
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=unse20

Nuclear Science and Engineering

ISSN: 0029-5639 (Print) 1943-748X (Online) Journal homepage: https://www.tandfonline.com/loi/unse20

Ray Effect Mitigation for the Discrete Ordinates
Method Using Artificial Scattering

Martin Frank, Jonas Kusch, Thomas Camminady & Cory D. Hauck

To cite this article: Martin Frank, Jonas Kusch, Thomas Camminady & Cory D. Hauck (2020): Ray
Effect Mitigation for the Discrete Ordinates Method Using Artificial Scattering, Nuclear Science and
Engineering, DOI: 10.1080/00295639.2020.1730665

To link to this article:  https://doi.org/10.1080/00295639.2020.1730665

Published online: 17 Mar 2020.

Submit your article to this journal 

Article views: 46

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=unse20
https://www.tandfonline.com/loi/unse20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/00295639.2020.1730665
https://doi.org/10.1080/00295639.2020.1730665
https://www.tandfonline.com/action/authorSubmission?journalCode=unse20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=unse20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/00295639.2020.1730665
https://www.tandfonline.com/doi/mlt/10.1080/00295639.2020.1730665
http://crossmark.crossref.org/dialog/?doi=10.1080/00295639.2020.1730665&domain=pdf&date_stamp=2020-03-17
http://crossmark.crossref.org/dialog/?doi=10.1080/00295639.2020.1730665&domain=pdf&date_stamp=2020-03-17


Ray Effect Mitigation for the Discrete Ordinates Method Using
Artificial Scattering
Martin Frank,a* Jonas Kusch,a Thomas Camminady,a and Cory D. Hauckb,c

aKarlsruhe Institute of Technology, Karlsruhe, Germany
bOak Ridge National Laboratory, Oak Ridge, Tennessee
cUniversity of Tennessee, Knoxville Tennessee

Received November 19, 2019
Accepted for Publication February 13, 2020

Abstract — Solving the radiative transfer equation with the discrete ordinates (SN) method leads to
a nonphysical imprint of the chosen quadrature set on the solution. To mitigate these so-called ray effects,
we propose a modification of the SN method that we call artificial scattering SN (as-SN). The method adds
an artificial forward-peaked scattering operator that generates angular diffusion to the solution and thereby
mitigates ray effects. Similar to artificial viscosity for spatial discretizations, the additional term vanishes as
the number of ordinates approaches infinity. Our method allows an efficient implementation of explicit and
implicit time integration according to standard SN solver technology. For two test cases, we demonstrate
a significant reduction of error for the as-SN method when compared to the standard SN method, both for
explicit and implicit computations. Furthermore, we show that a prescribed numerical precision can be
reached with less memory due to the reduction in the number of ordinates.

Keywords — Discrete ordinates method, ray effects, radiative transfer, quadrature.

Note — Some figures may be in color only in the electronic version.

I. INTRODUCTION

Several applications in the field of physics require an
accurate solution of the radiative transfer equation. This equa-
tion describes the evolution of the angular flux of particles
moving through a material medium. Examples include
nuclear engineering,1,2 high-energy astrophysics,3,4

supernovae,5,6 and fusion.7,8 Amajor challenge when solving
the radiative transfer equation numerically is the high-
dimensional phase-space on which it is defined. There are
three spatial dimensions, two directional (angular) para-
meters, velocity, and time. In many applications, there is
additional frequency or energy dependence. Hence, numer-
ical methods to approximate the solution require a carefully
chosen phase-space discretization.

There are several strategies to discretize the angular
variables, and they all have certain strengths and

weaknesses.9 The spherical harmonics (PN ) method10–12 is
a spectral Galerkin discretization of the radiative transfer
equation. It uses the spherical harmonics basis functions to
represent the solution in terms of angular variables with
finitely many expansion coefficients, called moments. The
PN method preserves rotational symmetry and shows spectral
convergence for smooth solutions.

However, like most spectral methods, PN yields oscil-
latory solution approximations in nonsmooth regimes,
which can lead to negative, nonphysical angular flux
values.13 Filtering of the expansion coefficients has been
shown to mitigate oscillations,14 and a modified equation
analysis has shown that filtering adds an artificial forward-
peaked scattering operator to the equation if a certain
scaling strength of the filter is chosen.

The discrete ordinates (SN ) method12 approximates the
radiative transfer equation on a set of discrete angular direc-
tions. The SN discretization preserves positivity of the angular
flux while yielding an efficient and straightforward*E-mail: martin.frank@kit.edu
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implementation of time-implicit methods. However, the
method is plagued by numerical artifacts, know as ray effects,
when there are not enough ordinates to resolve the angular
flux. Because increasing the number of ordinates significantly
increases numerical costs of simulations, a major task to
improve the solution accuracy of SN methods is to mitigate
these ray effects15–17 without simply adding more ordinates.

Various strategies to mitigate ray effects at affordable
costs have been developed. Reference 18 uses a biased quad-
rature set, which reflects the importance of certain ordinates.
Furthermore, Ref. 19 presents a method combining the PN
method with the SN method. Further studies for this method
can be found in Refs. 20, 21, and 22, which show a reduction
of ray effects. In Ref. 16, a comparison of these methods can
be found. In Ref. 23, computing the angular flux for differ-
ently oriented quadrature sets and averaging over different
solutions have been proposed to reduce ray artifacts. In Ref.
24, a rotated SN method has been developed that rotates the
quadrature set after every time iteration. Consequently, par-
ticles can move on a heavily increased set of directions of
travel, leading to a reduction of ray effects. Analytic results
show that rotating the quadrature set plays the role of an
angular diffusion operator, which smears out artifacts that
stem from the finite number of ordinates. Unfortunately, this
method does not allow a straightforward implementation of
sweeping, complicating the use of implicit methods.

