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ABSTRACT

The kinetic energy of supersonic turbulence within interstellar clouds is subject to cooling
by dissipation in shocks and subsequent line radiation. The clouds are therefore susceptible
to a condensation process controlled by the specific entropy. In a form analogous to the
thermodynamic entropy, the entropy for supersonic turbulence is proportional to the log of the
product of the mean turbulent velocity and the size scale. We derive a dispersion relation for
the growth of entropic instabilities in a spherical self-gravitating cloud and find that there is
a critical maximum dissipation time-scale, about equal to the crossing time, that allows for
fragmentation and subsequent star formation. However, the time-scale for the loss of turbulent
energy may be shorter or longer, for example, with rapid thermal cooling or the injection
of mechanical energy. Differences in the time-scale for energy loss in different star-forming
regions may result in differences in the outcome, for example, in the initial mass function.
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1 INTRODUCTION

Star formation requires that smaller, self-gravitating regions dynam-
ically separate from a larger interstellar cloud into individual centres
of collapse. Several hypotheses explain how this fragmentation
process might happen. The gravitational cascade (Hoyle 1953)
supposes that because gravitational contraction occurs on a free-fall
time-scale ~1/,/Gp, where p is the local density, higher density
regions contract on a shorter time-scale allowing a collapsing
cloud to develop a hierarchy of smaller and denser collapsing
subregions. The hierarchy is described as ‘gravitational turbulence’
emphasizing the dominance of gravitational over hydrodynamic
forces. More recent developments on this idea are summarized
in Vazquez-Semadeni et al. (2019). Alternatively, the hypothesis
of gravoturbulent fragmentation (Elmegreen 1993; Klessen 2000)
suggests that small regions of individual collapse form where gas
between turbulent eddies is compressed beyond the local Jeans
density. The thermal instability (Field 1965) allows the possibility
of a bistable interstellar medium (ISM) with a cold (~100 K),
dense phase coexisting in pressure equilibrium with a hot (few
1000 K) rarefied phase. On cooling, the hot phase can fragment
into individual cold clouds that could gravitationally collapse
to form stars (Hunter 1966). However, star formation generally
occurs in molecular clouds and this process is not applicable to
the fragmentation of the molecular phase itself. None the less,
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the thermal instability may play a role in the development of
turbulence in molecular clouds formed from warmer atomic gas
and thus in setting the initial conditions for fragmentation (Heitsch
et al. 2005).

In this paper, we discuss fragmentation by a different process.
Similar to fragmentation by the thermal instability, we imagine a
condensation process defined by entropy fluctuations. At the low
temperatures (10-25 K) typical of molecular clouds, the internal
energy is dominated by the kinetic energy of supersonic turbulence.
For example, the energy associated with a turbulent velocity of
2 km s~! corresponds to the energy of a quiescent cloud at a
temperature of 1100 K. Therefore the relevant cooling or loss
of energy is the dissipation of turbulent energy in shocks and
subsequent line radiation. Accordingly, we define an entropy for
turbulence analogous to the thermal entropy but related to turbulent
energy rather than thermal energy.

Entropy fluctuations are unstable in a thermal self-gravitating
cloud because of its negative heat capacity. The negative heat
capacity of a star is well understood. As a star loses total energy by
radiation, the contraction increases the thermal velocities, equiva-
lent to an increase in temperature, to maintain equilibrium with the
increase in the absolute value of the potential energy. The entropy
of a star decreases along with the total energy. More generally, if
part of a cloud loses energy, then within this contracting region, the
temperature rises while the entropy decreases. Conversely, a part
of the cloud that gains energy, expands with a resulting decrease in
temperature and an increase in entropy. The temperature difference
results in the transfer of heat or energy from the warmer region

© 2020 The Author(s)

Published by Oxford University Press on behalf of the Royal Astronomical Society

020z aunp |z uo Jasn uowwa Apues Aq 68991 /G/0/8S/v/2610ensge-a|oie/Seluw/wod dno-olwapeoe//:sdny woll papeojumoq



to the cooler region further enhancing the temperature difference
owing to the negative heat capacity resulting in a condensation
instability.

