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ABSTRACT

We compute the forces, torque, and rate of work on the companion-core binary due to drag
in global simulations of common envelope (CE) evolution for three different companion
masses. Our simulations help to delineate regimes when conventional analytic drag force
approximations are applicable. During and just prior to the first periastron passage of the
in-spiral phase, the drag force is reasonably approximated by conventional analytic theory
and peaks at values proportional to the companion mass. Good agreement between global
and local 3D ‘wind tunnel’ simulations, including similar net drag force and flow pattern,
is obtained for comparable regions of parameter space. However, subsequent to the first
periastron passage, the drag force is up to an order of magnitude smaller than theoretical
predictions, quasi-steady, and depends only weakly on companion mass. The discrepancy is
exacerbated for larger companion mass and when the inter-particle separation reduces to the
Bondi-Hoyle-Lyttleton accretion radius, creating a turbulent thermalized region. Greater flow
symmetry during this phase leads to near balance of opposing gravitational forces in front of
and behind the companion, hence a small net drag. The reduced drag force at late times helps
explain why companion-core separations necessary for envelope ejection are not reached by
the end of limited duration CE simulations.
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1 INTRODUCTION

Common envelope evolution (CEE) is the most natural mechanism
for rapidly tightening binary orbits and likely facilitates many
phenomena, including gravitational wave-emitting mergers and
Type Ia supernovae. In CEE, the primary and secondary cores
inspiral from drag, transferring orbital energy to the envelope until
the latter ejects, or the cores merge.

Hydrodynamic simulations of this process generally do not eject
the envelope. Although it is possible that the cores should merge for
the parameter regime explored in some of the simulations (Iaconi
etal. 2018), in other simulations the rate of decay of the inter-particle
separation a decreases dramatically at values of a too large for a
merger during the computation. There may also be missing physics
in the simulations. For example, most employ an ideal gas equation
of state (EOS), whereas a more sophisticated EOS should account
for ionization and recombination. When recombination energy is
injected locally, the envelope is found to eject or almost eject in at
least some cases (Nandez, Ivanova & Lombardi 2015; Nandez &
Ivanova 2016; Prust & Chang 2019).
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Chamandy et al. (2019) (hereafter Paper II) applied the common
envelope (CE) energy formalism (van den Heuvel 1976; Webbink
1984; Livio & Soker 1988) to show that for a reasonable energy
parameter acg < 0.3, theory correctly predicts that the envelope
will not eject in our simulation or in any other with very similar
initial conditions (Ohlmann et al. 2016) because the simulations
do not reach the predicted separation for ejection by the end of the
runs. That simulations do not eject the envelope because they do not
attain small enough separations is partly supported by observations,
exhibiting small final separations (Iaconi et al. 2017; laconi & De
Marco 2019).

Although extra energy sources (e.g. recombination energy or
energy released by accretion on to the companion) may help to
eject the envelope, they should also result in larger final separations
since less transfer of orbital energy is then required for ejection. On
the other hand, energy sinks, such as loss via radiation, may offset
energy gain by the envelope gas (Sabach et al. 2017; Grichener,
Sabach & Soker 2018, but see Ivanova 2018).

Separations at late times tend to be overestimated because of
inadequate numerical resolution (Ohlmann et al. 2016; Iaconi et al.
2017, 2018; Paper II), but this is unlikely a dominant effect — the
slow decrease of a at late times needs to be explained physically.
Ricker & Taam (2008), Ricker & Taam (2012), Staff et al. (2016),
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Figure 1. Inter-particle separation as a function of time for the three runs.

and laconi et al. (2017, 2018) include some explorations of the drag
force in their global CE simulations. And recent work by Reichardt
etal. (2019) showed that the decrease in the rate of orbital tightening
at late times was consistent with reduction in the drag force on the
companion measured in one of their simulations. The reduction was
explained qualitatively by a reduction in the angular velocity of the
cores relative to the gas in their vicinity.

The goal of this work is to analyse the drag force in three
otherwise identical simulations, but each with a different companion
mass, and to compare our results with results from analytic theory
and local wind tunnel CE simulations of flow near the secondary.
In Section 2, we summarize our numerical methods. Section 3
contains the results of our simulations for the net force. We compare
these results to analytic theory in Section 4. The evolution of the
flow around the secondary, with a focus on the simulation with
largest companion mass, is explored in Section 5. The results for
the net force and flow properties are then compared to wind tunnel
simulations in Section 6. We summarize and conclude in Section 8.

2 SIMULATION PARAMETERS AND METHODS

We employ the hydrodynamics code ASTROBEAR, which includes
adaptive mesh refinement (AMR). The primary is an M, =
1.96 Mg red giant branch (RGB) star with radius R; = 48 Mg
and core mass M; . = 0.37 Mg, and the secondary has mass M, =
0.98 Mo (Model A), M, = 0.49 Mg (Model B), or M, = 0.245 Mg,
(Model C). The primary and secondary are initialized in a circular
orbit with separation a; = 49 R,. Aside from the companion mass
and initial velocities, the three runs are identical. Model A is the
same as Model A of Chamandy et al. (2018) (hereafter Paper I) and
Paper II.

