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ABSTRACT

The association of star-spots with magnetic fields leads to an expectation that quantities

which correlate with magnetic field strength may also correlate with star-spot coverage.

Since younger stars spin faster and are more magnetically active, assessing whether star-

spot coverage correlates with shorter rotation periods and stellar youth tests these principles.

Here, we analyse the star-spot covering fraction versus stellar age for M-, G-, K-, and F-type

stars based on previously determined variability and rotation periods of over 30 000 Kepler

main-sequence stars. We determine the correlation between age and variability using single

and dual power-law best fits. We find that star-spot coverage does indeed decrease with age.

Only when the data are binned in an effort to remove the effects of activity cycles of individual

stars, do statistically significant power-law fits emerge for each stellar type. Using bin averages,

we then find that the star-spot covering fraction scales with the X-ray to bolometric ratio to the

power λ with 0.22 ± 0.03 < λ < 0.32 ± 0.09 for G-type stars of rotation period below 15 d and

for the full range of F- and M-type stars. For K-type stars, we find two branches of λ separated

by variability bins, with the lower branch showing nearly constant star-spot coverage and the

upper branch λ ∼ 0.35 ± 0.04. G-type stars with periods longer than 15 d exhibit a transition

to steeper power law of λ ∼ 2.4 ± 1.0. The potential connection to previous rotation-age

measurements suggesting a magnetic breaking transition at the solar age, corresponding to

period of 24.5 is also of interest.

Key words: stars: activity – stars: evolution – stars: magnetic field – stars: solar-type –

starspots – X-rays: stars.

1 IN T RO D U C T I O N

During the Sun’s 11-yr activity cycle, dark sunspots appear for

time-scales ranging from days to a few months (Petrovay & van

Driel-Gesztelyi 1997). The appearance and disappearance of these

sunspots produce brightness variations on different time-scales,

which can be detected in total solar irradiance (TSI) data (e.g.

Domingo et al. 2009). Stars other than the Sun also have activity

cycles and variations in chromospheric emission (Wilson 1978;

Vaughan & Preston 1980; Noyes et al. 1984; Noyes, Weiss &

Vaughan 1984). These variations are typically measured with the S

index, which is based on the Ca II H and K lines (Vaughan, Preston &

Wilson 1978), but can also be observed with long-term brightness

variations (Baliunas & Vaughan 1985; Oláh, Kolláth & Strassmeier

2000; Messina & Guinan 2002; Oláh & Strassmeier 2002).

� E-mail: fiona nichols-fleming@brown.edu (FN-F); blackman@pas.

rochester.edu (EGB)

Baliunas et al. (1995) found a separation in mean values of S

indices for fast- and slow-rotating main-sequence stars which have

higher and lower S values, respectively, indicating that younger

stars exhibit more activity than older stars. Additionally, two distinct

branches have been identified in the relation between rotation and

dynamo cycle period, which have been labelled the active (A) and

inactive (I) sequences, where the inactive branch applies to slower

rotators and has rotation to dynamo cycle period ratios about six

times larger than the active branch. (Brandenburg, Saar & Turpin

1998; Saar & Brandenburg 1999). There is also a separate branch

for fast rotators with rotation periods less than 3 d. The A and I

branches were confirmed by Böhm-Vitense (2007) who also saw

the Sun placed between the two branches, but evidence for these

multiple branches has not been robustly confirmed by the more

recent study of do Nascimento, Saar & Anthony (2015).

Indicators of stellar activity are believed to be driven by the

stellar magnetic dynamo (Parker 1955; Wilson 1966; Kraft 1967;

Charbonneau 2014), which is in turn thought to be driven by

some combination of convection, rotation, and differential rotation
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Star-spots versus stellar age 2707

(Duvall et al. 1984). Given this correlation, the dynamo dependence

on rotation for slow rotators like the Sun suggests that an overall

decrease in indicators of stellar activity over much longer time-

scales should correlate with spin-down of the stars driven by

their stellar winds (e.g. Skumanich 1972; Pizzolato et al. 2003;

Mamajek & Hillenbrand 2008). The stellar winds likely depend

on energy sources that strengthen with magnetic field and the

magnetic dynamo (Cranmer & Saar 2011), and therefore these

correlations create a positive feedback loop (e.g. Blackman & Owen

2016).

