
MNRAS 492, 5870–5877 (2020) doi:10.1093/mnras/staa230

Advance Access publication 2020 January 28

A turbulent-entropic instability and the fragmentation

of star-forming clouds

Eric Keto,1‹ George B. Field2 and Eric G. Blackman 3

1Institute for Theory and Computation, Harvard University, 60 Garden St, Cambridge, MA 02138, USA
2Department of Astronomy, Harvard University, 60 Garden St, Cambridge, MA 02138, USA
3Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627-0171, USA

Accepted 2020 January 13. Received 2020 January 8; in original form 2019 December 5

ABSTRACT

The kinetic energy of supersonic turbulence within interstellar clouds is subject to cooling

by dissipation in shocks and subsequent line radiation. The clouds are therefore susceptible

to a condensation process controlled by the specific entropy. In a form analogous to the

thermodynamic entropy, the entropy for supersonic turbulence is proportional to the log of the

product of the mean turbulent velocity and the size scale. We derive a dispersion relation for

the growth of entropic instabilities in a spherical self-gravitating cloud and find that there is

a critical maximum dissipation time-scale, about equal to the crossing time, that allows for

fragmentation and subsequent star formation. However, the time-scale for the loss of turbulent

energy may be shorter or longer, for example, with rapid thermal cooling or the injection

of mechanical energy. Differences in the time-scale for energy loss in different star-forming

regions may result in differences in the outcome, for example, in the initial mass function.

Key words: instabilities – stars: formation – ISM: evolution.

1 IN T RO D U C T I O N

Star formation requires that smaller, self-gravitating regions dynam-

ically separate from a larger interstellar cloud into individual centres

of collapse. Several hypotheses explain how this fragmentation

process might happen. The gravitational cascade (Hoyle 1953)

supposes that because gravitational contraction occurs on a free-fall

time-scale ∼1/
√

Gρ, where ρ is the local density, higher density

regions contract on a shorter time-scale allowing a collapsing

cloud to develop a hierarchy of smaller and denser collapsing

subregions. The hierarchy is described as ‘gravitational turbulence’

emphasizing the dominance of gravitational over hydrodynamic

forces. More recent developments on this idea are summarized

in Vázquez-Semadeni et al. (2019). Alternatively, the hypothesis

of gravoturbulent fragmentation (Elmegreen 1993; Klessen 2000)

suggests that small regions of individual collapse form where gas

between turbulent eddies is compressed beyond the local Jeans

density. The thermal instability (Field 1965) allows the possibility

of a bistable interstellar medium (ISM) with a cold (∼100 K),

dense phase coexisting in pressure equilibrium with a hot (few

1000 K) rarefied phase. On cooling, the hot phase can fragment

into individual cold clouds that could gravitationally collapse

to form stars (Hunter 1966). However, star formation generally

occurs in molecular clouds and this process is not applicable to

the fragmentation of the molecular phase itself. None the less,

� E-mail: eketo@cfa.harvard.edu

the thermal instability may play a role in the development of

turbulence in molecular clouds formed from warmer atomic gas

and thus in setting the initial conditions for fragmentation (Heitsch

et al. 2005).

In this paper, we discuss fragmentation by a different process.

Similar to fragmentation by the thermal instability, we imagine a

condensation process defined by entropy fluctuations. At the low

temperatures (10–25 K) typical of molecular clouds, the internal

energy is dominated by the kinetic energy of supersonic turbulence.

For example, the energy associated with a turbulent velocity of

2 km s−1 corresponds to the energy of a quiescent cloud at a

temperature of 1100 K. Therefore the relevant cooling or loss

of energy is the dissipation of turbulent energy in shocks and

subsequent line radiation. Accordingly, we define an entropy for

turbulence analogous to the thermal entropy but related to turbulent

energy rather than thermal energy.