In a turbulent cloud, there is similar instability substituting
the kinetic energy of the turbulent velocities for the temperature.
However, conduction or the transfer of energy from one part of the
cloud to another is not required for instability. Both the contracting
perturbation and the larger scale cloud are losing energy through
turbulent dissipation. However, the contracting perturbation loses
energy at an increasingly faster rate, inversely proportional to the
turbulent crossing time. It is easy to see that a decrease in the
crossing time resulting from an increase in the mean turbulent
velocity and a decrease in size enhances the difference in the entropy
between the contracting perturbation and the rest of the cloud. The
result is the turbulent entropic instability.

The instability is best described by the entropy that continuously
decreases along with the total energy. In contrast, the relationship
between the mean turbulent velocity and the radius can be more
complex. Dissipation continuously decreases the mean turbulent
velocity while contraction has the opposite effect. The relationship
then depends on the ratio of the crossing time and the gravitational
time. These are approximately the same in equilibrium but may
not remain so as the instability develops. Also, the loss rate of
turbulent energy in a star-forming cloud may be modified by
other processes. For example, an input of kinetic energy from star
formation feedback or shear may increase the time-scale for energy
loss by supplying fresh turbulent energy. We find that If the loss
time is longer than a critical value about equal to the crossing
time or two times the gravitational time, the instability does not
operate. In physical terms, sufficiently long loss times allow the
cloud to erase perturbations dynamically before they have time
to grow.

A necessary condition for fragmentation, defined as the de-
velopment of dynamically distinct subregions, is that the larger
scale contracts more slowly than the smaller. This condition is
satisfied by the turbulent-entropic instability and by the gravitational
instability. As Hoyle (1953) points out, fragmentation may be
extended to multiple scales resulting in a hierarchy or cascade.
In the gravitational instability, the time-scale is proportional to the
inverse of the square root of the density, while in the turbulent-
entropic instability, the time-scale is inversely proportional to the
crossing time. If the mass of the contracting region is considered a
constant, the density and radius are of course linked. The turbulent-
entropic instability can replace the gravitational instability as a
driver of hierarchical fragmentation.

By way of comparison, the turbulent-entropic instability is similar
to fragmentation through the thermal instability in that both are a
condensation process. However, the turbulent-entropic instability
can only occur in a self-gravitating cloud and does not result in a
phase change. The cooling rate in the turbulent-entropic instability
is related to the dynamics, whereas the thermal instability depends
on the shape of thermal cooling curve that is the sum of the atomic
and molecular line cooling rates. In both the turbulent-entropic
instability and thermal instability, the ratio of the dynamical time
and the cooling time determines the dynamical outcome.

IThe process of hierarchical fragmentation may be described as a transfer
or cascade of mass from larger to smaller scales. A description is given in
Field, Blackman & Keto (2008) for an assumed relationship between the
mean turbulent velocity and the radius and a steady state over the mass
scales.
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The complete outline of the paper is as follows.

Section 2.1. There is a turbulent entropy S o In(oR) that is
analogous to the thermodynamic entropy defined by the first law,
dQ = TdS, where oR is the product of the turbulent velocity and
radius.

Section 2.2. The rate of change of entropy is defined in terms of
the turbulent dissipation rate.

Section 2.3. The equation governing the evolution of a spherical,
self-gravitating, turbulent, molecular cloud is derived from a time-
dependent form of the virial theorem.

Section 2.4. Perturbations about equilibrium are described by
damped oscillations with a frequency related to the gravitational
time and the damping time related to the turbulent dissipation time.

Section 2.5. Fragmentation is defined in terms of a time-
dependent Jeans mass.

Section 2.6. There is a critical time-scale for the decay of
turbulent energy that allows for fragmentation. In terms of the
crossing-time, fp/tx < 0.7, or in terms of the gravitational free-
fall time, 1p/tp < 2.1, to allow for fragmentation.

Section 3. Differences in the effective loss rate of turbulent
energy may explain different outcomes in different star-forming
regions.

