Table 1).

Model My px My pru My pxT My prTR Ey ot Jutot Eorp t a
(%) (%) (%) (%) (10% erg) (107 erg) (10* erg) (d) (Ro)
Values at 50 d after the end of their dynamical inspiral
PI121 84 84 — — 0.15 0.54 —-3.76 300 18.8
PI2M 69 6.1 65 61 0.52 0.99 —3.31 359 18.6
Nl16l 93 93 — — 1.11 0.42 —59.1 157 0.60
N16M 92 76 90 90 1.76 0.51 —59.5 158 0.58
N16lh 37 81 — — 1.49 0.59 —54.3 157 0.47
N16Mh 55 26 50 50 7.19 0.91 —59.7 138 0.43
Values at the end of the simulations
P121 41 37 — - 0.39 1.51 —3.68 1843 12.5
PI2M 12 2.0 6.1 2.0 1.24 2.05 -3.19 1843 14.5
N16I 92 93 — - 1.09 0.41 —52.8 922 0.51
N16M 63 1.4 45 43 2.72 1.24 —-50.0 922 0.49
N16Ih 43 37 — - 2.09 1.79 —524 553 0.37
N16Mh 0.2 0.0 <0.1 <0.1 15.8 1.50 —61.1 553 0.44

the bulk motion of the gas). Therefore, the total gas energy,
comprising kinetic, potential, and thermal energies can be used
to determine whether the gas is bound or unbound. However, in
those simulations that use the tabulated EoS, the internal energy
of the gas does not only include the thermal energy, but also
the energy associated with radiation and that associated with the
possible recombination of hydrogen, helium, and metals. While the
gas remains ionized, the recombination energy is latent, and does not
affect the system’s dynamics. Therefore, including recombination
energy in the internal energy overestimates the amount of unbound
gas. On the other hand, when expanding envelope gas recom-
bines, the latent energy is released and immediately thermalized,
therefore contributing to the thermal energy of the gas. For fully
recombined gas, using the internal energy of the gas is therefore
equivalent to using the thermal and radiation energies in ideal gas
simulations.

Because of the complexities of determining whether SPH parti-
cles are unbound and the difficulties in comparing simulations using
different equations of state, we calculate the amount of unbound gas
using four criteria. These are (i) the strict mechanical limit, including
only kinetic and potential energies; (ii) the sum of kinetic, potential,
and thermal energies (wWith uherm = 3kgT/2pumy, where kg is the
Boltzmann constant, 7 is the temperature, 4 is the mean molecular
weight, and my is the mass of a hydrogen atom); (iii) the sum of
kinetic, potential, thermal, and radiation energies (ierm + aT*/p,
where a is the radiation constant and p is the density); and (iv) the
sum of kinetic, potential, and gas internal energy (which includes
the latent recombination energy term in the case of the tabulated
EoS). For the two simulations using the ideal gas EoS, we can only
use the first two criteria [(criteria (ii) and (iv) are actually identical,
and the simulations do not include the effects of radiation pressure,
hence we cannot use criterion iii)].

Values of the bound masses calculated using these criteria are
presented in Table 3. The ideal gas simulations consistently have
similar or more mass remaining bound to the system, both 50d
after the inspiral and at the end of the simulations. We note that, at
the end of the P12M simulation, only 12 per cent of the gaseous

common envelope is still bound, while for the N16M simulation 63
per cent is still bound [(note that these two figures are upper limits
because we are using the strictest criterion (i)]. In contrast, the
ideal gas EoS counterpart simulations P12I and N16I have 41 and
92 per cent of the envelope still bound, respectively. The difference
between the two equations of state is considerably starker at the
end of the simulations (Table 3). This suggests that the majority of
the unbinding that occurs during the inspiral is not influenced by
recombination energy, and is instead a direct result of the injection
of orbital energy, while further unbinding after the fast inspiral is
aided by the release of recombination energy.

We plot the evolution of the bound mass, using all four criteria
in the lower two panels of Fig. 2. We note two interesting features.
First, when using the tabulated EoS, the mass is unbound at a much
greater rate than when using the ideal EoS. This is true regardless
of which criterion we use to define the bound mass. Secondly, as
expected, the unbinding rate when using the tabulated EoS is by
far the largest if the entire internal energy budget is used in the
definition. However, this implies that all gas fully recombines, and
that the entire recombination energy budget is used to unbind the
gas.

The P12M simulation unbinds almost the entire envelope by the
time at which we end it, no matter what the definition of the bound
mass (see the red lines in the bottom left-hand panel of Fig. 2). On
the other hand, the N16M simulation only unbinds a large fraction
of the envelope, if we use the full internal energy expression, which
includes the latent recombination energy. If we use any of the other
three definitions, the unbinding is only marginally larger than when
using an ideal gas EoS.