RGB core and companion are modelled as point particles (“parti-
cle 1’ and ‘particle 2°, respectively) that interact with each other and
gas via gravity only. The particle potential is smoothed according
to a spline function (Springel 2010) such that it is Newtonian for
r > ref and shallower than Newtonian for r < ref, Where ref
is the spline softening radius. The RGB model is adapted from a
MESA (Paxton et al. 2015) 1D profile using a similar method to
that of Ohlmann et al. (2017) to model the gas profile within the
softening radius. The spline softening radius and smallest resolution
element are, respectively, 7y = 2.4Rp and 6 = 0.14 Ry, from ¢ =
0 to t =16.7d, and ren = 1.2Rg and § = 0.07 R, thereafter.
Refinement at the highest resolution is applied everywhere within a
sphere of dynamically changing radius 7. (see Fig. 1), centred on
the primary core before t = 16.7 d, and companion thereafter. The
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simulation domain size is Lpox = 1150 Ry, with 5123 base cells
of size 2.25Rg. (Four levels of AMR are used for + < 16.7d and
five levels thereafter, and going up one level halves the cell size.)
Extrapolation boundary conditions are employed.

An ideal gas EOS with y = 5/3 is employed. The ambient
density and pressure are p,m, = 6.7 X 107° gcm_3 and P, =
1.0 x 10° dyncm™2, respectively. The simulations are stopped after
t = 40d. More details about the set-up and methods can be found
in Papers I and II.

In Model B of Paper I, the secondary was a sink particle that
accreted mass at a rate that was an upper bound to the true accretion
rate. Since the orbit, and hence the drag force, was not drastically
affected by this accretion, we exclude accretion on to the companion
in the present simulations.

3 OVERALL EVOLUTION

3.1 Orbital separation

Fig. 1 shows orbital separation versus time for Models A, B, and C
in solid blue, dashed red, and dash—dotted black, respectively. The
quantities rso and refine, Which do not change between runs, are
also shown for reference. As the companion mass is lowered, the
initial orbital speed and separation decay rate are both reduced. At
later times however the separation decays more rapidly for lower
mass, and the curves cross. This behaviour is consistent with other
studies (e.g. Passy, Mac Low & De Marco 2012).

We have computed the tidal shredding radius rgyeq for a main-
sequence secondary using the initial density profile of the primary
along with the estimate of Nordhaus & Blackman (2006) and the
mass—radius relation from Eker et al. (2018), and find rgheqa < 1Rg
for all three models. For a white dwarf secondary, ry,eq Would be
smaller still. Thus, the secondary is not expected to tidally shred
during any of our simulation runs.

3.2 Drag force

The centre of mass of the particles accelerates during the simula-
tion (Paper II) due to the gravitational interaction between the gas
and each of the particles. To facilitate comparison with theory and
local simulations that treat the primary as fixed and non-rotating,
we compute the dynamical friction force on particle 2 in the non-
inertial rest frame of particle 1, F_,, 1, where the subscript ‘1’
after the comma denotes this reference frame. As seen in the lab
frame, this frame orbits with particle 1 but does not rotate. This
introduces a fictitious force so that the force exerted on particle 2
by gas in this frame is given by

FZ—gas,l = FZ—gas - (MZ/MI,C)Fl—gas’ (1)

where the terms on the right are computed in the lab frame (nearly
the centre of mass frame of the entire system; see Paper II). We
have not included the terms (1 + M,/M, )F,_; because these
terms involve forces between the particles, and we are interested
in computing the forces between gas and particles. Note that
a force in the —¢ direction (a drag) on particle 1 in the lab
frame contributes a drag on particle 2 in the frame of particle 1.
To compute the terms on the right of equation (1), we simply
integrate the force per unit volume on each particle, for example
Fo_gas =GM> Y, p(s)(s — 52)/Is — s2|*1d%s, where p(s) is the
gas density at position s, V is the volume of the simulation domain,
and s, is the position of particle 2. We then compute the ¢-
component (s; — 1) X Fa_gq1/a - Z. Likewise, we compute the
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projection of the force along the velocity vector relative to particle 1:
Fo_gas1 - (02 —v1)/|v2 — vy,

The force on particle 2, multiplied by —1, is presented in Fig. 2.
We refer to positive values on the plot as ‘drag’ and negative values
as ‘thrust’. The ¢-component is plotted as a solid black line, and
the projection along the relative velocity is plotted as a dash-triple-
dotted gold line, for Model A (top), Model B (middle), and Model C
(bottom). The separation a is plotted with respect to the right axis
for reference.!

For all models, the —¢-component of the force steadily increases
from ¢ = 0, attains a broad peak of a few days width (with a double
humped morphology, at least for Models A and B), and then reduces
before becoming quasi-constant until the end of the simulation.
The broad peak roughly coincides with the first periastron passage,
though for Models B and C it happens slightly earlier. The peak
magnitude is roughly proportional to the companion mass: ~32,
~16, and ~8 in units of 10**dyn for Models A, B, and C,
respectively.

Periodicity emerges at later times, particularly in Models A and
B, with the force magnitude greatest (smallest) when a is smallest
(greatest). The evolution is slower in Model C, so we expect such
variations to become more regular only after t = 40 d. At late times,
the magnitude is only weakly dependent on the companion mass,
being ~ 7 x 103 dyn for Models A and B and closer to ~ 4 x
10** dyn for Model C, but has not yet stabilized by the end of that
run.