Large sample observations allow extraction of empirical scalings

of coronal activity versus rotation period or Rossby number (Ro),

where Ro is the ratio of rotation period to a stellar model-dependent

eddy turnover time (Wright et al. 2011; Reiners, Schüssler &

Passegger 2014). Wright et al. (2011) show that for older main-

sequence stars with Ro > 0.13, the ratio of the X-ray to bolometric

flux of the star, used as a metric of activity, varies as Ro−ζ where

2 ≤ ζ ≤ 3. For younger main-sequence stars with Ro < 0.13, the

relationship saturates. Reiners et al. (2014) emphasize that the eddy

turnover time is itself luminosity dependent and so favours relations

directly scaling activity to rotation period. For present purposes, we

ignore stars in the saturated regime as the population has multivalued

periods for a given luminosity and because we exclude stars so

young that accretion is still influencing their behaviour.

Since star-spot coverage and X-ray luminosity are both closely

related to the stellar magnetic dynamo, we may expect a relationship

between star-spot coverage and rotation period of stars, and there-

fore between star-spot coverage and the ratio of X-ray to bolometric

flux of the star. Notsu et al. (2019) found that star-spot area does not

depend on rotation period for young stars, but begins to decrease

quickly for rotation periods greater than about 12 d for Sun-like

stars. This observed trend is based on chromospheric lines, so

further investigation of the trend based on photometric brightness is

timely.

There have been some previous efforts to characterize star-spot

coverage from photometric brightness variations measured by the

Kepler Space Telescope (Dmitrienko & Savanov 2017; Savanov &

Dmitrienko 2017a,b; Savanov & Dmitrienko 2018). These authors

measure star-spot coverage of various samples of main-sequence

stars, with an S factor based on changes in the mean radiation flux

of the stars. Savanov & Dmitrienko (2017a) found two groups of

solar-type stars, active and inactive, based on the stars’ S values.

The active group is only about 10 per cent of the sample, but has

a mean S value about the same as that of the Sun. The active

sample has a decreasing trend in S value with age while the inactive

sample has a constant S value. Dmitrienko & Savanov (2017) look

at the relationship between S values for M dwarfs and Rossby

numbers and find that it resembles that found in Wright et al.

(2011) with saturation at the same value of Ro. Although these

works identify a decreasing trend in star-spot coverage as stars age,

further efforts to identify a functional form of this relationship

are warranted and to assess whether there is evidence for any

dynamo transitions that have been purported for solar-type stars

in smaller samples (van Saders et al. 2016; Metcalfe & van Saders

2017).

In Section 2, we discuss the theoretical connection between stellar

age, X-ray luminosity, and rotation. In Section 3, we discuss the

observational sample used in this work. In Section 4, we discuss

our analysis methods. In Section 5, we present our results for single

and dual power-law relationships as well as trends in vertically

binned data. In Section 6, we discuss the theoretical implications of

this work. We conclude in Section 7.

2 C ONNECTI NG STELLAR ACTI VI TY, AG E,

ROTATI ON, AND STAR-SPOT COVERAG E

Different theoretical or semitheoretical approaches have been pur-

sued to understand aspects of the observed relationship between

coronal activity and rotation period (Pallavicini et al. 1981; Noyes

et al. 1984; Vilhu 1984; Micela et al. 1985; Hartmann & Noyes 1987;

Randich 2000; Montesinos et al. 2001; Pizzolato et al. 2003; Wright

et al. 2011; Reiners et al. 2014; Vidotto et al. 2014; Blackman &

Thomas 2015). To highlight the role of star-spot covering fraction

in this effort, note for example the work of Blackman & Thomas

(2015) in which they connected the activity evolution over stellar

spin-down times to saturation of a dynamo model for fast rotators.

