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ABSTRACT

The association of star-spots with magnetic fields leads to an expectation that quantities
which correlate with magnetic field strength may also correlate with star-spot coverage.
Since younger stars spin faster and are more magnetically active, assessing whether star-
spot coverage correlates with shorter rotation periods and stellar youth tests these principles.
Here, we analyse the star-spot covering fraction versus stellar age for M-, G-, K-, and F-type
stars based on previously determined variability and rotation periods of over 30000 Kepler
main-sequence stars. We determine the correlation between age and variability using single
and dual power-law best fits. We find that star-spot coverage does indeed decrease with age.
Only when the data are binned in an effort to remove the effects of activity cycles of individual
stars, do statistically significant power-law fits emerge for each stellar type. Using bin averages,
we then find that the star-spot covering fraction scales with the X-ray to bolometric ratio to the
power A with 0.22 4 0.03 < A < 0.32 4= 0.09 for G-type stars of rotation period below 15 d and
for the full range of F- and M-type stars. For K-type stars, we find two branches of A separated
by variability bins, with the lower branch showing nearly constant star-spot coverage and the
upper branch A ~ 0.35 &£ 0.04. G-type stars with periods longer than 15 d exhibit a transition
to steeper power law of A ~ 2.4 £ 1.0. The potential connection to previous rotation-age
measurements suggesting a magnetic breaking transition at the solar age, corresponding to
period of 24.5 is also of interest.

Key words: stars: activity —stars: evolution—stars: magnetic field—stars: solar-type —
starspots — X-rays: stars.

Baliunas et al. (1995) found a separation in mean values of S

1 INTRODUCTION indices for fast- and slow-rotating main-sequence stars which have

During the Sun’s 11-yr activity cycle, dark sunspots appear for
time-scales ranging from days to a few months (Petrovay & van
Driel-Gesztelyi 1997). The appearance and disappearance of these
sunspots produce brightness variations on different time-scales,
which can be detected in total solar irradiance (TSI) data (e.g.
Domingo et al. 2009). Stars other than the Sun also have activity
cycles and variations in chromospheric emission (Wilson 1978;
Vaughan & Preston 1980; Noyes et al. 1984; Noyes, Weiss &
Vaughan 1984). These variations are typically measured with the S
index, which is based on the Ca 11 H and K lines (Vaughan, Preston &
Wilson 1978), but can also be observed with long-term brightness
variations (Baliunas & Vaughan 1985; Oldh, Kolldth & Strassmeier
2000; Messina & Guinan 2002; Olah & Strassmeier 2002).
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higher and lower S values, respectively, indicating that younger
stars exhibit more activity than older stars. Additionally, two distinct
branches have been identified in the relation between rotation and
dynamo cycle period, which have been labelled the active (A) and
inactive (I) sequences, where the inactive branch applies to slower
rotators and has rotation to dynamo cycle period ratios about six
times larger than the active branch. (Brandenburg, Saar & Turpin
1998; Saar & Brandenburg 1999). There is also a separate branch
for fast rotators with rotation periods less than 3 d. The A and I
branches were confirmed by Bohm-Vitense (2007) who also saw
the Sun placed between the two branches, but evidence for these
multiple branches has not been robustly confirmed by the more
recent study of do Nascimento, Saar & Anthony (2015).

Indicators of stellar activity are believed to be driven by the
stellar magnetic dynamo (Parker 1955; Wilson 1966; Kraft 1967;
Charbonneau 2014), which is in turn thought to be driven by
some combination of convection, rotation, and differential rotation
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(Duvall et al. 1984). Given this correlation, the dynamo dependence
on rotation for slow rotators like the Sun suggests that an overall
decrease in indicators of stellar activity over much longer time-
scales should correlate with spin-down of the stars driven by
their stellar winds (e.g. Skumanich 1972; Pizzolato et al. 2003;
Mamajek & Hillenbrand 2008). The stellar winds likely depend
on energy sources that strengthen with magnetic field and the
magnetic dynamo (Cranmer & Saar 2011), and therefore these
correlations create a positive feedback loop (e.g. Blackman & Owen
2016).