2 EQUATIONS

2.1 Entropy
From the first law of thermodynamics,

dQo dE dv
— =—+4+P—.
dt dr dr
If the energies and volume are expressed per unit mass, then the
energy and pressure in a turbulent cloud with one-dimensional

velocity dispersion, o, are

ey

E=K = ~o?, 2

P=—0c? 3)

where K is the turbulent kinetic energy. Therefore, the heat transfer
per unit mass in the turbulent cloud is

dQ 3do? ,3dR 72d02 2 dR

—~ =l 40— =K (o — 4+ =—

dr 2 dr R dt dr R dt

and

do d

— =2K—1 R). 4
o @ n(oR) 4)

In this form, the quantity In (o R) is analogous to the thermodynamic
or ‘heat engine’ entropy in the equation, dQ/dr = 7dS/d¢, with the
kinetic energy analogous to the thermal temperature, 7.

The thermodynamic entropy in the first law describes the
macrostate of the system. A comparison with the distribution of
microstates in Boltzmann’s entropy explains why the turbulent form
of the entropy is related to the product o R. In Boltzmann’s entropy,
S = k1n W, the number of microstates, WW o< V E3/2, Because only
changes in entropy are important, we can substitute R® for V
without loss of generality. We can also replace the energy per unit
mass, E, by the turbulent velocity dispersion, o2 Then W x ¢3R?
is proportional to the volume of phase space or equivalently
the number of microstates. With these substitutions, Boltzmann’s
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entropy for turbulence becomes

S = kln(oR). )

2.2 Rate of change of the turbulent entropy as a function of
the rate of turbulent dissipation

To determine the evolution of a cloud subject to turbulent dissipa-
tion, we derive the change in the turbulent entropy as a function
of the dissipation rate. The change in W = o R is equivalent to the
change in the turbulent entropy with a non-linear rescaling, The
rate of change of the kinetic energy is equal to the rate of turbulent
dissipation,

dKk dQ K
e~ A&t T
The dissipation rate of compressible or incompressible turbulence
is on the order of the crossing time (Kolmogorov 1941; Gammie &
Ostriker 1996). If the effective dissipation time-scale, 7p, is some
multiple, y, of the crossing time, #x,

Q)

R
Ip=ytx=y—, @)
o2

then from equations (4) and (7),
d 1 d(oR 1 dw
40 g LR _x 1

=2K— —, (®)
dr oR dr W dt
and with equation (7), the rate of change of W itself is
aw 1 W 1 w2
— = —=——— ©
dr 2 2y R

The rate of heat loss dQ/dt in equation (6) may be modified by other
processes. The decay rate of supersonic turbulence may be faster
than the crossing time if the gas temperature is also decreasing
and keeping the Mach number high even as the turbulent velocities
decay (Pavlovski et al. 2002). Alternatively, the addition of turbulent
energy from external or internal sources such as shear or star
formation feedback may slow the loss rate. In this case, dK/dz should
be thought of as an effective dissipation rate or decay rate that is
specified by the factor y in equation (7). For example, if

dL L

dt 1 10
is the rate of increase in turbulent kinetic energy from an outside
source of mechanical energy, then yrx may be defined as the
effective time-scale for the rate of change of the turbulent kinetic
energy due to both turbulent dissipation and fresh mechanical
energy,

fip
tx=K|—— ). 11
yix (tDL—tLK) an

At present, our knowledge of interstellar turbulence is insufficient
to specify L/t;, and we leave this uncertainty expressed in the
factor y.

2.3 The time-dependent virial theorem as a function of
turbulent entropy

Virial equilibrium implies that the gravitational and turbulent
kinetic energies are roughly in equipartition. The evolution of
this relationship is described through a time-dependent form of
the virial theorem. The applicability assumes that the gravitational
potential energy can be converted into virialized kinetic energy on
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a dynamical time-scale, for example, by the transport of angular
momentum from smaller to larger scales through gravitational
torques (Henriksen & Turner 1984). Following Chandrasekhar &
Fermi (1953), we interpret the virial theorem in a Lagrangian
sense integrating over a fixed mass. An external pressure may be
incorporated either through a decrease in the kinetic energy or an
increase in the gravitational force inside the surface. Similarly, we
assume that if there is significant energy from a turbulent magnetic
field, it is in equipartition with the turbulent kinetic energy and can
be included with this term. In this case, the virial theorem per unit
mass is