Entropy fluctuations are unstable in a thermal self-gravitating

cloud because of its negative heat capacity. The negative heat

capacity of a star is well understood. As a star loses total energy by

radiation, the contraction increases the thermal velocities, equiva-

lent to an increase in temperature, to maintain equilibrium with the

increase in the absolute value of the potential energy. The entropy

of a star decreases along with the total energy. More generally, if

part of a cloud loses energy, then within this contracting region, the

temperature rises while the entropy decreases. Conversely, a part

of the cloud that gains energy, expands with a resulting decrease in

temperature and an increase in entropy. The temperature difference

results in the transfer of heat or energy from the warmer region
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to the cooler region further enhancing the temperature difference

owing to the negative heat capacity resulting in a condensation

instability.

In a turbulent cloud, there is similar instability substituting

the kinetic energy of the turbulent velocities for the temperature.

However, conduction or the transfer of energy from one part of the

cloud to another is not required for instability. Both the contracting

perturbation and the larger scale cloud are losing energy through

turbulent dissipation. However, the contracting perturbation loses

energy at an increasingly faster rate, inversely proportional to the

turbulent crossing time. It is easy to see that a decrease in the

crossing time resulting from an increase in the mean turbulent

velocity and a decrease in size enhances the difference in the entropy

between the contracting perturbation and the rest of the cloud. The

result is the turbulent entropic instability.

The instability is best described by the entropy that continuously

decreases along with the total energy. In contrast, the relationship

between the mean turbulent velocity and the radius can be more

complex. Dissipation continuously decreases the mean turbulent

velocity while contraction has the opposite effect. The relationship

then depends on the ratio of the crossing time and the gravitational

time. These are approximately the same in equilibrium but may

not remain so as the instability develops. Also, the loss rate of

turbulent energy in a star-forming cloud may be modified by

other processes. For example, an input of kinetic energy from star

formation feedback or shear may increase the time-scale for energy

loss by supplying fresh turbulent energy. We find that If the loss

time is longer than a critical value about equal to the crossing

time or two times the gravitational time, the instability does not

operate. In physical terms, sufficiently long loss times allow the

cloud to erase perturbations dynamically before they have time

to grow.

A necessary condition for fragmentation, defined as the de-

velopment of dynamically distinct subregions, is that the larger

scale contracts more slowly than the smaller. This condition is

satisfied by the turbulent-entropic instability and by the gravitational

instability. As Hoyle (1953) points out, fragmentation may be

extended to multiple scales resulting in a hierarchy or cascade.1

In the gravitational instability, the time-scale is proportional to the

inverse of the square root of the density, while in the turbulent-

entropic instability, the time-scale is inversely proportional to the

crossing time. If the mass of the contracting region is considered a

constant, the density and radius are of course linked. The turbulent-

entropic instability can replace the gravitational instability as a

driver of hierarchical fragmentation.

By way of comparison, the turbulent-entropic instability is similar

to fragmentation through the thermal instability in that both are a

condensation process. However, the turbulent-entropic instability

can only occur in a self-gravitating cloud and does not result in a

phase change. The cooling rate in the turbulent-entropic instability

is related to the dynamics, whereas the thermal instability depends

on the shape of thermal cooling curve that is the sum of the atomic

and molecular line cooling rates. In both the turbulent-entropic

instability and thermal instability, the ratio of the dynamical time

and the cooling time determines the dynamical outcome.

1The process of hierarchical fragmentation may be described as a transfer

or cascade of mass from larger to smaller scales. A description is given in

Field, Blackman & Keto (2008) for an assumed relationship between the

mean turbulent velocity and the radius and a steady state over the mass

scales.

The complete outline of the paper is as follows.

Section 2.1. There is a turbulent entropy S ∝ ln (σR) that is

analogous to the thermodynamic entropy defined by the first law,

dQ = TdS, where σR is the product of the turbulent velocity and

radius.

Section 2.2. The rate of change of entropy is defined in terms of

the turbulent dissipation rate.