The dotted grey curve shows the contribution to the solid black
curve from only the first term on the right of equation (1). Ignoring
the fictitious force exerted by gas on particle 1 would thus lead to the
wrong conclusion that the ¢-component of Fj_,, 1 is sometimes
positive.

The component of force along v, — v, has a period-averaged
magnitude similar to the ¢-component at late times, but varies
strongly with orbital separation and oscillates between drag and
thrust. The oscillations occur because the gas force exerted on each
particle is dominated by gas in the direction of the other particle, so
particle approach (recession) produces thrust (drag).

To explore the effect of changing the softening length and
resolution at + = 16.7 d, we compared the drag force in Model A to
that of Model F from Paper II, for which both 7y, and é retain their
initial values for the full # = 37.3 d simulation. The separation a(r)
for Model F differs only slightly from that of Model A, as does the
force (Appendix A).

3.3 Torque and orbital energy dissipation

The torque on the particles about their centre of mass is plotted on
the left side of Fig. 3. The solid black line shows the z-component of
the torque computed using the forces obtained by integration over
the simulation domain,

M,
T, = ———
) Ml,c+M2

,C

1
Fi_ -
arg gas, ¢ + MLC + M2

aF27gas,¢~ (2)
Here the forces are in the lab frame because torques from fictitious
forces cancel.

The dash-triple-dotted magenta line shows the z-component of
the rate of change of the particle angular momentum. This is
obtained by first computing the angular momentum of the particles

I'The inter-particle separation never differs from its projection in the xy-plane
by more than 0.2 per cent.
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about the particle centre of mass (denoted ‘CM’)
S22 = My [(s1 — sem) X (v — vem)]:

+ Ms[(s2 — sem) X (v2 — vem)l:, (3)

and then numerically time-differentiating J, (with sampling in-
terval ~ 0.23d per frame). The two methods of computation
should in principle yield identical results, except for the sampling
error on J., and the level of agreement is indeed excellent.
The xy-plane components of the torque are negligible in both
methods.

Given that the particle orbital energy dissipation rate could be
used to estimate the observed luminosity of potential transient CE
events such as luminous red novae, we also compute this. However,
such an estimate would need to consider radiative transfer and is
left for future work. The right side of Fig. 3 shows strong agreement
between the two different methods, first from computing the rate of
work done by gas on particles,

W = Flfgas SV F27gas c Uy (4)

(black solid line), and second by numerical time-differentiating the

total particle energy

E\,= lMl.Cvf 4 levg _ M
2 2

(dash-triple-dotted magenta line).

&)

4 COMPARISON TO ANALYTIC THEORY

4.1 Estimate for uniform density

The dynamical friction force can be estimated from Bondi—-Hoyle—
Lyttleton (BHL) theory (Hoyle & Lyttleton 1939; Bondi & Hoyle
1944; Bondi 1952). Here, gas approaching with impact parameter
less than the accretion radius

Ry= oM ©)
5, + V5,

accretes on to the star, where ¢, and v, are the sound speed of

the unperturbed envelope, and its speed relative to the secondary.

The accretion rate can be estimated as M ~ 7tR? poo(c2, + v2)'/?%,

where p is the unperturbed density, resulting in a drag force

. 4nG2M?
F ~ MusIn ("““*) SRR ("““*) : 7)
Fmin (Cgo + vgo); Vmin

Typically, rma is taken to be R, and ry, as the radius of the
star. Equation (7) was first derived by Dokuchaev (1964) and
survives among different estimates (Edgar 2004) subjected to
refinements from numerical studies, e.g. Shima et al. (1985). We
neglect turbulence (Krumholz, McKee & Klein 2006) which may
be important in general. We do consider the influence of a density
gradient, as explained below.

To make contact with previous work, we plot the ¢-component of
the drag force, as in Fig. 2, but now with additional lines representing
theoretical predictions or results from local simulations, in Fig. 4.
The dash—dotted red line shows the quantity

4tG> M? pov
= ®
(c§+v)

where vy = |v, — v In our notation, quantities with a ‘0" sub-
script are computed from the initial envelope profile at radius a(?),
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Figure 2. Azimuthal (¢) component of the net force on particle 2 due to the gas in the non-inertial rest frame of particle 1, computed from the simulation (solid
black), component of this force along the relative velocity of particle 2 with respect to particle 1 (dash-triple-dotted gold), and contribution to the ¢-component
from the force on particle 2 in the lab frame, without the fictitious force (dotted grey). The inter-particle separation (dashed light blue) is plotted using the right
axis, for reference.
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Figure 3. Left: Torque on particles about the particle centre of mass. The torque computed from the forces is shown in solid black, while that computed from
the rate of change of the particle angular momentum is shown in dash-triple-dotted magenta. Right: Similar to left-hand panels but now showing the rate of
change of work done by gas on particles in the inertial frame, computed from the forces or the rate of change of the orbital energy.

with velocity computed assuming a circular orbit with primary mass
equal to the mass interior to the orbit, m;(a) = M| . + Menv(a).
We find that replacing vy by its actual value measured in the
simulation |v; — v;| increases the amplitude of the oscillations in
Fy but otherwise the results are similar, so we opt to use the relative
velocity computed from the initial profile.?