Nandez & Ivanova (2016) concluded that the entire envelope is
unbound. To determine whether gas is unbound, they used the sum
of gas kinetic, potential, and internal energies (our fourth criterion),
which includes the latent recombination energy of ionized gas. As
we have described above, this criterion overestimates the fraction
of unbound gas.

Below we delve further into possible reasons why different
criteria lead to such difference in the amount of unbound gas.

MNRAS 494, 5333-5349 (2020)
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3.4 Simulations with smaller softening length

The softening length dictates the strength of the interaction between
the gas particles and the cores, introducing a second parameter,
after the resolution, that may alter results. Unfortunately, the large
wall clock times of these simulations have precluded a proper
convergence test. However, here we compare our N16I and N16M
simulations, using a softening length /5 = 1R, with simulations
using hgore = 0.5R5. We call the small-Agop simulations N161h and
N16Mh (see Table 1).

The ideal gas, smaller softening length simulation N161h, unbinds
6 per cent more gas by 50d after the end of the dynamic inspirals
compared to the corresponding simulation with a larger softening
length (N161) and 49 per cent more by the end of the simulation. In
the case of simulations using a tabulated EoS, the small softening
length simulation, N16Mh, unbinds approximately 37 per cent
more by 50 d after inspiral than the corresponding large softening
length simulation (N16M) and 63 per cent more by the end of the
simulation.

We suggest two reasons for this dramatic difference. Shortly after
the dynamic inspiral during the N16Ih and N16Mh simulations, the
binary acquires a 10kms~' velocity in the positive z-direction,
while concomitantly a plume of gas moves in the negative z-
direction (linear momentum, energy, and angular momentum in
these simulations are conserved to better than the 3 per cent
level). We attribute this to initial asymmetries in the SPH particle
distribution about the orbital plane, which become exaggerated in
the stronger gas—core interaction of the smaller softening length
simulations. The displacement of the binary from the orbital plane
and concomitant movement of some of the gas in the opposite
direction reduces the gravitational potential energy of the system,
leading to an increase in the unbound mass.

A second effect is that the more rapid expansion of the gas in the
N16Mh simulation compared to the N16M one leads to a release of
recombination energy earlier on, leading to the faster unbinding we
observe. In fact, even in simulation N16M, with a larger softening
length, the unbound mass using any of the definitions is still
decreasing by the end of the simulation, implying that more, or
all, of the envelope gas could be unbound if the simulation were
continued for a longer time.

We note finally an unresolved issue that was already described
by Reichardt et al. (2019). In both the simulations with the large
and small softening lengths, the gas particles directly around the
sinks have SPH smoothing lengths of approximately 0.2 Rg. This
is smaller than both the large- and small-tested softening lengths of
the cores (1 and 0.5Rg, respectively), implying that the softening
lengths are resolved by the gas in both cases. This said, the smaller
softening length is significantly less resolved and this may have an
impact on the simulations. More simulations are needed to test this
effect.

In conclusion, the smaller softening length leads to a faster
interaction and earlier unbinding. However, if simulations were
evolved for longer, it does appear that, independent of the softening
length, recombination energy would lead to unbinding the great
majority of the envelope.

4 THE CAUSE AND EFFECT RELATIONSHIP
BETWEEN RECOMBINATION ENERGY AND
ENVELOPE UNBINDING

To determine whether or not it is the released recombination energy
that is responsible for the extra amount of unbound gas, we here
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determine the locations of gas unbinding and different ionization
stages of hydrogen and helium. We can then use this information to
ascertain the amount of recombination energy being released, and
check whether or not this released energy is spatially coincident
with newly unbound gas.

4.1 Where is gas recombining?

To determine the ionization state of hydrogen and helium as a
function of envelope depth and of time we use the Saha equation:

Mipife 2841 {_Em —61} ©)