Section 2.3. The equation governing the evolution of a spherical,

self-gravitating, turbulent, molecular cloud is derived from a time-

dependent form of the virial theorem.

Section 2.4. Perturbations about equilibrium are described by

damped oscillations with a frequency related to the gravitational

time and the damping time related to the turbulent dissipation time.

Section 2.5. Fragmentation is defined in terms of a time-

dependent Jeans mass.

Section 2.6. There is a critical time-scale for the decay of

turbulent energy that allows for fragmentation. In terms of the

crossing-time, tD/tX < 0.7, or in terms of the gravitational free-

fall time, tD/tF < 2.1, to allow for fragmentation.

Section 3. Differences in the effective loss rate of turbulent

energy may explain different outcomes in different star-forming

regions.

2 EQUAT I O N S

2.1 Entropy

From the first law of thermodynamics,

dQ

dt
=

dE

dt
+ P

dV

dt
. (1)

If the energies and volume are expressed per unit mass, then the

energy and pressure in a turbulent cloud with one-dimensional

velocity dispersion, σ , are

E = K =
3

2
σ 2, (2)

P =
1

V
σ 2, (3)

where K is the turbulent kinetic energy. Therefore, the heat transfer

per unit mass in the turbulent cloud is

dQ

dt
=

3

2

dσ 2

dt
+ σ 2 3

R

dR

dt
= K

(

σ−2 dσ 2

dt
+

2

R

dR

dt

)

and

dQ

dt
= 2K

d

dt
ln (σR). (4)

In this form, the quantity ln (σR) is analogous to the thermodynamic

or ‘heat engine’ entropy in the equation, dQ/dt = TdS/dt, with the

kinetic energy analogous to the thermal temperature, T.

The thermodynamic entropy in the first law describes the

macrostate of the system. A comparison with the distribution of

microstates in Boltzmann’s entropy explains why the turbulent form

of the entropy is related to the product σR. In Boltzmann’s entropy,

S = k lnW , the number of microstates, W ∝ V E3/2. Because only

changes in entropy are important, we can substitute R3 for V

without loss of generality. We can also replace the energy per unit

mass, E, by the turbulent velocity dispersion, σ 2. Then W ∝ σ 3R3

is proportional to the volume of phase space or equivalently

the number of microstates. With these substitutions, Boltzmann’s

MNRAS 492, 5870–5877 (2020)
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5872 E. Keto, G. B. Field and E. G. Blackman

entropy for turbulence becomes

S = k ln(σR). (5)

2.2 Rate of change of the turbulent entropy as a function of

the rate of turbulent dissipation

To determine the evolution of a cloud subject to turbulent dissipa-

tion, we derive the change in the turbulent entropy as a function

of the dissipation rate. The change in W = σR is equivalent to the

change in the turbulent entropy with a non-linear rescaling, The

rate of change of the kinetic energy is equal to the rate of turbulent

dissipation,

dK

dt
=

dQ

dt
= −

K

tD
. (6)

The dissipation rate of compressible or incompressible turbulence

is on the order of the crossing time (Kolmogorov 1941; Gammie &

Ostriker 1996). If the effective dissipation time-scale, tD, is some

multiple, γ , of the crossing time, tX,

tD = γ tX = γ
R

σ
, (7)

then from equations (4) and (7),

dQ

dt
= 2K

1

σR

d(σR)

dt
= 2K

1

W

dW

dt
, (8)

and with equation (7), the rate of change of W itself is

dW

dt
= −

1

2

W

tD
= −

1

2γ

W 2

R2
. (9)

