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1 Introduction

This work is concerned with the asymptotic properties, in particular recurrence and
ergodicity, for a class of regime-switching jump diffusion processes. The process under
consideration can be thought of as a number of jump-diffusion processes modulated by
arandom switching device. The underlying process is (X (¢), A(t)), a two-component
process, where X (¢) delineates the jump diffusion behavior and A(#) describes the
switching involved. One of the main ingredients is that the switching process depends
on the jump diffusions. If the jump process is missing, it reduces to switching diffu-
sions that have been investigated thoroughly; see for example [11,23] and references
therein. Our primary motivation stems from the study of a family of Markov processes
in which continuous dynamics, jump discontinuity, and discrete events coexist. Their
interactions reflect the salient features of the underlying systems. The distinct fea-
tures of the systems include the presence of non-local operators, the coupled systems
of equations, and the tangled information due to the dependence of the switching
process on the jump diffusions. Such systems have drawn new as well as resurgent
attention because of the urgent needs of systems modeling, analysis, and optimiza-
tion in a wide variety of applications. Not only do the applications arise from the
traditional fields of mathematical modeling, but also they have appeared in emerging
application areas such as wireless communications, networked systems, autonomous
systems, multi-agent systems, flexible manufacturing systems, financial engineering,
and biological and ecological systems, among others. Continuing our investigation on
regime-switching systems, this paper focuses on a class of switching jump diffusion
processes. The state-dependent random switching process under consideration makes
the formulation more versatile and interesting with a wider range of applications.
Nevertheless, it makes the analysis more difficult and challenging.

Asymptotic properties of diffusion processes and associated partial differential
equations are well known in the literature. We refer to [5,8] and references therein.
Results for switching diffusion processes can be found in [7,23,24]. One of the
important problems concerning switching jump models is their longtime behavior. In
particular, similar to the case of diffusions and switching diffusion processes, several
questions of crucial importance are: Under what conditions will the systems return to
a prescribed compact region in finite time? Under what conditions do the systems have
the desired ergodicity? In this paper, we focus on asymptotic behavior and address
these issues. Despite the growing interests in treating switching jump systems, the
results regarding recurrence, positive recurrence, and invariant probability measures
are still scarce. One of the main difficulties is the operator being non-local. When
we study switching diffusions, it has been demonstrated that although they are simi-
lar to diffusion processes, switching diffusions have some distinct features. With the
non-local operator used, the distinctions are even more pronounced.

In the literature, criteria for certain types of weak stability including Harris recur-
rence and positive Harris recurrence for continuous time Markovian processes based
on Foster-Lyapunov inequalities were developed in [13]. Using results in that paper,
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some sufficient conditions for ergodicity of Lévy type operators in dimension one were
presented in [19] under the assumption of Lebesgue-irreducibility. In [21,22], suffi-
cient conditions for stability of a class of jump diffusions and switching jump diffusions
were provided by constructing suitable Lyapunov type functions. However, the class
of kernels considered in aforementioned papers satisfies a different set of hypotheses
than those in our current work. In [12], the existence of an invariant probability mea-
sure was established for a jump diffusion, whose drift coefficient is assumed to be only
Borel measurable. Sufficient conditions for recurrence, transience and ergodicity of
stable-like processes were studied in [16]. In a recent work [1], the authors treated the
ergodic properties such as positive recurrence and invariant probability measures for
jump processes with no diffusion part. It should be noted that for the case of switching
diffusions, the state process X (¢) can be viewed as a diffusion process in a random
environment characterized by the switching component A (). The asymptotic behav-
ior of the diffusion process in a random environment is more complicated than that
of a diffusion process in a fixed environment. In particular, there are examples (see
[14,15]) that X (¢) is positive recurrent in some fixed environments and is transient in
some other fixed environments, we can make X (¢) positive recurrent or transient by
choosing suitable switching rates. We refer to [17,18] for recent works on ergodicity
of regime-switching diffusion processes. We emphasize that our results in the current
work are significant extensions of those in [1,24]. In terms of the associated operators
and differential equations, compared to switching diffusion processes, in lieu of an
elliptic system (a system of elliptic partial differential equations), we have to deal with
a system of integro-differential equations. In our recent work, maximum principle and
Harnack’s inequality were obtained in [6], which are used in this paper. Compared to
the case of diffusion processes with jumps, even though the classical approaches such
as Lyapunov function methods and Dynkin’s formula are still applicable, the analysis
is much more delicate because of the coupling and interactions. There is a wide range
of applications. As one particular example, consider the following average cost per
unit time problem for a controlled switching jump diffusion in an infinite horizon.
Suppose that (X (), A(t)) is given by

dX(t) = b(X (1), A1), u(t))dt
+o (X (1), A@)dW (1) + / c(X(t—), A(t—), 2)No(dt, dz),

Ro

X(0) =x, A(0) = Ao,

where b(-), o(-), and c(-) are suitable real-valued functions, ﬁo(-) is a compen-
sated real-valued Poisson process, W(-) is a real-valued Brownian motion, A(t)
is a continuous-time Markov chain with a finite state space, u(-) is a control, and
Rp = R — {0}. [More precise notion of switching jump diffusions will be given in the
next section.] Assuming that A(-), W(-), and Ny(-) are independent, our objective is
to minimize a long-run average cost function given by

T
J(x, ko, u(-) = Tli_)mooE%/O g(X (1), A1), u(t))dr,
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where g(-) is a suitable “running cost” function. To treat such a problem, one needs
to replace the instantaneous measure by an ergodic measure (if it exists). The current
paper sets up the foundation for the study on such problems because it provides
sufficient conditions under which the invariant measure exists. Optimal controls of
controlled jump diffusions (the above process without switching) was considered in
[10], in which the jump process was assume to belong to a compact set. Here we are
dealing with a more general setting.

The rest of the paper is arranged as follows. Section 2 begins with the formulation of
the problem. Section 3 is devoted to recurrence. It provides definitions of recurrence,
positive recurrence, and null recurrence in addition to introducing certain notation.
Then Sect. 3.2 focuses on recurrence and positive recurrence. We present sufficient
conditions involving Lyapunov function for recurrence and positive recurrence using
Lyapunov functions. Section 4 develops ergodicity. Existence of invariant probability
measures of switching jump diffusion processes is obtained. Section 5 provides some
sufficient conditions for the existence of Lyapunov functions under which the theorems
of this paper are applicable. Finally, Sect. 6 concludes the paper with further remarks.

2 Formulation

Throughout the paper, we use z to denote the transpose of z € ROxB with 1, 1, > 1,
and R?*! is simply written as R?. If x € R?, the norm of x is denoted by |x|. For
x ¢ R9andr > 0, we use B(x, r) to denote the open ball in R with radius r centered
at x. The term domain in RY refers to a nonempty connected open subset of the
Euclidean space R¥. If D is a domain in R¢, then D is the closure of D, D¢ = R4\ D
is its complement. The space C?(D) refers to the class of functions whose partial
derivatives up to order 2 exist and are continuous in D, and Cg(D) is the subspace
of C?(D) consisting of those functions whose partial derivatives up to order 2 are
bounded. The indicator function of a set A is denoted by 14.