n; - A 8i kBT

where n;, g;, and €; are the number density, degeneracy of states,
and ionization energy of ions in the ith state of ionization, re-
spectively, n. is the number density of electrons. The parameter
A = h/QmmckpT), where h is Planck’s constant, m, is the mass
of an electron, kg is Boltzmann’s constant, and 7'is the temperature.
We can track the recombination of both hydrogen and helium by
simultaneously solving three Saha equations for HI, Hel, and He 11.
By tracking the ionization fractions of both hydrogen and helium,
we can begin to understand whether it is hydrogen or helium
recombination energy that is available for unbinding the envelope.
Fig. 3 shows the radial distributions of H1l and He Il in time in both
the P12M and N16M simulations. Below the band of Hell in the
bottom panels of Fig. 3, the helium is entirely in the form of He 111,
and above the band, it has fully recombined to neutral helium. To
create these plots, we have calculated the ionization fractions for
each SPH particle in the simulation, and then averaged the resulting
values in radial bins emanating from the core of the primary. We
can clearly see that, in both systems, hydrogen begins to recombine
in the envelope shortly after the beginning of the dynamic inspiral.
However, as could be expected, the helium recombination zones do
differ between the simulations. In the P12M simulation, the initial
star has some helium recombination occurring near the outer layers,
while the helium in the N16M star is initially completely in the form
of He111. The N16M simulation has a short period of mass transfer
before the fast inspiral, during which some gas particles are ejected
from the system. In this ejected gas, He Il quickly recombines to
He11. In both simulations, recombination fronts of both hydrogen
and helium form. After forming in the ejecta from the dynamic
inspiral, these fronts remain at fairly constant radii from the central
binary. Counter to some expectations, the zones do not appear to
move inwards. Rather, gas flows outwards from the central binary
through these zones, recombining and releasing energy as it moves
through the front. This release of recombination energy will be
addressed in Section 4.3.

4.2 Where is the gas being unbound?

Next we compared the locations where particles are being unbound
with the recombination fronts seen in Section 4.1. We call an SPH
particle unbound by using criterion (ii), which is equivalent to
criterion (iv) in the ideal gas EoS case (see Section 3.3). Criterion
(ii) includes only the mechanical energy and the thermal portion of
the internal energy. We do not include radiation energy, as our ideal
EoS does not include the effects of radiation pressure.

Fig. 4 shows the radial locations at which particles are being
unbound in the simulations. These particles were then tracked
backwards in time to determine the time and location at which they
were last bound to the system. The bottom panels of these plots
show the cumulative amount of permanently unbound material in
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Figure 3. The ionization stages of H and He in the P12M (left-hand column) and N16M simulations (right-hand column), as a function of radius and time.
Top row: radially averaged amount of H1I as a fraction of the total amount of H. Bottom row: radially averaged amount of He II as a fraction of the total amount
of He. The radii are centred on the core of the primary star. The black line depicts the distance of the companion from the core of the primary.

the simulations. The common feature between the two panels of
Fig. 4 is that all the simulations display a strong unbinding event
at the beginning of the fast inspiral, which is driven primarily by
the transfer of orbital energy into the gas. This particular feature
shows up in all simulations of the common envelope, regardless of
which EoS is being used. It is visible in Fig. 2, as a drop in the
bound mass during the fast inspiral. However, in both the P12I and
N16I simulations, the unbinding after the inspiral is quite weak,
being limited primarily to the action of shocks propagating through
the material. In comparison, both the P12M and N16M simulation
display copious unbinding after the inspiral.

To determine the actual cause of the extra unbinding observed in
the simulations that use our tabulated EoS, we compare the location
where particles become unbound to the recombination zones of
hydrogen and helium. In Fig. 5, we show the significant zones of
partial ionization for both hydrogen and helium from Fig. 3. We
overplot the red points from Fig. 4 in greyscale. This reveals that
aside from the initial unbinding at the hand of orbital energy, the
gas unbinding coincides with areas where hydrogen and helium are
recombining.

In the P12M simulation (left-hand panel of Fig. 5), the unbinding
of particles is spatially coincident with the base of the hydrogen
recombination zone and both helium recombination zones. How-
ever, for the N16M simulation (right-hand panel of Fig. 5), un-

binding occurs primarily in, or just above, the He Il recombination
zone.

Soker et al. (2018) have argued that much of the hydrogen
recombination energy is lost from the system through radiation and
convection. Even if this were true, our simulations indicate that, for
these setups, unbinding is promoted more by the recombination of
helium than of hydrogen. Since the helium recombination zone is
at a greater depth in the star, the energy released there is less likely
to escape. Much of the gas experiencing hydrogen recombination
has already been unbound at an earlier stage in these simulations,
when it was deeper in the envelope of the primary. We suggest
that for these simulations, it is the helium recombination energy
that more strongly affects the unbinding of gas from the binary
system.