The rate of heat loss dQ/dt in equation (6) may be modified by other

processes. The decay rate of supersonic turbulence may be faster

than the crossing time if the gas temperature is also decreasing

and keeping the Mach number high even as the turbulent velocities

decay (Pavlovski et al. 2002). Alternatively, the addition of turbulent

energy from external or internal sources such as shear or star

formation feedback may slow the loss rate. In this case, dK/dt should

be thought of as an effective dissipation rate or decay rate that is

specified by the factor γ in equation (7). For example, if

dL

dt
=

L

tL
(10)

is the rate of increase in turbulent kinetic energy from an outside

source of mechanical energy, then γ tX may be defined as the

effective time-scale for the rate of change of the turbulent kinetic

energy due to both turbulent dissipation and fresh mechanical

energy,

γ tX = K

(

tLtD

tDL − tLK

)

. (11)

At present, our knowledge of interstellar turbulence is insufficient

to specify L/tL, and we leave this uncertainty expressed in the

factor γ .

2.3 The time-dependent virial theorem as a function of

turbulent entropy

Virial equilibrium implies that the gravitational and turbulent

kinetic energies are roughly in equipartition. The evolution of

this relationship is described through a time-dependent form of

the virial theorem. The applicability assumes that the gravitational

potential energy can be converted into virialized kinetic energy on

a dynamical time-scale, for example, by the transport of angular

momentum from smaller to larger scales through gravitational

torques (Henriksen & Turner 1984). Following Chandrasekhar &

Fermi (1953), we interpret the virial theorem in a Lagrangian

sense integrating over a fixed mass. An external pressure may be

incorporated either through a decrease in the kinetic energy or an

increase in the gravitational force inside the surface. Similarly, we

assume that if there is significant energy from a turbulent magnetic

field, it is in equipartition with the turbulent kinetic energy and can

be included with this term. In this case, the virial theorem per unit

mass is

1

2

d2I

dt2
= 2K + �. (12)

Here

I =
1

M

∫ M

0

r ′2 dm = βR2 (13)

is the moment of inertia per unit mass, and R is the radius with

enclosed mass M. The kinetic energy, K, is the same as defined

earlier (equation 2) if σ is a function of time only,

K =
1

M

3

2

∫ M

0

σ 2 dm =
3

2
σ 2. (14)

The gravitational potential energy is

� = −
∫ M

0

r ′ d�

dr ′ dm = −
	GM

R
. (15)

The factors β and 	 are of order unity dependent on the internal

distribution of mass.2 In terms of the variable pairs R, σ or R, W,

we have

d2(R2)

dt2
=

6

β

(

σ 2 −
	GM2

3R

)

=
6

β

(

W 2

R2
−

	GM2

3R

)

. (16)

This equation can be written in non-dimensional form with scaling

factors, R0 and σ 0 for the radius and turbulent velocity dispersion,

respectively. Then r = R/R0 and s = σ /σ 0, and these imply τ =
t(σ 0/R0) and w = W/(R0σ 0). Any combination of σ 0 and R0 that

satisfies virial equilibrium,

σ 2
0 R0 =

	GM

3
, (17)

results in the non-dimensional equation

d2r2

dτ 2
=

6

β

(

w2

r2
−

1

r

)

. (18)

2.4 Dispersion relation

The response of the cloud to small perturbations defines its stability.

With perturbations of the form r = 1 + δr exp (nτ ) and w = 1 +
δwexp (nτ ), then to first order, equation (18) becomes

β

6

d2

dτ 2
(1 + 2δr exp (nτ )) =

1 + 2δw exp (nτ )

1 + 2δr exp (nτ )
−

1

1 + δr exp (nτ )
.

(19)

The zero-order terms cancel, leaving an equation with solutions

proportional to exp (nτ ). Since d2/dτ 2 → n2, equation (19) becomes
(

β

3
n2 − 1 + 2

)

δr = 2δw. (20)

2Appendix A has calculations for the numerical value of β for a power-law

density profile and for a hydrostatic density profile.

MNRAS 492, 5870–5877 (2020)
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Figure 1. Growth rates of perturbations as functions of the dissipation

time-scale. The real parts of the three solutions of equation (23) are plotted

as functions of the dissipation time-scale γ in units of the crossing time.