Let (X (#), A(t)) be a two component Markov process such that X(-) is an
R-valued process, and A(-) is a switching process taking values in a finite
set M ={1,2,...,m}.Letb(-,) 'R x M >R o(-,): R x M — R¢ x R,
and for each x € R? and i € M, m;(x, dz) is a o-finite measure on R¥ satisfying

/ (1A 2P (x, dz) < o.
R4
Let O(x) = (gij(x)) be an m x m matrix depending on x such that

qij(x) = 0 fori #j, Y qij(x) =0.
JjeEM

Define

) f(x,)0) = Z qij(x) f(x, j).
jeM
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The generator G of the process (X (¢), A(¢)) is given as follows. For a function
fiRYx M Rand f(-,i) € C*(R?) for each i € M, define

G{x,i) = Lif(x, i)+ Q) f(x, (), (x,i) € R x M, (2.1)

where

Lif (i) =5 Z a e, iy LD f<x ) +Zb< af(x i)
kl 1
+/le (f(x+z,i) — f(x,i) =V f(x,i) 'Zl{\z|51})m(x,dz),
(2.2)

a(x,i) = (an(x,i)) = o (x,i)o’(x,i) and V f(-, i) denotes the gradient of f (-, i).
Let Q = D([0, 00), R x M) be the space of functions (mapping [0, c0) to R? x

M) that are right continuous with left limits endowed with the Skorohod topology.

Define (X (¢), A(t)) = w(¢) for w € Q and let {F;} be the right continuous filtration

generated by the process (X (f), A(t)). A probability measure Py ; on €2 is a solution

to the martingale problem for (G, C7(R)) started at (x, i) if

(@) Py i(X(0)=x,A0)=1i)=1,

(b) if £(-,i) € C}(R?) for each i € M, then

1
f(X(t)J\(t))—J‘(X(O),A(O))—/0 Gf(X(s), As))ds,

is a P, ; martingale.
If for each (x, i), there is only one such P, ;, we say that the martingale problem
for (G, C}(R?)) is well-posed.

Throughout the paper, we assume conditions (A1)—(A4) hold unless otherwise
noticed.

(A1) The functions o (-, i) and b(-, i) are continuous on R? for each i € M such that
d d
> JouCx. i)l + Y Ibi(x, )] < c(1+|x[) onRY
k=1 k=1
forsome ¢ > 0, and ¢;; (-) is bounded and Borel measurable on R fori, jeM.
(A2) For every bounded domain D C R?, there exists a constant kg = ko(D) € (0, 1]
such that

Kol€|* < Ea(x,i)E <Ky '|E]* forallé eRY x € D, i e M.

(A3) sup,epa jer i (¥, B(O, 1)) < 00 and sup;epy [ 0.1, I2177i (x, d2) < e(1 +
|x |2) for some ¢ > 0. Moreover, for every n > 1, there exists a o -finite measure
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I, (dz) with fpa (1 A |2|*) TT,(dz) < oo so that i (x, dz) < I1,(dz) for every
x € B(0,n) andi € M.

(A4) Forany i € M and x € R?, 7;(x,dz) = 7:(x, z)dz. Moreover, for any r €
(0, 1), any xg € R4, any x, y € B(xp,r/2) and z € B(xg, r)¢, we have

Ti(x,z—x) <a7i(y,z—y),

where «, satisfies 1 < o, < kpr—? with «, and B being positive constants.

Remark 2.1 'We comment on the conditions briefly.

(a) Under Assumptions (A1)—(A3), for each i € M, there is a unique solution to
the martingale problem for (£;, Cg (R?)) which is conservative (see [9, Theorem
5.2]). Note that the switched Markov process (X (), A(t)) can be constructed
from that of £; as follows. Let X’ be the Markov process associated with £;,
that is, £; is the infinitesimal generator of X’. Suppose we start the process at
(x0, ip), Tun a subprocess X0 of X0 that got killed with rate —g;,;, (x); that is,

via Feynman—Kac transform exp ( fot Gigio(X io(s))d v) Note that this subprocess

X 0 has infinitesimal generator Li, + giyio- At the lifetime 77 of the killed process
Xio ,jump to plane j 7& io with probability —g;, ; (Xio(g)— ))/q,O,O(X’O(n )) and
run a subprocess X7 of X/ with killing rate —¢g;;(x) from position X0 (71 -).
Repeat this procedure. As pointed out in [6], since Z em ij(x) = 0 on R4
for every i € M, the resulting process (X (), A(t)) is a strong Markov process
with lifetime ¢ = oo. It is easy to check that the law of (X (¢), A(z)) solves the
martingale problem for (g, Cl% R4 )) so it is the desired switched jump-diffusion.
It follows from [20] that the law of (X (¢), A(?)) is the unique solution to the
martingale problem for (g , Cg (Rd)).

(b) Conditions (A1) and (A2) present the local uniform ellipticity of a(x, i) and the
linear growth bound on a(x, i y!/2 and |b(x, i)|. The measure 7;(x, dz) can be
thought of as the intensity of the number of jumps from x to x + z (see [2,3]).
Condition (A4) tells us that 7; (x, dy) is absolutely continuous with respect to the
Lebesgue measure dx on R?, and the intensities of jumps from x and y to a point
z are comparable if x, y are relatively far from z but relatively close to each other.
If 7; (x, z) is such that

-1
i < 771' (x,2) < c—l
|z|dHes = TETT T gt

forsome c; > 1and o; € (0, 2), then condition (A4) is satisfied with 1 < o < k3
independent of r € (0, 1). Condition (A4) is needed for Harnack inequality for
the switched jump-diffusion; see [6].

(c) In our recent paper [6], various properties of switching jump diffusions including
maximum principle and Harnack inequality are studied under the assumption that
a(x, i) is uniformly elliptic and b(x, i) is bounded on R4 and that there is one
single IT so that (A3) holds with IT,, = II for all » > 1. Using localization, one
can easily see that the results of [6] hold under the current setting of this paper
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when they are applied to bounded open sets. In particular, for each bounded open
subset D C R, Theorems 3.4 and 4.7 of [6] as well as Proposition 4.1 (for all
X0 € D) and Proposition 4.3 hold under the setting of this paper.

Recall that a regime-switching jump diffusion (X (¢), A(¢)) can be regarded as
the results of m jump diffusion processes X Lo, X2@) ..., X™(1) switching from
one to another according to the dynamic movement of A(t), where X i(t) is the
Markov process associated with £;. By assumption (A4), if 7;(x, z) = 0 for some
(x,2) € RY x R4, then 7i(x,z) = 0on RY x RY: that is, Xi(t) is a diffusion pro-
cess. If Ti(x,z) = 0on RY x R? for all i € M, (X(t), A(r)) is just a switching
diffusion process. Thus, the class of models under consideration includes switching
diffusions. In this paper, sufficient conditions for recurrence, positive recurrence, and
the existence of an invariant probability measure are given. We show that under the
sufficient conditions derived, recurrence and positive recurrence are independent of
the domain chosen. Furthermore, it is demonstrated that we can work with a fixed dis-
crete component. Several examples are provided in which easily verifiable conditions
on coefficients of the switching jump diffusions are given in lieu of the Lyapunov
function type of conditions.

3 Recurrence

This section is devoted to recurrence, positive recurrence, and null recurrence. The first
part gives definitions and the second part provides criteria for recurrence and positive
recurrence.

3.1 Definitions: Recurrence, Positive Recurrence, and Null Recurrence

For simplicity, we introduce some notation as follows. Forany U = D x J C R x M,
where D ¢ RY and J C M. Define

ty =inf{r > 0: (X)), AD)) ¢ U},
oy :=inf{t > 0: (X (1)), A(t)) € U}.

In particular, if U = D x M is a “cylinder”, we set

p :=inf{t > 0: X(¢) ¢ D},
op :=inf{t >0: X(t) € D}.

Remark 3.1 Recall that the process (X(¢), A(¢)) is a strong Markov process with
lifetime ¢ = oco. Let B8, = inf{r > 0 : |X(¢)| > n} be the first exit time of the
process (X (¢)), A(t)) from the bounded set B(0, n) x M. Then the sequence {8, } is
monotonically increasing and 8, — oo almost surely as n — oco. We also refer to
such property of (X (), A(t)) as regularity or no finite explosion time.