Large sample observations allow extraction of empirical scalings
of coronal activity versus rotation period or Rossby number (Ro),
where Ro is the ratio of rotation period to a stellar model-dependent
eddy turnover time (Wright et al. 2011; Reiners, Schiissler &
Passegger 2014). Wright et al. (2011) show that for older main-
sequence stars with Ro > (.13, the ratio of the X-ray to bolometric
flux of the star, used as a metric of activity, varies as Ro~¢ where
2 < ¢ < 3. For younger main-sequence stars with Ro < 0.13, the
relationship saturates. Reiners et al. (2014) emphasize that the eddy
turnover time is itself luminosity dependent and so favours relations
directly scaling activity to rotation period. For present purposes, we
ignore stars in the saturated regime as the population has multivalued
periods for a given luminosity and because we exclude stars so
young that accretion is still influencing their behaviour.

Since star-spot coverage and X-ray luminosity are both closely
related to the stellar magnetic dynamo, we may expect a relationship
between star-spot coverage and rotation period of stars, and there-
fore between star-spot coverage and the ratio of X-ray to bolometric
flux of the star. Notsu et al. (2019) found that star-spot area does not
depend on rotation period for young stars, but begins to decrease
quickly for rotation periods greater than about 12 d for Sun-like
stars. This observed trend is based on chromospheric lines, so
further investigation of the trend based on photometric brightness is
timely.

There have been some previous efforts to characterize star-spot
coverage from photometric brightness variations measured by the
Kepler Space Telescope (Dmitrienko & Savanov 2017; Savanov &
Dmitrienko 2017a,b; Savanov & Dmitrienko 2018). These authors
measure star-spot coverage of various samples of main-sequence
stars, with an S factor based on changes in the mean radiation flux
of the stars. Savanov & Dmitrienko (2017a) found two groups of
solar-type stars, active and inactive, based on the stars’ S values.
The active group is only about 10 per cent of the sample, but has
a mean S value about the same as that of the Sun. The active
sample has a decreasing trend in S value with age while the inactive
sample has a constant S value. Dmitrienko & Savanov (2017) look
at the relationship between S values for M dwarfs and Rossby
numbers and find that it resembles that found in Wright et al.
(2011) with saturation at the same value of Ro. Although these
works identify a decreasing trend in star-spot coverage as stars age,
further efforts to identify a functional form of this relationship
are warranted and to assess whether there is evidence for any
dynamo transitions that have been purported for solar-type stars
in smaller samples (van Saders et al. 2016; Metcalfe & van Saders
2017).

In Section 2, we discuss the theoretical connection between stellar
age, X-ray luminosity, and rotation. In Section 3, we discuss the
observational sample used in this work. In Section 4, we discuss
our analysis methods. In Section 5, we present our results for single
and dual power-law relationships as well as trends in vertically
binned data. In Section 6, we discuss the theoretical implications of
this work. We conclude in Section 7.
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2 CONNECTING STELLAR ACTIVITY, AGE,
ROTATION, AND STAR-SPOT COVERAGE

Different theoretical or semitheoretical approaches have been pur-
sued to understand aspects of the observed relationship between
coronal activity and rotation period (Pallavicini et al. 1981; Noyes
etal. 1984; Vilhu 1984; Micela et al. 1985; Hartmann & Noyes 1987;
Randich 2000; Montesinos et al. 2001; Pizzolato et al. 2003; Wright
et al. 2011; Reiners et al. 2014; Vidotto et al. 2014; Blackman &
Thomas 2015). To highlight the role of star-spot covering fraction
in this effort, note for example the work of Blackman & Thomas
(2015) in which they connected the activity evolution over stellar
spin-down times to saturation of a dynamo model for fast rotators.
In doing so, the authors parametrized a relation between the ratio
of X-ray to bolometric luminosity ratio %’: and the solid angle that
the magnetic field passes through, ® of the form
LX/ L* ) *

ey

O=0, X
0(6.6><10—7

where ®, is the cycle averaged value of ® for the present Sun,
and A is a needed parameter to account for the decreasing star-
spot coverage fraction with age discussed further below. This work
also provides an expression for the ratio of X-ray to bolometric
luminosity with dependence