The purely real solution is shown as a solid line and the real parts of the

imaginary solutions, equal to each other, as a dashed line.

In a similar way, we can include perturbations in equation (9) for

the rate of change of the turbulent entropy (rescaled as w). First

rewrite equation (9) in non-dimensional form

dw

dτ
= −

1

2γ

w2

r2
. (21)

The perturbed equation is
(

n +
1

γ

)

δw =
1

γ
δr . (22)

Combining equations (20) and (22),

β

3
n2

(

n +
1

γ

)

+ n −
1

γ
= 0. (23)

This cubic equation for the growth rate has three solutions: one

real, and two that are complex conjugates of each other. The real

solution indicates collapse while the imaginary solutions indicate

damped oscillations. The time-scale for collapse is related to the

change in w, equation (21), and thus to the crossing time while

the time-scale for the oscillations is the gravitational time-scale.

Fig. 1 plots the growth rate, n, as a function of the dissipation

time. In these examples β = 0.4, appropriate for a self-gravitating

cloud (Appendix A). Comparing initial clouds of different initial

crossing times, the growth rate n is larger (faster) for shorter crossing

times. This property allows for hierarchical fragmentation because

subregions can dynamically separate from a larger region.

2.5 Fragmentation

A self-gravitating cloud or region may fragment into smaller self-

gravitating regions if its mass exceeds the Jeans mass. If we define

the Jeans mass as in Spitzer (1978, p. 283),

MJ =
π

3/2σ 3

G3/2ρ̄1/2
, (24)

then
(

MJ

M

)

≈
(

MV

M

)3/2

, (25)

where MV is the virial mass,

MV =
3σ 2R

	G
, (26)

defined from equations (14) and (15), and ρ̄ is the mean density.

The equality is nearly exact if 	 = 3/5 as for a spherical cloud of

uniform density.

From an initial state of equilibrium M = MV ≈ MJ, the virial

mass and the Jeans mass will both decrease because of the decay

of turbulent kinetic energy and contraction. However, the Jeans

mass decreases faster by a power of 3/2. Suppose the cloud might

fragment into two regions if MJ/M ≤ 2. In our non-dimensional

variables, according to equation (17) this condition is

(

MJ

M

)−1

=
(

MV

M

)−3/2

= (s2r)−3/2 =
( r

w2

)3/2

≥ 2. (27)

Alternatively, M/MJ = N, the number of potential fragments.

2.6 Non-linear evolution

The virialization or equipartition of the turbulent kinetic and

potential energies maintains a relationship between the radius of the

cloud and the turbulent velocities described by the time-dependent

virial equation (18). We can numerically solve for this evolution

more easily by converting this second-order differential equation

into three first-order differential equations. To do so, define the

time evolution of the radius of the cloud as

dr

dτ
= v. (28)

So that

d2r2

dτ 2
=

d

dτ

(

2r
dr

dτ

)

= 2v2 + 2r
dv

dτ
.

Then, as a first-order differential equation, the time-dependent virial

equation (18) is

dv

dτ
=

1

2r

(

−2v2 +
6

β

[

w2

r2
−

1

r

])

. (29)

The three first-order differential equations to be solved are then

equations (28), (29), and (21). The numerical solution shows that

there is critical value for γ < 0.7 that allows fragmentation, defined

as N ≥ 2. In terms of the crossing time, fragmentation is possible if

the turbulent dissipation time-scale is just shorter than the crossing

time,

tD

tX
< 0.7. (30)

Appendix B shows that the non-dimensional gravitational free-fall

time is τ F = τX/3. Therefore in terms of the gravitational free-fall

time, fragmentation is possible if

tD

tF
< 2.1. (31)

The exact numerical value, 0.7 or 2.1, may not be significant

given the spherical geometry assumed for the calculation. The

critical value also depends on the density profile through the

value of β (Appendix A). The calculations shown in Figs 2–4

with β = 0.4 are appropriate for an r−2 power-law density profile

MNRAS 492, 5870–5877 (2020)
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5874 E. Keto, G. B. Field and E. G. Blackman

