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ABSTRACT

We compute the forces, torque, and rate of work on the companion-core binary due to drag

in global simulations of common envelope (CE) evolution for three different companion

masses. Our simulations help to delineate regimes when conventional analytic drag force

approximations are applicable. During and just prior to the first periastron passage of the

in-spiral phase, the drag force is reasonably approximated by conventional analytic theory

and peaks at values proportional to the companion mass. Good agreement between global

and local 3D ‘wind tunnel’ simulations, including similar net drag force and flow pattern,

is obtained for comparable regions of parameter space. However, subsequent to the first

periastron passage, the drag force is up to an order of magnitude smaller than theoretical

predictions, quasi-steady, and depends only weakly on companion mass. The discrepancy is

exacerbated for larger companion mass and when the inter-particle separation reduces to the

Bondi–Hoyle–Lyttleton accretion radius, creating a turbulent thermalized region. Greater flow

symmetry during this phase leads to near balance of opposing gravitational forces in front of

and behind the companion, hence a small net drag. The reduced drag force at late times helps

explain why companion-core separations necessary for envelope ejection are not reached by

the end of limited duration CE simulations.

Key words: hydrodynamics – binaries: close – stars: evolution – stars: kinematics and dynam-

ics – stars: mass-loss – stars: winds, outflows.

1 IN T RO D U C T I O N

Common envelope evolution (CEE) is the most natural mechanism

for rapidly tightening binary orbits and likely facilitates many

phenomena, including gravitational wave-emitting mergers and

Type Ia supernovae. In CEE, the primary and secondary cores

inspiral from drag, transferring orbital energy to the envelope until

the latter ejects, or the cores merge.

Hydrodynamic simulations of this process generally do not eject

the envelope. Although it is possible that the cores should merge for

the parameter regime explored in some of the simulations (Iaconi

et al. 2018), in other simulations the rate of decay of the inter-particle

separation a decreases dramatically at values of a too large for a

merger during the computation. There may also be missing physics

in the simulations. For example, most employ an ideal gas equation

of state (EOS), whereas a more sophisticated EOS should account

for ionization and recombination. When recombination energy is

injected locally, the envelope is found to eject or almost eject in at

least some cases (Nandez, Ivanova & Lombardi 2015; Nandez &

Ivanova 2016; Prust & Chang 2019).

� E-mail: lchamandy@pas.rochester.edu

Chamandy et al. (2019) (hereafter Paper II) applied the common

envelope (CE) energy formalism (van den Heuvel 1976; Webbink

1984; Livio & Soker 1988) to show that for a reasonable energy

parameter αCE � 0.3, theory correctly predicts that the envelope

will not eject in our simulation or in any other with very similar

initial conditions (Ohlmann et al. 2016) because the simulations

do not reach the predicted separation for ejection by the end of the

runs. That simulations do not eject the envelope because they do not

attain small enough separations is partly supported by observations,

exhibiting small final separations (Iaconi et al. 2017; Iaconi & De

Marco 2019).

Although extra energy sources (e.g. recombination energy or

energy released by accretion on to the companion) may help to

eject the envelope, they should also result in larger final separations

since less transfer of orbital energy is then required for ejection. On

the other hand, energy sinks, such as loss via radiation, may offset

energy gain by the envelope gas (Sabach et al. 2017; Grichener,

Sabach & Soker 2018, but see Ivanova 2018).

Separations at late times tend to be overestimated because of

inadequate numerical resolution (Ohlmann et al. 2016; Iaconi et al.

2017, 2018; Paper II), but this is unlikely a dominant effect – the

slow decrease of a at late times needs to be explained physically.

Ricker & Taam (2008), Ricker & Taam (2012), Staff et al. (2016),
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3728 L. Chamandy et al.

Figure 1. Inter-particle separation as a function of time for the three runs.

and Iaconi et al. (2017, 2018) include some explorations of the drag

force in their global CE simulations. And recent work by Reichardt

et al. (2019) showed that the decrease in the rate of orbital tightening

at late times was consistent with reduction in the drag force on the

companion measured in one of their simulations. The reduction was

explained qualitatively by a reduction in the angular velocity of the

cores relative to the gas in their vicinity.

The goal of this work is to analyse the drag force in three

otherwise identical simulations, but each with a different companion

mass, and to compare our results with results from analytic theory

and local wind tunnel CE simulations of flow near the secondary.

In Section 2, we summarize our numerical methods. Section 3

contains the results of our simulations for the net force. We compare

these results to analytic theory in Section 4. The evolution of the

flow around the secondary, with a focus on the simulation with

largest companion mass, is explored in Section 5. The results for

the net force and flow properties are then compared to wind tunnel

simulations in Section 6. We summarize and conclude in Section 8.

2 SI M U L AT I O N PA R A M E T E R S A N D M E T H O D S

We employ the hydrodynamics code ASTROBEAR, which includes

adaptive mesh refinement (AMR). The primary is an M1 =

1.96 M� red giant branch (RGB) star with radius R1 = 48 M�

and core mass M1,c = 0.37 M�, and the secondary has mass M2 =

0.98 M� (Model A), M2 = 0.49 M� (Model B), or M2 = 0.245 M�

(Model C). The primary and secondary are initialized in a circular

orbit with separation ai = 49 R�. Aside from the companion mass

and initial velocities, the three runs are identical. Model A is the

same as Model A of Chamandy et al. (2018) (hereafter Paper I) and

Paper II.