Lx s173 :

— X | —— | O, 2
L, (1 +2ms Ro) @
based on the magnetic energy flux sourced by the internal dynamo
that buoyantly rises into the corona, and averaged over a dynamo
cycle period. Here s is a constant that accounts for differential

rotation in the models of Blackman & Thomas (2015) and Ro is the
Rossby number. From equations (1) and (2)

L o B 1/3 2/(1-2)
LX (6.6 x 10°7) '+ @l/1 (75 ) 3)

% 14 27s Ro

which, when removing the constants from the proportionality,

gives
L 1/3 2/(1-2)

X x s . @)
L, 1+ 27s Ro

For Ro > 1 and a chosen value of A, equation (4) can provide a value
for ¢, the parameter describing the relationship between Rossby
number and X-ray to bolometric flux from Wright et al. (2011). If
A =0, then ¢ ~ 2 whereas if A > % then ¢ > 3. As observations
have shown that 2 < ¢ < 3 (Wright et al. 2011), an empirical
value of 0 <A < % would be expected. The scaling relation of
equation (4) was also used in a subsequent minimalist unified theory
for the evolution of X-ray luminosity, rotation, magnetic fields,
and mass-loss of main-sequence stars in the unsaturated regime
(Blackman & Owen 2016). Direct constraints on A are timely not
only for use in such holistic theoretical approaches, but also as
a fundamental observational constraint to be explained from first
principles.

3 OBSERVATIONAL SAMPLE

McQuillan, Mazeh & Aigrain (2014) derived rotation periods and
measured the photometric variability of 34030 main-sequence
stars based on 3 yr of Kepler observations. Rotation periods are
found with an autocorrelation method that has been shown to be
more robust than the more common Fourier methods (McQuillan,
Aigrain & Mazeh 2013). The value of a star’s variability is
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Figure 1. Variability versus rotation period squared for the entire sample of 31 543 stars with rotation periods above 3 d from McQuillan et al. (2014). Rotation
period squared is used as a proxy for age where larger P? is older, so this plot demonstrates the evolution of stellar activity with age for main-sequence stars.
The sample is divided into stellar types based on their effective temperatures and are shown here in different colours: blue for M-type, orange for K-type, green
for G-type, and red for F-type. The number of stars for each stellar type is shown in the upper right corner.

defined as the difference between the 95th and 5th percentile of
the normalized flux for the star in a single rotation period, then
averaged over all rotation periods contained over the duration of the
observations.

We do not consider the 2487 stars in the sample with rotation
periods shorter than 3 d. These stars were removed due to the
risk of ongoing accretion affecting variability, leaving a data set of
31543 stars. When looking at the 2487 fast rotators, there is indeed
a large amount of variability indicating that there is no evidence for
a saturated regime in this sample that is not masked by the highly
variable regime. McQuillan et al. (2014) also provide stellar pa-
rameters for the sample from either the Kepler Input Catalog (KIC)
or Dressing & Charbonneau (2013), including mass and effective
temperature. The sample covers masses 0.256 < M/M < 1.28 and
effective temperatures 3204 K < 7' < 6499 K.

Stars of different types may evolve differently, so we use
the effective temperatures to divide the sample into stellar type
subgroups using the temperature ranges from Drilling & Landolt
(2000). From this we find that we have 3604 F-type stars (5940
< T < 7300), 14269 G-type stars (5150 < T < 5940), 12105 K-
type stars (3840 < T < 5150), and 1565 M-type stars (3170 <
T < 3840). The variability versus rotation period squared (P?) for
the entire sample is shown in Fig. 1 with colours indicating each
star’s spectral type and it can be seen that all spectral types have
decreasing variability, interpreted as spot coverage, with increasing
rotation period (or age). Although the G- and K-type subgroup sizes
are the largest, even the samples of F- and M-type stars are still much
larger than those of most previous works, and comparable to those of
Savanov & Dmitrienko (2017a,b), Dmitrienko & Savanov (2017),
and Savanov & Dmitrienko (2018).
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4 METHODS