The idea of this work is to add angular diffusion
directly with the help of a forward-peaked artificial scat-
tering operator. We choose this operator so that the effect
of artificial scattering vanishes in the limit of infinitely
many ordinates but at finite order adds angular diffusion
in such a way that it mitigates ray effects. Unlike the
rotated SN method in Ref. 24, the current approach allows
for a straightforward implementation of sweeping, which
we use to implement an implicit method.

II. MAIN IDEA

In this section, we summarize the relevant mathema-
tical background and introduce notation. We illustrate the
problem of ray effects that occurs when discretizing the
transport equation in angle and how artificial scattering
can be used to mitigate these ray effects. We demonstrate
that artificial scattering behaves like a Fokker-Planck
operator in the appropriate limit.

II.A. Radiative Transfer Equation

The radiative transfer equation describes the evolu-
tion of the angular flux ψðt; x;ΩÞ via

qtψðt; x;ΩÞ þ Ω � �xψðt; x;ΩÞ þ σtðxÞψðt; x;ΩÞ
¼ σsðxÞðSþψÞðt; x;ΩÞ þ qðt; xÞ ; ð1Þ

where
t 2 Rþ = time,

x 2 R
3 = spatial variable,

Ω 2 S
2 = direction.

The total cross section is σtðxÞ ¼ σaðxÞ þ σsðxÞ. In the
case of scattering, the in-scattering kernel operator
SþðψÞðt; x;ΩÞ describes the gain of particles that were
previously traveling along direction Ω0 and changed to
direction Ω. It is given by

ðSþψÞðt; x;ΩÞ ¼
ð
S
2
sðΩ � Ω0Þψðt; x;Ω0ÞdΩ0 ; ð2Þ

where sðΩ �Ω0Þ is the probability of transitioning from
direction Ω0 into direction Ω or vice versa. For simplicity,
we assume that the source qðt; xÞ is isotropic.

II.B. Ray Effects

As previously explained, the SN method preserves
positivity but suffers from ray effects. An example of
these artifacts is demonstrated for the line-source
benchmark in Fig. 1. While the true scalar flux

Φðt; xÞ :¼
ð
S
2
ψðt; x;Ω0ÞdΩ0 is radially symmetric, the

numerical solution has artifacts in the form of oscilla-
tions. We will discuss the line-source problem in more
detail in Sec. IV.A.

II.C. Artificial Scattering

We propose to address the problem of ray effects by
adding artificial scattering to the right-hand side (RHS) of
Eq. (1), in the form of an anisotropic scattering operator.
The modified system is then

qtψðt; x;ΩÞ þ Ω � �xψðt; x;ΩÞ þ σtðxÞψðt; x;ΩÞ
¼ σsðxÞðSþψÞðt; x;ΩÞ
þ σasðxÞðSasψÞðt; x;ΩÞ þ qðt; xÞ ; ð3Þ

where
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σasðxÞðSasψÞðt; x;ΩÞ ¼ σasðxÞ
ð
S
2
sεðΩ0 �ΩÞðψðt; x;Ω0Þ

� ψðt; x;ΩÞÞ dΩ0 ; ð4Þ

where sε can be any Dirac-like sequence,a i.e.,

ðþ1
�1
sεðμÞdμ ¼ 1

andðþ1
�1
sεðμÞ f ðμÞdμ! f ð1Þ ð5Þ

for any sufficiently smooth function f as ε! 0. In our
experiments, we choose

sεðμÞ ¼ 2ffiffiffi
π
p

εErf 2
ε

� � e�ð1�μÞ2=ε2 ; ð6Þ

where the error function satisfies ErfðxÞ ! 1 as x!1.
The proposed method, which we call artificial scattering-
SN (as-SN ), has the following effects:

1. Similar to the artificial viscosity used to stabilize
spatial discretizations of hyperbolic operators (Ref. 25,
Chap. 16.1), the artificial scattering adds an angular diffu-
sion term to the radiative transfer equations. This term
should vanish when the discretization is refined. Therefore,

the variance of the artificial scattering kernel should be
chosen to vanish in the limit Nq !1. We choose the
variance to be ε ¼ β=Nq, where β is a constant, user-
determined parameter. This choice ensures that ε scales the
averagewidth of quadrature points,meaning that the domain
of influence includes roughly the same number of ordinates
whenNq increases. In the limit, the as-SN solution converges
to the classical SN solution.

2. The total number of particles is preserved by the
artificial scattering term. Higher-order moments are how-
ever dampened by the magnitude of artificial scattering.
A beam of particles inside a void will be subject to scatter-
ing by the as-SN method; however, artifacts that result from
the standard SN method dominate the overall error, unless
the beam is aligned with the quadrature set.

3. Artificial scattering has been used for the PN
method to mitigate oscillations.26 Besides using artificial
scattering on the ordinates level, we are using a forward-
peaked scattering kernel instead of isotropic scattering.
Hence, the as-SN modification scatters around the direc-
tion of the original ordinates.

4. The as-SN method has similarities to the PN�1–
equivalent SN method.22 To mitigate ray effects, this
method adds a fictitious source to the radiative transfer
equation. This source, though derived by a different strat-
egy, requires similar modifications of the standard SN
implementation. The main difference is that the artificial
scattering kernel of as-SN is forward peaked, which can
be used to design an efficient numerical treatment. Note
that the PN�1–equivalent SN method will have the same
problems as PN.

Fig. 1. Illustrating ray effects with the line-source problem.

aWhile the idea of artificial scattering works with any Dirac
sequence, the asymptotic analysis that is performed later imposes
stronger requirements to obtain a Fokker-Planck operator in the
respective limit.