RGB core and companion are modelled as point particles (‘parti-

cle 1’ and ‘particle 2’, respectively) that interact with each other and

gas via gravity only. The particle potential is smoothed according

to a spline function (Springel 2010) such that it is Newtonian for

r > rsoft and shallower than Newtonian for r < rsoft, where rsoft

is the spline softening radius. The RGB model is adapted from a

MESA (Paxton et al. 2015) 1D profile using a similar method to

that of Ohlmann et al. (2017) to model the gas profile within the

softening radius. The spline softening radius and smallest resolution

element are, respectively, rsoft = 2.4 R� and δ = 0.14 R� from t =

0 to t = 16.7 d, and rsoft = 1.2 R� and δ = 0.07 R� thereafter.

Refinement at the highest resolution is applied everywhere within a

sphere of dynamically changing radius rrefine (see Fig. 1), centred on

the primary core before t = 16.7 d, and companion thereafter. The

simulation domain size is Lbox = 1150 R�, with 5123 base cells

of size 2.25 R�. (Four levels of AMR are used for t < 16.7 d and

five levels thereafter, and going up one level halves the cell size.)

Extrapolation boundary conditions are employed.

An ideal gas EOS with γ = 5/3 is employed. The ambient

density and pressure are ρamb = 6.7 × 10−9 g cm−3 and Pamb =

1.0 × 105 dyn cm−2, respectively. The simulations are stopped after

t = 40 d. More details about the set-up and methods can be found

in Papers I and II.

In Model B of Paper I, the secondary was a sink particle that

accreted mass at a rate that was an upper bound to the true accretion

rate. Since the orbit, and hence the drag force, was not drastically

affected by this accretion, we exclude accretion on to the companion

in the present simulations.

3 OV E R A L L E VO L U T I O N

3.1 Orbital separation

Fig. 1 shows orbital separation versus time for Models A, B, and C

in solid blue, dashed red, and dash–dotted black, respectively. The

quantities rsoft and rrefine, which do not change between runs, are

also shown for reference. As the companion mass is lowered, the

initial orbital speed and separation decay rate are both reduced. At

later times however the separation decays more rapidly for lower

mass, and the curves cross. This behaviour is consistent with other

studies (e.g. Passy, Mac Low & De Marco 2012).

We have computed the tidal shredding radius rshred for a main-

sequence secondary using the initial density profile of the primary

along with the estimate of Nordhaus & Blackman (2006) and the

mass–radius relation from Eker et al. (2018), and find rshred < 1 R�

for all three models. For a white dwarf secondary, rshred would be

smaller still. Thus, the secondary is not expected to tidally shred

during any of our simulation runs.

3.2 Drag force

The centre of mass of the particles accelerates during the simula-

tion (Paper II) due to the gravitational interaction between the gas

and each of the particles. To facilitate comparison with theory and

local simulations that treat the primary as fixed and non-rotating,

we compute the dynamical friction force on particle 2 in the non-

inertial rest frame of particle 1, F2−gas,1, where the subscript ‘1’

after the comma denotes this reference frame. As seen in the lab

frame, this frame orbits with particle 1 but does not rotate. This

introduces a fictitious force so that the force exerted on particle 2

by gas in this frame is given by

F2−gas,1 = F2−gas − (M2/M1,c)F1−gas, (1)

where the terms on the right are computed in the lab frame (nearly

the centre of mass frame of the entire system; see Paper II). We

have not included the terms (1 + M2/M1,c)F2−1 because these

terms involve forces between the particles, and we are interested

in computing the forces between gas and particles. Note that

a force in the −φ direction (a drag) on particle 1 in the lab

frame contributes a drag on particle 2 in the frame of particle 1.

To compute the terms on the right of equation (1), we simply

integrate the force per unit volume on each particle, for example

F2−gas = GM2

∑

V ρ(s)[(s − s2)/|s − s2|
3]d3s, where ρ(s) is the

gas density at position s, V is the volume of the simulation domain,

and s2 is the position of particle 2. We then compute the φ-

component (s2 − s1) × F2−gas,1/a · ẑ. Likewise, we compute the

MNRAS 490, 3727–3739 (2019)
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Drag in global common envelope simulations 3729

projection of the force along the velocity vector relative to particle 1:

F2−gas,1 · (v2 − v1)/|v2 − v1|.

The force on particle 2, multiplied by −1, is presented in Fig. 2.

We refer to positive values on the plot as ‘drag’ and negative values

as ‘thrust’. The φ-component is plotted as a solid black line, and

the projection along the relative velocity is plotted as a dash-triple-

dotted gold line, for Model A (top), Model B (middle), and Model C

(bottom). The separation a is plotted with respect to the right axis

for reference.1

For all models, the −φ-component of the force steadily increases

from t = 0, attains a broad peak of a few days width (with a double

humped morphology, at least for Models A and B), and then reduces

before becoming quasi-constant until the end of the simulation.

The broad peak roughly coincides with the first periastron passage,

though for Models B and C it happens slightly earlier. The peak

magnitude is roughly proportional to the companion mass: ∼32,

∼16, and ∼8 in units of 1033 dyn for Models A, B, and C,

respectively.

Periodicity emerges at later times, particularly in Models A and

B, with the force magnitude greatest (smallest) when a is smallest

(greatest). The evolution is slower in Model C, so we expect such

variations to become more regular only after t = 40 d. At late times,

the magnitude is only weakly dependent on the companion mass,

being ∼ 7 × 1033 dyn for Models A and B and closer to ∼ 4 ×

1033 dyn for Model C, but has not yet stabilized by the end of that

run.