Figure 2. Evolution of a cloud with a turbulent dissipation time-scale γ = 0.5 in equation (7) or half the initial crossing time. The evolution effectively ends

when N = 2, and the cloud fragments.

characteristic of self-gravitating clouds (Bodenheimer & Sweigart

1968). These figures show the evolution for three different time-

scales γ = 0.5, 0.7, and 2.0. Fig. 2 shows that γ = 0.5 allows

rapid fragmentation with the subregions inheriting lower turbulent

velocities. We imagine that this would lead hierarchically to a large

number of small fragments. The fragmentation cascade will stop

when the clouds are small enough to be supported by thermal

energy and subsonic turbulent energy. Fig. 3 shows the evolution

with the critical value of γ = 0.7 that is largest value that allows

fragmentation into at least two subregions. Since the time before

fragmentation is longer than the previous example with γ = 0.5, the

cloud contracts further allowing the negative heat capacity of the

self-gravitating cloud to begin to increase the turbulent velocities

from a minimum before fragmentation. Fig. 4 with γ = 2 shows that

a long dissipation time-scale prevents fragmentation as the cloud has

time to dynamically relax. In this case the entire cloud eventually

collapses with some oscillations. However, if the turbulent energy is

continuously resupplied so that the dissipation time-scale is infinite,

the cloud will neither collapse nor fragment.

3 D ISCUSSION

3.1 Bimodal star formation

Our analysis of the turbulent-entropic instability shows that the

evolution of a cloud depends on the time-scale for the loss of

turbulent energy. With a shorter time-scale, a cloud may fragment

multiple times with each episode resulting in lower turbulent

velocities (Fig. 2) and smaller masses. With a longer dissipation

time-scale, a cloud may fragment more slowly resulting in fewer

fragments or eventually collapse with its original mass. Thus the

final mass of a star-forming fragment may depend on the time-

scale for turbulent dissipation. In the next two sections we compare

different outcomes in high-mass and low-mass star-forming regions.

3.2 Observations

3.2.1 The Galactic Centre clouds

The clouds in elliptical orbit (60 by 100 pc) around the central black

hole Sgr A∗ (Molinari et al. 2011) are of interest in star formation

studies because they defy ‘universal laws’ of star formation such as

the Schmidt–Kennicutt relationship between the surface density

and the star formation rate (Schmidt 1959; Kennicutt 1998) or

the density threshold for star formation (Lada, Lombardi & Alves

2010). In particular, the observed star formation rates for several of

these clouds are an order of magnitude below those predicted by

these relationships between the density and the rate (Longmore et al.

2013a). A case in point is the cloud GCM-0.02-0.07 (M ∼ 105 M�;

Johnston et al. 2014) nicknamed the Brick because of its high optical

depth in the infrared and lack of internal infrared emission from star

formation. Only 3–4 per cent of the mass of this cloud is in dense

star-forming regions often called high-mass cores. The elliptical

ring also includes the massive star-forming region Sgr B2 with some

of the highest rates of star formation in the galaxy and the region

Sgr C rich with H II regions indicating earlier active star formation.

Fig. 5 shows the locations of the clouds on their elliptical orbit.

The clouds on the ring orbit in the direction from the Brick toward

Sgr B2. The Brick and other clouds with low star formation rates are

near the pericentre, 45 pc from the supermassive black hole Sgr A∗

MNRAS 492, 5870–5877 (2020)
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TEI 5875

Figure 3. Evolution of a cloud with a turbulent dissipation time-scale γ = 0.7 in equation (7) or the initial crossing time. This is the critical value that allows

for fragmentation.

Figure 4. Evolution of a cloud with a turbulent dissipation time-scale γ = 2.0 in equation (7) or twice the initial crossing time.