4.3 Where is recombination energy being released?

In addition to knowing where the recombination fronts are, we
can also calculate, using equation (6), where recombination energy
is being released. Once again we radially bin the particles, and
determine the change in recombination energy from the last code
output. As our simulations have different lengths of time between
code dumps, we divide the recombination energy delivered by the
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black, we overplot the locations and times at which particles are permanently unbound, that is, the red dots in Fig. 4. The coloured zones represent the partially

ionized regions for H and He, as seen in Fig. 3.

time between dumps, resulting in a rate of recombination energy
release. These profiles are shown in Fig. 6, where red areas show
positive values, i.e. a net release of recombination energy, and
blue areas represent negative values, i.e. particles being ionized.
The lower panels of Fig. 6 show the net rate of recombination
energy release at each moment of the simulation. The release of
recombination energy per second is approximately an order of
magnitude larger in the N16M simulation than the P12M simulation.
This is likely due to the fact that there is more gas mass in the N16
simulations, and the ejection of gas during the inspiral is more rapid,
causing gas to recombine more rapidly.

In Fig. 6, we see that, immediately after the inspiral, a clear
boundary forms between areas where recombination energy is
being released (red) and areas where it is being captured (blue)
located at approximately the original orbital radius. This capture of
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recombination energy is due to the ionization of He II. It shows that
gas is ionized initially close to the companion, from which shocks
emanate moving outwards. In both simulations, this feature begins
to dissipate quickly, reaching a point when the gas is no longer
undergoing much ionization, and recombination is only happening
at larger radii.

There is a large release of recombination energy associated with
the fast inspiral of the companion and the subsequent expansion of
the envelope layers. In the P12M simulation, some of this energy
release occurs inside the atmosphere of the giant star, just below
the orbit of the companion. This may be due to the expansion of
the innermost layers in response to the expansion of the layers
above. This feature does not occur in the N16M simulation, which
undergoes a less sudden inspiral due to its larger initial orbital
separation. Further, the N16M star comprises only He 111, hence the
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Figure 6. Recombination energy release rate in the P12M (left-hand panel) and N16M (right-hand panel) simulations, determined by plotting the change in
recombination energy for each gas particle from one code output to the next. Positive numbers on the colour bar show that there has been a net decrease in the
recombination energy of the gas, hence the energy has been released. The bottom panel is the total rate of recombination energy release at each time in the

simulation.

helium recombination is less sensitive to small changes in the stellar
structure than the P12M star. However, after the initial inspiral, in
both the P12M and N16M simulations, the recombination energy is
released primarily above the orbit of the companion as the envelope
expands and cools.

4.4 Is the gas being unbound because of recombination
energy?

Even if we can confirm that the tabulated EoS simulations are un-
binding more material, we cannot yet confirm that the recombination
energy is the trigger for this extra ejection. To investigate this, in
Fig. 7, we again plot the recombination energy being released in
the simulation, and overplot in grayscale the particles that became
unbound and remain unbound for the rest of the simulation, as was
shown in Fig. 4.

Looking at the left-hand panel of Fig. 7, we can see that there
are a couple of strong events where gas is being ionized (rendered
in blue), suggesting that a shock is moving through the material.
These are sites where we would expect particles to be unbound even
without recombination, due to the increase in thermal energy of the
gas as the shock moves through it.

The release of recombination energy happens when the gas is
expanding and cooling, as can occur in the wake of shocks. Without
the extra recombination energy input, these gas particles would
likely not be unbound in great numbers. This is observed in the left-
hand panel of Fig. 4, where the release of recombination energy for
the P12M simulation enhances particle unbinding in these locations
when compared to the P12I simulation. This suggests that the input
of energy through shocks and recombination behind the shock may
help to unbind the envelope.

On the other hand, the unbinding of particles in the N16M
simulation aligns very closely with the strong release of helium
recombination energy, as is presented in the right-hand panel of
Fig. 7. Contrasting with the unbinding that takes place in the N16I
simulation (visible in Fig. 4), where there is no extra input of energy,
the particles are unbound almost exclusively during the inspiral.

Clearly, the helium recombination energy plays a strong role in
unbinding this portion of the envelope.

It appears that helium recombination energy may be sufficient to
account for the extra unbinding in the tabulated EoS simulations. In
simulation P12M, helium recombination has released 3.4 x 10% erg
by 50d after the inspiral (Table 4). At the same time in the P12I
simulation, 84 per cent of the envelope remains bound. If we were
to add the released helium recombination energy to maximize the
number of unbound particles [(i.e. to raise the energy of the least
bound particles to zero by criterion (ii)], we could reduce the bound
envelope to 27 per cent of the gas mass, which is significantly
smaller than the 65 per cent in the P12M simulation (Table 3). A
similar calculation can be carried out for the N16 simulations. This
would leave a bound envelope of 78 per cent, which again is lower
than the approximately 90 per cent that is actually bound in the
N16M simulation at the same point. In both cases, this maximum
amount of unbinding is effectively impossible, as it implies that
only the least bound particles are supplied with precisely enough
energy to unbind them. However, it does show that the helium
recombination can supply enough energy to account for the extra
unbinding that takes place in the simulations that use our tabulated
EoS.