The dotted grey curve shows the contribution to the solid black

curve from only the first term on the right of equation (1). Ignoring

the fictitious force exerted by gas on particle 1 would thus lead to the

wrong conclusion that the φ-component of F2−gas,1 is sometimes

positive.

The component of force along v2 − v1 has a period-averaged

magnitude similar to the φ-component at late times, but varies

strongly with orbital separation and oscillates between drag and

thrust. The oscillations occur because the gas force exerted on each

particle is dominated by gas in the direction of the other particle, so

particle approach (recession) produces thrust (drag).

To explore the effect of changing the softening length and

resolution at t = 16.7 d, we compared the drag force in Model A to

that of Model F from Paper II, for which both rsoft and δ retain their

initial values for the full t = 37.3 d simulation. The separation a(t)

for Model F differs only slightly from that of Model A, as does the

force (Appendix A).

3.3 Torque and orbital energy dissipation

The torque on the particles about their centre of mass is plotted on

the left side of Fig. 3. The solid black line shows the z-component of

the torque computed using the forces obtained by integration over

the simulation domain,

τz =
M2

M1,c + M2

aF1−gas,φ +
M1,c

M1,c + M2

aF2−gas,φ . (2)

Here the forces are in the lab frame because torques from fictitious

forces cancel.

The dash-triple-dotted magenta line shows the z-component of

the rate of change of the particle angular momentum. This is

obtained by first computing the angular momentum of the particles

1The inter-particle separation never differs from its projection in the xy-plane

by more than 0.2 per cent.

about the particle centre of mass (denoted ‘CM’)

J1−2,z = M1,c[(s1 − sCM) × (v1 − vCM)]z

+M2[(s2 − sCM) × (v2 − vCM)]z, (3)

and then numerically time-differentiating Jz (with sampling in-

terval ≈ 0.23 d per frame). The two methods of computation

should in principle yield identical results, except for the sampling

error on J̇z, and the level of agreement is indeed excellent.

The xy-plane components of the torque are negligible in both

methods.

Given that the particle orbital energy dissipation rate could be

used to estimate the observed luminosity of potential transient CE

events such as luminous red novae, we also compute this. However,

such an estimate would need to consider radiative transfer and is

left for future work. The right side of Fig. 3 shows strong agreement

between the two different methods, first from computing the rate of

work done by gas on particles,

Ẇ = F1−gas · v1 + F2−gas · v2 (4)

(black solid line), and second by numerical time-differentiating the

total particle energy

E1−2 =
1

2
M1,cv

2
1 +

1

2
M2v

2
2 −

GM1,cM2

a
(5)

(dash-triple-dotted magenta line).

4 C O M PA R I S O N TO A NA LY T I C T H E O RY

4.1 Estimate for uniform density

The dynamical friction force can be estimated from Bondi–Hoyle–

Lyttleton (BHL) theory (Hoyle & Lyttleton 1939; Bondi & Hoyle

1944; Bondi 1952). Here, gas approaching with impact parameter

less than the accretion radius

Ra =
2GM

c2
∞ + v2

∞

(6)

accretes on to the star, where c∞ and v∞ are the sound speed of

the unperturbed envelope, and its speed relative to the secondary.

The accretion rate can be estimated as Ṁ ∼ πR2
a ρ∞(c2

∞ + v2
∞)1/2,

where ρ∞ is the unperturbed density, resulting in a drag force

F ∼ Ṁv∞ ln

(

rmax

rmin

)

∼
4πG2M2ρ∞v∞
(

c2
∞ + v2

∞

)3/2
ln

(

rmax

rmin

)

. (7)

Typically, rmax is taken to be Ra and rmin as the radius of the

star. Equation (7) was first derived by Dokuchaev (1964) and

survives among different estimates (Edgar 2004) subjected to

refinements from numerical studies, e.g. Shima et al. (1985). We

neglect turbulence (Krumholz, McKee & Klein 2006) which may

be important in general. We do consider the influence of a density

gradient, as explained below.

To make contact with previous work, we plot the φ-component of

the drag force, as in Fig. 2, but now with additional lines representing

theoretical predictions or results from local simulations, in Fig. 4.

The dash–dotted red line shows the quantity

F0 ≡
4πG2M2

2 ρ0v0
(

c2
0 + v2

0

)3/2
, (8)

where v0 ≡ |v2 − v1|0. In our notation, quantities with a ‘0’ sub-

script are computed from the initial envelope profile at radius a(t),

MNRAS 490, 3727–3739 (2019)
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3730 L. Chamandy et al.

Figure 2. Azimuthal (φ) component of the net force on particle 2 due to the gas in the non-inertial rest frame of particle 1, computed from the simulation (solid

black), component of this force along the relative velocity of particle 2 with respect to particle 1 (dash-triple-dotted gold), and contribution to the φ-component

from the force on particle 2 in the lab frame, without the fictitious force (dotted grey). The inter-particle separation (dashed light blue) is plotted using the right

axis, for reference.

MNRAS 490, 3727–3739 (2019)
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Drag in global common envelope simulations 3731

Figure 3. Left: Torque on particles about the particle centre of mass. The torque computed from the forces is shown in solid black, while that computed from

the rate of change of the particle angular momentum is shown in dash-triple-dotted magenta. Right: Similar to left-hand panels but now showing the rate of

change of work done by gas on particles in the inertial frame, computed from the forces or the rate of change of the orbital energy.

with velocity computed assuming a circular orbit with primary mass

equal to the mass interior to the orbit, m1(a) = M1, c + menv(a).