1 &1 =2K+Q (12)
2dr2 '
Here
l M
I= M/o r*dm = BR? (13)

is the moment of inertia per unit mass, and R is the radius with
enclosed mass M. The kinetic energy, K, is the same as defined
earlier (equation 2) if o is a function of time only,

13 (M 3
K = 77/ ordm = 202, (14)
M2 ) 2
The gravitational potential energy is
Mo dod rem
Q=— r dm = ———. (15)
0 dr’ R

The factors B8 and I' are of order unity dependent on the internal
distribution of mass.? In terms of the variable pairs R, o or R, W,
we have

&R 6(, I'GM? 6 (W?> TGM?

dr _,8(0 3R)_ﬂ<R2 3R )
This equation can be written in non-dimensional form with scaling
factors, Ry and o for the radius and turbulent velocity dispersion,
respectively. Then r = R/Ry and s = o/o, and these imply t =
t(oo/Ry) and w = W/(Ryo ). Any combination of o and R, that
satisfies virial equilibrium,

16)

) rGmM
oy Ry = — an
results in the non-dimensional equation
arr 6 (w1
L2 (R ). (18)
dez2 B\ r?2 r

2.4 Dispersion relation

The response of the cloud to small perturbations defines its stability.

With perturbations of the form » = 1 4 §,exp (nt) and w = 1 +

dyexp (nt), then to first order, equation (18) becomes

d? 1+25,¢ 1

B 1 425, exp(nry) = F20weX0(1T) .

6 dr? 1+28. exp(nt) 1438, exp(nt)
19

The zero-order terms cancel, leaving an equation with solutions

proportional to exp (7). Since d*/dt? — n?, equation (19) becomes

(gn2 — 1+ 2) 8, = 28,. (20)

2 Appendix A has calculations for the numerical value of 8 for a power-law
density profile and for a hydrostatic density profile.
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Figure 1. Growth rates of perturbations as functions of the dissipation
time-scale. The real parts of the three solutions of equation (23) are plotted
as functions of the dissipation time-scale y in units of the crossing time.
The purely real solution is shown as a solid line and the real parts of the
imaginary solutions, equal to each other, as a dashed line.

In a similar way, we can include perturbations in equation (9) for
the rate of change of the turbulent entropy (rescaled as w). First
rewrite equation (9) in non-dimensional form

dw 1 w?
— = (21)
dr 2y r?
The perturbed equation is
1 1
(n + 7> 8y = —6. (22)
Y Y
Combining equations (20) and (22),
1 1
Enz<n+,>+n_,:0_ (23)
3 Y Y

This cubic equation for the growth rate has three solutions: one
real, and two that are complex conjugates of each other. The real
solution indicates collapse while the imaginary solutions indicate
damped oscillations. The time-scale for collapse is related to the
change in w, equation (21), and thus to the crossing time while
the time-scale for the oscillations is the gravitational time-scale.
Fig. 1 plots the growth rate, n, as a function of the dissipation
time. In these examples 8 = 0.4, appropriate for a self-gravitating
cloud (Appendix A). Comparing initial clouds of different initial
crossing times, the growth rate n is larger (faster) for shorter crossing
times. This property allows for hierarchical fragmentation because
subregions can dynamically separate from a larger region.

2.5 Fragmentation

A self-gravitating cloud or region may fragment into smaller self-
gravitating regions if its mass exceeds the Jeans mass. If we define
the Jeans mass as in Spitzer (1978, p. 283),

253

My = G252’

(24
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then

3/2
()= () - @

M M
where My is the virial mass,

30%R

YT TG
defined from equations (14) and (15), and p is the mean density.
The equality is nearly exact if I' = 3/5 as for a spherical cloud of
uniform density.

From an initial state of equilibrium M = My ~ M, the virial
mass and the Jeans mass will both decrease because of the decay
of turbulent kinetic energy and contraction. However, the Jeans
mass decreases faster by a power of 3/2. Suppose the cloud might
fragment into two regions if M;/M < 2. In our non-dimensional
variables, according to equation (17) this condition is

-1 —3/2
(@) -(%) —=()=2 e

Alternatively, M/My = N, the number of potential fragments.