In this work, we assume that the star-spot coverage fraction is
directly proportional to the average variability of the star. This may
not be valid for all variability regimes, in part because stars may
have a certain amount of continuous star-spot coverage. But this is
presently hard to account for, so we proceed with this assumption
of proportionality for now. Blackman & Thomas (2015) explain
that the fraction of the solid angle that the field rises through on its
journey to the corona is plausibly proportional to the areal fraction
of star-spots and therefore stellar variability can give a measure
of the solid angle through which the field rises. Skumanich’s ‘law’
states that the rotation period of a star is approximately proportional
to the square root of its age (Skumanich 1972), so we look for
a relationship between the variability of the star and its rotation
period squared to represent the star-spot coverage evolution in time.
To quantify this relationship between star-spot coverage fraction
and age, we determine the correlation of these quantities and then
attempt to fit the observations with single and dual power laws.

Specifically, we determine the correlation of the data using
a Pearson correlation coefficient on the logarithmic relationship
between the rotation period squared and the average variability the
stars. The Pearson correlation coefficient is defined as

__cov(P, V)
- OpOy ’

reyv (5)
where cov(P, V) is the covariance of P? and the variability V, and
op and oy are the standard deviations of P? and the variability V,
respectively.

We also quantify the statistical significance of our best-fitting
functions using a reduced chi-square value. The reduced chi square
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is given by

1 (V= f(P))?
o Z( f2< . ©

N —n < o;
1

where N is the number of data points, n is the number of fit
parameters, V; is the variability value from the data for a given P2,
Sf(P;) is the best-fitting value for a given P2, and o; is the variance
at a given P2. To be statistically significant, this reduced yx? value
should be close to one.

As another way to quantify the change in star-spot covering
fraction with age, we determine values of the free parameter A used
in the holistic model of stellar activity evolution of Blackman &
Owen (2016) for each stellar type subsample. From equation (1),
we find the following expression for A.

AC)

=4 7
$en(Lx/Ly) @

To determine an expression for the ratio of X-ray to bolometric
luminosity of a star as a function of its age ¢, we use the results from
Wright et al. (2011)

Ly
2 =Cx*Ro* 8
L. (3)
where f = —¢ = —2.70 4 0.13, in combination with Skumanich’s
law. The Rossby number is proportional to the rotation period
divided by the eddy turnover time, and the age is proportional
to the rotation period squared. Thus if we assume that the eddy
turnover time is constant for a particular stellar type, we find that

Ro o P o 1 and obtain

Ly

— =C %1, 9
L ©

where o = %/3 = —1.35 4+ 0.065. Equation (9) and the assumption
that ® o Variability o< (P?)? where b is the derived power of our fit,
allows us to write our expression for A (equation 7) in the simpler
form'

b

A= —. (10)
o

To find the error in our values of A, we use the basic error propagation
formula

N df 2
"-?=Z<dx,.) ol (1)

i=1

which reduces to

b\? 1\?
o2 = (£> o + (&> o2, (12)

where o, is the derived error in o from Wright et al. (2011) and o,
is the derived error in the power of an individual best-fitting power
law found in this work.

For the dual power-law fits, we again look at the Pearson
correlation coefficients, reduced X2 values, and values of A for
the different age regimes. We look at the Pearson r value for all
stars with periods longer and shorter than a chosen transition period

! An alternative approach is to use the results of Reiners et al. (2014) where
the ratio of X-ray to bolometric luminosity is a function of rotation period
and radius rather than the Rossby number. Presently, we restrict ourselves
to using the expression from Wright et al. (2011).
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and define the formula
Niow Riow
Fr = 1= abs(7io) 55 = abs(rign) (1 - ) , (13)

where 1y, and e are the Pearson r values for the points less
than and greater than or equal to the transition rotation period
recalculated with each transition period choice, respectively; oy
is the number of stars with rotation periods below the transition,
and N is the total number of stars of that stellar type. Minimizing
Fr of equation (13) with respect to nj,, allows us to look for a
transition that maximizes the correlations, since the value of n, is
determined by the choice of transition period. For values of A, we
still use equations (10) and (12), but find individual values for each
age regime of the dual power law.