We find that replacing v0 by its actual value measured in the

simulation |v1 − v2| increases the amplitude of the oscillations in

F0 but otherwise the results are similar, so we opt to use the relative

velocity computed from the initial profile.2

At early times, F0 is effectively zero due to the small ρ0. Sub-

sequently, F0 rises to be comparable to φ-component of −F2−gas,1

just before the first periastron passage, before continuing to rise,

in contrast to the φ-component of −F2−gas,1, which decreases and

then levels off. Hence, equation (8) overestimates the magnitude

of the drag force at late times. Qualitatively similar results were

obtained by Staff et al. (2016). However, the phase and amplitude

of the variability seen in the φ-component of −F2−gas,1 at late times

in Models A and B are reproduced by this minimalist theoretical

model.

2Defining the Mach numbers M = |v2 − v1|/c0 or M0 = v0/c0, these are

found to be in the range 1.1 < M,M0 < 5.8. Within this range, the values

are larger for larger companion mass. Both peak at the same time, at about

6, 7, and 9 d for Models A, B, and C, respectively, before leveling near to

the minimum as the simulation progresses.

4.2 Estimate including density gradient

Using a more refined version of the theory that includes the

logarithmic factor of equation (7) and accounts to some extent for

gradients in the radial direction might be expected to produce better

agreement. Hence, for a more general estimate to the drag force,

we multiply F0 by ln (rmax/rmin) and a correction factor (Dodd &

McCrea 1952, hereafter DM) R2
a,DM/R2

a,0, which accounts for a

linear or at most quadratic density gradient in the correction to the

accretion radius, computed by

Ra,DM =
Ra,0

1 + R2
a,0/

(

4H 2
ρ

) , (9)

where

Ra,0 =
2GM2

c2
0 + v2

0

(10)

and Hρ = −ρ0/(dρ/dr)0 is the scale height. The modified force

magnitude is then

FDM = F0 ln

(

rmax

rmin

)(

Ra,DM

Ra,0

)2

. (11)

MNRAS 490, 3727–3739 (2019)
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3732 L. Chamandy et al.

Figure 4. Azimuthal component of the net force on particle 2 due to the gas in the non-inertial rest frame of particle 1 (as in Fig. 2), along with model

predictions. See the text for explanations of the quantities plotted. The dashed green line in the bottom panel is from the fitting formula (15), obtained from

local 3D wind tunnel simulation results (M17). This comparison is only carried out for Model C, where qenc(t) is comparable with the value qenc = 0.1 used in

their local simulations.

MNRAS 490, 3727–3739 (2019)
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Drag in global common envelope simulations 3733

We adopt rmax = Ra, DM and rmin = rsoft|t=0 = 2.4 R�. The dashed

purple line shows the resulting corrected estimate.3

We see from Fig. 4 that despite some differences, the level of

agreement between theory which includes the density gradient

(dashed purple) and the simulation results (solid black) is overall

comparable to that obtained using F0 (dashed red). The DM

correction marginally improves agreement for Models A and B,

but marginally worsens agreement for Model C.4

4.3 Theory works best at intermediate times

We do not expect good agreement between simulation and theory

at early times because of three interrelated factors: (i) tidally drawn

envelope material increases the density near particle 2 beyond

ambient and outer envelope layer values, (ii) density scale heights

are initially small compared to the accretion radius, and (iii) the

initial condition of a secondary placed just outside the spherically

symmetric primary at t = 0 is not fully realistic. Point (ii) is seen by

comparing solid black and green lines in Fig. 5, where we plot the

various length-scales as a function of time, for each simulation. The

DM correction in principle helps to account for (ii) but considers

only the lowest order effect of the density gradient.

At late times, we also expect poor agreement. In Model A

(q = 1/2) Ra ∼ a shortly after the first periastron passage, as seen

in Fig. 5 (compare blue and red dashed lines with black solid line),

so we do not expect good agreement. For Model B (q = 1/4), Ra

remains marginally smaller than a, while for Model C (q = 1/8),

Ra ∼ 0.5a by the end of the simulation. Theoretical predictions

for late times improve slightly as q decreases to 1/8, but not

dramatically.

At intermediate times, when Ra � a and Hρ, 0 � Ra, we expect

and find agreement to be much better. If we use |v2 − v1| measured

directly from the simulation to compute Ra (dashed blue in Fig. 5),

then the time range when Ra(t) < a(t) at the previous periastron

passage becomes 12 d � t � 14 d for Model A, 13 d � t � 24 d for

Model B, and t � 16 d for Model C. BHL/DM theory approximates

the numerical results reasonably well in these time ranges. In

particular, during the broad force peak, theory (equation 8 or 11)

correctly predicts the force to within a factor of approximately two

for all models.

4.4 Improved theory is needed for late times

Reichardt et al. (2019) suggested that a reduction in the relative

velocity between the particles and gas at late times in their

simulation with q = 0.68 might help explain the reduction of the

drag force. Might replacing our initial values of the gas density,

velocity with respect to particle 2, and sound speed with those

measured directly from the simulation help reconcile theory and

simulation at late times?