, (26)

2.6 Non-linear evolution

The virialization or equipartition of the turbulent kinetic and
potential energies maintains a relationship between the radius of the
cloud and the turbulent velocities described by the time-dependent
virial equation (18). We can numerically solve for this evolution
more easily by converting this second-order differential equation
into three first-order differential equations. To do so, define the
time evolution of the radius of the cloud as

dr 28)
— =.

dr

So that

d?r? d dr 2 dv

—=—(2r— | =2v"+2r—.

dr? dr dr dr

Then, as a first-order differential equation, the time-dependent virial
equation (18) is

dv_l 2 6 w2 1
5—5(‘2”5{5‘?])' )

The three first-order differential equations to be solved are then
equations (28), (29), and (21). The numerical solution shows that
there is critical value for y < 0.7 that allows fragmentation, defined
as N > 2. In terms of the crossing time, fragmentation is possible if
the turbulent dissipation time-scale is just shorter than the crossing
time,

o < 0.7. (30)
Ix

Appendix B shows that the non-dimensional gravitational free-fall
time is T = tx/3. Therefore in terms of the gravitational free-fall
time, fragmentation is possible if

o < 2.1. (31)
Ir

The exact numerical value, 0.7 or 2.1, may not be significant
given the spherical geometry assumed for the calculation. The
critical value also depends on the density profile through the
value of B (Appendix A). The calculations shown in Figs 2-4
with B8 = 0.4 are appropriate for an r~2 power-law density profile
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Figure 2. Evolution of a cloud with a turbulent dissipation time-scale y = 0.5 in equation (7) or half the initial crossing time. The evolution effectively ends

when N = 2, and the cloud fragments.

characteristic of self-gravitating clouds (Bodenheimer & Sweigart
1968). These figures show the evolution for three different time-
scales y = 0.5, 0.7, and 2.0. Fig. 2 shows that y = 0.5 allows
rapid fragmentation with the subregions inheriting lower turbulent
velocities. We imagine that this would lead hierarchically to a large
number of small fragments. The fragmentation cascade will stop
when the clouds are small enough to be supported by thermal
energy and subsonic turbulent energy. Fig. 3 shows the evolution
with the critical value of y = 0.7 that is largest value that allows
fragmentation into at least two subregions. Since the time before
fragmentation is longer than the previous example with y = 0.5, the
cloud contracts further allowing the negative heat capacity of the
self-gravitating cloud to begin to increase the turbulent velocities
from a minimum before fragmentation. Fig. 4 with y = 2 shows that
along dissipation time-scale prevents fragmentation as the cloud has
time to dynamically relax. In this case the entire cloud eventually
collapses with some oscillations. However, if the turbulent energy is
continuously resupplied so that the dissipation time-scale is infinite,
the cloud will neither collapse nor fragment.

3 DISCUSSION

3.1 Bimodal star formation

Our analysis of the turbulent-entropic instability shows that the
evolution of a cloud depends on the time-scale for the loss of
turbulent energy. With a shorter time-scale, a cloud may fragment
multiple times with each episode resulting in lower turbulent
velocities (Fig. 2) and smaller masses. With a longer dissipation
time-scale, a cloud may fragment more slowly resulting in fewer
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fragments or eventually collapse with its original mass. Thus the
final mass of a star-forming fragment may depend on the time-
scale for turbulent dissipation. In the next two sections we compare
different outcomes in high-mass and low-mass star-forming regions.