At early times, Fj is effectively zero due to the small py. Sub-
sequently, Fj rises to be comparable to ¢-component of —F»_g, 1
just before the first periastron passage, before continuing to rise,
in contrast to the ¢-component of —F;_g, 1, which decreases and
then levels off. Hence, equation (8) overestimates the magnitude
of the drag force at late times. Qualitatively similar results were
obtained by Staff et al. (2016). However, the phase and amplitude
of the variability seen in the ¢-component of —F,_g ; at late times
in Models A and B are reproduced by this minimalist theoretical
model.

2Deﬁning the Mach numbers M = v, — v1|/co or Mo = vg/cp, these are
found to be in the range 1.1 < M, My < 5.8. Within this range, the values
are larger for larger companion mass. Both peak at the same time, at about
6, 7, and 9d for Models A, B, and C, respectively, before leveling near to
the minimum as the simulation progresses.

4.2 Estimate including density gradient

Using a more refined version of the theory that includes the
logarithmic factor of equation (7) and accounts to some extent for
gradients in the radial direction might be expected to produce better
agreement. Hence, for a more general estimate to the drag force,
we multiply Fy by In (7n.x/7min) and a correction factor (Dodd &
McCrea 1952, hereafter DM) R;,\/RZ . which accounts for a
linear or at most quadratic density gradient in the correction to the
accretion radius, computed by

R,
Rypm = 270 )
14+ R:o/ (4Hg)
where
2GM,
A — 10
0 2+ ot (10)

and H, = —po/(dp/dr), is the scale height. The modified force
magnitude is then

T R 2
FDM = F() In ( max) <ﬂ> .
Fmin Rzl,O
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We adopt Fmax = Ra, pm and Fmin = Toftls=0 = 2.4 Rg. The dashed
purple line shows the resulting corrected estimate.?

We see from Fig. 4 that despite some differences, the level of
agreement between theory which includes the density gradient
(dashed purple) and the simulation results (solid black) is overall
comparable to that obtained using F, (dashed red). The DM
correction marginally improves agreement for Models A and B,
but marginally worsens agreement for Model C.*

4.3 Theory works best at intermediate times

We do not expect good agreement between simulation and theory
at early times because of three interrelated factors: (i) tidally drawn
envelope material increases the density near particle 2 beyond
ambient and outer envelope layer values, (ii) density scale heights
are initially small compared to the accretion radius, and (iii) the
initial condition of a secondary placed just outside the spherically
symmetric primary at # = 0 is not fully realistic. Point (ii) is seen by
comparing solid black and green lines in Fig. 5, where we plot the
various length-scales as a function of time, for each simulation. The
DM correction in principle helps to account for (ii) but considers
only the lowest order effect of the density gradient.

At late times, we also expect poor agreement. In Model A
(g = 1/2) R, ~ a shortly after the first periastron passage, as seen
in Fig. 5 (compare blue and red dashed lines with black solid line),
so we do not expect good agreement. For Model B (¢ = 1/4), R,
remains marginally smaller than a, while for Model C (¢ = 1/8),
R, ~ 0.5a by the end of the simulation. Theoretical predictions
for late times improve slightly as ¢ decreases to 1/8, but not
dramatically.

At intermediate times, when R, < a and H, o 2, R,, we expect
and find agreement to be much better. If we use |v, — v;| measured
directly from the simulation to compute R, (dashed blue in Fig. 5),
then the time range when R,(f) < a(f) at the previous periastron
passage becomes 12d < ¢ < 14dfor Model A, 13d < ¢ < 24d for
Model B, and r 2 16 d for Model C. BHL/DM theory approximates
the numerical results reasonably well in these time ranges. In
particular, during the broad force peak, theory (equation 8 or 11)
correctly predicts the force to within a factor of approximately two
for all models.

4.4 Improved theory is needed for late times

Reichardt et al. (2019) suggested that a reduction in the relative
velocity between the particles and gas at late times in their
simulation with ¢ = 0.68 might help explain the reduction of the
drag force. Might replacing our initial values of the gas density,
velocity with respect to particle 2, and sound speed with those
measured directly from the simulation help reconcile theory and
simulation at late times?

From the right column of Fig. 6 (see Section 5 for details), we
can estimate the parameters P, Vs, and c at ¢ = 22.0d. Since
the orbital separation is small, one option is to choose a location
in the vicinity of particle 2, namely in the region below and to the

3Radial variations in the density gradient of the initial envelope profile
cause the noise. This variation is present in the 1D MESA solution, which
was retained for our initial condition outside of r = 2.4Rg.

4We also tried other variations, with only the In (rmax/rmin) factor or only
the DM correction included, and found results that are generally similar to
the cases plotted.
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left of particle 2 and within a few Ry, of particle 2 in the plots. The
velocity vectors show that some of this gas is being sling-shotted
around particle 2 and this produces a drag force. Here, ps ~ (5—
10)p0, Voo ~ %vo, and ¢, ~ 2c¢g. This leads to a force F, ~ (1.9—
3.8)F), using the analogue of equation (8), so the predicted force is
even larger than before, instead of smaller, as needed. Perhaps more
reasonable is to choose a location farther away from particle 2 on the
circle centred on particle 1 with radius equal to a, near coordinates
(=10, —5) in the right column of Fig. 6. In this vicinity, we find
Poo ~ 300, Voo ~ 0.3v9, and ¢ ~ ¢, giving F, ~ 4.9F). Pushing
the values as far as seems reasonable to obtain a smaller estimate
for the force, we could instead choose po ~ 00, Voo ~ %vo, and
Coo ~ 2¢p, which leads to F, ~ 0.38F). This value is still not small
enough to explain the factor of ~10 between the solid black and
dash—dotted red lines in the top panel of Fig. 4 at + = 22.0d.