We note that, by the same reasoning, hydrogen recombination
also delivers enough energy to fully account for the envelope
unbinding. However, because of the stratification of the recom-
bination zones, gas flowing through the hydrogen recombination
zone would be already unbound by having passed through the
helium recombination zone, and thus would likely have received
the necessary energy to unbind it.

5 THE FRACTION OF RECOMBINATION
ENERGY THAT CAN DO WORK

In the previous sections, we have demonstrated that the inclusion of
recombination energy in our simulations has caused an additional
amount of envelope to become unbound. Our simulations are
adiabatic and any released recombination photons are immediately
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Figure 7. Released recombination energy in the N16M simulation from Fig. 6. The grey dots again represent the newly, permanently unbound particles from

Fig. 4.

Table 4. Hydrogen and helium recombination energy (AEX, and A E!)

released by 50-d post-inspiral (#,) and the end of the simulation ().

Model tin AER,  AEH ff AER . AE[E,
(d)  (10%erg) (10%erg) (d) (10*erg) (10*erg)
PI2M 359 0.23 0.34 1843 0.71 0.41
N16M 158 0.09 0.45 922 0.56 1.61
NI16Mh 138 0.15 1.20 553 131 1.70

thermalized into the gas, thus the energy is allowed to do work.
Here, we estimate the opacity of the gas in post-processing, and
use it to calculate how much of the recombination energy would
be radiated away, following the approach of Grichener et al. (2018)
and Soker et al. (2018). However, we use quantities from our 3D
simulations rather than relying on the 1D approach as they did.

Grichener et al. (2018) and Soker et al. (2018) expressed the
photon diffusion time out of a recombination zone as

3tAR
Laier = P (10)

where 7 is the optical depth outwards from the recombination zone,
AR is the depth of the recombination zone below the photosphere,
and c is the speed of light. Soker et al. (2018) also employed
the convective time-scale, which is defined instead as the time-
scale over which recombination photons may be removed from the
common envelope by convection alone. Our simulations do not
correctly capture the effects of convection, so we take instead the
minimum possible convection time-scale, given by

Rphol dr
tmin;conv = / (1 1)
R

e(r)’
where Ry is the radial location of the photosphere, R is the radial
location of the partial ionization zone, and c¢(r) is the local sound
speed. Soker et al. (2018) then defined the energy transport time-
scale as the minimum of the photon diffusion and convective time-
scales:

lirans = min(tdiffa tmin;conv)- (12)

The third relevant time-scale is the envelope expansion time-scale,
which is approximately of the order of the orbital time-scale at the
surface of the giant:

2nR 1

fop N 2 (13)
ep
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where R, is the radius of the primary star and vy, is the Keplerian
velocity at this radius. This time-scale is important because, if the
envelope expands on a similar time-scale to fa,s, then more of
the recombination energy will be utilized in the expansion of the
envelope.

Sabach et al. (2017), Grichener et al. (2018), and Soker et al.
(2018) used these time-scales to estimate the fraction of the
recombination energy, f,, that can be used to accelerate the gas:

Tirans
— . 14
fy = (ttrans + texp) ( )

The diffusion time-scale increases as the star expands; hence, f,
typically decreases over the course of the interaction. Grichener
etal. (2018) and Soker et al. (2018) continued this line of reasoning,
using a 1D simulation calculated with the stellar structure code
MESA. They evolved a 2-My, star until it was on the AGB, when
it had a mass of 1.75Mg and a radius of 250R. They then
emulated a common envelope inspiral by injecting energy into
the envelope, causing it to inflate from 250 to about 520R. This
expansion happens over the course of 1.7 yr, which they adopted as
the envelope expansion time-scale, #..,. They discussed that from
the zones where hydrogen ionization is at about 30 per cent, the
photon diffusion time 745 < 0.5 yr. With those values, Soker et al.
(2018) estimated that, in their case, f,, < 0.2.

In what follows, we use our simulations to make our own
assessment of whether recombination energy unbinds the envelope,
and whether it is realistic to use it to do work, as is done in codes
with no radiation transport.