RAY EFFECT MITIGATION FOR THE DISCRETE ORDINATES METHOD · FRANK et al. 3

NUCLEAR SCIENCE AND ENGINEERING · VOLUME 00 · XXXX 2020



5. Since the artificial scattering acts as a filter on
the moment level, as-SN can be compared to filtered PN
(Refs. 14 and 27). Note that a convergence proof for
filtered PN can be found in Ref. 28, which can be used
to study effects of artificial scattering, similar to Ref. 27.

6. With appropriate boundary and initial conditions,
the as-SN Eq. (3) can be solved in a straightforward man-
ner using common SN implementations. When discussing
one such implementation, we will focus on implicit dis-
cretization techniques and derive an efficient algorithm to
treat the artificial scattering term.

II.D. Artificial Scattering Kernel

To better distinguish between the two types of scat-
tering, we will call the naturally occurring scattering of
Eq. (1) “physical scattering” and the scattering in Eq. (4)
“artificial scattering.” The way the artificial scattering is
written in Eq. (4), it includes in-scattering and out-
scattering. We can split this further into

ðSasψÞðt; x;ΩÞ ¼
ð
S
2
sεðΩ0 �ΩÞ

ψðt; x;Ω0Þ � ψðt; x;ΩÞð ÞdΩ0
¼ ðSþasψÞðt; x;ΩÞ � ðS�asψÞðt; x;ΩÞ ð7Þ

with

ðSþasψÞðt; x;ΩÞ ¼
ð
S
2
sεðΩ0 �ΩÞψðt; x;Ω0ÞdΩ0 ð8Þ

and

ðS�asψÞðt; x;ΩÞ ¼ ψðt; x;ΩÞ : ð9Þ

II.E. Modified Equation Analysis

According to Pomraning,29 the Fokker-Planck operator
can be a legitimate description of highly peaked scattering.
This is true if (i) the scattering kernel s�ðμÞ is aDirac sequence
and (ii) the transport coefficients pε;i :¼

ðþ1
�1
ð1� μÞisεðμÞdμ

are of orderOðεiÞ. The resultingmodified equation then reads

qtψðt; x;ΩÞ þΩ � �xψþ ðσa þ σsÞψ
¼ σs � Φþ π � pε;1 � σas � ΔΩψþ O ε2

� �
; ð10Þ

whereΔΩ is the Laplace operator in spherical coordinates.We
have already shown (i). To verify (ii), let y ¼ ð1� μÞ=ε.
Then,

pε;i ¼
ð0
2=ε
ðεyÞi 2ffiffiffi

π
p

εErf 2
ε

� � e�y2ð�εÞdy ð11Þ

¼ 2ffiffiffi
π
p

εErf 2
ε

� � εi ð2=ε
0

yie�y
2
dy ð12Þ

¼ 2ffiffiffi
π
p

εErf 2
ε

� � εi Γ
1þ i
2

� �
� Γ

1þ i
2

;
4

ε2

� �� �
ð13Þ

¼ OðεiÞ ; ð14Þ

where Γð�Þ and Γð�; �Þ denote the gamma function and the
upper incomplete gamma function, respectively. Since (ii)
implies that pε;1 ¼ OðεÞ, the operator vanishes if we
let ε! 0.

We set ε ¼ β=Nq in the discrete case so that the
angular diffusion vanishes if the number of ordinates Nq

tends to infinity. This analysis shows that the product
σas � β controls the strength of the added angular diffu-
sion. Section IV.A confirms this numerically.

III. DISCRETIZATION

In this section, we discuss discretization and implemen-
tation of the presented as-SN method, laying the focus on how
to incorporate artificial scattering into existing SN codes.

III.A. SN Discretization

For the sake of completeness, we briefly summarize the
SN method. Given a finite number of ordinates Ω1; . . . ;ΩNq

and defining the SN solution ψqðt; xÞ � ψðt; x;ΩqÞ; the SN
method solves the semidiscretized system of Nq equations:

qtψqðt; xÞ þ Ωq � �xψqðt; xÞ þ σtðxÞψqðt; xÞ

¼ σsðxÞ
XNq

p¼1
wp � sðΩq � ΩpÞψpðt; xÞ þ qðt; xÞ : ð15Þ

Here, wp are quadrature weights, chosen such that

ð
S
2
ψðt; x;ΩÞdΩ �

XNq

q¼1
wq � ψðt; x;ΩqÞ : ð16Þ
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To compute numerical solutions, we still need to discretize
Eq. (15) in space and time. In this work, we will investigate
solutions for both implicit and explicit time discretizations.
The explicit code uses Heun’s method as well as a minmod
slope limiter. It is based on Refs. 24 and 30, which provide
a detailed description of the chosen methods. The implicit
discretization and an efficient strategy to integrate artificial
scattering in a given implicit code framework will be dis-
cussed in Secs. III.D and III.E.

III.B. Adding Artificial Scattering to the SN equations

Our goal is to include artificial scattering in the SN
equations in Eq. (15). By simply approximating the arti-
ficial scattering term in Eq. (3) with the chosen quadra-
ture rule, we obtain the as-SN equation:

qtψqðt; xÞ þΩq � �xψqðt; xÞ þ σtðxÞψqðt; xÞ
þ σasðxÞψqðt; xÞ

¼ σsðxÞ
XNq

p¼1
wp � cq � sðΩq �ΩpÞψpðt; xÞ

þ σasðxÞ
XNq

p¼1
wp � cðεÞq � sεðΩq � ΩpÞψpðt; xÞ

þ qðt; xÞ ; ð17Þ

where cq ¼ 1=
P

p wp � sðΩq �ΩpÞ and cðεÞq ¼ 1=
P

p wp �
sεðΩq �ΩpÞ are normalization factors. While on the contin-
uous level, these factors are the same for every direction, we
obtain a dependency on the chosen ordinate due to the
nonuniform discretization in angle. These normalization
factors are needed to obtain a simple expression for the out-
scattering terms. Moving these terms to the left-hand side
(LHS) of Eq. (17) stabilizes the source iteration used in the
implicit method.