Stars at different points in their respective stellar activity cycles
likely have different levels of spottiness for a particular age,
producing a spread in the variability for stars at a given rotation
period. To mitigate this, we employ vertical bins of constant width
in variability of 0.1 percent. This width is based on the observed
change in variability of the Sun between solar activity cycle maxima
and minima from over 40 yr of observations shown in Reinhold,
Cameron & Gizon (2017), and empirical correlations between X-
ray and bolometric variability (Preminger, Chapman & Cookson
2011). The general trends do not change significantly with different
bin sizes. Each bin is then represented by a single point at the mean
of the data within the bin and is given a weight of the fraction of
stars in that stellar type. Trends in this binned data again do not
change significantly when using the median instead of the mean
as shown in Appendix. We again quantify the statistical signifi-
cance of resulting fits using the reduced chi-square values from
equation (6).

5 RESULTS

5.1 Single power law

We first investigate the relationships between the square of the
rotation period and the stellar variability informed by the Pearson
correlation coefficient analysis. If the relationship were described
by a power law, there would be a linear trend in log—log space
that can be quantified with the Pearson correlation coefficient. We
find Pearson r values of —0.55 for M-type stars, —0.58 for K-type
stars, —0.40 for G-type stars, and —0.19 for F-type stars. These
all indicate a decreasing relationship between the two parameters,
although those of the M-, K-, and G-type stars indicate this more
strongly than that of F-type stars.

We characterize the decreasing variability with a single power
law of the form Ax” for each stellar type. We use a Levenberg—
Marquardt (LM) minimization routine which returns best-fitting
parameters and errors on those derived parameters based on the
gradient of the steepest descent in the minimization routine. We
find the best fits (shown in Fig. 2):

M-type stars: (11.72 & 0.56)x(~ 040£0009 "2 — 64
K-type stars: (11.55 4 0.31)x(~ 0430005 52 — 393
G-type stars: (3.72 £ 0.09)x(~ 030£0005 52 — 516
F-type stars: (0.65 & 0.04)x(~ 017£0017) 52 — 124

We find that our best fits for a single function had very large
reduced y? values. None of these values are statistically significant,
which suggests that a single power law is not the best function to
represent the evolution of activity for any of these stellar types, and
we therefore attempt to fit the data with two power laws.

MNRAS 491, 2706-2714 (2020)
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Figure 2. Variability versus rotation period squared with a single power-
law fit for each stellar type. The red line on each panel represents the best fit
for each stellar type. The particulars of the fits, along with the reduced 2
values are labelled on the plot for each stellar type.

5.2 Dual power law

Previous work has suggested there is a change in magnetic field
geometry near the age of the Sun for Sun-like main-sequence stars
(van Saders et al. 2016). This, and the large reduced x? values from
our single power-law fits, prompted us to try to fit the data set with
two different power laws. Rather than bias the choice of a possible
power-law break to the current solar rotation period, we minimize
equation (13), in order to maximize the Pearson correlation to
assess whether any of the stellar types show evidence of a dual
power law when the break value is determined by the best fit. Our
minimization routine for unbinned data finds no significant global
minimum of the function for any of the stellar type groups so we

MNRAS 491, 2706-2714 (2020)
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Figure 3. Pearson r values versus break period for each stellar type, blue
for M-type stars, orange for K-type stars, green for G-type stars, and red for
F-type stars. Each line has an x of the same colour which shows the selected
break period for that stellar type. The number of stars for each stellar type
is shown in the upper right corner.

are left to a somewhat arbitrary choice. Fig. 3 shows the weighted
correlation coefficients for each stellar type along with our choice
for the periods at the power-law break. These ‘break periods’ were
simply selected as the points where the curves levelled off after the
large minimum in correlation and are 55, 40, 30, and 25 d for M-,
K-, G- and F-type stars, respectively. We chose these points as they
are the lowest break periods that provide the maximum weighted
correlation, allowing for the highest number of stars for the fits of
each power law.