A second possibility is to note that the conventional theoretical
drag force formula changes as M, becomes small (Ostriker 1999).
Could this account for the small values seen at late times, as
suggested by Staff et al. (2016) for their simulations? In the subsonic
regime Ostriker (1999) derives the solution

4nG*M? pos
Fogg = —[———"% (12)
UOO
where
1 14+ My
I=-In|{ —— | — M. 13
2“(1—/\/100) M {13)

This leads to the factor [(1 + M?2)¥? /M3 11 ~ 0.48 multiplying
our above estimate of the force if vy, = %vo and ¢, = 2¢, or ~0.56
if Voo = 0.3vg and ¢, = c¢( are used instead. Thus, we obtain the
new estimates F, ~ (1-2)F,, 3F,, and 0.18F for the three cases
described above. Even the smallest of these is about a factor of
two too large to explain the force measured in the simulation. We
obtain better agreement at r = 40 d. However, it is not clear whether
equation (12) is even applicable in the present context.

Thus, such theoretical estimates are not well motivated for late
times owing to the small inter-particle separation, are sensitive to
arbitrary choices, and cannot reproduce the force measured from
the simulation.

Another possibility is to note that at late times the particles accrete
their own quasi-static, quasi-spherical ‘bulges’ of gas (Paper I). The
bulge around particle 2 is mainly pressure supported but partially
rotation supported, and has size r, ~ 2ryp = 2.4 Rg. Although
particles interact with gas only through gravity, and thus can only
experience dynamical drag, the composite particle-bulge ‘system’
in addition experiences a hydrodynamic drag as it moves through
the surrounding envelope gas. The hydrodynamic drag force can
be estimated as F, ~ pv>mr?, where pv? is the ram pressure
exerted by the gas encountered by the bulge around particle 2
as it orbits. For Model A at ¢ = 22.0d, using the above estimate
p ~ (5-10)py and v ~ 0.5vy gives F, ~ (0.5-1) x 10°** dyn,
which is just the order of magnitude needed. However, this
formula underestimates the drag force at + = 40d, and hence is
inadequate.

We leave further exploration of the force at late times for future
study.

5 EVOLUTION OF FLOW PROPERTIES

Fig. 6 shows snapshots of various quantities, sliced through z =
0, for Model A. The snapshots are taken at t = 6.9, 11.1, 16.7,
and 22.0d. Defining the end of the dynamical plunge-in phase

MNRAS 490, 3727-3739 (2019)

0Z0Z 8unp 1z Uo Jasn 1a)seyooy Jo AusiaAiun Aq 190€85S// 2. E/S/06110BNSqR-ao1E/SeIuW/Wwod dno olwapede//:sdiy Woll papeojumod]



3734 L. Chamandy et al.

40 T T T T T T
- _ 1 S —
352 \‘ Model A: q= > Hyo (dp/dr)o
i — tl([)
[ 2GM,
L mmm Ro=_—0M2 14
¥ S a 002 +|v2 =1 |2
) ® L}
E 25k \\ “ Ra,O (Eq 10)
§ \\ | Ra,pm (Eq. 9)
g [ .
7 20f N 1
o r S
o [
é I5F ]
~ [
10} Y

T,
et Ny,
PO )

%3

Radial distance [R ]
S

— =
[ J—

Radial distance [R ]

L R I A N =]

10 15 20

25 30 35 40

¢t [d]

Figure 5. Comparison between various relevant length scales, plotted against time.

as the time of first periastron passage (Paper II) the four times
represent, roughly speaking, the flow near the beginning of plunge-
in, the end of plunge-in, the transition to slow spiral-in, and at the
beginning of slow spiral-in. The orbital motion is counterclockwise.
In each panel, particle 2 is at the centre and the view is rotated
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so that particle 1 is on the negative y-axis. The circles show the
softening spheres around the particles. We focus on Model A
because it displays the strongest deviation from theory, and because
other aspects of the run were extensively studied in Papers |
and II.
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Figure 6. Snapshots in the orbital plane z = 0 for Model A. From left to right, columns show the times 7 = 6.9, 11.1, 16.7, and 22.0 d. Rows from top to bottom

are: Force density in dyn cm ™3

on particle 2 due to gas in the accelerating reference frame of particle 1; mass density normalized to po(a) with velocity vectors

in the corotating frame of particle 2 (note the difference in colour bar range from Fig. 7); Mach number in the corotating frame of particle 2; —¢-component
of gas velocity with respect to particle 1, in the corotating frame of particle 2, normalized to vg, and sound speed normalized to cp.

5.1 Force density

The top row shows the magnitude of the ¢-component of the
force per unit volume exerted by gas on particle 2 in the co-
orbiting but non-rotating rest frame of particle 1, in units of
dyncm™3 Positive (negative) drag contributions are indicated by

solid (dashed) contours, spaced by the values on the colour bar.
As there are positive and negative contributions from both terms in
equation (1), the plot contains four sets of contours. Forces between
gas and particle 2 dominate the contours in the upper part of the
plot, while forces between gas and particle 1 (fictitious forces on

MNRAS 490, 3727-3739 (2019)

0Z0Z 8unp 1z Uo Jasn 1a)seyooy Jo AusiaAiun Aq 190€85S// 2. E/S/06110BNSqR-ao1E/SeIuW/Wwod dno olwapede//:sdiy Woll papeojumod]



3736 L. Chamandy et al.

particle 2) dominate the lower sets of contours. A drag (thrust) on
particle 1 in the lab frame produces a fictitious drag (thrust) on
particle 2 in the reference frame orbiting with particle 1. The black
arrow shows the relative magnitude and direction of F_, 1, while
the blue arrow shows the same for the velocity of particle 2 in the
same reference frame.