MNRAS 492, 5870–5877 (2020)
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5876 E. Keto, G. B. Field and E. G. Blackman

Figure 5. Schematic of the clouds in elliptical orbit in the Galactic Centre

adapted from Kruijssen et al. (2014). The view is of the plane of the Galaxy

from above. [Kruijssen, Dale & Longmore (2015) suggest that the orbit is

not exactly elliptical in that the path from Sgr C may not close back to the

location of the Brick.]

(Johnston et al. 2014), while Sgr B2 is at the apocentre, twice as

distant at 100 pc. Longmore et al. (2013b) suggest that the Brick

and nearby clouds are currently undergoing tidal compression that

will result in intense star formation by the time the clouds arrive at

the location of Sgr B2. The mini-starburst Sgr B2 would then be the

result of compression in its earlier passage through the pericentre of

the orbit. Observations indicate that the clouds on the orbit between

the Brick and Sgr B2, the dust ridge clouds, may be just beginning

to fragment (Walker et al. 2018).

Alternatively, fragmentation and ultimately the star formation

rate may be controlled by the turbulent-entropic instability. If orbital

shear slows the effective turbulent dissipation rate by supplying

fresh turbulent energy, then the difference in orbital shear along

the elliptical orbit from pericentre to apocentre may prevent star

formation near the pericentre and allow it at the apocentre. Fol-

lowing Kruijssen et al. (2014), we derive a rotation curve, vcirc =
23.5r0.38 km s−1 from the mass distribution measured around the

Galactic Centre by Launhardt, Zylka & Mezger (2002). At the radial

distance from the Brick to the Galactic Centre, 45 pc, the orbital

shear across a 10 pc diameter cloud is �v = 8.4 km s−1, while

the one-dimensional turbulent velocity dispersion in the Brick is

4.3 km s−1 (Johnston et al. 2014). At the radial distance of Sgr B2,

100 pc, the shear is 3.4 km s−1 across 10 pc, while the turbulent

velocity dispersion in Sgr B2 is 10.9 km s−1 (Henshaw et al. 2016).

The higher ratio of shear velocity to turbulent velocity in the Brick

may be suppressing fragmentation with respect to Sgr B2.

3.2.2 Low-mass star formation in Taurus

In contrast with the highly turbulent environment in the Galactic

Centre, the Taurus star-forming region (Goldsmith et al. 2008) is

relatively quiet with CO line widths ≤2 km s−1. The whole region

is less massive (M ∼ 2.4 × 104 M�) than some single starless

clouds in the Central Molecular Zone (CMZ), but none the less

characterized by rapid star formation. There are on the order of 600

clouds of a few M�, often called low-mass cores, and 200 low-mass

stars ≤2 M�, and there are no stars of greater mass. The region

is off the Galactic plane at a latitude of 25◦ and at Galactic radius

of ∼8 kpc, not strongly affected by shear due to Galactic rotation.

Magnetic fields are ordered at least in the lower optical depth gas

where the polarization of background starlight can be measured.

In summary, there appear to be few external sources of turbulent

energy. The only obvious source of fresh turbulent energy is from

star formation feedback in the form of bipolar outflows, which of

course begin after fragmentation and star formation.

Of interest to theories of fragmentation is a subset of the low-

mass cores without stars, the starless cores, which may be the

sites of future star formation. The starless cores appear to be in

quasi-hydrostatic equilibrium supported against their self-gravity

by a combination of thermal pressure and subsonic turbulence as

deduced by narrow (near thermal) line widths seen in high-density

molecular gas tracers such as NH3 (Myers & Benson 1983). The

cores are clustered on scales of 4 or 8 pc. The velocity dispersion

of the cores is a power-law function of their separation with a

mean value of 1.2 km s−1 at a core separation ≤10 pc (Qian, Li &

Goldsmith 2012). If we suppose the cluster scale to represent the

scale of a cloud prior to fragmentation, and the core dispersion

velocity to represent the initial turbulent velocity dispersion, then

the crossing time of the initial cloud would be 6 pc/1.2 km s−1

or 5 Myr. Smaller regions of the size of the cores themselves,

0.3 pc, with crossing times at least an order of magnitude less,

could fragment out of the cluster-sized cloud.