Recurrence, positive recurrence, and null recurrence are defined similarly as for
switching diffusions given in [23,24].
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Definition 3.2 Suppose U = D x J, where / € M and D C R? is a bounded
domain. A process (X (¢), A(?)) is said to be recurrent with respect to U if

Py (oy <o0) =1 forany (x,i)e U°.

If (X (t), A()) is recurrent with respect to U and E, jopy < oo for any (x,7) € U€,
then it said to be positive recurrent with respect to U; otherwise, the process is null
recurrent with respect to U.

3.2 Criteria for Recurrence and Positive Recurrence

We begin this section with some preparatory results, followed by sufficient conditions
for recurrence and positive recurrence of the process (X(¢), A(t)) with respect to
some cylinder U = D x M. Under these sufficient conditions, we prove that the pro-
cess (X (t), A(t)) is recurrent (resp., positive recurrent) with respect to some cylinder
D x M if and only if it is recurrent (resp., positive recurrent) with respect to D x {I}
for every | € M, where D C RY is a bounded domain. We will also prove that the
properties of recurrence and positive recurrence do not depend on the choice of the
domain D ¢ R and I € M. We first prove the following theorem, which asserts that
the process (X (), A(t)) will exit every bounded cylinder with a finite mean exit time.

Theorem 3.3 Let D C RY be a bounded domain. Then

sup E,;tp <oo. (3.1
(x,i)eDxM

Proof By the local uniform ellipticity condition in (A2), there exists some kg € (0, 1]
such that

Ko < api(x,i) < &y ' forany (x,i) € D x M. (3.2)
Let f € Cl%(Rd) be such that f is nonnegative and f(x) = (x; + )Y if x € {y :
d(y, D) < 1}, where the constants y > 2 and 8 > 0 are to be specified, and x| = e’lx
is the first component of x, with e; = (1,0, ..., 0)’ being the standard unit vector.

Define V(x,i) = f(x) for (x,i) € RY x M. Since D is bounded, we can choose
constant 8 > 0 such that

1<x1+p8 forall (x,i) e D x M,

and

2
yi==| s [l + B e+ B+ 1) +2 <00,
Ko \ (x,eDxM
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where k1 is the constant which exists by assumption (A3). Then we have by (3.2) that

bi(x,i))(x1+ B) + Y= 1a11(x, 1) —k1(x1 —|—,3)2 >1 forall (x,i) € D x M.
3.3)
Direct computation leads to
-1
GV(x.i) =y +B)7* [bl(x, Dx;+B) + Y an, i)}
+/|| 1 [f(x+2) = fx) = Vf(x)-z]Ti(x, 2)(d2)
+'/|| 1 [f(x+2) = fO)]Ti(x, 2)(dz). (3.4)
Since y > 2, f(-) is convex on {x € R? : d(x, D) < 1}. It follows that
/I 1 [f(x+2)— f(x) = Vfx)-2]Ti(x, 2)(dz) = 0. (3.5
z7|<

By the nonnegativity of f, it is also clear that

/ll ] [f(x+2) — fF@)]Ti(x,2)(dz) = _/ll 1()61 + B 7i (x, 2)(d2)
> —«1(x1 + B). (3.6)
It follows from (3.4), (3.5), (3.6), and (3.3) that

y —1

GV (x,i) = y(x1+ )2 [bl(x, Dx1+p) + ar(x, i)} — ki (xr + B)”

y —1

> y(x1 + B2 [m(x, i)(x1 + B) + ar (x, i) — k1 (x1 + /3)2}
>y, 3.7

forall (x,i) € Dx M.Lettp(f) = min{¢t, 7p}. Then we have from Dynkin’s formula
and (3.7) that

E. iV (X(2p(0), AGp(0)) — V(x, 1)
Tp(t)
—E., / GV (X (s), A(s))ds = yEvitp(0).
0
Hence

1
Eyitp(t) < — sup Vx,i) =M. (3.8)
Y (x,i)eRIx M
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Note that M is finite by our construction of functions V(-). Since Ey ;tp(t) >
tPy i[tp > t], it follows from (3.8) that

Pyi(tp > 1) < M.

Letting 1 — 00, we obtain P ; (tp = o0) = 0. That is, P, ; (tp < o0) = 1. This
yields that tp(t) — tp a.s. [P, ; ast — oo. Now applying Fatou’s lemma, as t — oo
in (3.8) we obtain

Esitp <M < o0. 3.9)

This proves the theorem. O

To study the recurrence and positive recurrence of the process (X (), A(?)), we
first present criteria based on the existence of certain Lyapunov functions. Sufficient
conditions on the existence of such Lyapunov functions will be given in Sect. 5.

Theorem 3.4 A sufficient condition for the positive recurrence of (X (t), A(t)) with
respectto U = D x M C R? x M is the following condition (C1) holds:

(C1) Foreachi € M, there exists a nonnegative function V (-, 1) € Cz(Rd) satisfying
GV(x,i) < —1forany (x,i) € D x M. (3.10)

Proof Assume that there exists a nonnegative function V (-, -) satisfying condition
(C1) with respect to U = D x M. We show that the process (X (¢), A(t)) is positive
recurrent with respectto U = D x M.

Choose nq a positive integer sufficiently large so that D C B(0, ng). Fix any
(x,i) € D° x M.Foranyt > 0andn > ng, we define

oo (1) = minfop, t, B},

where f3,, is the first exit time from B(0, n) and op is the first entrance time to D. Let
fn: RY > R be a smooth cut-off function that takes values in [0, 1] satisfying f, = 1
on B(0, n) and f, = 0 outside of B(0, n+1). Then V,,(-, j):=f4 (D V (-, j) € CZ(RY)
for each j € M. Moreover,
0<Vy(x,i) <V(x,i), (x,i) e RY x M.
It follows from (3.10) that
GVu(y,j) =GV (y,j) <=1 forall (y,j)e€ BO,n)—D.

Dynkin’s formula implies that
Ey:Vy (X (a,g")(t)) A (a,g%))) Va(x, )

70 (n)
—E., /0 GV, (X(s), A(5))ds < —Er 02 ().
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Note that the function V,, is nonnegative; hence we have Ey iagl )(t) < Vy(x,i) =

V(x, i). Meanwhile, since the process (X (s), A(s)) isregular, 8, — ocoa.sasn — 00.

As aresult, JI()”)(t) — op(t) a.sasn — oo, where op(t) = min{op, t}. By virtue of

Fatou’s lemma, we obtain E, ;op(#) < V(x, i). Now the argument after (3.8) in the
proof of Theorem 3.3 yields that

Eyiop < V(x,i) < oo. (3.11)

Since (x, i) € D¢ x M is arbitrary, we conclude that (X (z), A(¢)) is positive recurrent
with respect to U. O

Theorem 3.5 A sufficient condition for the recurrence of (X (t), A(t)) with respect to
U =D x M cCR?x M is the following condition (C2) holds:

(C2) Foreachi € M, there exists a nonnegative function V (-, i) € C*(R?) satisfying

GV(x,i) <0, forany (x,i) € D x M,

inf  V(x,i) > 00, n— oo. (3.12)
|x|>n,ieM

Proof Assume that there exists anonnegative function V (-, -) satisfying condition (C2)
with respect to U. We show that the process (X (¢), A(¢)) is recurrent with respect to
U.

Choose ng to be a positive integer sufficiently large so that D C B(0, ng). Fix any
(x,i) € D° x M.Foranyt > 0andn > ng, we define

op) (1) =min{op, 1, By,
where B, is the first exit time from B(0, n) and op is the first entrance time to D. Let

fn : RY > R be a smooth cut-off function that takes values in [0, 1], 1 on B(0, n),
and 0 outside of B(0,n + 1). Denote M,;:=  inf V(y, j). Then

[yl=n, je
VaCo )= OV D)+ (1= fu())M, € Co(RY), foreach j e M.