Att = 6.9d (column 1), a low-density tidal tail from the primary
wraps around the secondary from behind it (second row), providing
a dynamical friction force. The density of the gas in front of
particle 2 is much smaller so the force pulling particle 2 backwards
dominates. The contribution from the force on particle 1 is small
because this contribution is dominated by the gas near particle 1,
which is distributed symmetrically in the trailing and leading
directions.

Att = 11.1d (column 2), the gas near particle 2 now has a higher
density, leading to a greater drag force. If logarithmic intervals in
radius with respect to particle 2 contributed equally to the net force,
as suggested by equation (7), the force per unit volume contours
would be separated by a factor ~10'? ~ 2.15 in radius.

This is roughly valid out to about the third contour: in each of
the snapshots, the ratio in radius between the innermost contours
is approximately two, but the ratio between adjacent contours
decreases as one moves outwards from particle 2. The ratio of
radii of the fourth to third contour is generally ~1.5, implying a
decrease in contribution by a factor ~1.5%/10 ~ 0.3.

Calculating R, we obtain 28-38 R, for t = 6.9d and 15-16 R
for + = 11.1d; the first value uses equation (6) with ¢, and v
replaced by ¢y and vy, while the second value uses |v, — v, | directly
from the simulation. These values correspond to roughly the third
contour, so adopting i, = R, is reasonable; the contribution to the
force beyond this radius is small.

By the next snapshot, at t = 16.7 d (column 3), the force density
about particle 2 has become much more symmetric, and the drag
force is approximately zero (consistent with the top-left panel
of Fig. 3). Correspondingly, the contours show a high degree
of left-right symmetry. The force F,_g; now has comparable
contributions from Fy_g, and —(Ms /My ) F1_gq.

For the final snapshot at# = 22.0 d (column 4), the ¢-component
of Fy_g,1 is quasi-steady. The force remains small, owing to the
high degree of symmetry in the force density, so that the thrust and
drag contributions balance except for a small net drag. The force
density pattern is quasi-steady thereafter, consistent with the net
force being quasi-steady.

5.2 Gas density evolves towards symmetry

The second row of Fig. 6 shows the gas density normalized to po(a)
of the initial density profile of the RGB star. Vectors show the gas
velocity in the frame co-orbiting and corotating with particle 2, as
this is the appropriate reference frame for comparison with theory
and local simulations. The second to fifth rows are zoomed in by
a factor of four compared to the top row. At t = 6.9d, the density
is ~10° times larger than po(a) as deeper gas is pulled tidally
around particle 2. The value of p(a)/po(a) then reduces to ~10 at
t = 22.0d and to approximately one by r = 40 d. The flow around
particle 2 becomes more axisymmetric, rotating ~ 20 per cent of
the Keplerian value at late times (Paper I).

5.3 Mach number and turbulence

In the third row, we plot the gas Mach number computed in the
frame co-orbiting and corotating with particle 2. In this frame, the
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gas around particle 2 is mostly supersonic during plunge-in, except
in the bow shock. For these snapshots we obtain, from earliest to
latest, My = vo/co = 5.3,2.1, 1.7,and 1.7. Att = 16.7 d, a shock
is still seen, now above particle 2 in the plot. By + = 22.0d, the
gas about the particles and within the orbit is not only subsonic, but
turbulent. The turbulence is well developed by ¢ = 18d.

To verify that the turbulence is not produced by the sudden change
in softening length and resolution at r = 16.7d, we compared
the 2D snapshots to a run (Model F of Paper II) for which the
softening length and maximum AMR level are not changed in
this way. Turbulent eddies are conspicuous by ¢ = 18d in that
run as well, even though the smallest scales of the turbulence are
larger.

The onset of turbulence roughly coincides with the transition
from plunge-in to slow spiral-in once R, ~ a, as shown in Fig. 5,
and the particles have completed a full orbit since the first periastron
passage. The gas they encounter no longer moves out supersonically
due to the deeper potential and confinement by overlying layers
(Paper II) so is continually being ‘reprocessed’.

5.4 Azimuthal velocity and sound speed

Finally, we present plots of the velocity and sound speed, which
were used above to obtain modified parameter values for theoretical
estimates (Section 4.4). The vectors in the fourth row of Fig. 6
show the gas velocity in the corotating frame of particle 2 as in the
third row. The colour shows the —¢-component of this velocity
with respect to particle 1, normalized to vo. A value of unity
(orange) corresponds to the relative tangential velocity estimated
from the initial stationary envelope profile, while negative values
(yellow to purple) denote oppositely moving gas. In all snapshots,
the streamlines curl counterclockwise around particle 2 so that
the ¢-component of the velocity reverses sign. The speed of gas
approaching particle 2 is of order v, in the first three snapshots, but
only about %vo by the fourth snapshot (Section 4.4).