As noted in Section 2.2, the turbulent dissipation rate may be

enhanced in a cloud whose average thermal temperature is cooling.

The relatively low overall column density and optical depth of a low-

mass star forming such as Taurus may have allowed efficient radia-

tive cooling if the gas were initially warmer than its steady state tem-

perature. The enhanced turbulent dissipation rate would then have

allowed rapid fragmentation resulting in numerous small clouds.

4 C O N C L U S I O N S

We derived the energy equation for turbulence in a self-gravitating

cloud including the contribution from PdV work from contraction

as a result of turbulent dissipation. This equation suggests a form

of the entropy for turbulent gas with the quantity W = σR, the

turbulent velocity dispersion and the length scale, analogous to the

number of microstates in the definition of the thermal entropy,

S = k logW . A dispersion relation based on a time-dependent

form of the virial equation allows both an unstable mode on the

crossing time, R/σ , and oscillating modes on the gravitational time.

Following the non-linear evolution of a self-gravitating cloud with

the virial equation and the energy equation, we find that clouds are

unstable to hierarchical fragmentation if the dissipation time is on

the order of the crossing time or less. If the effective dissipation

time-scale is longer, the clouds do not fragment. The turbulent-

entropic instability may explain differences in the outcome of star

formation in quiescent regions such as Taurus and strongly sheared

regions such as the CMZ around the Galactic Centre and perhaps

provide an explanation for bimodal star formation.
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Zamora-Avilés M., 2019, MNRAS, 490, 3061

Walker D. L. et al., 2018, MNRAS, 474, 2373

A P P E N D I X A : C A L C U L AT I O N O F M O M E N T

OF IN ERTIA

The factor β is defined by equation (13),

β ≡
I

MR2
=

∫

ρr4 dr

R2
∫

ρr2 dr
. (A1)

Figure A1. The factor for the moment of inertia, β, as a function of the

non-dimensional radius in the Lane–Emden equation. Also shown is the

non-dimensional hydrostatic density profile described by this equation and

normalized to the central density. In this case β varies as a function of

radius between 0.6 and 0.4 if the cloud is truncated at the critical radius of

a Bonnor–Ebert sphere shown by the vertical line.

For a power-law density profile ρ ∝ r−p,

β =
3 − p

5 − p
. (A2)

So β = 0.6 if p = 0 (constant density) and β = 1/3 if p = 2.

The latter is characteristic of isothermal clouds in self-gravitating

equilibrium. Fig. A1 plots β versus radius for a hydrostatic profile.

For example, β = 0.42 for a Bonner–Ebert sphere and β = 0.6 for

a sphere of uniform density. Values of β between 0.3 and 0.6 cover

most clouds of interest for our calculations.

APPENDI X B: FREE-FA LL TI ME

The free-fall time in our non-dimensional units is calculated from

equation (18) deleting the term for the kinetic energy,

d2r2

dτ 2
= −

6

βr
. (B1)

With

v =
dr

dτ
, (B2)

equation (B1) is

2r
dv

dτ
+ v2 = −

6

βr
. (B3)

Noting that

d

dr

(

r2v2
)

= 2r2 dv

dτ
+ v22r, (B4)

we can separate the variables,

d

dr

(

r2v2
)

= −
6

β
, (B5)

and integrate between the outer radius, r0 = 1 and v0 = 0, and r to

obtain

v =
1

r

(

6

β

)1/2

(1 − r)1/2. (B6)

Use equation (B2) and integrate again to get the free-fall time,

τF =
4

3

(

β

6

)1/2

, (B7)

or τF ≈ 1
3

if β = 0.4.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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