Moreover, V,(y,j) < V(y,j) for all (y,j), Va(y,j) = V(y,j) for (y,j) €
B(0,n) x M, and V,(y, j) = M for (v, j) € B(0,n)¢ x M. Detailed computa-
tions and (3.12) yield that

GVa(y, J) =GV(y,j) =0 forall (y,j)€ B(O,n)—D.

Now Dynkin’s formula implies that
EviVa (X (03" ®0) A (o) ®) ) = Vatx, )

oy (1)
=Ex,i/ GVy (X(5), Als))ds < 0.
0
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Consequently,
Ey:Vy (x (og’)(z)) A (ag”(t))) <V, (x.i) = V(x.i).
By virtue of Fatou’s lemma, we obtain
EyiVa (X (oD A Bn) . A (6D A Bp))) = Vix,i).
Then we have
Vi) 2 B[ Va (X (B A B 1, <o)

= Mn]Px,i(,Bn < op).

It follows from (3.12) that as n — o0,

Vix,i)

n

— 0.

IP>)c,i(13n <op) <

Note that Py ;(op = 00) < P.;(B: < op). Hence P, ;(cp = oo0) = 0. Since
(x,1) € D x M is arbitrary, we conclude that (X (¢), A(¢)) is recurrent with respect
toU. |

Now we recall the definition of harmonic functions with respect to process
(X (1), A(t), namely, G-harmonic functions.

Definition 3.6 Let U = | J/_, D; x {i} with D; C R¢ being a bounded domain. A
bounded and Borel measurable function f : RY x M > R is said to be G-harmonic
in U if for any relatively compact open subset V of U,

i) =Eyi[f (X(zv), Alzy))] forall (x,i)eV,

where ty = inf{r > 0: (X (¢), A(¢)) ¢ V} is the first exit time of V.
Definition 3.7 The generator G or the matrix function Q(-) is said to be strictly irre-
ducible on D C R? if for any i, j € M and i # j, there exists q?j > 0 such that
: 0
xuelg%'j(x) Z 4;;-

In the rest of this section, we assume that the Q-matrix in the operator G is strictly
irreducible on any bounded domain of R¢. We are in a position to prove that if the pro-
cess (X (), A(t)) is recurrent (resp., positive recurrent) with respect to some cylinder

D x M C R? x M, then it is recurrent (resp., positive recurrent) with respect to any
cylinder E x M C R? x M.

Lemma 3.8 Suppose that the operator G is strictly irreducible on any bounded domain
of R, Let D C R? be a bounded domain. Suppose that

Py (op <00) =1 forany (x,i)€ D°x M. (3.13)
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Then for any bounded domain E C R?, we have
Pyi(op <o00) =1 forany (x,i)e€ E° x M. (3.14)

Proof Without loss of generality, we suppose that E C D. Otherwise, let D be a suffi-
ciently large bounded domain containing both D and E. Then (3.13) and our arguments
hold for D in place of D. It is sufficient to prove (3.14) for (x, i) € (D \ f) x M. Let

G be a bounded domain such that D C G. Define a sequence of stopping times by
190=0, 7 =inf{r >0:X(@) € G}, (3.15)
andforn=1,2,...,

Ty, = inf{t > 1,—1 : X(t) € D},
Tope1 = inf{t > 19, : X (1) € G°). (3.16)

It follows from (3.13), Theorem 3.3, and the strong Markov property that 7, < co P, ;
as.forn =1,2,... Define u(y, j) =P, j(or < 1) for (v, j) € R? x M. Then
u(y, j) = Ey,jl{X(rG\E)eE}- Hence u(y, j) is a G-harmonic function in (G \E) x M.
By Remark 2.1(c) and [6, Theorem 3.4], u(y, j) > 0 forall (y, j) € (G \ E) x M.
Let H be a domain such that D C H C H C G. Define

v(y, j) =By ju(X(zh), A(zg)) for (y,j) € Hx M.

Again by Remark 2.1(c) and [6, Theorem 3.4], v(y, j) > 0 for (y, j) € H x M.

By Remark 2.1(c) and the Harnack inequality [6, Theorem 4.7], there is a constant

81 € (0, 1) such that  inf M v(y, j) > 8;. Since u(y, j) is a G-harmonic function
y

(v,j)eDx
in (G \F) x M, itis a G-harmonic function in (H \ a x M. Thus, for any (y, j) €
D x M,

u(yv J) = Ey,j [u (X(TH)v A(TH)) 1TH<UE] + ]Ey,j [I(TE<IH]

= v(y, j)-
It follows that
(y’j)iengxM Py (o < t6) = 81. (3.17)
Define
Ag = {X(t) € E forsome ¢t € [0, 71)}, (3.18)
andforn=1,2,...,
A, ={X(t) € E forsome t € [12,, Topn+1)}- (3.19)
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Note that the event Aj implies ¢ < og. Hence we have from (3.17) that
]P)x,i(AB) = ]P)x,i(TG <og) <1-4.

By the strong Markov property, induction on n yields

Py (ﬁ A,i> < (1 =)'t (3.20)

k=0

Thus, we have

P, i(cg =00) =P ;(X(t) ¢ E forany ¢ > 0)

n
: X c
= nlggo ]P)X’l (ﬂ Ak)
k=0
< lim (1—=68)"t!' =o0.
n—oo

This proves the lemma. O

Lemma 3.9 Suppose that the operator G is strictly irreducible on any bounded domain
of R%. Let D C R? be a bounded domain and suppose that G satisfies condition (CI)
with respect to D x M. Then for any bounded domain E C R?, we have

E.iop < oo forany (x,i) € E° x M. (3.21)
Proof Since G satisfies condition (C1) with respectto D x M,
E, jop <oo forany (y,j)e D x M. (3.22)

Using the same reasoning as in the proof for Lemma 3.8, without loss of generality,
we may assume that £ C D. It suffices to prove (3.22) for (x,i) € (D \ E x M.
Let G be a bounded domain such that D C G.

Define a sequence of stopping times {t,} and events Ag, A1, A2, ... asin (3.15),
(3.16), (3.18), and (3.19) in the proof of Lemma 3.8. It follows from (3.22), Theo-
rem 3.3, and the strong Markov property that 7, < oo P, ; a.s. forn =1,2, ...

We now prove that

My = sup E, o < o0. (3.23)
(y,j)eDxM
From Theorem 3.3, we have M| := sup K, jt1 < 0o. Meanwhile, by (3.11)
(v,/))eDxM

in the proof of Theorem 3.4, we obtain

Ey jop < V(y,j) for (y,j) € G x M.
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Hence to prove (3.23), it suffices to show that

m
sup / Z V(z, k)P, (y, j,dz, k) < oo,
(v,j))eDxM ¢ k=1

where P, (v, j, -, -) is the distribution of (X*/ (t1), A>*/ (11)). Since V (-, ) is bounded

on compact sets, it is enough if we can find an open ball B(0, R) with R sufficiently
large such that {y : d(y, G) < 2} C B(0, R) and

m
sup / > V@ k)P (y. j.dz. k) < oo (3.24)
(y,./))eDxM JBO,R)" ;=

Let a point x* € 9G. Then for any x € G and z € B(0, R)¢, there is a sequence

{xj :i=0,...,7) such that xo = x, x5 = x*, |x; —xj_1| < 1/2 and x; € G for
i = 1,...,7. Since G is bounded, 7 can be independent of x. By assumption (A4),
we have

T(xic1,2—xi—1) < ph(xi,z—x), i=1,....0k=1,...,m.