Finally, in the fifth row we plot the sound speed normalized to
co, along with the same velocity vectors plotted in rows 2 and 4.
The gas flowing towards and deflected by the secondary has sound
speed ~2¢( (blue).

6 COMPARISON TO WIND TUNNEL
SIMULATIONS

6.1 Drag force comparison

Here we compare our results with the local CE wind tunnel
simulations of MacLeod et al. (2017) (hereafter M17) for which a
particle representing the secondary was fixed at the centre of the grid
and a wind was launched from the —x boundary with a prescribed x-
velocity and density gradient in the —y direction. By approximating
the gas as a polytrope and assuming that the upstream wind velocity
equals the local Keplerian orbital speed, the upstream Mach number
is determined once the dimensionless density gradient parameter

_ 2GM,

== 14
€ VH, (14)

and the mass ratio ge,. = Ma/m;(a) are specified. M17 chose gene =
0.1 and explored the dependence on €,. In our simulations, gene =
g =1/2, 1/4, or 1/8 at t = 0, but then increases with time as m;(a)
decreases: computing m o(a) from the initial envelope profile, we
obtain gene, 0 = 2.0, 1.2, and 0.6 at t = 40d for Models A, B, and
C, respectively. M17 results are likely to be sensitive to their fixed
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choice of ge,.; nevertheless we proceed with the comparison for
Model C, which proves to be fruitful.

We first fit the drag force in M17 for y = 5/3 in their fig. 10.
Replacing p~, and v, by pg and vy we obtain

« 4nG? M22p0

2
Yo

Faiz == 0.6e%' (15)
We apply this for 0.4 < €, < 2.7 (consistent with the range of
parameter space explored by M17) and plot the resulting force only
for times in our simulation when €, o = 2GM, /(U%HP'Q) is within
this range. The result is the dashed green line in the bottom panel
of Fig. 4.

At intermediate times, between # = 12 and 26 d, the agreement is
excellent. At = 26d, when —a attains its second maximum (the
first having occurred between ¢t = 13 and 14 d), the ¢-component
of —Fj3_ g1 decreases from its peak value, but equation (15)
predicts the force to continue rising. At this time, genc, 0 = 0.28, or
almost three times larger than that assumed by M17, which likely
contributes to this discrepancy.

6.2 Flow structure comparison

Flow structure of global and local simulations can also be compared.
For Model C, we choose the time ¢ = 20.8d, at which ¢, =
0.80 (and gene = 0.15), to compare with the lower left panels of
fig. 2 of M17. We plot the mass density normalized to po(a) and
velocity vectors in the corotating frame of particle 2 in the top
panel of Fig. 7, and the Mach number in the corotating frame
of particle 2 in the bottom panel. The unit of the M17 axes is
2GM,/v} = 7.4Rg, so our plotting region is slightly larger than
theirs. The level of agreement is remarkable. All of this suggests
that the local simulations approximate global simulations for this
window of parameter space.

Curiously, there is also some correspondence between the flow
in Model A and that of the local simulations, even though the mass
ratio of the former is much larger. Although M17 adopted gepe =
0.1 and €, = 0.2-2, Model A has genc, 0 = 0.50, 0.75, 1.23, and
1.53 and €, o =20.3,2.1, 1.7, and 1.4 at t = 6.9, 11.1, 16.7, and
22.0d, respectively. Despite differences in ge,. and the force seen
in Fig. 4, the panels of Fig. 6 showing p/po and M in Model A
at 11.1d show similarities to those of €, = 2.00 in fig. 2 of M17,
as seen by comparing the second column, third and fourth rows
of Fig. 6 with fig. 2 of M17. The flow pattern is similar and both
methods exhibit a thin spiral shock. However, the normalized gas
density in Fig. 6 is 1-1000 (whereas in Fig. 7 we used 0.1-100,
as in M17). Thus in Model A our normalized densities are almost
an order of magnitude larger than those of M17, likely because our
Genc 18 7.5 times larger than theirs at that time. The size of the region
plotted in units of 2GM,/v2, differs from M17: for Model A we
obtain 2GM,/ v(z) =29, 19, 16, and 14 R, respectively, for the four
snapshots.’

As expected, snapshots at other times hardly resemble those of
MI17. At t =6.9d, €, is an order of magnitude larger than that
explored by M17. We do see increasing density contrast and larger
rotation angle of the bow shock with increasing €,, as in M17, but
our shock is thick and morphologically complex. By r = 16.7d,

SWhen €, and 2GM2/vgQ are estimated using the actual velocity vy — vy,
rather than v, the values are larger by 37 per cent for = 6.9 d but hardly
differ for the other snapshots of Model A.
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Figure7. Top: Slice through the orbital plane of density normalized to po(a)
along with velocity vectors in the reference frame orbiting and corotating
with particle 2 for Model C at r = 20.8d, when €, = 0.80 and gepc = 0.15.
Bottom: Mach number in the same reference frame. At this time, the drag
force is approximately equal to that predicted from the fitting formula of
M17. These snapshots can be compared with those from fig. 2 of M17,
keeping in mind that the unit of their axes is 2GM,/ v(z) = 7.4Rp. There
is a close correspondence between the global and local simulations, as
expected.