From the right column of Fig. 6 (see Section 5 for details), we

can estimate the parameters ρ∞, v∞, and c∞ at t = 22.0 d. Since

the orbital separation is small, one option is to choose a location

in the vicinity of particle 2, namely in the region below and to the

3Radial variations in the density gradient of the initial envelope profile

cause the noise. This variation is present in the 1D MESA solution, which

was retained for our initial condition outside of r = 2.4 R�.
4We also tried other variations, with only the ln (rmax/rmin) factor or only

the DM correction included, and found results that are generally similar to

the cases plotted.

left of particle 2 and within a few R� of particle 2 in the plots. The

velocity vectors show that some of this gas is being sling-shotted

around particle 2 and this produces a drag force. Here, ρ∞ ∼ (5–

10)ρ0, v∞ ∼ 1
2
v0, and c∞ ∼ 2c0. This leads to a force F∞ ∼ (1.9–

3.8)F0, using the analogue of equation (8), so the predicted force is

even larger than before, instead of smaller, as needed. Perhaps more

reasonable is to choose a location farther away from particle 2 on the

circle centred on particle 1 with radius equal to a, near coordinates

(−10, −5) in the right column of Fig. 6. In this vicinity, we find

ρ∞ ∼ 3ρ0, v∞ ∼ 0.3v0, and c∞ ∼ c0, giving F∞ ∼ 4.9F0. Pushing

the values as far as seems reasonable to obtain a smaller estimate

for the force, we could instead choose ρ∞ ∼ ρ0, v∞ ∼ 1
2
v0, and

c∞ ∼ 2c0, which leads to F∞ ∼ 0.38F0. This value is still not small

enough to explain the factor of ∼10 between the solid black and

dash–dotted red lines in the top panel of Fig. 4 at t = 22.0 d.

A second possibility is to note that the conventional theoretical

drag force formula changes as M∞ becomes small (Ostriker 1999).

Could this account for the small values seen at late times, as

suggested by Staff et al. (2016) for their simulations? In the subsonic

regime Ostriker (1999) derives the solution

FO99 = −I
4πG2M2ρ∞

v2
∞

, (12)

where

I =
1

2
ln

(

1 + M∞

1 − M∞

)

− M∞. (13)

This leads to the factor [(1 + M2
∞)3/2/M3

∞]I ≈ 0.48 multiplying

our above estimate of the force if v∞ = 1
2
v0 and c∞ = 2c0, or ≈0.56

if V∞ = 0.3v0 and c∞ = c0 are used instead. Thus, we obtain the

new estimates F∞ ∼ (1–2)F0, 3F0, and 0.18F0 for the three cases

described above. Even the smallest of these is about a factor of

two too large to explain the force measured in the simulation. We

obtain better agreement at t = 40 d. However, it is not clear whether

equation (12) is even applicable in the present context.

Thus, such theoretical estimates are not well motivated for late

times owing to the small inter-particle separation, are sensitive to

arbitrary choices, and cannot reproduce the force measured from

the simulation.

Another possibility is to note that at late times the particles accrete

their own quasi-static, quasi-spherical ‘bulges’ of gas (Paper I). The

bulge around particle 2 is mainly pressure supported but partially

rotation supported, and has size rb ∼ 2rsoft = 2.4 R�. Although

particles interact with gas only through gravity, and thus can only

experience dynamical drag, the composite particle-bulge ‘system’

in addition experiences a hydrodynamic drag as it moves through

the surrounding envelope gas. The hydrodynamic drag force can

be estimated as Fh ∼ ρv2
πr2

b , where ρv2 is the ram pressure

exerted by the gas encountered by the bulge around particle 2

as it orbits. For Model A at t = 22.0 d, using the above estimate

ρ ∼ (5–10)ρ0 and v ∼ 0.5v0 gives Fh ∼ (0.5–1) × 1034 dyn,

which is just the order of magnitude needed. However, this

formula underestimates the drag force at t = 40 d, and hence is

inadequate.

We leave further exploration of the force at late times for future

study.

5 EVO LUTION O F FLOW PRO PERTIES

Fig. 6 shows snapshots of various quantities, sliced through z =

0, for Model A. The snapshots are taken at t = 6.9, 11.1, 16.7,

and 22.0 d. Defining the end of the dynamical plunge-in phase

MNRAS 490, 3727–3739 (2019)
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3734 L. Chamandy et al.

Figure 5. Comparison between various relevant length scales, plotted against time.

as the time of first periastron passage (Paper II) the four times

represent, roughly speaking, the flow near the beginning of plunge-

in, the end of plunge-in, the transition to slow spiral-in, and at the

beginning of slow spiral-in. The orbital motion is counterclockwise.

In each panel, particle 2 is at the centre and the view is rotated

so that particle 1 is on the negative y-axis. The circles show the

softening spheres around the particles. We focus on Model A

because it displays the strongest deviation from theory, and because

other aspects of the run were extensively studied in Papers I

and II.

MNRAS 490, 3727–3739 (2019)
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Drag in global common envelope simulations 3735

Figure 6. Snapshots in the orbital plane z = 0 for Model A. From left to right, columns show the times t = 6.9, 11.1, 16.7, and 22.0 d. Rows from top to bottom

are: Force density in dyn cm−3 on particle 2 due to gas in the accelerating reference frame of particle 1; mass density normalized to ρ0(a) with velocity vectors

in the corotating frame of particle 2 (note the difference in colour bar range from Fig. 7); Mach number in the corotating frame of particle 2; −φ-component

of gas velocity with respect to particle 1, in the corotating frame of particle 2, normalized to v0, and sound speed normalized to c0.

5.1 Force density

The top row shows the magnitude of the φ-component of the

force per unit volume exerted by gas on particle 2 in the co-

orbiting but non-rotating rest frame of particle 1, in units of

dyn cm−3 Positive (negative) drag contributions are indicated by

solid (dashed) contours, spaced by the values on the colour bar.