III.C. Quadrature

It remains to pick an adequate quadrature set. When
applying artificial scattering, the solution smears out
along the directions in the quadrature set . To ensure an
evenly spread artificial scattering effect, a quadrature
with a highly uniform ordinate distribution should be
chosen. Commonly, the construction of a quadrature set
starts at a chosen planar geometry, which is discretized
and then mapped onto the surface of a sphere. The
mapped nodes of the previously chosen discretization
are then taken to be the quadrature points while the
weights are determined by the area associated with

these points. An even node distribution is achieved by
using an icosahedron as the initial planar geometry, which
one can find in Fig. 2. Each face of the icosahedron is
triangulated to generate the nodes that will be mapped
onto the surface of the sphere. There are different strate-
gies to perform this triangulation, and we choose an
equidistant spacing of points on each line of the triangle
as well as the corresponding points inside the triangle.
The corresponding weight is the area of the hexagon that
lies around the given node and is defined by connecting
the midpoints of the neighboring triangles. For more
details on the icosahedron quadrature, see Ref. 31. From
now on, we will exclusively use this quadrature in all SN
and as-SN computations. A sample of the icosahedron
quadrature can be found in Appendix A.

III.D. Implicit Time Discretization

Implicit time discretization methods provide stability
for large time steps, which are crucial in applications
involving different timescales. However, when discretiz-
ing the radiative transfer equation, they require a matrix
solve in every time step, which is commonly performed
by a Krylov solver.32,33 We start with an implicit Euler
discretization, where in an abuse of notation, we denote

Fig. 2. Construction of the icosahedron quadrature set.
One can see the icosahedron geometry with a triangulated
face that is then mapped onto the sphere. For the quadrature
set, we align one of the vertices with the point ð0; 0; 1Þ.
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the flux at the new time step by ψðx;ΩÞ and at the old
time step by ψoldðx;ΩÞ. The equivalent as-SN system is

Ω � �xψþ σa þ σs þ σas þ 1

Δt

� �
ψ

¼ σsS
þψþ σasS

þ
asψþ qþ ψold

Δt
: ð18Þ

Defining the streaming operator Lψ ¼ Ω � �xψþ
σa þ σs þ σas þ 1

Δt

� �
ψ as well as the modified sourceeq ¼ qþ ψold=Δt, we can put this into more compact

notation:

Lψ ¼ σsSþψþ σasSþasψþ eq : ð19Þ

First, let us numerically treat the artificial scattering in
the same way as commonly done for physical scattering.
The physical in-scattering kernel can be written as

Sþ ¼ OΣM ;

where Σ carries the respective expansion coefficients of the
scattering kernel and M maps from the ordinates to the
moments and O from the moments back to the angular
space. Making use of this strategy to represent the artificial
scattering, we get

Sþas ¼ OΣasM : ð20Þ

When denoting the moments as ϕ ¼ Mψ, Eq. (19)
becomes

Lψ ¼ σsOΣϕþ σasOΣasϕþ eq : ð21Þ

Inverting L and applying M to both sides yield the fixed-
point equation:

ϕ ¼ σsML�1OΣϕþ σasML�1OΣasϕþML�1eq : ð22Þ

Note that with σas ¼ 0, this is the standard equation to which
a Krylov solver is applied. Choosing a nonzero artificial

scattering strength can result in significantly increased
numerical costs when solving Eq. (22) with aKrylovmethod:
To show this, let us move to the discrete level, i.e., discretiz-
ing the directional domain, which requires picking a finite
number of moments. In this case Σ becomes a diagonal
matrix with entries falling rapidly to zero (in the case of
isotropic scattering, only the first entry is nonzero). Hence,
few moments are required to capture the effects of physical
scattering. However, since the artificial scattering kernel is
strongly forward peaked, the entries of the diagonal matrix
Σas do not fall to zero quickly, meaning that the method
requires a large number of moments to include artificial
scattering, which results in a heavily increased run
time.27 The slow decay of the Legendre moments

kε;n ¼ 2π
ðþ1
�1
sεðμÞPnðμÞdμ for ε! 0 is visualized in Fig. 3.

In order to be able to choose the reduced number of
moments required to resolve physical scattering, we move
the artificial scattering into the sweeping step. Hence, going
back to Eq. (19), we only perform the moment decomposi-
tion on the physical scattering to obtain

ðL� σasS
þ
asÞψ ¼ σsOΣϕþ eq : ð23Þ

Moving the operator ðL� σasSþasÞ to the RHS and taking
moments yield

ϕ ¼ σsMðL� σasSþasÞ�1OΣϕþMðL� σasSþasÞ�1eq : ð24Þ

The Krylov solver is then applied to this fixed-point iteration.
In contrast to Eq. (22), the physical scattering term dictates

the number of moments. The computation of ðL� σasSþasÞ�1
is performed by a source iteration, where the general equation
ðL� σasSþasÞψ ¼ R is solved by iterating on

Lψðlþ1Þ ¼ σasS
þ
asψ
ðlÞ þ R : ð25Þ

This iteration is expected to converge fast since effects of
artificial scattering will be small in comparison to physi-
cal scattering.