In doing so, the authors parametrized a relation between the ratio

of X-ray to bolometric luminosity ratio LX

L∗
and the solid angle that

the magnetic field passes through, � of the form

� = �0

(

LX/L∗

6.6 × 10−7

)λ

, (1)

where �0 is the cycle averaged value of � for the present Sun,

and λ is a needed parameter to account for the decreasing star-

spot coverage fraction with age discussed further below. This work

also provides an expression for the ratio of X-ray to bolometric

luminosity with dependence

LX

L∗

∝

(

s1/3

1 + 2πs Ro

)2

�, (2)

based on the magnetic energy flux sourced by the internal dynamo

that buoyantly rises into the corona, and averaged over a dynamo

cycle period. Here s is a constant that accounts for differential

rotation in the models of Blackman & Thomas (2015) and Ro is the

Rossby number. From equations (1) and (2)

LX

L∗

∝
(

6.6 × 10−7
)−λ/1−λ

�
1/1−λ

0

(

s1/3

1 + 2πs Ro

)2/(1−λ)

(3)

which, when removing the constants from the proportionality,

gives

LX

L∗

∝

(

s1/3

1 + 2πs Ro

)2/(1−λ)

. (4)

For Ro � 1 and a chosen value of λ, equation (4) can provide a value

for ζ , the parameter describing the relationship between Rossby

number and X-ray to bolometric flux from Wright et al. (2011). If

λ = 0, then ζ ∼ 2 whereas if λ > 1
3
, then ζ > 3. As observations

have shown that 2 ≤ ζ ≤ 3 (Wright et al. 2011), an empirical

value of 0 ≤ λ ≤ 1
3

would be expected. The scaling relation of

equation (4) was also used in a subsequent minimalist unified theory

for the evolution of X-ray luminosity, rotation, magnetic fields,

and mass-loss of main-sequence stars in the unsaturated regime

(Blackman & Owen 2016). Direct constraints on λ are timely not

only for use in such holistic theoretical approaches, but also as

a fundamental observational constraint to be explained from first

principles.

3 O BSERVATI ONA L SAMPLE

McQuillan, Mazeh & Aigrain (2014) derived rotation periods and

measured the photometric variability of 34 030 main-sequence

stars based on 3 yr of Kepler observations. Rotation periods are

found with an autocorrelation method that has been shown to be

more robust than the more common Fourier methods (McQuillan,

Aigrain & Mazeh 2013). The value of a star’s variability is

MNRAS 491, 2706–2714 (2020)
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2708 F. Nichols-Fleming and E. G. Blackman

Figure 1. Variability versus rotation period squared for the entire sample of 31 543 stars with rotation periods above 3 d from McQuillan et al. (2014). Rotation

period squared is used as a proxy for age where larger P2 is older, so this plot demonstrates the evolution of stellar activity with age for main-sequence stars.

The sample is divided into stellar types based on their effective temperatures and are shown here in different colours: blue for M-type, orange for K-type, green

for G-type, and red for F-type. The number of stars for each stellar type is shown in the upper right corner.

defined as the difference between the 95th and 5th percentile of

the normalized flux for the star in a single rotation period, then

averaged over all rotation periods contained over the duration of the

observations.

We do not consider the 2487 stars in the sample with rotation

periods shorter than 3 d. These stars were removed due to the

risk of ongoing accretion affecting variability, leaving a data set of

31 543 stars. When looking at the 2487 fast rotators, there is indeed

a large amount of variability indicating that there is no evidence for

a saturated regime in this sample that is not masked by the highly

variable regime. McQuillan et al. (2014) also provide stellar pa-

rameters for the sample from either the Kepler Input Catalog (KIC)

or Dressing & Charbonneau (2013), including mass and effective

temperature. The sample covers masses 0.256 ≤ M/M� ≤ 1.28 and

effective temperatures 3204 K ≤ T ≤ 6499 K.

Stars of different types may evolve differently, so we use

the effective temperatures to divide the sample into stellar type

subgroups using the temperature ranges from Drilling & Landolt

(2000). From this we find that we have 3604 F-type stars (5940

< T ≤ 7300), 14 269 G-type stars (5150 < T ≤ 5940), 12 105 K-

type stars (3840 < T ≤ 5150), and 1565 M-type stars (3170 <

T ≤ 3840). The variability versus rotation period squared (P2) for

the entire sample is shown in Fig. 1 with colours indicating each

star’s spectral type and it can be seen that all spectral types have

decreasing variability, interpreted as spot coverage, with increasing

rotation period (or age). Although the G- and K-type subgroup sizes

are the largest, even the samples of F- and M-type stars are still much

larger than those of most previous works, and comparable to those of

Savanov & Dmitrienko (2017a,b), Dmitrienko & Savanov (2017),

and Savanov & Dmitrienko (2018).