As there are positive and negative contributions from both terms in

equation (1), the plot contains four sets of contours. Forces between

gas and particle 2 dominate the contours in the upper part of the

plot, while forces between gas and particle 1 (fictitious forces on

MNRAS 490, 3727–3739 (2019)
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3736 L. Chamandy et al.

particle 2) dominate the lower sets of contours. A drag (thrust) on

particle 1 in the lab frame produces a fictitious drag (thrust) on

particle 2 in the reference frame orbiting with particle 1. The black

arrow shows the relative magnitude and direction of F2−gas,1, while

the blue arrow shows the same for the velocity of particle 2 in the

same reference frame.

At t = 6.9 d (column 1), a low-density tidal tail from the primary

wraps around the secondary from behind it (second row), providing

a dynamical friction force. The density of the gas in front of

particle 2 is much smaller so the force pulling particle 2 backwards

dominates. The contribution from the force on particle 1 is small

because this contribution is dominated by the gas near particle 1,

which is distributed symmetrically in the trailing and leading

directions.

At t = 11.1 d (column 2), the gas near particle 2 now has a higher

density, leading to a greater drag force. If logarithmic intervals in

radius with respect to particle 2 contributed equally to the net force,

as suggested by equation (7), the force per unit volume contours

would be separated by a factor ∼101/3 ≈ 2.15 in radius.

This is roughly valid out to about the third contour: in each of

the snapshots, the ratio in radius between the innermost contours

is approximately two, but the ratio between adjacent contours

decreases as one moves outwards from particle 2. The ratio of

radii of the fourth to third contour is generally ∼1.5, implying a

decrease in contribution by a factor ∼1.53/10 ≈ 0.3.

Calculating Ra we obtain 28–38 R� for t = 6.9 d and 15–16 R�

for t = 11.1 d; the first value uses equation (6) with c∞ and v∞

replaced by c0 and v0, while the second value uses |v2 − v1| directly

from the simulation. These values correspond to roughly the third

contour, so adopting rmax = Ra is reasonable; the contribution to the

force beyond this radius is small.

By the next snapshot, at t = 16.7 d (column 3), the force density

about particle 2 has become much more symmetric, and the drag

force is approximately zero (consistent with the top-left panel

of Fig. 3). Correspondingly, the contours show a high degree

of left–right symmetry. The force F2−gas,1 now has comparable

contributions from F2−gas and −(M2/M1,c)F1−gas.

For the final snapshot at t = 22.0 d (column 4), the φ-component

of F2−gas,1 is quasi-steady. The force remains small, owing to the

high degree of symmetry in the force density, so that the thrust and

drag contributions balance except for a small net drag. The force

density pattern is quasi-steady thereafter, consistent with the net

force being quasi-steady.

5.2 Gas density evolves towards symmetry

The second row of Fig. 6 shows the gas density normalized to ρ0(a)

of the initial density profile of the RGB star. Vectors show the gas

velocity in the frame co-orbiting and corotating with particle 2, as

this is the appropriate reference frame for comparison with theory

and local simulations. The second to fifth rows are zoomed in by

a factor of four compared to the top row. At t = 6.9 d, the density

is ∼103 times larger than ρ0(a) as deeper gas is pulled tidally

around particle 2. The value of ρ(a)/ρ0(a) then reduces to ∼10 at

t = 22.0 d and to approximately one by t = 40 d. The flow around

particle 2 becomes more axisymmetric, rotating ∼ 20 per cent of

the Keplerian value at late times (Paper I).

5.3 Mach number and turbulence

In the third row, we plot the gas Mach number computed in the

frame co-orbiting and corotating with particle 2. In this frame, the

gas around particle 2 is mostly supersonic during plunge-in, except

in the bow shock. For these snapshots we obtain, from earliest to

latest, M0 = v0/c0 = 5.3, 2.1, 1.7, and 1.7. At t = 16.7 d, a shock

is still seen, now above particle 2 in the plot. By t = 22.0 d, the

gas about the particles and within the orbit is not only subsonic, but

turbulent. The turbulence is well developed by t = 18 d.

To verify that the turbulence is not produced by the sudden change

in softening length and resolution at t = 16.7 d, we compared

the 2D snapshots to a run (Model F of Paper II) for which the

softening length and maximum AMR level are not changed in

this way. Turbulent eddies are conspicuous by t = 18 d in that

run as well, even though the smallest scales of the turbulence are

larger.

The onset of turbulence roughly coincides with the transition

from plunge-in to slow spiral-in once Ra ∼ a, as shown in Fig. 5,

and the particles have completed a full orbit since the first periastron

passage. The gas they encounter no longer moves out supersonically

due to the deeper potential and confinement by overlying layers

(Paper II) so is continually being ‘reprocessed’.

5.4 Azimuthal velocity and sound speed

Finally, we present plots of the velocity and sound speed, which

were used above to obtain modified parameter values for theoretical

estimates (Section 4.4). The vectors in the fourth row of Fig. 6

show the gas velocity in the corotating frame of particle 2 as in the

third row. The colour shows the −φ-component of this velocity

with respect to particle 1, normalized to v0. A value of unity

(orange) corresponds to the relative tangential velocity estimated

from the initial stationary envelope profile, while negative values

(yellow to purple) denote oppositely moving gas. In all snapshots,

the streamlines curl counterclockwise around particle 2 so that

the φ-component of the velocity reverses sign. The speed of gas

approaching particle 2 is of order v0 in the first three snapshots, but

only about 1
2
v0 by the fourth snapshot (Section 4.4).

Finally, in the fifth row we plot the sound speed normalized to

c0, along with the same velocity vectors plotted in rows 2 and 4.

The gas flowing towards and deflected by the secondary has sound

speed ∼2c0 (blue).