Thus, there is a positive constant K = oe?/z, depending only on G such that
T(x,z—x) < Kmi(x*,z—x*) for xeG,ze B(O,R), k=1,...,m.

Let (v, j) € Dx Mand A C B(0, R). By virtue of Chen et al. [6, Proposition 4.3],

t
D 1ix ()G X (s)eAA()=k) —/ I{X(s)eG,A(s)zk}/ (X (s), 2 — X (s))dzds,
0 A

§<t
is a P j-martingale. We deduce that

Py (X(miA) € A, A(ti At) =k) = ]Ey,j[ Z 1{X(s—)eG,X(s)eA,A(s):k}]

SSTIAL

TNt
= Ey,j[/ I{X(S)EG,A(S):k}/ (X (s), 2 — X(s))dzds]
0 A
TNt
< KEy,j[/ / Te(x™, z — x*)dzds:|
0 A
< KEy j (11 A1) (A, (3.25)
where . is a measure on B(0, R)¢ with density 7x(x*, z — x*). Using assumption
(A3) and the fact that A N B(0, R) € B(0, R)* N B(0, R) = ¥, we have u;(A) < oo.

Letting + — oo and using Fatou’s lemma on the left-hand side and the dominated
convergence theorem on the right-hand side in (3.25), we have

Py (X(t1) € A, A(t1) = k) < KE, j(t1)ux(A) < KMy (A),
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where M| = sup  [E;i(r1). Hence
(z,k)eDx M

P, (v, j, A k) < KMiui(A) forall ke M.

It follows that

f ZWz )P (v, j, dz, k) < KMlzf V(z, D, 2 = x")dz
B(O,R)

B(0,R)¢

= KM, Z V(z+x* k)% (", 2)dz. (3.26)
(—x*,R)¢

Choose R sufficiently large such that B(0, R)¢ — x* C {z € R? : |z| > 1}. Since G
satisfies condition (C1) with respect to D x M and x* ¢ D, we have GV (x*, k) < oo
for all k € M, which leads to the finiteness of the last term in (3.26). The desired
inequality (3.24) then follows.

n—1
To continue, note that 72, < o < T2,41 implies [ Ai. Then it follows from

k=0
(3.20) that

n—1
HDx,i (ton <0 < Top41) < IP))c,i (m A]i) <{1- 51)n

k=0

Therefore we have

o
Eyiop = Z Ex,iaEl[Tzn§UE<72n+2]
n=0

3

< Z]P’ i(m2n < 08 < Ton42)Ex iTong2
n=0

3

n

<Y Pri(tn <0k < Tant1) Y B (takg2 — ™)
n=0 k=0

3

<Y (1 =8)"(n+ )My < 0.
n=0

This completes the proof of the lemma. O

In the next two lemmas, we show that, under the irreducibility assumption of the Q-
matrix, if the process (X (), A(t)) is recurrent (resp., positive recurrent) with respect
to some cylinder D x M C RY x M, then it is recurrent (resp., positive recurrent)
with respect to D x {I} € R? x M for any [ € M, where D C R? is any bounded
domain.
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Lemma 3.10 Suppose that the operator G is strictly irreducible on any bounded
domain of R?. Let D C R? be a bounded domain. Suppose that

Py j(op <o0) =1 forany (y,j)e D x M. (3.27)
Then for any (x,i) € R? x M andl € M, we have
Px,i(UDx{l} < OO) =1. (3.28)
Proof Fix [ € M. It suffices to prove (3.28) when (x,i) € D x (M \ {I}) since the
process (X (1), A(t)), starting from (y, j) € D¢ x M will reach D x M in finite time
Py j-a.s. by (3.27).
Choose ¢ > 0 sufficiently small such that By C By C B C B| C D, where
By = B(x,e) and B = B(x, 2¢). (3.29)
Define
10=0, 7 =inf{r>0:X() e By}, (3.30)
andforn=1,2,...,

Ty, = inf{t > 10,1 : X() € Blc}, Tnt1 = inf{t > 1, : X(¢) € Bo}. (3.31)

Note that (3.27), Theorem 3.3, and Lemma 3.8 imply that 7, < oo [P, ;-a.s.. Define
w ) =Py (0B < T81). (00 ) €RT X M.

Then u(-) is G-harmonic in B; x M \ (Bgy x {l}), and hence in particular in (B; \
By) x M. By Remark 2.1(c) and [6, Theorem 3.4], u > O on (B} \ Bo) x M. Let H
be a domain such that B C H C H C Bj. Define

v(y, j) = Ey ju(X(zh), Azg)) for (y,j) e Hx M.
Clearly, v > 0 is an G-harmonic function on H x M. By Remark 2.1(c) and

the Harnack inequality [6, Theorem 4.7], there is a constant §; € (0, 1) such that

inf v(y, j) = 8. For any (y, j) € By x M, by the definition of u(y, j),
(y,j)€Box M

u(y, ]) > ]Ey,j [M (X(TH)’ A(TH)) 17H<UBO><{I):| + Ey,j [IUBOX{”<TH] > U()’, .])

Thus,

Jinf B (0B < 781) = 62 (332)
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Redefine
Ao = {A(t) = [ for some € [19, T2)}, (3.33)
andforn=1,2,...,
A, = {A(t) =1 for some t € [t2,+1, Ton+2)}- (3.34)

The event A implies OByx(1) > TB;- Hence we have by (3.32) that

Py i (AG) < Pxi (Ggox{l} > TB.) =1-14,

ie., Py ;i (Aj) < 1 — &,. By virtue of the strong Markov property and induction on 7,
n
Py (ﬂ A,i) < (1—8)"*. (3.35)
k=0

Thus, we have

P,; ((X(2), A(t)) ¢ D x {I} for any t > 0)
<P,; (X(1), A@t)) ¢ By x {{} forany r > 0)

n
e ((14)
< lim (1 = &) =o0.
n—oQ

As a result,
Py i(opxyy = 00) =Py (X (), A(t)) ¢ D x {l} forany t > 0) =0,

ie., Py i(opxyy < 00) =1, as desired. O

Lemma 3.11 Suppose that the operator G is strictly irreducible on any bounded
domain of RY. Let D C R? be a bounded domain and suppose that G satisfies condition
(C1) with respect to D x M. Then for any (x,i) € R? x M andl € M, we have

Eyiopxyy < oo. (3.36)

Proof Fix any [ € M. As in Lemma 3.10, it suffices to prove (3.36) when (x, i) €
D x (M \ {I}). Let the balls B and B, stopping times 7o, 7y, ..., and events Ag, Ay,
...,as in (3.29)-(3.31),(3.33), and (3.34) in the proof of Lemma 3.10.
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n—1
Observe that 12, < op,; < Top+2 implies [ A,i. Hence we have by (3.32) that
k=0

n—1
Py (tan < onx(iy < Tong2) < Py (ﬂ Ai) <1 -=é8)"

k=0
By virtue of Theorem 3.3, we have M| := sup [Ey ;71 < oo. Similar to the
(x,i)eBxM
proof of (3.23), we also obtain M> := sup Ex ; (12443 — T2n+1) < 00. Therefore, we
n
have
o0
Eciop.i =Y Briop M, <op <ol
n=0
o0
<Y Pri(tan <001 < Tant2)BuiTany3
n=0
o0 n
<Y Pri(tan <op. < f2n+2)[ZEx,i (T2k+3 — T2k+1) + Tli|
n=0 k=0
o0
<Y (1=8))" (nMa + My + M)) < 0.
n=0
The proof of the lemma is complete. O

By virtue of Lemmas 3.8 and 3.11, the process (X (¢), A(t)) is recurrent with respect
to some cylinder D x M if and only if it is recurrent with respect to the product set
D x {l} for any [ € M. Also we have proved that the property of recurrence is
independent of the choice of the bounded domain D C RY. Moreover, similar results
also hold for positive recurrence. We summarize these into the following theorem.