4 M E T H O D S

In this work, we assume that the star-spot coverage fraction is

directly proportional to the average variability of the star. This may

not be valid for all variability regimes, in part because stars may

have a certain amount of continuous star-spot coverage. But this is

presently hard to account for, so we proceed with this assumption

of proportionality for now. Blackman & Thomas (2015) explain

that the fraction of the solid angle that the field rises through on its

journey to the corona is plausibly proportional to the areal fraction

of star-spots and therefore stellar variability can give a measure

of the solid angle through which the field rises. Skumanich’s ‘law’

states that the rotation period of a star is approximately proportional

to the square root of its age (Skumanich 1972), so we look for

a relationship between the variability of the star and its rotation

period squared to represent the star-spot coverage evolution in time.

To quantify this relationship between star-spot coverage fraction

and age, we determine the correlation of these quantities and then

attempt to fit the observations with single and dual power laws.

Specifically, we determine the correlation of the data using

a Pearson correlation coefficient on the logarithmic relationship

between the rotation period squared and the average variability the

stars. The Pearson correlation coefficient is defined as

rP ,V =
cov(P , V )

σP σV

, (5)

where cov(P, V) is the covariance of P2 and the variability V, and

σ P and σ V are the standard deviations of P2 and the variability V,

respectively.

We also quantify the statistical significance of our best-fitting

functions using a reduced chi-square value. The reduced chi square

MNRAS 491, 2706–2714 (2020)
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Star-spots versus stellar age 2709

is given by

χ2 =
1

N − n

N
∑

i

(Vi − f (Pi))
2

σ 2
i

, (6)

where N is the number of data points, n is the number of fit

parameters, Vi is the variability value from the data for a given P2,

f(Pi) is the best-fitting value for a given P2, and σ i is the variance

at a given P2. To be statistically significant, this reduced χ2 value

should be close to one.

As another way to quantify the change in star-spot covering

fraction with age, we determine values of the free parameter λ used

in the holistic model of stellar activity evolution of Blackman &

Owen (2016) for each stellar type subsample. From equation (1),

we find the following expression for λ.

λ =

d
dt

	n (�)
d
dt

	n (LX/L∗)
. (7)

To determine an expression for the ratio of X-ray to bolometric

luminosity of a star as a function of its age t, we use the results from

Wright et al. (2011)

Lx

L∗

= C ∗ Roβ (8)

where β ≡ −ζ = −2.70 ± 0.13, in combination with Skumanich’s

law. The Rossby number is proportional to the rotation period

divided by the eddy turnover time, and the age is proportional

to the rotation period squared. Thus if we assume that the eddy

turnover time is constant for a particular stellar type, we find that

Ro ∝ P ∝ t1/2 and obtain

Lx

L∗

= C ∗ tα, (9)

where α = 1
2
β = −1.35 ± 0.065. Equation (9) and the assumption

that � ∝ Variability ∝ (P2)b where b is the derived power of our fit,

allows us to write our expression for λ (equation 7) in the simpler

form1

λ =
b

α
. (10)

To find the error in our values of λ, we use the basic error propagation

formula

σ 2
f =

N
∑

i=1

(

df

dxi

)2

σ 2
xi, (11)

which reduces to

σ 2
λ =

(

b

α2

)2

σ 2
α +

(

1

α

)2

σ 2
b , (12)

where σ α is the derived error in α from Wright et al. (2011) and σ b

is the derived error in the power of an individual best-fitting power

law found in this work.