5.1 The determination of the opacity

Alongside the EOS module, MESA also has an opacity module, KAP,
which returns values of «, given an input density and temperature.
Like the EoS data, the opacity data are drawn from several different
sources, combining electron conduction, and radiative opacities.
The electron conduction opacities are given primarily by Cassisi
et al. (2007), while the radiative opacities are given by tables from
Ferguson et al. (2005, for 2.7 > log T > 4.5) and Iglesias & Rogers
(1993, 1996, for 3.75 > log T > 8.7). For temperatures log 7' > 8.7,
Compton scattering dominates the opacity and is calculated with
the equations of Buchler & Yueh (1976), while the low-temperature
tables of Ferguson et al. (2005) include the effects of molecules and
grains on the opacity.
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Figure 8. The opacity « as a function of temperature and density from the
MESA opacity module. We plot the contours relative to the electron scattering
opacity ko = 0.2(1 + X) cm? g‘l, which is dominant in low density, low
temperature, and fully ionized gases. These contours are plotted to reflect
the plot of opacity given in fig. 3 of Paxton et al. (2011b).

The MESA opacity tables have been formatted so as to be able to be
queried by PHANTOM, with inputs of X, Z, p, and 7, the last of which
is an output from the EoS itself. The results of querying the opacity
tables through PHANTOM are shown in Fig. 8, reproducing fig. 3 of
Paxton et al. (2011b). In principle, this can be used to estimate the
photon diffusion time-scale using equation (10), similarly to what
was done by Sabach et al. (2017), which requires the optical depth
between the recombination zone and the photosphere.

While it would be more appropriate to calculate, during the
simulations, the photosphere of the gas, as well as the optical depth
of the location of SPH particles where recombination energy is being
released, neither of these tasks are trivial. For this reason, we use the
opacity data purely in our analysis of the tabulated EoS simulations,
emphasising that it was not used during the simulations.

5.2 The determination of time-scales

The optical depth within the envelope is determined by performing
the integration

T = /"2 k(r)p(r)dr, (15)

where 7 is the optical depth, x is the opacity, p is the density,
and r; and r, are the locations between which the optical depth
is to be calculated. We find the photosphere by determining the
location where the optical depth T ~ 5, when integrating in from
the outside. The time-scale of envelope expansion is determined
by measuring the size of the photosphere averaged over the three
axes. We find that the envelope approximately doubles in size within
about 50 d after the beginning of the fast inspiral, in both the P12M
and N16M simulations. Since the radial locations of recombination
zones were already determined in Section 4.1, we have all the
necessary information to estimate f,,, the fraction of recombination
energy that can be used to do work, as defined in equation (14)
(Soker et al. 2018).

Figs 9(a) and (b) show profiles for the P12M and N16M
simulations, respectively. These profiles radiate from the centre
of mass of the simulation, at 50d after the end of the dynamic
inspiral, in the x- and z-directions (left- and right-hand columns,
respectively). The top row shows ionization fractions for hydrogen
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and helium, the second row gives values of k from the MESA opacity
tables, the third row is a comparison between the photon diffusion
time-scale fgi and the minimum convective time-scale, fmin: conv
and the bottom row shows f,,. As mentioned previously, we used
an estimated envelope expansion time-scale of about 50 d for both
simulations.

We can see from the bottom row that, for much of the inner
portion of the simulation, the majority of the released radiation can
be used in helping to eject the envelope. There are a couple of effects
to consider here. First, our simulations do not display convection,
so we must use the minimum convective time-scale as our estimate
for how much radiation can be removed. That is, we must assume
that convection is able to remove the recombination energy at the
maximum rate, to obtain a lower limit on how much recombination
energy may be used for envelope expansion. But, as was explained
by Ivanova (2018), convection cells in giant stars typically operate
at highly subsonic velocities, while the minimum convective time-
scale implies that convection cells are moving at approximately the
local sound speed. Hence, we can say that either the convective
time-scale is longer in real systems, or as stated by Ivanova (2018),
some energy would be used to accelerate the convection cells to
nearly sonic velocities. This suggests that f, may actually be higher
than is shown in Figs 9(a) and (b), at least in the inner regions before
the diffusion time-scale takes over.

In both simulations, the recombination zone for hydrogen approx-
imately coincides with the zone where f,, begins to drop sharply. This
is due to the fact that the opacity plummets when the gas particles
are fully recombined. Given that the hydrogen recombination zone
straddles the region where f,, drops from about 0.95 to 0, we crudely
estimate that only about half of the hydrogen recombination energy
is usable, that is, f,, &~ 0.5 for hydrogen. This estimation suggests
that only a half of the hydrogen recombination energy may be used
to expand the envelope.

On the other hand, there is a strong peak in the opacity, which
aligns with the partial ionization zones of Hell and Helll. The
picture is much clearer for helium. In the zones where helium
recombination energy is being released, f, ~ 0.95. This value is
purely driven by the minimum convective time-scale. Therefore,
we estimate that more than 0.95 of released helium recombi-
nation energy can be utilized to eject the envelope, particularly
if the convective time-scale is longer than we have calculated
here.