Theorem 3.12 Suppose that the operator G is strictly irreducible on any bounded
domain of RY. Assume that D, E C R? are bounded domains and | € M. The
following assertions hold:

(i) The process (X (t), A(t)) is recurrent with respect to D x M if and only if it
is recurrent with respect to E x M. The process (X (t), A(t)) is recurrent with
respect to E x M, if and only if it is recurrent with respect to E x {l}.

(ii) Suppose that condition (Cl) is satisfied. The process (X(t), A(t)) is positive
recurrent with respect to D x M if and only if it is positive recurrent with respect
to E x M, and (X (t), A(t)) is recurrent with respect to E x M if and only if it
is recurrent with respect to E x {l}.

4 Existence of Invariant Probability Measures

In this section, we establish invariant probability measures of the process (X (¢), A(¢))
under the standing assumption (A1)—(A4) and condition (C1). That is, the process is
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positive recurrent with respectto U = E x {I}, where E C R? is a bounded domain and
| € M is fixed throughout this section. By using a method introduced by Khasminskii
[8], we characterize the invariant probability measure using an embedded Markov
chain.

We work with a bounded domain D C R with E C D. Let 1y = 0 and redefine
stopping times 11, 72, . .., inductively as follows.

Tont1 = inf{t > 13, : X(¢) ¢ D},
Tongo = inf{t > 1,41 : X (1) € E, A(t) =1}. 4.1)

Now we can divide an arbitrary sample path of the process (X (¢), A(z)) into cycles:

[T()v 772)7 [T21 T4)1 cee [7:2}17 T2}’l+2)9 e

Since the process (X (¢), A(t)) is recurrent with respect to E x {/}, by Theorem 3.3, all
stopping times 7y < 7] < T2 < T3 < - - - are finite a.s. By virtue of the recurrence of
(X (1), A(1)), we may assume without loss of generality that (X (0), A(0)) = (x,]) €
E x {I}. It follows from the strong Markov property of the process (X (1), A(t)) that
the sequence

(in, ) :=(X(ton),]),n=0,1,... isaMarkov chainin E x {I}. “4.2)

Therefore, the sequence ()N( ) is a Markov chain in E.

_To establish the existence of a unique stationary distribution of the Markov chain
(X,), we first recall a result on invariant probability measures of Doob; see [4, Sect.
4.1].

Theorem 4.1 Suppose that S is a compact metric space, that B(S) is the Borel o -
algebra, and that P is a linear operator from B(S) into itself, where B(S) is the
Banach space of bounded and Borel measurable functions from S into R, such that

{ IPoll < lI®ll, forall ¢ € B(S), 43)

Pop=¢ if ¢=1, '

where || - || denotes the sup norm. Assume that there exists a § > 0 such that
Plp(x) — Plp(y) <1—-6 for x,yeS, F e€B(S). 4.4)

Then there exists a unique probability measure on (S, B(S)) denoted by [i such that

< Ke |l

‘P"QS(X) - /Sdm'ﬁ

where p = —In(l1 — 8) and K = 2/(1 — 8). The measure [ is the unique invariant
probability measure under P on (S, B(S)); that is, the unique probability measure on
S such that
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/¢>dﬁ=/P¢d;z for ¢ e B(S).
S S

Lemma 4.2 Suppose that the operator G is stricily irreducible on D. The Markoy
chain (X,) has a unique invariant probability measure [t on E and for g € B(E), we
have

/EEx,zg()Nfl)ﬁ(dX)Z/Eg(X)ﬁ(dX)- 4.5

Proof Foreach ¢ € B (E) and ¢ > 0, define
fx,i) =E, ;¢ (X(12), (x,i)€R?x M. (4.6)

We claim that f(-) is G-harmonic in D x M. Indeed, let f(x, i) = E, ;¢(X (O'EX”}))
for (x,7) € D x M. By the strong Markov property, we obtain

fG i) =Eeif (X(t). A(m)). (x.i) e RI x M.
Thus, f(-) is G-harmonic in D x M. Next we define
Po(x) =K, ¢ (X (1)) for ¢ e B(E),xcE.
It follows from (4.6) that P¢(x) = f(x,I) for x € E. Using the Harnack inequality
for G-harmonic functions (see Remark 2.1(c) and [6, Theorem 4.7]), there exists a
positive constant kg such that
Pp(x) < kpP¢(y) forall x,y € E, ¢ € B(E). 4.7
Note that k; is independent of ¢ € B(E). It can be seen that P : B(E) — B(E) isa
linear operator satisfying (4.3). To proceed, we need to verify (4.4).
In Ele contrary, assume that (4.4) were not true. Since P1g(x) € [0, 1] for all
x € E and F € B(E), it follows from our assumption that there is a sequence
(xk, Yk, Fx) C E x E x B(E) such that
Plp (xx) — 1, Plp () — 0 ask — oo.

This implies that

P15 (yk)

— 0 ask — oo,
Ple(xk)

contradicting (4.7). Thus (4.4) holds, and the conclusion follows from Theorem 4.1.
O
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Remark 4.3 Let t be an F;-stopping time with E, ;7 < oo and let f : RYx M~ R
be a Borel measurable function. Then for any (x, i) € R? x M,

Ex,ifo FX(t+5), At + 5))ds ZEx,ifO Exs),a) f (X (1), A@))ds. (4.8)

Indeed, since 7 is an F;-stopping time, the function 1[5 ] is Fs-measurable. Therefore,

T o0
By /O FOX( 50, A+ $)ds = /0 By iBi (<o) f(X (). A+ 5) | F) ds
o0
= Ex,i -/(; 1[s<f]]Ex,i (f(X(t+5), At +5)) | F5)ds

T
=Ex,i/0 Ex (5),a¢) S (X (@), A(0))ds,

as desired.

Theorem 4.4 Suppose that the operator G is strictly irreducible on D and that condi-
tion (C1) holds. The process (X (t), A(t)) has an invariant probability measure vV (-, -).

Proof Let A € B(R?) and i € M. Using the cycle times given in (4.1), we define
)
iy i= [ @B [ o, o, (49)
E

where forz 1ax(i)(X (#), A(r))dt is the time spent by the path of (X (r), A(t)) in the
set (A x {i}) in the first cycle [0, t2). Then v(, -) is a positive measure defined on
B (Rd X ./\/l)

We claim that for any bounded and Borel measurable function g(-, -) : R x M
—~ R,

m I
Z/ g(x,j)v(dx,j)=ﬁﬁ(dx)Ex,z/ g((X(s), A(s))ds,  (4.10)
=1 R4 E 0

holds. Indeed, if g(y, j) = 1ax;}(y, j) for some A € B(R?) and i € M, then (4.10)
follows directly from (4.9). Similarly, we obtain that (4.10) holds for g being a simple
function

n
g(v. /) =Y ey, (y.j) where Uy € BR? x M), ¢, € R.
k=1
Finally, if g is a bounded and Borel measurable function, (4.10) follows by approxi-

mating g by simple functions. Let f be a bounded and Borel measurable function on
R? x M. It follows from (4.10) for g(x, i) = Eyif(X(#), A(t)) and (4.8) that
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> [ B X, awpviax.i
i=I

1)
_ /E A(dDE, fo Exo). a0 £ (X (1), A(D)ds
_ ﬁ A(dx)Ex f " FX (45, AU+ 9))ds
E 0
1)
_ ff A(dx)Es fo FOX ), Aw)du
41
+ /E F(dx)Ex, / FX (), Au))du

2

t
- /Eﬁ(dX)]Ex,z/O F (X ), A(u))du.