3.2 Observations

3.2.1 The Galactic Centre clouds

The clouds in elliptical orbit (60 by 100 pc) around the central black
hole Sgr A* (Molinari et al. 2011) are of interest in star formation
studies because they defy ‘universal laws’ of star formation such as
the Schmidt—Kennicutt relationship between the surface density
and the star formation rate (Schmidt 1959; Kennicutt 1998) or
the density threshold for star formation (Lada, Lombardi & Alves
2010). In particular, the observed star formation rates for several of
these clouds are an order of magnitude below those predicted by
these relationships between the density and the rate (Longmore et al.
2013a). A case in point is the cloud GCM-0.02-0.07 (M ~ 10° My;
Johnston et al. 2014) nicknamed the Brick because of its high optical
depth in the infrared and lack of internal infrared emission from star
formation. Only 3—4 per cent of the mass of this cloud is in dense
star-forming regions often called high-mass cores. The elliptical
ring also includes the massive star-forming region Sgr B2 with some
of the highest rates of star formation in the galaxy and the region
Sgr C rich with H 1 regions indicating earlier active star formation.
Fig. 5 shows the locations of the clouds on their elliptical orbit.
The clouds on the ring orbit in the direction from the Brick toward
Sgr B2. The Brick and other clouds with low star formation rates are
near the pericentre, 45 pc from the supermassive black hole Sgr A*
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Figure 3. Evolution of a cloud with a turbulent dissipation time-scale y = 0.7 in equation (7) or the initial crossing time. This is the critical value that allows
for fragmentation.
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Figure 4. Evolution of a cloud with a turbulent dissipation time-scale y = 2.0 in equation (7) or twice the initial crossing time.
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Sgr B2

Dust Ridge
clouds

To Earth

Figure 5. Schematic of the clouds in elliptical orbit in the Galactic Centre
adapted from Kruijssen et al. (2014). The view is of the plane of the Galaxy
from above. [Kruijssen, Dale & Longmore (2015) suggest that the orbit is
not exactly elliptical in that the path from Sgr C may not close back to the
location of the Brick.]

(Johnston et al. 2014), while Sgr B2 is at the apocentre, twice as
distant at 100 pc. Longmore et al. (2013b) suggest that the Brick
and nearby clouds are currently undergoing tidal compression that
will result in intense star formation by the time the clouds arrive at
the location of Sgr B2. The mini-starburst Sgr B2 would then be the
result of compression in its earlier passage through the pericentre of
the orbit. Observations indicate that the clouds on the orbit between
the Brick and Sgr B2, the dust ridge clouds, may be just beginning
to fragment (Walker et al. 2018).

Alternatively, fragmentation and ultimately the star formation
rate may be controlled by the turbulent-entropic instability. If orbital
shear slows the effective turbulent dissipation rate by supplying
fresh turbulent energy, then the difference in orbital shear along
the elliptical orbit from pericentre to apocentre may prevent star
formation near the pericentre and allow it at the apocentre. Fol-
lowing Kruijssen et al. (2014), we derive a rotation curve, vg,. =
23.5/%3 km s7! from the mass distribution measured around the
Galactic Centre by Launhardt, Zylka & Mezger (2002). At the radial
distance from the Brick to the Galactic Centre, 45 pc, the orbital
shear across a 10 pc diameter cloud is Av = 8.4 km s~!, while
the one-dimensional turbulent velocity dispersion in the Brick is
4.3 km s~! (Johnston et al. 2014). At the radial distance of Sgr B2,
100 pc, the shear is 3.4 km s~! across 10 pc, while the turbulent
velocity dispersion in Sgr B2 is 10.9 km s~! (Henshaw et al. 2016).
The higher ratio of shear velocity to turbulent velocity in the Brick
may be suppressing fragmentation with respect to Sgr B2.

3.2.2 Low-mass star formation in Taurus

In contrast with the highly turbulent environment in the Galactic
Centre, the Taurus star-forming region (Goldsmith et al. 2008) is
relatively quiet with CO line widths <2 km s~!. The whole region
is less massive (M ~ 2.4 x 10* My) than some single starless
clouds in the Central Molecular Zone (CMZ), but none the less
characterized by rapid star formation. There are on the order of 600
clouds of a few Mg, often called low-mass cores, and 200 low-mass
stars <2 Mg, and there are no stars of greater mass. The region
is off the Galactic plane at a latitude of 25° and at Galactic radius
of ~8 kpc, not strongly affected by shear due to Galactic rotation.
Magnetic fields are ordered at least in the lower optical depth gas
where the polarization of background starlight can be measured.
In summary, there appear to be few external sources of turbulent
energy. The only obvious source of fresh turbulent energy is from
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star formation feedback in the form of bipolar outflows, which of
course begin after fragmentation and star formation.