For the dual power-law fits, we again look at the Pearson

correlation coefficients, reduced χ2 values, and values of λ for

the different age regimes. We look at the Pearson r value for all

stars with periods longer and shorter than a chosen transition period

1An alternative approach is to use the results of Reiners et al. (2014) where

the ratio of X-ray to bolometric luminosity is a function of rotation period

and radius rather than the Rossby number. Presently, we restrict ourselves

to using the expression from Wright et al. (2011).

and define the formula

FT ≡ 1 − abs(rlow)
nlow

N
− abs(rhigh)

(

1 −
nlow

N

)

, (13)

where rlow and rhigh are the Pearson r values for the points less

than and greater than or equal to the transition rotation period

recalculated with each transition period choice, respectively; nlow

is the number of stars with rotation periods below the transition,

and N is the total number of stars of that stellar type. Minimizing

FT of equation (13) with respect to nlow allows us to look for a

transition that maximizes the correlations, since the value of nlow is

determined by the choice of transition period. For values of λ, we

still use equations (10) and (12), but find individual values for each

age regime of the dual power law.

Stars at different points in their respective stellar activity cycles

likely have different levels of spottiness for a particular age,

producing a spread in the variability for stars at a given rotation

period. To mitigate this, we employ vertical bins of constant width

in variability of 0.1 per cent. This width is based on the observed

change in variability of the Sun between solar activity cycle maxima

and minima from over 40 yr of observations shown in Reinhold,

Cameron & Gizon (2017), and empirical correlations between X-

ray and bolometric variability (Preminger, Chapman & Cookson

2011). The general trends do not change significantly with different

bin sizes. Each bin is then represented by a single point at the mean

of the data within the bin and is given a weight of the fraction of

stars in that stellar type. Trends in this binned data again do not

change significantly when using the median instead of the mean

as shown in Appendix. We again quantify the statistical signifi-

cance of resulting fits using the reduced chi-square values from

equation (6).

5 R ESULTS

5.1 Single power law

We first investigate the relationships between the square of the

rotation period and the stellar variability informed by the Pearson

correlation coefficient analysis. If the relationship were described

by a power law, there would be a linear trend in log–log space

that can be quantified with the Pearson correlation coefficient. We

find Pearson r values of −0.55 for M-type stars, −0.58 for K-type

stars, −0.40 for G-type stars, and −0.19 for F-type stars. These

all indicate a decreasing relationship between the two parameters,

although those of the M-, K-, and G-type stars indicate this more

strongly than that of F-type stars.

We characterize the decreasing variability with a single power

law of the form Axb for each stellar type. We use a Levenberg–

Marquardt (LM) minimization routine which returns best-fitting

parameters and errors on those derived parameters based on the

gradient of the steepest descent in the minimization routine. We

find the best fits (shown in Fig. 2):

M-type stars: (11.72 ± 0.56)x(− 0.40 ± 0.009), χ2 = 64

K-type stars: (11.55 ± 0.31)x(− 0.43 ± 0.005), χ2 = 393

G-type stars: (3.72 ± 0.09)x(− 0.30 ± 0.005), χ2 = 516

F-type stars: (0.65 ± 0.04)x(− 0.17 ± 0.017), χ2 = 124

We find that our best fits for a single function had very large

reduced χ2 values. None of these values are statistically significant,

which suggests that a single power law is not the best function to

represent the evolution of activity for any of these stellar types, and

we therefore attempt to fit the data with two power laws.

MNRAS 491, 2706–2714 (2020)
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2710 F. Nichols-Fleming and E. G. Blackman

Figure 2. Variability versus rotation period squared with a single power-

law fit for each stellar type. The red line on each panel represents the best fit

for each stellar type. The particulars of the fits, along with the reduced χ2

values are labelled on the plot for each stellar type.

5.2 Dual power law

Previous work has suggested there is a change in magnetic field

geometry near the age of the Sun for Sun-like main-sequence stars

(van Saders et al. 2016). This, and the large reduced χ2 values from

our single power-law fits, prompted us to try to fit the data set with

two different power laws. Rather than bias the choice of a possible

power-law break to the current solar rotation period, we minimize

equation (13), in order to maximize the Pearson correlation to

assess whether any of the stellar types show evidence of a dual

power law when the break value is determined by the best fit. Our

minimization routine for unbinned data finds no significant global

minimum of the function for any of the stellar type groups so we

Figure 3. Pearson r values versus break period for each stellar type, blue

for M-type stars, orange for K-type stars, green for G-type stars, and red for

F-type stars. Each line has an x of the same colour which shows the selected

break period for that stellar type. The number of stars for each stellar type

is shown in the upper right corner.