Using (4.5) with g(x) = E, ;2+T2 f(X(u), A(u))du, we obtain that

t+12
/Eﬁ(dX)]Ex,z / J (X (), A(u))du

2

t
= [ @B, [ £,

t
=/Eﬁ(dX)Ex,1/0 F(X (W), Aw))du.

A.11)

(4.12)

As noted in (4.2), ()Nf ns 1) = (X(2n), I), sampled from the switching jump diffusion,

is a discrete time Markov chain. By (4.11), (4.12), and (4.10), we have

Z/ Ex,if(X(z),A(r))v(dx,i)=Z/ fx, v(dx, D).
i=1 /R i=1 VR

In view of the proof of Lemma 3.11, we have

supE, 110 < o0.
x€E

By (4.13) and (4.9), for each j € M, we obtain

y(RY, j) < /E E,. /[22]f(dx) < co.

Thus, the normalized measure

V(A, i)

S @y A €BERD XM,
j=1 ’

T(A, i) =

(4.13)
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defines a desired invariant probability measure. This concludes the proof. O

The following result further characterizes invariant probability measures of

(X (1), A1)).

Proposition 4.5 Under conditions of Theorem 4.4, let V be an invariant probability
measure of (X(t), A(t)). Then for any bounded domain D C R¢ and any | € M,
v(D,I) > 0.

Proof We argue by contradiction. Suppose thatv(D, [) = 0.Letxg € Dandr € (0, 1)
such that B(xg, 2r) € D. By Remark 2.1(c) and [6, Proposition 4.1], there exists a
constant ¢; > 0 such that

1

P, ; (rm,,) < c1r2) <3 for (r.i) € BGuo.r) x M.

Let 79 = c1r2. Tt follows that

Py (TBo.2) < 10) < Py (tBx,r) < 10)

=<

1
> x € B(xg, r). (4.14)

Define
™t =inf{t > 0: A®) # AO)}, Tp2r = TBao.2n) AT -

It can be seen that for any x € B(xo, r), there is a number ¢ > 0 such that P, ;(t* >
tg) > exp(—c2ty). We deduce that

Pyi(t* <tg) =1—Py;(t% > 1g)
<1 —exp(—catp)
< C20p.

Take a smaller r if needed to have czcer < 1/8. Then we obtain P, ;(t* < 19) < 1/8
for all x € B(xg, r). Together with (4.14), we arrive at

Py (TE(XO,Q,) > to) > 1 =Py (tBp.2r) < 10) = Prs(t* < 10)
1

> 7 x € B(xg,r). (4.15)

Let £ C RY be a compact set satisfying "7, (K, i) > 1/2. By Lemma 3.11 and
its proof, there is a constant c3 such that

Eyi0B(xg,r),1 < c3 forany (x,i)e K x M.
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Then for t; = 2c¢3,

inf Pos(opegns > 1) < 2 = 4 (4.16)
(x,i)ekxM xi \OBxo.r). ! n 2’ '

Since V is an invariant probability measure of (X (), A(¢)),

> [ Bitoen X0, a0)x D = Y- [ X0, A0y,
i=1 i=1

=%(D, ).
Using (4.15) and (4.16), we obtain
1 m 1o+t
v(D, 1) = Z/ dt/ Erilpxy(X(@), A)V(dx, i)
to+1 = Jo RS
1 m 1o+
> dr | E,;1 - X (@), At))v(dx,i
> ;/0 /K 1150 20ty (X (0, AT, i)
1 m - to+1
= Z/ V(dx,i)Ex,if 15(xy,2n x (1) (X (1), A1))dt
o+t = Jk 0

|
o+ 11 Z/}Cv(dx’l)Exsi|:1{O'B(x0.r),lftl}EX(U'B(xo,r),l)vlI:I{T;;(XOYZV)Z[O}

i=1

A%

fo+1y
/* 1B(xg.2r) < {1y (X (1), A(l))dl]]
TB(xo,r)
2im VK, i)
o+ 14 (x,i)eKxM
> 170’
16(to + 11)

v

Py (0BG, 1 < 1) xezi;?)fo N Py (fE(XO,Z,) > to) fo

contradicting to (D, [) = 0. This proves the proposition. O

5 Examples

This section is devoted to several examples. In the first two examples, we give sufficient
conditions for the existence of Lyapunov functions needed in the theorems above and
thus the main results of this paper apply. In the third example, we point out the effect
of spatial jumping component to the asymptotic properties of regime-switching jump
diffusions. In the last example, we mention the implication of the main results to
controlled two-time-scale system.

Example 5.1 Assume that assumptions (A1)—(A4) hold and that the operator G is
strictly irreducible. We further assume that there exists a constant § € (0, 2) such that
foranyi € M and N € (0, c0),
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b'(x,i)x

e T N 12’7 (x, 2)dz — —o0 as |x| — oo. (5.1)

|z|>1

Then condition (C1) is satisfied and the process (X (¢), A(¢)) is positive recurrent.
To show this, let f € C2(]Rd) be a nonnegative function such that f(x) = |x|3 for
|x| > 1. Define V(x,i) = f(x) for (x,i) € R? x M. Moreover, the gradient and
Hessian matrix are given by

Sx ) 81, 52 —8)xx’
Vf(-x) = W’ \% f(x) = |x|2_6 - |x|4_5 ) |x| 2 17

where I is the d x d identity matrix. For |x| > 1, we have

8b'(x,1)x
|x|2—5

GV (x.i) = %tr[a(x, i)V2f(x)] T
4 /H [fat9 =70 = V@ - @)

+/|| 1 [f(x+2) — fO)]Ti(x, 2)(d2). (5.2)
Since V2 f(-) and a(-, i) are bounded, we have

%tr[a(x, HV2f(x0)]

+/ [fx+2)— () = V) 2|7 (x,2)dz2) <c1, x e RY, (5.3)
lz|=1
for some constant c¢;. Also for some constant ¢, we have

/ o [f(x+2) = f®)]7(x,2)(dz2)

5()2/ 1z1°%i (x, 2)dz forall |x|> 1. (5.4)
|z|>1

It follows from (5.2), (5.3), and (5.4) that

8b'(x,1)x

gVi(x,i) <c1+ TR

+ cz/ 1z1°%: (x, 2)dz.
lzI>1

Using (5.1), there exists a constant ¢3 such that LV (x,i) < —1 for |x| > ¢3 and
i € M. By virtue of Theorem 3.4, the process (X (¢), A(t)) is positive recurrent.

Example 5.2 Suppose that assumptions (A1)—(A4) hold and d = 1. We assume that
the operator G is strictly irreducible and f\z|>1 |z|7i (x, z)dz < oo for any (x,i).
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Define

A(x,i) = b(x,i) —l—/

I<|z]<lx]

i (x, 2)dz, B(x,i) = / lz|7i (x, 2)dz.