Once break periods for each stellar type were selected, we fit
each with the LM minimization routine from Section 5.1, but with
two power laws that apply for stars with rotation periods less than
or greater than the break period, respectively. We find the best fits
(shown in Fig. 4):

M-type stars: (11.79 £ 0.56)x(~ 040+ 0009 for p < 55 d and
(1.27 £ 21.24)x(- 0:083£2036) fo5r p ' > 55d

K-type stars: (11.63 £ 0.31)x(~ 083 £0005 for p < 40 d and
(0.00 + 0.00)x(1465 £0.190) for p > 40 d

G-type stars: (3.73 £ 0.10)x(~030£0009 for p < 30 d and
(0.00 + 0.00)x(0885£0.100) for p > 30 d

F-type stars: (0.64 & 0.04)x—%17£0017) for p '\ < 25 d and
(0.06 #£ 0.23)x(0102£0509 for p > 25d

These fits produce smaller reduced y? values for all the stellar
types with the exception of K-type stars: 14.81 for M-type stars,
1586 for K-type stars, 259.5 for G-type stars, and 97.65 for F-
type stars. Although these values are smaller than those of a single
power-law fit, they are still too large to be statistically significant,
suggesting that other factors including each star’s activity cycle may
need to be considered.

5.3 Vertical binning

Since the raw unbinned data of the previous section did not show
statistical significance for a particular power law, we considered
what physical principle might justify binning the data. Each star
in the sample likely has its own stellar activity cycle over which
the brightness will vary. Thus all of the data points in our sample
come from potentially different points in each star’s activity cycle,
adding uncertainty to the exact stellar variation over rotation period
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Figure 4. Variability versus rotation period squared with dual power-law
fits for each stellar type split at the selected break period. The green line on
each panel represents the fit for stars older than the given break period and
the red line on each panel represents the fit for stars younger than the given
break period. The particulars of the fits, along with the reduced x? values
are labelled on the plot for each stellar type.

squared. To account for this spread, we introduce vertical bins into
our data, each with a constant width of 0.1 percent variability
based on empirical correlations between X-ray and bolometric
variability (Preminger et al. 2011) as well as observed changes
in the Sun’s variability over its known activity cycle (Reinhold
et al. 2017). We then fit the binned data with single and dual
power laws as above, and assess evidence for multiple branches.
We treat the mean of each bin as a single data point with a
weight given by the fraction of stars in that stellar type in the
bin.

Star-spots versus stellar age 2711

e
o

o o e
N o ©

Pearson r Value
o o
w o

0.4
—— M-Type (60 Bins)
—— K-Type (86 Bins)
0.3 —— G-Type (66 Bins)
—— F-Type (29 Bins)
0.2

15 20 25 30 35
Break Period (Days)

Figure 5. Pearson r values versus break period for the binned data of each
stellar type, blue for M-type stars, orange for K-type stars, green for G-type
stars, and red for F-type stars. As the only clear maximum in correlation
occurs at 15 d for G-type stars (indicated with a green x), that is the only
stellar type we fit with a dual power law. The number of bins for each stellar
type is shown in the lower right corner.

5.3.1 Single power law

We fit our binned data with a single power law again using the LM
minimization routine from Section 5.1. We find the best fits:

M-type stars: (13.91 4 2.06)x(~ 030 £003D 52 — 3 19
K-type stars: (19.64 4= 3.75)x(~ 031 £0.04) 152 — 371
G-type stars: (15.59 + 2.62)x(~ 036 £0.045) 42 — 4 28
F-type stars: (7.48 4 3.05)x(- 083 £0.113) 152 — 1 54

These fits of the binned data produce dramatically better reduced
%2 values for both the single and dual power-law fits of the unbinned
data. All of these values suggest that these fits are statistically
significant.