are left to a somewhat arbitrary choice. Fig. 3 shows the weighted

correlation coefficients for each stellar type along with our choice

for the periods at the power-law break. These ‘break periods’ were

simply selected as the points where the curves levelled off after the

large minimum in correlation and are 55, 40, 30, and 25 d for M-,

K-, G- and F-type stars, respectively. We chose these points as they

are the lowest break periods that provide the maximum weighted

correlation, allowing for the highest number of stars for the fits of

each power law.

Once break periods for each stellar type were selected, we fit

each with the LM minimization routine from Section 5.1, but with

two power laws that apply for stars with rotation periods less than

or greater than the break period, respectively. We find the best fits

(shown in Fig. 4):

M-type stars: (11.79 ± 0.56)x(− 0.40 ± 0.009) for Prot < 55 d and

(1.27 ± 21.24)x(− 0.083 ± 2.036) for Prot ≥ 55 d

K-type stars: (11.63 ± 0.31)x(− 0.43 ± 0.005) for Prot < 40 d and

(0.00 ± 0.00)x(1.465 ± 0.190) for Prot ≥ 40 d

G-type stars: (3.73 ± 0.10)x(− 0.30 ± 0.006) for Prot < 30 d and

(0.00 ± 0.00)x(0.885 ± 0.106) for Prot ≥ 30 d

F-type stars: (0.64 ± 0.04)x(− 0.17 ± 0.017) for Prot < 25 d and

(0.06 ± 0.23)x(0.102 ± 0.504) for Prot ≥ 25 d

These fits produce smaller reduced χ2 values for all the stellar

types with the exception of K-type stars: 14.81 for M-type stars,

1586 for K-type stars, 259.5 for G-type stars, and 97.65 for F-

type stars. Although these values are smaller than those of a single

power-law fit, they are still too large to be statistically significant,

suggesting that other factors including each star’s activity cycle may

need to be considered.

5.3 Vertical binning

Since the raw unbinned data of the previous section did not show

statistical significance for a particular power law, we considered

what physical principle might justify binning the data. Each star

in the sample likely has its own stellar activity cycle over which

the brightness will vary. Thus all of the data points in our sample

come from potentially different points in each star’s activity cycle,

adding uncertainty to the exact stellar variation over rotation period

MNRAS 491, 2706–2714 (2020)
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Star-spots versus stellar age 2711

Figure 4. Variability versus rotation period squared with dual power-law

fits for each stellar type split at the selected break period. The green line on

each panel represents the fit for stars older than the given break period and

the red line on each panel represents the fit for stars younger than the given

break period. The particulars of the fits, along with the reduced χ2 values

are labelled on the plot for each stellar type.

squared. To account for this spread, we introduce vertical bins into

our data, each with a constant width of 0.1 per cent variability

based on empirical correlations between X-ray and bolometric

variability (Preminger et al. 2011) as well as observed changes

in the Sun’s variability over its known activity cycle (Reinhold

et al. 2017). We then fit the binned data with single and dual

power laws as above, and assess evidence for multiple branches.

We treat the mean of each bin as a single data point with a

weight given by the fraction of stars in that stellar type in the

bin.

Figure 5. Pearson r values versus break period for the binned data of each

stellar type, blue for M-type stars, orange for K-type stars, green for G-type

stars, and red for F-type stars. As the only clear maximum in correlation

occurs at 15 d for G-type stars (indicated with a green x), that is the only

stellar type we fit with a dual power law. The number of bins for each stellar

type is shown in the lower right corner.

5.3.1 Single power law

We fit our binned data with a single power law again using the LM

minimization routine from Section 5.1. We find the best fits:

M-type stars: (13.91 ± 2.06)x(− 0.30 ± 0.037), χ2 = 3.19

K-type stars: (19.64 ± 3.75)x(− 0.31 ± 0.044), χ2 = 3.71

G-type stars: (15.59 ± 2.62)x(− 0.36 ± 0.045), χ2 = 4.28

F-type stars: (7.48 ± 3.05)x(− 0.43 ± 0.113), χ2 = 1.54

These fits of the binned data produce dramatically better reduced

χ2 values for both the single and dual power-law fits of the unbinned

data. All of these values suggest that these fits are statistically

significant.