21> x|

We claim that the process (X (¢, A(t)) is positive recurrent if

lim sup [A(x, i)sgn(x) + B(x, i)] < 0. (5.5)

|x]—00

Indeed, let f € C 2(R) be anonnegative function such that f(x) = |x| for |x| > 1 and
f(x) < |x| for |x| < 1. Define V(x,i) = f(x) for (x,i) € R x M. For sufficiently
large |x|, we claim that

s /| @+ =10 = f0]fir ) =0,
zZl=

hi= [ s - fi @) < s (v, Dz,
I<|z|<|x]

I<|z]<|x|

I:= f [f(x+2)— fO)]Ti(x, 2)(dz) < / |217; (x, 2)dz. (5.6)
[z[>1]x]

lz]> x|

Indeed, suppose x > 0 and |x| is large. It is clear that /; = 0. Note that for z €
[—x,—x+1], f(x+z) <x+4+zandforz e [—x+1,—-1], f(x+2) =x+z It
follows that

-1

L= fl [f(x+2) — fW]7i(x, D (d2) +/ [f(x +2) — f]Ti(x, 2)(d2)

X —x+1
= / 2 (x, 2)(d2) + / [f@x+2) — f)]Fi(x, 2)(dz)
1 _

X

~1
+/ [f(x+2) = f)]7i(x, 2)(dz2)

x+1

X —x+1 -1
_ / (v, D)(d2) + / (v, D(d2) + / % (x, 2)(d2)
1 _

X —x+1
= / 77 (x, 2)dz.
I<|z|= (x|
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Note also that forz € [-x — 1, —x], f(x +2) < —x —zand for z € [—o0, —x — 1],
f(x 4+ z) = —x — z. It follows that

00 —1
Iy = /1 [f(x+2) — fF@)]Ti(x,2)(dz) + f [f(x+2)— f)]7i(x, 2)(d2)

00 —x—1
- / i (x, )(d2) + f (£ +2) - f0]Fi (. 2)(d2)
1 _

oo

+/_ [f(x+2) = f)]Ti(x, 2)(d2)

—x—1

= / 77 (x, 2)(dz2)
1

—X

—x—1
+ / (=2 — 207 (x, 2)(d2) + f (=2 — 20 (x, 2)(d2)

—0o0 —x—1

< / |z|7; (x, 2)dz.
l2I> x|

Thus, (5.6) is proved for x > 0. Similar argument leads to (5.6) for x < 0. Detailed
computations give us that GV (x, i) = A(x, i)sgn(x) 4+ B(x, i) for sufficiently large
|x|] and i € M. By (5.5), condition (C1) is satisfied. Thus, (X (), A(t)) is positive
recurrent.

Example 5.3 To illustrate the effect of the jump component on asymptotic proper-
ties of regime-switching jump diffusions, consider a Markov process (X 01, Ao(t))
associated with the operator

G f(x,i) = —a(x i) ——2 4 b(x, i)
+Q(X)f(x, )(l), (x,1) e R x M,

32f(x i) Af(x, i)
0x

where Q(-) is strictly irreducible and assumptions (A1)—(A2) are satisfied. Then
(X 0, Ao(t)) is the unique solution of the stochastic differential equations with
regime-switching given by

dx°(t) = b (Xo(t), A(t)) dt +2a(XO(), At)dw(o),

IP’(AO(t FAD = jIAY) = i, XO(s), A%(s), s < t) = qij (Xo(t)> At + o(AD).

Suppose b(x,i) = 1 forx > 1 and b(x,i) = —1 for x < —1. Using [23, Theorem
3.23], we can check that there exits (y, ) € R? x M and a bounded domain D c R4
such that Py ;(cp = oo) > 0. Hence, (Xo(t), AO(t)) is not recurrent (i.e., it is
transient). It follows that]P’y,l(|X0(t)| — 00 as t —> oo) = 1forall (y,]) € Rx M;
see [23, Chapter 3].

@ Springer



Appl Math Optim (2019) 80:415-445 443

Next we consider a Markov process (X (¢), A(t)) associated with the operator

Gfx,i)=G"f(x,i)
+/le (fx+z.0) = fx, i) = Vfx, i) zlyz<n) Ti(x, 2)dz,

where 7;(x, z) satisfies assumptions (A3)-(A4) and (5.5). Ignoring the drift term
b(x, 1), condition (5.5) means that for x < 0 and |x| is sufficiently large, the intensity
of large jumps to the right (i.e., z > 0) is much stronger than that to the left (i.e.,
z < 0); while for x > 0 and |x| is sufficiently large, the intensity of large jumps to the
left is much stronger than that to the right. By our preceding example, (X (¢), A(¢))
is positive recurrent. Thus, the jump component has certain stabilization effect on
regime-switching Markov processes.

Example 5.4 In this example, we consider a controlled two-time-scale system.
Because it is meant to be for demonstration purpose only, we will be very brief.
Suppose that we have a fast varying switching jump diffusion Z¢(t) = (X*(r), A%(z))
with the generator £° given by (2.1) (with the corresponding coefficients indexed by
&) such that a®(x,i) = a(x,i)/e, b*(x,i) = b(x, i)/e, wf (x,dz) = mi(x,dz)/e,
and 0%(x) = @(x)/e and that b(-, -), a(x, i), 7 (-, -), and Q( ) satisfy conditions
(A1)-(A4). Hence conditions (A1)—(A4) are all satisfied for this operator. Moreover,
we suppose that Q( ) is strictly irreducible on some bounded domain of R?.

Consider a second controlled process Y ¢ (-) depending on X*(-) with operator given
by

1
LefO) = [VFOT fU D10 € Omide) + 3101 (3, D] (0, T F D),

where L; denotes that the operator depends on { = (x, i) as a parameter, m,(-) is
a relaxed control representation (see [10, Chapter 3.2] for the notation), and U is
a compact subset of R%! (for some positive integer d;) representing the control set.
Suppose that for each i € M and each x and each ¢, b (-, ¢, ¢) and o1 (-, ¢) are CZand
satisfy the linear growth and Lipschitz condition. Both X?(-) and Y*(-) take values
in R?. Note that (X?(-), A®(-)) is fast varying, whereas Y¢(-) is slowly changing.
Although it varies fast, (X¢(-), A®(-)) does not blow up. With a time scale change,
consider X((1) = X®(et) and AG(t) = A®(et). Ase — 0, (X((-), Ay(+)) is running
on an infinite horizon [0, c0). Usmg the results of this paper, it can be shown that as
& — 0, the fast process (X 5( ), A§ o(+)) has an invariant measure v, ).

Consider a control problem in a finite horizon [0, 771] with 77 < oco. We wish to
minimize an objective function

T
Jf(y,mg('))=E/0 /UG(Ys(l),Xe(l),Ag(f)sC)mf(dC)»

where G (-) is a running cost function. In the above, we index the relaxed control m
by ¢ to indicate that it is a feedback control. Using the approach in [10], we can show
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that (Y®(-), m®(-)) converges weakly to (Y (-), m(-)), which is a controlled diffusion
process with operator given by

_ _ 1
Lf(y)= [Vf(y)]'fubl(y,C)mz(dC) + Etf[al MV L], (5.7
where

b0 = Y [ bir .ot .
jeM

a0 = 3 [ o0ox Dof.x s . (5:8)
jeM

The limit cost function (the limit of J ;) then becomes

— T
o =Y [ [ [ 6oerx s cmdonar. .
jeM 0 v

Then we can find the optimal control or near optimal control of the averaged system
(5.7) and use it in the original system for approximation to get near optimality. Note
that in [10], the controlled systems are given by using the corresponding differential
equations, whereas here we present the system using the associated operators. They
are in fact, equivalent. The key idea in [10] is to use controlled martingale to obtain the
optimality. Here using the operators, the controlled martingales can be easily setup. In
contrast to [10], the jump process in this paper can have o -finite jump measure. The
established invariant measure enables us to extend the results in [10] to jumps living
in a non-compact set. Our results thus paved a way for further study on various control
and optimization problems involving ergodicity.

6 Further Remarks

This paper focused on recurrence and ergodicity of a class of switching jump diffusion
processes. Criteria for recurrence and positive recurrence were derived, and existence
of invariant measure was obtained. The results obtained here will help future study in
controlled dynamic systems, in particular, long-run average cost per unit time problems
for controlled switching jump diffusions. Such study will have great impact on various
applications involving optimal controls in an infinite horizon.
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