R, has already become comparable to a, as shown in the top panel
of Fig. 5. The assumptions of M17, namely that (i) the envelope
gas encountered by the secondary had not been previously affected;
(ii) their po smoothly and monotonically decreases with distance
from the RGB core, and (iii) the gravity force from the RGB core
can be approximated as everywhere downwards, are no longer
valid. Moreover, in our final snapshot, turbulence likely affects the
dynamics.

Thus, we would not expect wind tunnel simulations to approxi-
mate the results of Model A at late times even if several wind tunnel
simulations of different genc o and €, o were patched together to
accommodate dynamically changing values of these parameters in
the global simulation. However, given the excellent agreement at
intermediate times for Model C, it would be interesting to compare
local and global simulations using such dynamical patching of
the local simulations to refine the temporal range over which this
approach could be useful and computationally efficient.

7 HOW IMPORTANT IS RADIATIVE
TRANSFER?

Radiative transfer is neglected in our simulations (and in virtually
all global CE simulations to date). A large diffusive flux of radiation
out of the central region might lead to a different flow structure at
late times. Averting the build-up of thermal energy might allow the
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flow there to retain a structure closer to that which it had originally,
and thus closer to that assumed in wind tunnel experiments, where
the flow is assumed to be unaffected by previous orbital passages
of the particles.

Thus, we estimate the diffusion time to determine whether
cooling would be significant at late times in our simulations. We
consider the flow properties at = 22.0d in Model A (right column
of Fig. 6), focussing on the region around particle 2 with M < 1.
The distance from particle 2 to the boundary of this region is
estimated as R ~ 7Rg. Within this region, a typical gas density
is p~2x10*gem™ and the temperature T > 10° K. At this
temperature, hydrogen gas is ionized and the opacity is dominated
by electron scattering, with cross-section o = 6.65 x 10723 cm?.

The diffusion time is estimated by multiplying the number of
scatterings by the mean free path and dividing by the speed of light
in vacuum c. The mean free path is given by [/ = (n.o1)~!, the
electron number density by n. = p/my where my is the mass of the
hydrogen atom, and the number of scatterings is given by N ~ R?/[%.
Thus, we have

NI R%por

l‘dmiw

c myc

, (16)

or tqg ~20yr for Model A (with corresponding optical depth
T ~ otn.R ~ 40). For Models B and C, at a comparable time in
the evolution, R is somewhat smaller while p is slightly larger than
in Model A, and the value of #4 is of the same order of magnitude.
Since 74 > t, the neglect of radiative transfer in the M < 1 region
around the particles is justified.

8 CONCLUSIONS

We computed the drag force in three global CE simulation runs of
40d in which a companion point particle is placed in circular orbit
around a 2 My RGB star. The runs are identical except for the value
of the companion mass, Mg, % Mg, or }1 Mg . We found that:

(1) The drag force on the particles at late times, during the slow
spiral-in phase, has mean magnitude ~ 7 x 10* dyn, depending
only weakly on companion mass, and varies periodically with the
orbit (Figs 2, Al).

(il) BHL/DM theory overestimates the drag force at late times
by at least an order of magnitude for the run with initial mass ratio
g = 1/2 (Fig. 4 top panel), and cannot reproduce the late-time force
for any of the three runs.

(iii) BHL/DM theory and local wind tunnel simulations are
particularly inapplicable at late times for large gen. = Ma/m(a)
because the accretion radius becomes comparable to the inter-
particle separation. The gas encountered by the particles forms a
turbulent, thermalized, highly symmetric region around the particles
(Fig. 6 rightmost column). Hydrodynamic drag may even dominate
over dynamical friction during this phase, but further work is
needed.

(iv) At earlier times, the drag force peaks at or just before the
first periastron passage with value approximately proportional to
the companion mass (Fig. 2). Near this peak, the drag force is
reasonably well matched by BHL/DM theory and particularly well
matched by local wind tunnel simulations (Fig. 4 bottom panel),
which also reproduce various features of the 2D slices at that time
(cf. Fig. 7 and fig. 2 of M17).

Thus, for low ¢en., BHL/DM theory and local wind tunnel
simulations approximate the drag in global simulations during the
intermediate plunge-in phase, but not before or after. Since gepc
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evolves temporally in global simulations, different fixed ge,. wind
tunnel simulations must be patched together to increase the fidelity
of comparison with global simulations over a larger temporal range.
This has not yet been done.

Finally, more general theoretical approaches are needed to ac-
count for the high degree of symmetry and turbulence in the flow
once R, ~ a, and the associated reduced drag at late times. This
reduced drag dramatically slows the inward evolution and explains
why numerous CE simulations do not reach tight enough orbits by
the end of runs to eject the CE envelope.
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APPENDIX: EFFECT OF CHANGING
SOFTENING LENGTH AND RESOLUTION

Here we compare the —¢-component of the force exerted on
particle 2 by the gas in the frame of particle 1 in Model A and
Model F of Paper II. Model F restarts from Model A atr = 16.7d
but the softening radius and smallest resolution element are not
halved as in Model A. The evolution of the force is very similar,
confirming that the halving of 7. and § does not importantly affect
the overall evolution of the force.
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Figure A1. Comparion between the ¢-component of the force exerted by gas on particle 2 in the reference frame of particle 1, for Model A and Model F of

Paper II. In Model F, the softening radius and smallest resolution element were kept constant during the simulation rather than being halved at r = 16.7d, as

in Models A, B, and C.
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