6 POSSIBLE DUSTY SHELL FORMATION

In Fig. 10, we plot a rendering of the opacity, «, at the end of the
P12M and N16M simulations (f = 5.05 and 2.52 yr, respectively). In
the P12M simulation, we find that the central, high-opacity envelope
is surrounded by a very low opacity shell, just outside of the
black contour, where all hydrogen is fully recombined. However, an
interesting feature is also visible. Just beyond this low-opacity shell,
a higher opacity shell begins to develop from about t = 4 yr into
the P12M simulation and 7 = 2 yr into the N16M simulation. These
times correspond to about 3 and 1.6 yr after the dynamic inspirals of
the P12M and N16M simulations, respectively. We expect that these
shells would continue to develop if our simulations were continued
for longer.

At the end of the P12M simulation, we estimate that there is
0.19 Mg outside the neutral hydrogen contour (visible in the top
panels of Fig. 10). Of this 0.19 My, approximately 0.06 M, resides
in the high-opacity shell. In the N16M simulation (bottom panels
of Fig. 10), there are 0.14 Mg, outside the neutral hydrogen contour,
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Figure 9. Profiles of the P12M and N16M simulations, which is 50 d after the end of their respective fast inspirals. Left-hand columns: Profiles are taken in
the positive x-direction from the primary’s core. Right-hand columns: Profiles are taken in the positive z-direction from the primary’s core. First row: ionization
fractions for hydrogen (H 11/H) and helium (He 11/He and He 111/He). Second row: « returned from the MESA opacity tables. Third row: comparison between the
photon diffusion time-scale, #gif, and the minimum convective time-scale, #min; conv. Fourth row: approximately derived profile for f,,. Each point represents

one particle, which is joined to help see the trends in the data.

0.08 Mg of which is beginning to form a similar high-opacity shell.
The high-opacity shells extend between ~20000 and ~26 000R
(~93-120 au) from the binary by the end of the P12M simulation,
and between ~18 000 and ~21 000R (~83-97 au) from the binary
by the end of the N16M simulation.

The physical reason for the increase in opacity is that dust begins
to form in the low-temperature regions near the outer boundary of
the expanding gas. In particular, the opacity tables by Ferguson et al.
(2005) supply, for a certain combination of temperature and density,
an average opacity calculated from several types of molecules and
grains.

In our simulations, we do not actually include the effects of
dust, therefore the dynamics and thermodynamics of the expanding
envelope are not affected by the formation of dust. The high-opacity
regions are instead inferred from the gas temperature, density, and
composition in post-processing of the simulations (similarly to what
was done by laconi et al. 2019).

Two interesting possibilities are opened by this discovery. The
first is that whatever energy leaks out of the photosphere (which in
simulations like ours is located just outside the hydrogen recom-
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bination zone) will likely be intercepted by the opaque shell and
possibly result in accelerating it. The ‘dusty’ region only contains a
fraction of the envelope gas, but this fraction progressively increases
as the simulation continues.

Secondly, the morphology of the high-opacity shell is not
spherical, with regions of much lower opacity forming radiation
holes. Curiously, the P12M simulation has lower opacity regions at
the poles, while the N16M simulation has lower opacity regions at
the equator. If radiation is intercepted by this high-opacity material
and does accelerate it, it will do so unevenly, likely partaking in the
shaping of the envelope. This conclusion may be very relevant for
planetary nebula formation and shaping and add to the complex-
ity of shaping post-common envelope planetary nebulae already
studied by Garcia-Segura, Ricker & Taam (2018) and Frank et al.
(2018).

7 SUMMARY AND CONCLUSIONS

We have presented a comparison of simulations carried out with
ideal gas or tabulated equations of state to quantify the effects of
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Figure 10. Rendering of « in the xy-plane (left-hand panel) and in the xy-plane (right-hand panel) of the P12M simulation (top panel) and the N16M simulation
(bottom panel). The snapshots are taken at the end of the simulations at = 5.05 and 2.52 yr for the P12M and N16M simulations, respectively. The black

contour shows the boundary outside of which all hydrogen has recombined.

recombination energy on the common envelope binary interaction.
We have tested two different primary stars both of which were pre-
viously modelled. These simulations are still far from full radiation
transport models, but they offer valuable insight regardless. We
conclude the following:

(1) The final orbital separation is not influenced by the EoS
choice. We conclude that extra unbinding observed in simulations
that release recombination energy does not impact the orbital
inspiral. The orbital energy is typically injected earlier and at
smaller radii than where gas recombines, leaving the inspiral largely
unchanged. This conclusion is in line with what concluded by
Nandez & Ivanova (2016).