Fig. 3. Decay of the Legendre moments kε;n ¼ 2π
ðþ1
�1
sεðμÞPnðμÞdμ for different values of ε and the expansion order n.
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III.E. Implementation Details

At this point, we choose a finite number of ordinates
and moments; i.e., the flux ψ is now a vector with
dimension Nq; and the moments ϕ have finite dimension
N . Consequently, operators applied to the directional
space become matrices. For better readability, we abuse
notation and reuse the same symbols as before.

We observed that a second-order spatial scheme is
required to capture the behavior of the test cases used in
this work. To ensure an efficient sweeping step, we use
a second-order upwind stencil without a limiter. Let us
denote the operator L discretized in space and direction
by LΔ. For ease of presentation, we assume a slab geo-
metry; i.e., we have the spatial variable x 2 R and the
directional variable μ 2 ½�1; 1�. In the following, we split
the directional variable into μ� 2 ½�1; 0� and μþ 2 ð0; 1�.
An extension to arbitrary dimension is straightforward.
Now, with λ� ¼ μ�

Δt
Δx and σt ¼ σa þ σs þ σas þ 1

Δt , we
can write the discretized streaming operator as

LΔψ ¼ λ�ðgjþ1=2 � gj�1=2Þ þ Δtσtψ : ð26Þ

The numerical flux for μþ is then given by

gjþ1=2 ¼ aψj þ bψj�1; with a ¼ 3

2
; b ¼ � 1

2
ð27Þ

and for μ� by

gjþ1=2 ¼ aψjþ1 þ bψjþ2 : ð28Þ

This scheme is L2 stable, which we show in Appendix B. Let
us now discuss the implementation of the implicit method in
more detail. As mentioned earlier, a source iteration Eq. (25)
is required to invert the operator ðL� σasSþasÞ. For an initial

guess ψð0Þ and an arbitrary RHS R, this iteration is given by
Algorithm 1.

Note that the discrete artificial in-scattering Sþas is a sparse
matrix, which guarantees an efficient evaluation of the

matrix vector product Sþasψ
ðlÞ in Eq. (25). Furthermore,

the inverse of LΔ can be computed by a sweeping
procedure.

In order to get a good error estimator, in Algorithm
1, we set the constant ec ¼ ð1� TÞ=T ; where T is an
estimate of the Lipschitz constant, and � is a user-
determined parameter. Using a generalized minimal
residual method (GMRES) solver, our implementation
solves the linear system of equations:

Aϕ ¼ b ð29aÞ

with

A ¼ I � σsMðL� σasSþasÞ�1OΣ ð29bÞ

and

b ¼ MðL� σasSþasÞ�1eq : ð29cÞ

The solver requires the evaluation of the LHS for a given ψ
with an initial guess ψð0Þ, which is given by Algorithm 2.

The main time-stepping scheme is then given by
Algorithm 3.

Algorithm 1: Source Iteration Algorithm

1: procedure SOURCE ITERATION [ψð0Þ;R]
2: , 0

3: ψð,þ1Þ  L�1Δ σasSþasψ
ð,Þ þ R

� �
4: while k ψð,þ1Þ � ψð,Þk2 � �ec do

5: ψð,þ1Þ  L�1Δ σasSþasψ
ð,Þ þ R

� �
6: , ,þ 1

return ψð,Þ

Algorithm 2: Left-hand side of Eq. (29a)

1: procedure LHS ðψð0Þ; ϕÞ
2: eψ SourceIteration½ψð0Þ; σsOΣϕ�
3: return ϕ�Meψ

Algorithm 3: Sweeping-Krylov algorithm

1: ψold  InitialConditionðÞ
2: ϕold  Mψold

3: while t < tend do

4: b M � SourceIterationðψold; qþ 1
Δtψ

oldÞ
5: ϕnew  Krylov½LHSðψold; ϕoldÞ; b�
6: ψnew  SourceIterationðψold; σsOΣϕ

new þ 1
Δtψ

oldÞ
7: ψold  ψnew

8: ϕold  ϕnew
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After initializing ψ and ϕ, the RHS to Eq. (29a) is set
up in line 4. Line 5 then solves the linear system Eq. (29a),
and Line 6 determines the time-updated flux ψ from the
moments ϕnew.

There exist several ways to modify the presented algo-
rithm to achieve higher performance. For example, one can
modify the presented method by not fully converging the
source iteration in Algorithm 1. Instead, only a single itera-
tion can be performed to drive the moments ϕ and the
respective angular flux ψ to their corresponding fixed points
simultaneously. In numerical tests, we observe that this will
significantly speed up the calculation. However, since we
do not focus on run-time optimization, we do not further
discuss this idea and leave it to future work.

IV. RESULTS

In the following, we evaluate the proposed method
within the scope of two numerical test cases:

1. The line-source problem is used as it is inherently
prone to ray effects when using the SN method.

2. The lattice test case models (in a very simplified
way) neutrons in a fission reactor with a source and hetero-
geneous materials.

For both problems, we present results for the explicit and
implicit methods, respectively.

Both test cases are computed on a two-dimensional

regular grid for the spatial variable. We project Ωq 2 S
2

for q ¼ 1; . . . ;Nq onto the x-y plane.
The code used to compute the numerical results is pub-

lished under the Massachusetts Institute of Technology
license in a public repository at https://github.com/cammi
nady/SN.