5.3.2 Dual power law

To further compare our binned and unbinned results, we checked
for any evidence of a dual power-law fit in the binned data. We
again minimize equation (13) with our binned data and again find
no clear statistically significant minima that would provide a break
period choice to maximize the correlations, except possibly for
G-type stars. Fig. 5 shows the weighted correlation coefficients
for each stellar type as a function of the chosen break period.
Only G-type stars show a maximum correlation that is not located
at one of the edges of the possible break periods and therefore
we only attempt a dual power-law fit for the binned data of G-
type stars. The peak correlation of G-type stars corresponds to
a break period of 15 d and from this we find the fits (shown
in Fig. 6): (15.11 £ 2.75)x(-03£0052 apd (1.36 x 10° +
9.79 x 10%)x(= 318+ 13D for stars with rotation periods lower and
higher than 15 d, respectively. This dual power-law fit produces
a lower reduced x?2 value of 1.11, suggesting a higher statistical
significance of a dual power-law fit than that of a single power law
for the binned G-type stars.

5.3.3 Branches

The scatter in the binned data suggests another possible interpre-
tation to test, namely the existence of multiple branches in the
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Figure 6. Variability versus rotation period squared with power-law fits for
each stellar type where the sample has been split into vertical bins with a
constant width of 0.1 per cent variability. The black line on the panels for
M- and F-type stars represents the best fit found taking into account all bins
which contain more than one star using an LM fitting routine, the black
lines on the panel for G-type stars represent the fits for the bins with rotation
periods less than and greater than 15 d and the black and green lines on the
panel for the K-type stars represent the best fits for the two branches, above
and below 4.45 per cent variability, using an LM fitting routine. The colour
scale of each data point represents the number of stars in the bin represented
by that point.
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evolution of star-spot coverage with age. In particular, the binned
data for K-type stars appears to have a structure that could be
consistent with two separate branches rather than a single power
law. We determine the two branches simply by grouping stars with
variability above or below 4.45 percent. This division is a visual
cut for where there appear to be distinct branches. We find the best
fits for K-type stars (shown in Fig. 6): (8.27 & 1.23)x(~ 0.05£003%
and (27.17 £ 5.51)x(~047+£0042) for the stars above and below
4.45 per cent variability, respectively.

From these fits, we find that two branches for the K-type stars
produce smaller reduced chi-square values than a single fit of
the binned data, 1.24 and 1.30 for K-type stars with variabilities
above and below 4.45 per cent, indeed suggesting evidence for two
branches of evolution for activity of K-type stars.

6 IMPLICATIONS FOR THE VALUE OF i

Using equations (10) and (12), we are able to determine a value for
A for the single power-law fits of our binned data, as those are the
fits with reduced x? values indicating statistical significance. We
find the values:

M-type stars: 0.222 + 0.030
K-type stars: 0.233 + 0.035
G-type stars: 0.265 £ 0.036
F-type stars: 0.316 £ 0.085

The dual power-law fit for the binned G-type stars also has a
reduced x? value indicating statistical significance, and we find the
X values

Prot < 15d:0.258 £+ 0.040
Prot > 15d:2.356 = 0.975

Additionally the two branches for the binned K-type stars have
reduced x2 values indicating statistical significance, and we find
the X values:

V < 4.45 per cent 0.034 £ 0.025
V > 4.45 percent 0.350 £ 0.036

All of the A values we were able to determine are within the
assumed range of 0 < A < % from Blackman & Owen (2016), with
the exception of the X representing G-type stars with rotation periods
greater than 15 d. The larger A value for this subset of the sample
provides some evidence for a flattening in the functional form of
the evolution of star-spot coverage at a rotation period of 15 d
for G-type stars. This period is different from that associated with a
previously proposed weakening of magnetic braking at the solar age,
corresponding to the 24.5 d rotation period (van Saders et al. 2016;
Metcalfe & van Saders 2017). A weakening of magnetic braking
through some kind of dynamo transition to higher multipoles could
be related to the increase in A: a higher A means more sensitivity
of star-spot coverage to X-ray luminosity. In turn, a reduction in
magnetic braking for a given average magnetic field strength implies
a higher fraction of smaller scale magnetic structures. Since it is
these smaller structures which produce star-spots, we can speculate
that A could increase with a reduction in open field lines. In any
case, more observational and theoretical work is needed for the
“first principles’ understanding of A from stellar dynamo theory,
but the empirically determined value is of practical use for simple
holistic modelling.