6 C O M PA R I S O N TO W I N D TU N N E L

SI MULATI ONS

6.1 Drag force comparison

Here we compare our results with the local CE wind tunnel

simulations of MacLeod et al. (2017) (hereafter M17) for which a

particle representing the secondary was fixed at the centre of the grid

and a wind was launched from the −x boundary with a prescribed x-

velocity and density gradient in the −y direction. By approximating

the gas as a polytrope and assuming that the upstream wind velocity

equals the local Keplerian orbital speed, the upstream Mach number

is determined once the dimensionless density gradient parameter

ερ =
2GM2

v2
∞Hρ

, (14)

and the mass ratio qenc = M2/m1(a) are specified. M17 chose qenc =

0.1 and explored the dependence on ερ . In our simulations, qenc =

q = 1/2, 1/4, or 1/8 at t = 0, but then increases with time as m1(a)

decreases: computing m1, 0(a) from the initial envelope profile, we

obtain qenc, 0 = 2.0, 1.2, and 0.6 at t = 40 d for Models A, B, and

C, respectively. M17 results are likely to be sensitive to their fixed
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Drag in global common envelope simulations 3737

choice of qenc; nevertheless we proceed with the comparison for

Model C, which proves to be fruitful.

We first fit the drag force in M17 for γ = 5/3 in their fig. 10.

Replacing ρ∞ and v∞ by ρ0 and v0 we obtain

FM17 	 0.6e0.61ερ ×
4πG2M2

2 ρ0

v2
0

. (15)

We apply this for 0.4 < ερ < 2.7 (consistent with the range of

parameter space explored by M17) and plot the resulting force only

for times in our simulation when ερ,0 = 2GM2/(v2
0Hρ,0) is within

this range. The result is the dashed green line in the bottom panel

of Fig. 4.

At intermediate times, between t = 12 and 26 d, the agreement is

excellent. At t = 26 d, when −ȧ attains its second maximum (the

first having occurred between t = 13 and 14 d), the φ-component

of −F2−gas,1 decreases from its peak value, but equation (15)

predicts the force to continue rising. At this time, qenc, 0 = 0.28, or

almost three times larger than that assumed by M17, which likely

contributes to this discrepancy.

6.2 Flow structure comparison

Flow structure of global and local simulations can also be compared.

For Model C, we choose the time t = 20.8 d, at which ερ =

0.80 (and qenc = 0.15), to compare with the lower left panels of

fig. 2 of M17. We plot the mass density normalized to ρ0(a) and

velocity vectors in the corotating frame of particle 2 in the top

panel of Fig. 7, and the Mach number in the corotating frame

of particle 2 in the bottom panel. The unit of the M17 axes is

2GM2/v
2
0 = 7.4 R�, so our plotting region is slightly larger than

theirs. The level of agreement is remarkable. All of this suggests

that the local simulations approximate global simulations for this

window of parameter space.

Curiously, there is also some correspondence between the flow

in Model A and that of the local simulations, even though the mass

ratio of the former is much larger. Although M17 adopted qenc =

0.1 and ερ = 0.2–2, Model A has qenc, 0 = 0.50, 0.75, 1.23, and

1.53 and ερ, 0 = 20.3, 2.1, 1.7, and 1.4 at t = 6.9, 11.1, 16.7, and

22.0 d, respectively. Despite differences in qenc and the force seen

in Fig. 4, the panels of Fig. 6 showing ρ/ρ0 and M in Model A

at 11.1 d show similarities to those of ερ = 2.00 in fig. 2 of M17,

as seen by comparing the second column, third and fourth rows

of Fig. 6 with fig. 2 of M17. The flow pattern is similar and both

methods exhibit a thin spiral shock. However, the normalized gas

density in Fig. 6 is 1–1000 (whereas in Fig. 7 we used 0.1–100,

as in M17). Thus in Model A our normalized densities are almost

an order of magnitude larger than those of M17, likely because our

qenc is 7.5 times larger than theirs at that time. The size of the region

plotted in units of 2GM2/v
2
∞ differs from M17: for Model A we

obtain 2GM2/v
2
0 = 29, 19, 16, and 14 R�, respectively, for the four

snapshots.5

As expected, snapshots at other times hardly resemble those of

M17. At t = 6.9 d, ερ is an order of magnitude larger than that

explored by M17. We do see increasing density contrast and larger

rotation angle of the bow shock with increasing ερ , as in M17, but

our shock is thick and morphologically complex. By t = 16.7 d,

5When ερ and 2GM2/v
2
∞ are estimated using the actual velocity v2 − v1,

rather than v0, the values are larger by 37 per cent for t = 6.9 d but hardly

differ for the other snapshots of Model A.

Figure 7. Top: Slice through the orbital plane of density normalized to ρ0(a)

along with velocity vectors in the reference frame orbiting and corotating

with particle 2 for Model C at t = 20.8 d, when ερ = 0.80 and qenc = 0.15.

Bottom: Mach number in the same reference frame. At this time, the drag

force is approximately equal to that predicted from the fitting formula of

M17. These snapshots can be compared with those from fig. 2 of M17,

keeping in mind that the unit of their axes is 2GM2/v
2
0 = 7.4 R�. There

is a close correspondence between the global and local simulations, as

expected.

Ra has already become comparable to a, as shown in the top panel

of Fig. 5. The assumptions of M17, namely that (i) the envelope

gas encountered by the secondary had not been previously affected;

(ii) their ρ∞ smoothly and monotonically decreases with distance

from the RGB core, and (iii) the gravity force from the RGB core

can be approximated as everywhere downwards, are no longer

valid. Moreover, in our final snapshot, turbulence likely affects the

dynamics.