5.3.2 Dual power law

To further compare our binned and unbinned results, we checked

for any evidence of a dual power-law fit in the binned data. We

again minimize equation (13) with our binned data and again find

no clear statistically significant minima that would provide a break

period choice to maximize the correlations, except possibly for

G-type stars. Fig. 5 shows the weighted correlation coefficients

for each stellar type as a function of the chosen break period.

Only G-type stars show a maximum correlation that is not located

at one of the edges of the possible break periods and therefore

we only attempt a dual power-law fit for the binned data of G-

type stars. The peak correlation of G-type stars corresponds to

a break period of 15 d and from this we find the fits (shown

in Fig. 6): (15.11 ± 2.75)x(− 0.35 ± 0.052) and (1.36 × 108 ±

9.79 × 108)x(− 3.18 ± 1.31) for stars with rotation periods lower and

higher than 15 d, respectively. This dual power-law fit produces

a lower reduced χ2 value of 1.11, suggesting a higher statistical

significance of a dual power-law fit than that of a single power law

for the binned G-type stars.

5.3.3 Branches

The scatter in the binned data suggests another possible interpre-

tation to test, namely the existence of multiple branches in the

MNRAS 491, 2706–2714 (2020)
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2712 F. Nichols-Fleming and E. G. Blackman

Figure 6. Variability versus rotation period squared with power-law fits for

each stellar type where the sample has been split into vertical bins with a

constant width of 0.1 per cent variability. The black line on the panels for

M- and F-type stars represents the best fit found taking into account all bins

which contain more than one star using an LM fitting routine, the black

lines on the panel for G-type stars represent the fits for the bins with rotation

periods less than and greater than 15 d and the black and green lines on the

panel for the K-type stars represent the best fits for the two branches, above

and below 4.45 per cent variability, using an LM fitting routine. The colour

scale of each data point represents the number of stars in the bin represented

by that point.

evolution of star-spot coverage with age. In particular, the binned

data for K-type stars appears to have a structure that could be

consistent with two separate branches rather than a single power

law. We determine the two branches simply by grouping stars with

variability above or below 4.45 per cent. This division is a visual

cut for where there appear to be distinct branches. We find the best

fits for K-type stars (shown in Fig. 6): (8.27 ± 1.23)x(− 0.05 ± 0.034)

and (27.17 ± 5.51)x(− 0.47 ± 0.042) for the stars above and below

4.45 per cent variability, respectively.

From these fits, we find that two branches for the K-type stars

produce smaller reduced chi-square values than a single fit of

the binned data, 1.24 and 1.30 for K-type stars with variabilities

above and below 4.45 per cent, indeed suggesting evidence for two

branches of evolution for activity of K-type stars.

6 IM P L I C AT I O N S F O R TH E VA L U E O F λ

Using equations (10) and (12), we are able to determine a value for

λ for the single power-law fits of our binned data, as those are the

fits with reduced χ2 values indicating statistical significance. We

find the values:

M-type stars: 0.222 ± 0.030

K-type stars: 0.233 ± 0.035

G-type stars: 0.265 ± 0.036

F-type stars: 0.316 ± 0.085

The dual power-law fit for the binned G-type stars also has a

reduced χ2 value indicating statistical significance, and we find the

λ values

Prot < 15 d: 0.258 ± 0.040

Prot ≥ 15 d: 2.356 ± 0.975

Additionally the two branches for the binned K-type stars have

reduced χ2 values indicating statistical significance, and we find

the λ values:

V < 4.45 per cent 0.034 ± 0.025

V ≥ 4.45 per cent 0.350 ± 0.036

All of the λ values we were able to determine are within the

assumed range of 0 ≤ λ ≤ 1
3

from Blackman & Owen (2016), with

the exception of the λ representing G-type stars with rotation periods

greater than 15 d. The larger λ value for this subset of the sample

provides some evidence for a flattening in the functional form of

the evolution of star-spot coverage at a rotation period of 15 d

for G-type stars. This period is different from that associated with a

previously proposed weakening of magnetic braking at the solar age,

corresponding to the 24.5 d rotation period (van Saders et al. 2016;