020z aunp |z uo Jesn uowwaT Apues Aq G9£9295/90/2/2/ 1 6/10BSqe-ajonie/seiuwl/woo dnoolwapese//:sdiy woll papeojumod



7 CONCLUSIONS

To investigate the star-spot coverage of main-sequence stars, we
have used a sample of over 30 000 Kepler stars with previously mea-
sured activity and rotation periods covering M, G, K, and F spectral
types. Using the Pearson correlation coefficient, we determined that
there exists a decrease in star-spot coverage with increasing rotation
period — a proxy for age — for each of these spectral types. We tried
to describe this relationship in the unbinned raw data with single
and dual power-law fits using an LM minimization routine, and
found high reduced x? values for each stellar type in both cases,
although those of the dual power-law fits are somewhat smaller than
those of the single power law for all types except for the K-type
stars.

After introducing vertical bins to account for the variability
within activity cycle periods of each individual star, we found
much lower reduced x2 values than those of the unbinned data,
indicating statistically significant fits for each stellar type. We found
no evidence for power-law breaks in the binned data except for the
G-type stars, in which a break occurs at a rotation period of 15 d.
This dual power-law fit for G-type stars produced a lower reduced
%2 value than the single power law. We also found evidence of two
separate branches for the evolution of K-type stars, those above
and below 4.45 percent variability, which further decreases the
reduced x? values, indicating a higher statistical significance for
these branches than a single power law. We compared fits using
bin means and medians for all stellar types, and found the only
significant difference to be somewhat reduced evidence for the two
branches for the K-type stars.

From our fits, we determined values for the model parameter A
used in Blackman & Thomas (2015) to account for the decreasing
evolution of star-spot coverage with age. We found values in
concordance with their assumed range of 0 < A < % for the single
power-law fit for all stellar types. We also found concordance for
both branches of K-type stars. For the dual power-law fit to G-type
stars, we found concordance at rotation periods below 15 d. The
A value for G-type stars with rotation periods greater than 15 d is
over 20 outside the range of Blackman & Thomas (2015), indicating
some evidence for a flattening in the functional form of the evolution
of star-spot coverage. This piques further interest into a potential
transition for G-type stars.

Although vertical binning was a practical step towards alleviating
the influence of variability within each stars stellar cycle on the
spread in the raw data, future work could improve upon this if large
samples were to ever become available with known activity cycles,
so that stars can be compared at the same phase in their cycles.
Additionally, more observational and theoretical work is needed to
understand the parameter A from stellar dynamo theory.
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APPENDIX: COMPARISON OF MEDIANS AND
MEANS OF BINNED DATA

To ensure that the trends in the binned data are not affected by the
use of the mean values, we compare the trends seen in the medians
of the bins with those seen in means of the bins as shown in Fig. A1.
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Figure Al. Comparisons of trends seen when using the medians versus the means of the rotation period squared and variability of the binned data for each
stellar type. The black circles in each panel represent the means of the bins and the red squares represent the medians of the bins. In each case, the trends seen
in the medians and means are the same with the exception of more evidence for a second branch in the means of K-type stars than in the medians.

We use the same bins in variability of constant width 0.1 per cent means of the bins than in the medians, but there does still exist some
as in Section 5.3 and represent each bin with either the average or evidence for a second branch in the medians.

the median rotation period and variability. The same trends are seen

in the medians and means for M-, G-, and F-type stars. For K-type

stars, there appears to be more evidence for a second branch in the This paper has been typeset from a TEX/ISTEX file prepared by the author.
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