(ii) A far greater amount of envelope gas is unbound when our
tabulated EoS is used. This is more so for the 0.88-My giant
simulation, where effectively the entire envelope is unbound, than

for the 1.8 M one. The criterion adopted to determine whether gas
is unbound is important. We advocate the use of a criterion that
includes the thermal energy of the gas, but would suggest that a
pure mechanical energy criterion be always used as a comparison.
Like the simulations of Nandez et al. (2015) and of Nandez &
Ivanova (2016), all recombination energy is converted in work in
our adiabatic simulations.

(iii) The fraction of hydrogen recombination energy available to
unbind the envelope has been recently debated. We add incremental
(though not definitive) evidence that suggests that the amount of
hydrogen recombination energy available to do work should be of
the order of 50 per cent.

(iv) Helium recombination energy is very effective in unbinding
gas because virtually none of it can escape. This conclusion is
in line with the findings of Ivanova et al. (2015) that helium
recombination energy is efficiently used to do work and expand the
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envelope. For the case of our 1.8-Mg simulation, it is the helium
recombination energy that dominates the envelope unbinding, while
for our 0.88Mg, giant simulation helium contributes approximately
half of the recombination energy. We note that the amount of helium
recombination energy is proportional to the helium abundance
adopted (¥ = 0.3). The range of possible helium abundances
(~0.24-0.45) would result in a similar range in the amount
of available helium recombination energy. It is remarkable how
relatively similar stars exhibit substantially different behaviours.
This cautions us against generalizing these conclusions to other
intermediate-mass stars.

(v) Dustis observed to form in the remnants of common envelope
interactions (Nicholls et al. 2013). We confirm that in the outer
layers of expanding common envelopes the conditions are such that
dust opacity dominates. In both our simulations, we observe a region
of high opacity, which we interpret as a dusty shell with prominent
axisymmetric morphologies. This may indicate that a part of the
envelope could be ejected in a dust-driven wind, as also suggested
by Glanz & Perets (2018).

(vi) We further point out that the morphologies of the two high-
opacity shells are different for the two simulations, with the least
massive star exhibiting an equatorial, torus-like structure, while the
more massive star shows high opacity at the poles. It is likely that
any energy that crosses the photosphere will be captured within
this dusty shell, which contains a few tens of solar masses of gas,
and possibly be able to accelerate it. The difference in morphology
of the high-opacity shells in the two simulations indicates that the
nebulae deriving from the ejection of the common envelopes would
have different shapes.

The extension of any of these findings to different parameter
combinations (such as higher mass primaries or differing mass ra-
tios) should be treated with caution. The relatively small differences
between the two stars in this study, leading to substantial differences
in their behaviours is a testament to this. The study of Ivanova et al.
(2015) in 1D also shows how varying the rate and location of energy
deposition changes the outcome. While 3D models, such as ours,
can reproduce the inherent asymmetries in these systems, they rely
on the limited resolution chosen because of long-running times.
Further, the interaction between the companion (or the stellar core)
and the gas is simplified by the use of point masses and softened
potential. Just what effect this has on the energy deposition and the
reaction of the envelope has not been quantified.

Finally, we note that, besides recombination energy, there may
be other energy sources and sinks that have not yet been considered
nor taken into account by simulations. For example, the impact of
magnetic fields in redistributing energy in the envelope (Regds &
Tout 1995; Tocknell, De Marco & Wardle 2014), or the effect of
convection, which would redistribute energy and possibly lead to
its removal (Wilson & Nordhaus 2019).
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APPENDIX A: RESOLUTION TEST

We carried out the P12M simulation at higher resolution using
8 x 105 SPH particles to study the effect of resolution. This
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Figure A1. Comparison of orbital separation (left-hand panel) and bound mass (right-hand panel) for low-resolution (8 x 10* particles; blue) and high-
resolution (8 x 10° particles; red) P12M simulations. The bound mass labels are the same as Fig. 2.

simulation was executed using a slightly older version of PHANTOM
and a slightly less refined stellar stabilization method. We have not
repeated it with the updated code because of a large wall clock time.
We expect there to be negligible differences between outputs, but
we have none the less compared this high-resolution simulation to a
low-resolution simulation (8 x 10* SPH particles) carried out with
the same code version.

Fig. Al shows how the orbital separation and bound mass
evolve with time for these two resolutions. The evolution of the
bound mass, using our four criteria, remains within 10-20 per cent

within the first 500 d, after which resolution effects become larger.
This suggests that the extra unbinding observed in simulations,
including recombination energy is not a resolution effect, and that
the recombination energy is indeed being used to eject the envelope.
A 10-fold increase in SPH particle number (corresponding to
approximately a doubling of linear resolution) does not alter the
behaviour of our results and the conclusions of our study.
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