Thus, we would not expect wind tunnel simulations to approxi-

mate the results of Model A at late times even if several wind tunnel

simulations of different qenc, 0 and ερ, 0 were patched together to

accommodate dynamically changing values of these parameters in

the global simulation. However, given the excellent agreement at

intermediate times for Model C, it would be interesting to compare

local and global simulations using such dynamical patching of

the local simulations to refine the temporal range over which this

approach could be useful and computationally efficient.

7 H OW I M P O RTA N T IS R A D I AT I V E

TRANSFER?

Radiative transfer is neglected in our simulations (and in virtually

all global CE simulations to date). A large diffusive flux of radiation

out of the central region might lead to a different flow structure at

late times. Averting the build-up of thermal energy might allow the

MNRAS 490, 3727–3739 (2019)
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3738 L. Chamandy et al.

flow there to retain a structure closer to that which it had originally,

and thus closer to that assumed in wind tunnel experiments, where

the flow is assumed to be unaffected by previous orbital passages

of the particles.

Thus, we estimate the diffusion time to determine whether

cooling would be significant at late times in our simulations. We

consider the flow properties at t = 22.0 d in Model A (right column

of Fig. 6), focussing on the region around particle 2 with M < 1.

The distance from particle 2 to the boundary of this region is

estimated as R ∼ 7 R�. Within this region, a typical gas density

is ρ ∼ 2 × 10−4 g cm−3 and the temperature T > 106 K. At this

temperature, hydrogen gas is ionized and the opacity is dominated

by electron scattering, with cross-section σT = 6.65 × 10−25 cm2.

The diffusion time is estimated by multiplying the number of

scatterings by the mean free path and dividing by the speed of light

in vacuum c. The mean free path is given by l = (neσ T)−1, the

electron number density by ne = ρ/mH where mH is the mass of the

hydrogen atom, and the number of scatterings is given by N 	 R2/l2.

Thus, we have

td ∼
Nl

c
∼

R2ρσT

mHc
, (16)

or td ∼ 20 yr for Model A (with corresponding optical depth

τ ∼ σ TneR ∼ 40). For Models B and C, at a comparable time in

the evolution, R is somewhat smaller while ρ is slightly larger than

in Model A, and the value of td is of the same order of magnitude.

Since td 
 t, the neglect of radiative transfer in the M < 1 region

around the particles is justified.

8 C O N C L U S I O N S

We computed the drag force in three global CE simulation runs of

40 d in which a companion point particle is placed in circular orbit

around a 2 M� RGB star. The runs are identical except for the value

of the companion mass, M�, 1
2

M�, or 1
4

M�. We found that:

(i) The drag force on the particles at late times, during the slow

spiral-in phase, has mean magnitude ∼ 7 × 1033 dyn, depending

only weakly on companion mass, and varies periodically with the

orbit (Figs 2, A1).

(ii) BHL/DM theory overestimates the drag force at late times

by at least an order of magnitude for the run with initial mass ratio

q = 1/2 (Fig. 4 top panel), and cannot reproduce the late-time force

for any of the three runs.

(iii) BHL/DM theory and local wind tunnel simulations are

particularly inapplicable at late times for large qenc = M2/m1(a)

because the accretion radius becomes comparable to the inter-

particle separation. The gas encountered by the particles forms a

turbulent, thermalized, highly symmetric region around the particles

(Fig. 6 rightmost column). Hydrodynamic drag may even dominate

over dynamical friction during this phase, but further work is

needed.

(iv) At earlier times, the drag force peaks at or just before the

first periastron passage with value approximately proportional to

the companion mass (Fig. 2). Near this peak, the drag force is

reasonably well matched by BHL/DM theory and particularly well

matched by local wind tunnel simulations (Fig. 4 bottom panel),

which also reproduce various features of the 2D slices at that time

(cf. Fig. 7 and fig. 2 of M17).

Thus, for low qenc, BHL/DM theory and local wind tunnel

simulations approximate the drag in global simulations during the

intermediate plunge-in phase, but not before or after. Since qenc

evolves temporally in global simulations, different fixed qenc wind

tunnel simulations must be patched together to increase the fidelity

of comparison with global simulations over a larger temporal range.

This has not yet been done.

Finally, more general theoretical approaches are needed to ac-

count for the high degree of symmetry and turbulence in the flow

once Ra ∼ a, and the associated reduced drag at late times. This

reduced drag dramatically slows the inward evolution and explains

why numerous CE simulations do not reach tight enough orbits by

the end of runs to eject the CE envelope.
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Ohlmann S. T., Röpke F. K., Pakmor R., Springel V., 2016, ApJ, 816, L9
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A P P E N D I X : E F F E C T O F C H A N G I N G

SOFTENI NG LENGTH AND RESOLUTI O N

Here we compare the −φ-component of the force exerted on

particle 2 by the gas in the frame of particle 1 in Model A and

Model F of Paper II. Model F restarts from Model A at t = 16.7 d

but the softening radius and smallest resolution element are not

halved as in Model A. The evolution of the force is very similar,

confirming that the halving of rsoft and δ does not importantly affect

the overall evolution of the force.

Figure A1. Comparion between the φ-component of the force exerted by gas on particle 2 in the reference frame of particle 1, for Model A and Model F of

Paper II. In Model F, the softening radius and smallest resolution element were kept constant during the simulation rather than being halved at t = 16.7 d, as

in Models A, B, and C.
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