IV.A. Line-Source Test Case

The goal of this test case is to numerically compute the
Green’s function for an initial isotropic Dirac mass at the
origin, i.e., ψðt ¼ 0; x;ΩÞ ¼ 1=4πδðxÞ, which is realized
as a narrow Gaussian in space with ψðt ¼ 0; x;ΩÞ ¼
max f10�4; 1=4πδ expð�x2=4δÞg and δ¼ 0:032. We
choose σs ¼ σt ¼ 1. The spatial discretization varies
from 50� 50 for a coarse grid to 200� 200 points on
the domain ½�1:5; 1:5� � ½�1:5; 1:5� for a fine grid.
There exists a semianalytical solution to the full transport
equation for this problem due to Ganapol et al.34 The exact
solution consists of a circular front moving away from the
origin as well as a tail of particles that have been scattered
or not emitted perpendicularly from the center. We chose

the line source because it is a test case that lays bare almost
any artifact from which an angular discretization might
suffer.

The parameters of the artificial scattering have been set
to ε ¼ β=Nq with Nq as the number of quadrature points.
Obviously, choosing these parameters requires some experi-
ence. However, as in the case of filtering for PN (Refs. 14 and
35), both parameters can be adjusted for coarse angular and
spatial grids and are expected to be valid for finer grids,
which seems to be the case for the line-source problem as
well. The Courant-Friedrichs-Lewy (CFL) number, i.e., the
ratio of the time step and the spatial cell size, is 0:95 for the
explicit calculations and 2 for the implicit calculation. For the
implicit discretization, the tolerance for the GMRES solver
was set to 1:5� 10�8, and we considered the inner source
iteration to be converged at an estimated error of 10�4.

An overview of the analytics that we performed is
given in Fig. 4. We evaluate the scalar flux Φðt; xÞ ¼ð
S
2
ψðt; x;Ω0ÞdΩ0 at the final time step. We have per-

formed an explicit S4 computation with Nq ¼ 92 and
Nx � Ny ¼ 200� 200. In both rows of Fig. 4, the left
column shows the scalar flux at the final time step. The
first row shows the solution along cuts through the domain
on the right with the respective cuts on the left in white.
The second row shows the solution along circles with
different radii on the right and the respective circles on
the left. Strong oscillations are visible due to ray effects.
For the first row, the analytical solution is given in green in
the right column image. In the lower row, the analytical
solution is constant along a circle with a certain radius,
visualized for r ¼ 0:2, r ¼ 0:6, and r ¼ 0:9 in green.

In Figs. 5 and 6, we see the same summary of results,
now for an explicit computation and an implicit computation,
respectively. In both computations, ray effects have been
reduced significantly when comparing the results
with Fig. 4 despite the same number of quadrature points.
The implicit calculation looks slightly more diffusive.
However, the line-source problem is not a problem that
would be computed implicitly in the first place, and we use
it only to illustrate the expected behavior for implicit
computations.

The values for β and ε in the fine calculations are deter-
mined from a parameter study using coarse spatial and angu-
lar grids. The results of this parameter study are given inFig. 7
for the explicit algorithm and in Fig. 8 for the implicit
algorithm.

A single simulation for the coarse configuration takes

,1=400 times the time of a single computation for the fine
configuration. Consequently, the full parameter study with
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all 306 configurations can be performed for less than the
costs of a single fine computation. For the optimal para-
meter configuration, the error decreases down to 37:8% for
the explicit case and down to 41:4% for the implicit case.

In both cases, implicit and explicit, we observe
a region of parameters that yield similarly good results.
This behavior mostly matches the predicted relation from
the asymptotic analysis; i.e., when ε is small, σas � ε
controls the effect of artificial scattering.

We also investigate the performance of the as-SN method
when measured in run time and in memory consumption.
Consider therefore the results presented in Figs. 9 and 10,
which summarize the results for the line-source test case
computed with the SN and as-SN methods for different values
of N . Figure 9 measures the error between the numerical

solution and the analytical solution in the L2 norm, called
δ1. Figure 10 considers the H1 seminorm. We observe an
increase in run time when activating artificial scattering but
a decrease in the errors δ1 and δ2. On the right, the errors are
plotted against the number of ordinates, which ultimately
dictates the memory consumption. For example, an S8 com-
putation takes about as long as an as-S5 computation and
yields a similar δ1 error. However, the number of ordinates
can be reduced from 492 to 162. For both δ1 and δ2, the effect
of artificial scattering vanishes in the limit of Nq !1.

IV.B. Lattice Test Case

We also investigate the lattice test case,9,36 depicted in
Fig. 11. A constant, isotropic source is placed in the center

Fig. 4. The S4 solution (using an explicit time discretization) with ray effects.We chooseNq ¼ 92 quadrature points, the spatial domain
is composed of Nx � Ny ¼ 200� 200 spatial cells, and the CFL number is 0.95. Cuts through the domain and along circles with
different radii are visualized in the right column. Only the solution along the horizontal cut is symmetric for the icosahedron quadrature.
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of the domain in the orange square. In the white cells, the
material is purely scattering whereas the orange and black
squares are purely absorbing. The boundary conditions are
vacuum. All test case parameters are listed in Table I.

In Fig. 12, we see the as-S4 solution to the lattice
problem on the left, the S15 solution in the center, and the
S4 solution on the right. Here, S15 uses 1962 ordinates
while S4 and as-S4 use 92 ordinates.

We take the S15 solution with Nq ¼ 1962 as our
reference solution. When comparing the as-S4 solution
with the S4 solution, we see an improvement in the
solution quality. Ray effects are better mitigated in
regions where the scalar flux is small. The number of
ordinates is kept constant.

Additionally, Fig. 13 puts the as-S4 solution and the
S15 solution side by side in the center frame. Minor ray
effects are visible when looking at the white isoline.
However, the number of ordinates has been reduced by
a factor of ,21.

Fig. 5. The as-S4 solution (using an explicit time discretization) with mitigated ray effects. We choose Nq ¼ 92 quadrature points,
the spatial domain is composed of Nx � Ny ¼ 200� 200 spatial cells, and the CFL number is 0.95. Cuts through the domain and
along circles with different radii are visualized in the right column. We set σas ¼ 5 and β ¼ 4:5. Only the solution along the
horizontal cut is symmetric for the icosahedron quadrature.