Of interest to theories of fragmentation is a subset of the low-
mass cores without stars, the starless cores, which may be the
sites of future star formation. The starless cores appear to be in
quasi-hydrostatic equilibrium supported against their self-gravity
by a combination of thermal pressure and subsonic turbulence as
deduced by narrow (near thermal) line widths seen in high-density
molecular gas tracers such as NH; (Myers & Benson 1983). The
cores are clustered on scales of 4 or 8 pc. The velocity dispersion
of the cores is a power-law function of their separation with a
mean value of 1.2 km s~ at a core separation <10 pc (Qian, Li &
Goldsmith 2012). If we suppose the cluster scale to represent the
scale of a cloud prior to fragmentation, and the core dispersion
velocity to represent the initial turbulent velocity dispersion, then
the crossing time of the initial cloud would be 6 pc/1.2 km s~
or 5 Myr. Smaller regions of the size of the cores themselves,
0.3 pc, with crossing times at least an order of magnitude less,
could fragment out of the cluster-sized cloud.

As noted in Section 2.2, the turbulent dissipation rate may be
enhanced in a cloud whose average thermal temperature is cooling.
The relatively low overall column density and optical depth of a low-
mass star forming such as Taurus may have allowed efficient radia-
tive cooling if the gas were initially warmer than its steady state tem-
perature. The enhanced turbulent dissipation rate would then have
allowed rapid fragmentation resulting in numerous small clouds.

4 CONCLUSIONS

We derived the energy equation for turbulence in a self-gravitating
cloud including the contribution from PdV work from contraction
as a result of turbulent dissipation. This equation suggests a form
of the entropy for turbulent gas with the quantity W = oR, the
turbulent velocity dispersion and the length scale, analogous to the
number of microstates in the definition of the thermal entropy,
S =klogWV. A dispersion relation based on a time-dependent
form of the virial equation allows both an unstable mode on the
crossing time, R/o, and oscillating modes on the gravitational time.
Following the non-linear evolution of a self-gravitating cloud with
the virial equation and the energy equation, we find that clouds are
unstable to hierarchical fragmentation if the dissipation time is on
the order of the crossing time or less. If the effective dissipation
time-scale is longer, the clouds do not fragment. The turbulent-
entropic instability may explain differences in the outcome of star
formation in quiescent regions such as Taurus and strongly sheared
regions such as the CMZ around the Galactic Centre and perhaps
provide an explanation for bimodal star formation.
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APPENDIX A: CALCULATION OF MOMENT
OF INERTIA

The factor g is defined by equation (13),

1 f prtdr
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Figure Al. The factor for the moment of inertia, 8, as a function of the
non-dimensional radius in the Lane—Emden equation. Also shown is the
non-dimensional hydrostatic density profile described by this equation and
normalized to the central density. In this case B varies as a function of
radius between 0.6 and 0.4 if the cloud is truncated at the critical radius of
a Bonnor—Ebert sphere shown by the vertical line.
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For a power-law density profile p o< r77,

p=1-L (A2)
4

So g = 0.6 if p = 0 (constant density) and g = 1/3 if p = 2.

The latter is characteristic of isothermal clouds in self-gravitating

equilibrium. Fig. A1 plots B versus radius for a hydrostatic profile.

For example, 8 = 0.42 for a Bonner—Ebert sphere and g = 0.6 for

a sphere of uniform density. Values of g between 0.3 and 0.6 cover

most clouds of interest for our calculations.

APPENDIX B: FREE-FALL TIME

The free-fall time in our non-dimensional units is calculated from
equation (18) deleting the term for the kinetic energy,
d?r? 6

With

dr
B2
v de’ (B2)

equation (B1) is

d
Zr—v+v2=

i —E. (B3)

Noting that

d d
— (rzvz) = 2r2—v + v22r, (B4)
dr

dr

we can separate the variables,

d 6
5 () =—2 (BS)

and integrate between the outer radius, ry = 1 and vo = 0, and r to
obtain

1 76\ 2
v=-— (7> (1—nr'- (B6)

r\p
Use equation (B2) and integrate again to get the free-fall time,

4 7B\

- (= , B7

TF 3 ( 6) B7)
ortp &~ 1 if B =04
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