Metcalfe & van Saders 2017). A weakening of magnetic braking

through some kind of dynamo transition to higher multipoles could

be related to the increase in λ: a higher λ means more sensitivity

of star-spot coverage to X-ray luminosity. In turn, a reduction in

magnetic braking for a given average magnetic field strength implies

a higher fraction of smaller scale magnetic structures. Since it is

these smaller structures which produce star-spots, we can speculate

that λ could increase with a reduction in open field lines. In any

case, more observational and theoretical work is needed for the

‘first principles’ understanding of λ from stellar dynamo theory,

but the empirically determined value is of practical use for simple

holistic modelling.
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7 C O N C L U S I O N S

To investigate the star-spot coverage of main-sequence stars, we

have used a sample of over 30 000 Kepler stars with previously mea-

sured activity and rotation periods covering M, G, K, and F spectral

types. Using the Pearson correlation coefficient, we determined that

there exists a decrease in star-spot coverage with increasing rotation

period – a proxy for age – for each of these spectral types. We tried

to describe this relationship in the unbinned raw data with single

and dual power-law fits using an LM minimization routine, and

found high reduced χ2 values for each stellar type in both cases,

although those of the dual power-law fits are somewhat smaller than

those of the single power law for all types except for the K-type

stars.

After introducing vertical bins to account for the variability

within activity cycle periods of each individual star, we found

much lower reduced χ2 values than those of the unbinned data,

indicating statistically significant fits for each stellar type. We found

no evidence for power-law breaks in the binned data except for the

G-type stars, in which a break occurs at a rotation period of 15 d.

This dual power-law fit for G-type stars produced a lower reduced

χ2 value than the single power law. We also found evidence of two

separate branches for the evolution of K-type stars, those above

and below 4.45 per cent variability, which further decreases the

reduced χ2 values, indicating a higher statistical significance for

these branches than a single power law. We compared fits using

bin means and medians for all stellar types, and found the only

significant difference to be somewhat reduced evidence for the two

branches for the K-type stars.

From our fits, we determined values for the model parameter λ

used in Blackman & Thomas (2015) to account for the decreasing

evolution of star-spot coverage with age. We found values in

concordance with their assumed range of 0 ≤ λ ≤ 1
3

for the single

power-law fit for all stellar types. We also found concordance for

both branches of K-type stars. For the dual power-law fit to G-type

stars, we found concordance at rotation periods below 15 d. The

λ value for G-type stars with rotation periods greater than 15 d is

over 2σ outside the range of Blackman & Thomas (2015), indicating

some evidence for a flattening in the functional form of the evolution

of star-spot coverage. This piques further interest into a potential

transition for G-type stars.

Although vertical binning was a practical step towards alleviating

the influence of variability within each stars stellar cycle on the

spread in the raw data, future work could improve upon this if large

samples were to ever become available with known activity cycles,

so that stars can be compared at the same phase in their cycles.

Additionally, more observational and theoretical work is needed to

understand the parameter λ from stellar dynamo theory.
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A P P E N D I X : C O M PA R I S O N O F M E D I A N S A N D

M E A N S O F B I N N E D DATA

To ensure that the trends in the binned data are not affected by the

use of the mean values, we compare the trends seen in the medians

of the bins with those seen in means of the bins as shown in Fig. A1.
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Figure A1. Comparisons of trends seen when using the medians versus the means of the rotation period squared and variability of the binned data for each

stellar type. The black circles in each panel represent the means of the bins and the red squares represent the medians of the bins. In each case, the trends seen

in the medians and means are the same with the exception of more evidence for a second branch in the means of K-type stars than in the medians.

We use the same bins in variability of constant width 0.1 per cent

as in Section 5.3 and represent each bin with either the average or

the median rotation period and variability. The same trends are seen

in the medians and means for M-, G-, and F-type stars. For K-type

stars, there appears to be more evidence for a second branch in the

means of the bins than in the medians, but there does still exist some

evidence for a second branch in the medians.
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