TABLE I

Material Properties for the Lattice Test Case*

Color σa(cm�1) σs(cm�1) Q(cm�2‧s�1)

White 0 1 0
Black 10 0 0
Orange 10 0 1

*The domain is of size ½0 cm; 7 cm�2; and tend ¼ 3:2 s.
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Similar to the line-source test case, we set β ¼ 4:5
and σas ¼ 5:0 for explicit calculation, and we set β ¼ 4:0
and σas ¼ 7:0 for the implicit calculation.

We also perform simulations for the lattice problem
with the implicit time discretization. However, since the
chosen scheme is only L2 stable, the solution becomes
negative for the lattice test case as illustrated in Fig. 14.
Nevertheless, Fig. 15 demonstrates the inherent advan-
tage when performing implicit computations: We are able
to use a very large CFL number, thus reducing the num-
ber of time steps and the overall computational costs
drastically. Note that the scheme preserves positivity for
the chosen CFL numbers.

V. CONCLUSION AND OUTLOOK

We have presented a new ray effect mitigation tech-
nique that relies on an additional, artificial scattering
operator introduced into the radiative transfer equation.
When the number of ordinates tends to infinity, the arti-
ficial scattering vanishes, and the modified equation
reduces to the original transport equation. In this case,
when choosing the product of the scattering strength and
the variance constant, the term tending to zero with the
slowest rate is the Fokker-Planck operator.

The artificial scattering operator can be integrated
into standard SN codes. Solution algorithms, both for

Fig. 6. The as-S4 solution (using an implicit time discretization) with mitigated ray effects. We choose Nq ¼ 92 quadrature points,
the spatial domain is composed of Nx � Ny ¼ 200� 200 spatial cells, and the CFL number is 2. Cuts through the domain and
along circles with different radii are visualized in the right column. We set σas ¼ 7 and β ¼ 4. Only the solution along the
horizontal cut is symmetric for the icosahedron quadrature.
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Fig. 7. Parameter study for σas and ε ¼ β=Nq on a grid of Nq � Nx � Ny ¼ 12� 50� 50 in an explicit calculation. For every
simulation we compute the L2 error of the scalar flux Φ with respect to a semianalytical reference solution on the same spatial
grid. The number in each field of the heat map is then the baseline normalized error, i.e., the L2 error obtained for that specific
parameter configuration divided by the error obtained without artificial scattering. For the case of β ¼ 4:5 and σas ¼ 5 (high-
lighted in yellow), the error drops down to 37:8% of the original error without artificial scattering.

Fig. 8. Parameter study for σas and ε ¼ β=Nq on a grid of Nq � Nx � Ny ¼ 12� 50� 50 in an implicit calculation. For every
simulation we compute the L2 error of the scalar flux Φ with respect to a semianalytical reference solution on the same spatial
grid. The number in each field of the heat map is then the baseline normalized error, i.e., the L2 error obtained for that specific
parameter configuration divided by the error obtained without artificial scattering. For the case of β ¼ 4 and σas ¼ 7 (highlighted
in yellow), the error drops down to 41:4% of the original error without artificial scattering.
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the explicit case and the implicit case, have been pre-
sented and rigorously analyzed in the nonstandard,
implicit case. To avoid using a large number of
moments for the Krylov solver in the implicit case,
we propose to invert the artificial scattering operator
by a source iteration.

We have presented numerical results for the line-
source and lattice test case. The results demonstrate that
artificial scattering yields the same accuracy as SN but for
a reduced number of ordinates.

For the second-order implicit computations, the solutions
might turn negative since L2 stability does not guarantee
positivity of the solution. However, when choosing
a sufficiently large CFL number, the solution values in our
numerical experiments remain positive. A rigorous investiga-
tion of this effect and possibly the derivation of aCFLnumber
ensuring positivity is left to future work.

Fig. 9. We computed δ1 ¼k Φnumerical �Φanalyticalk2 for the line-source test case using the implicit SN and as-SN method for
Nx � Ny ¼ 200� 200. Computations were performed on a quad core Intel® i5-7300U CPU (2.60 GHz) with 12-GB memory.

Fig. 11. Layout of the lattice test case. Different materi-
als (black, white, orange) with the source in the center
(orange).

Fig. 10. We computed δ2 ¼k �Φnumerical � �Φanalyticalk2 for the line-source test case using the implicit SN and as-SN method for
Nx � Ny ¼ 200� 200. Computations were performed on a quad core Intel® i5-7300U CPU (2.60 GHz) with 12-GB memory.
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Fig. 12. Comparison for the lattice test case at tend ¼ 3:2s. Left: the as-S4 solution for the optimal parameter choice; center: the
S15 solution; right: the S4 solution. Isolines are drawn at four different levels, highlighted inside the color bar. We used 280� 280
spatial cells.

Fig. 13. Comparison for the lattice test case at tend ¼ 3:2s. Left: the as-S4 solution; right: the S15 solution; center: the image
merges the left half of the left image with the right half of the right image. Isolines are drawn at four different levels, highlighted
inside the color bar. We used 280� 280 spatial cells.

Fig. 14. Solutions to the lattice problem with an implicit computation for a CFL number of 2, Nq ¼ 92, and
Nx � Ny ¼ 280� 280. The white regions indicate negativity of the solution.
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Note that our test cases chose a constant value for the
artificial scattering strength; however, it seems plausible
to make this strength spatially dependent to ensure that
artificial scattering is turned on only when required. It
remains to demonstrate the feasibility of the as-SN
method in real-world applications using large-scale,
highly parallelizable codes.

APPENDIX A
ICOSAHEDRON QUADRATURE

The quadrature points and weights for the quadra-
ture in Sec. III.C are given for order 2 (12 quadrature
points). Every line contains four entries: the x, y, and z
positions, and the quadrature weight (see Table A.I.).
The quadrature weights sum to 4π. All entries are in
double precision. The quadratures for order 2, order 3
(42 quadrature points), order 4 (92 quadrature points),

and order 5 (162 quadrature points) can be downloaded
as .txt files from a public repository at github.com/cam-
minady/IcosahedronQuadrature.

APPENDIX B
IMPLICIT SECOND-ORDER UPWIND SCHEME

In the following, we show that the chosen numerical
flux is L2 stable. For simplicity, we look at the one-
dimensional advection equation:

qtψþ Ωqxψ ¼ 0 ðB:1Þ

with Ω 2 Rþ. A finite volume discretization is given by

ψnþ1
j ¼ ψn

j � λ gjþ1=2 � gj�1=2
� �

; ðB:2Þ

Fig. 15. Solutions to the lattice problem with an implicit computation for different CFL numbers and Nq ¼ 92,
Nx � Ny ¼ 280� 280, σas ¼ 7, and β ¼ 4. Zoom into the region ½3:5; 7� � ½3:5; 7�.

TABLE A.I

Sample of the Icosahedron Quadrature Set

x y z w

+0.0000000000000000 +0.0000000000000000 +1.0000000000000000 +0.7370796188178727
+0.0000000000000000 −0.8944271909999159 +0.4472135954999580 +0.7370796188178727
+0.5257311121191336 −0.4472135954999580 +0.7236067977499790 +1.3293827143261787
−0.5257311121191336 −0.4472135954999580 +0.7236067977499790 +1.3293827143261787
+0.5257311121191336 +0.7236067977499790 +0.4472135954999580 +1.0751303204457423
−0.5257311121191336 +0.7236067977499790 +0.4472135954999580 +1.0751303204457423
+0.0000000000000000 +0.8944271909999159 −0.4472135954999580 +0.7370796188178727
−0.5257311121191336 +0.4472135954999580 −0.7236067977499790 +1.3293827143261787
+0.5257311121191336 +0.4472135954999580 −0.7236067977499790 +1.3293827143261787
+0.0000000000000000 +0.0000000000000000 −1.0000000000000000 +0.7370796188178727
−0.5257311121191336 −0.7236067977499790 −0.4472135954999580 +1.0751303204457423
+0.5257311121191336 −0.7236067977499790 −0.4472135954999580 +1.0751303204457423
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where we use λ ¼ ΩΔt=Δx. A second-order, implicit
numerical flux is given by

gjþ1=2 ¼ aψnþ1
j þ bψnþ1

j�1 ðB:3Þ

with

a ¼ 3

2
and b ¼ � 1

2
: ðB:4Þ

Let us check if the scheme dissipates the L2 entropy
ηðψÞ ¼ ψ2=2. For this, we multiply our scheme Eq. (B.2)
with ψnþ1

j ; i.e., we obtain

ψnþ1
j ψnþ1

j ¼ ψn
j ψ

nþ1
j � λ gjþ1=2 � gj�1=2

� �
ψnþ1
j : ðB:5Þ

Now, one needs to remove the cross term ψn
j ψ

nþ1
j ; which

can be done by reversing the binomial formula:

ψn
j ψ

nþ1
j ¼ 1

2
ðψnþ1

j Þ2 þ
1

2
ψn
j

	 
2

� 1

2
ðψnþ1

j � ψn
j Þ2 : ðB:6Þ

Plugging this formulation for the cross term into Eq. (B.5)
and making use of the definition of the square entropy η
gives

ηðψnþ1
j Þ ¼ ηðψn

j Þ �
1

2
ðψnþ1

j � ψn
j Þ2

� λ gjþ1=2 � gj�1=2
� �

ψnþ1
j : ðB:7Þ

This shows that in order to achieve entropy dissipation, i.e.,

XNx

j¼1
ηðψnþ1

j Þ 	
XNx

j¼1
ηðψnþ1

j Þ; ðB:8Þ

we need

E ¼
XNx

j¼1

1

2
ðψnþ1

j � ψn
j Þ2 þ λ

XNx

j¼1
gjþ1=2 � gj�1=2
� �

ψnþ1
j �! 0 :

Note that the first term of E, which essentially comes
from the implicit time discretization, is always positive. It

remains to be shown that
PNx

j¼1 gjþ1=2 � gj�1=2
� �

ψnþ1
j is

positive as well. Let us rewrite this term for all spatial
cells as a matrix vector product. That is, when collecting
the solution at time step nþ 1 for all Nx spatial cells in

a vector ψ 2 R
Nx, this term becomes

XNx

j¼1
gjþ1=2 � gj�1=2
� �

ψnþ1
j

	 

¼ ψTBψ ; ðB:9Þ

where B 2 R
Nx�Nx is a lower triangular matrix. This pro-

duct can be symmetrized with S ¼ 1
2 ðBþ BTÞ, meaning

that we have ψTBψ ¼ ψTSψ. For our stencil, the matrix S
has entries sjj ¼ 3

2 on the diagonal and sj;j�1 ¼ sj�1;j ¼ �1
as sj;j�2 ¼ sj�2;j ¼ 1

4 on the lower and upper diagonals.

Positivity of ψTSψ and thereby of the entropy dissipation
term E is guaranteed if S is positive definite, i.e., has
positive eigenvalues. The eigenvalues for S have been
computed numerically to verify positivity in Fig. B.1.
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