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1 Introduction

This work is concerned with the asymptotic properties, in particular recurrence and
ergodicity, for a class of regime-switching jumpdiffusion processes. The process under
consideration can be thought of as a number of jump-diffusion processesmodulated by
a random switching device. The underlying process is (X (t),�(t)), a two-component
process, where X (t) delineates the jump diffusion behavior and �(t) describes the
switching involved. One of the main ingredients is that the switching process depends
on the jump diffusions. If the jump process is missing, it reduces to switching diffu-
sions that have been investigated thoroughly; see for example [11,23] and references
therein. Our primary motivation stems from the study of a family of Markov processes
in which continuous dynamics, jump discontinuity, and discrete events coexist. Their
interactions reflect the salient features of the underlying systems. The distinct fea-
tures of the systems include the presence of non-local operators, the coupled systems
of equations, and the tangled information due to the dependence of the switching
process on the jump diffusions. Such systems have drawn new as well as resurgent
attention because of the urgent needs of systems modeling, analysis, and optimiza-
tion in a wide variety of applications. Not only do the applications arise from the
traditional fields of mathematical modeling, but also they have appeared in emerging
application areas such as wireless communications, networked systems, autonomous
systems, multi-agent systems, flexible manufacturing systems, financial engineering,
and biological and ecological systems, among others. Continuing our investigation on
regime-switching systems, this paper focuses on a class of switching jump diffusion
processes. The state-dependent random switching process under consideration makes
the formulation more versatile and interesting with a wider range of applications.
Nevertheless, it makes the analysis more difficult and challenging.

Asymptotic properties of diffusion processes and associated partial differential
equations are well known in the literature. We refer to [5,8] and references therein.
Results for switching diffusion processes can be found in [7,23,24]. One of the
important problems concerning switching jump models is their longtime behavior. In
particular, similar to the case of diffusions and switching diffusion processes, several
questions of crucial importance are: Under what conditions will the systems return to
a prescribed compact region in finite time? Under what conditions do the systems have
the desired ergodicity? In this paper, we focus on asymptotic behavior and address
these issues. Despite the growing interests in treating switching jump systems, the
results regarding recurrence, positive recurrence, and invariant probability measures
are still scarce. One of the main difficulties is the operator being non-local. When
we study switching diffusions, it has been demonstrated that although they are simi-
lar to diffusion processes, switching diffusions have some distinct features. With the
non-local operator used, the distinctions are even more pronounced.

In the literature, criteria for certain types of weak stability including Harris recur-
rence and positive Harris recurrence for continuous time Markovian processes based
on Foster–Lyapunov inequalities were developed in [13]. Using results in that paper,
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some sufficient conditions for ergodicity of Lévy type operators in dimension onewere
presented in [19] under the assumption of Lebesgue-irreducibility. In [21,22], suffi-
cient conditions for stability of a class of jumpdiffusions and switching jumpdiffusions
were provided by constructing suitable Lyapunov type functions. However, the class
of kernels considered in aforementioned papers satisfies a different set of hypotheses
than those in our current work. In [12], the existence of an invariant probability mea-
sure was established for a jump diffusion, whose drift coefficient is assumed to be only
Borel measurable. Sufficient conditions for recurrence, transience and ergodicity of
stable-like processes were studied in [16]. In a recent work [1], the authors treated the
ergodic properties such as positive recurrence and invariant probability measures for
jump processes with no diffusion part. It should be noted that for the case of switching
diffusions, the state process X (t) can be viewed as a diffusion process in a random
environment characterized by the switching component �(t). The asymptotic behav-
ior of the diffusion process in a random environment is more complicated than that
of a diffusion process in a fixed environment. In particular, there are examples (see
[14,15]) that X (t) is positive recurrent in some fixed environments and is transient in
some other fixed environments, we can make X (t) positive recurrent or transient by
choosing suitable switching rates. We refer to [17,18] for recent works on ergodicity
of regime-switching diffusion processes. We emphasize that our results in the current
work are significant extensions of those in [1,24]. In terms of the associated operators
and differential equations, compared to switching diffusion processes, in lieu of an
elliptic system (a system of elliptic partial differential equations), we have to deal with
a system of integro-differential equations. In our recent work, maximum principle and
Harnack’s inequality were obtained in [6], which are used in this paper. Compared to
the case of diffusion processes with jumps, even though the classical approaches such
as Lyapunov function methods and Dynkin’s formula are still applicable, the analysis
is much more delicate because of the coupling and interactions. There is a wide range
of applications. As one particular example, consider the following average cost per
unit time problem for a controlled switching jump diffusion in an infinite horizon.
Suppose that (X (t),�(t)) is given by

dX (t) = b(X (t),�(t), u(t))dt

+σ(X (t),�(t))dW (t) +
∫
R0

c(X (t−),�(t−), z)Ñ0(dt, dz),

X (0) = x, �(0) = λ0,

where b(·), σ(·), and c(·) are suitable real-valued functions, Ñ0(·) is a compen-
sated real-valued Poisson process, W (·) is a real-valued Brownian motion, �(t)
is a continuous-time Markov chain with a finite state space, u(·) is a control, and
R0 = R− {0}. [More precise notion of switching jump diffusions will be given in the
next section.] Assuming that �(·), W (·), and N0(·) are independent, our objective is
to minimize a long-run average cost function given by

J (x, λ0, u(·)) = lim
T→∞E

1

T

∫ T

0
g(X (t),�(t), u(t))dt,
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where g(·) is a suitable “running cost” function. To treat such a problem, one needs
to replace the instantaneous measure by an ergodic measure (if it exists). The current
paper sets up the foundation for the study on such problems because it provides
sufficient conditions under which the invariant measure exists. Optimal controls of
controlled jump diffusions (the above process without switching) was considered in
[10], in which the jump process was assume to belong to a compact set. Here we are
dealing with a more general setting.

The rest of the paper is arranged as follows. Section 2 begins with the formulation of
the problem. Section 3 is devoted to recurrence. It provides definitions of recurrence,
positive recurrence, and null recurrence in addition to introducing certain notation.
Then Sect. 3.2 focuses on recurrence and positive recurrence. We present sufficient
conditions involving Lyapunov function for recurrence and positive recurrence using
Lyapunov functions. Section 4 develops ergodicity. Existence of invariant probability
measures of switching jump diffusion processes is obtained. Section 5 provides some
sufficient conditions for the existence of Lyapunov functions underwhich the theorems
of this paper are applicable. Finally, Sect. 6 concludes the paper with further remarks.

2 Formulation

Throughout the paper, we use z′ to denote the transpose of z ∈ R
l1×l2 with l1, l2 ≥ 1,

and R
d×1 is simply written as Rd . If x ∈ R

d , the norm of x is denoted by |x |. For
x ∈ R

d and r > 0, we use B(x, r) to denote the open ball inRd with radius r centered
at x . The term domain in R

d refers to a nonempty connected open subset of the
Euclidean spaceRd . If D is a domain inRd , then D is the closure of D, Dc = R

d \ D
is its complement. The space C2(D) refers to the class of functions whose partial
derivatives up to order 2 exist and are continuous in D, and C2

b (D) is the subspace
of C2(D) consisting of those functions whose partial derivatives up to order 2 are
bounded. The indicator function of a set A is denoted by 1A.

Let (X (t),�(t)) be a two component Markov process such that X (·) is an
R
d -valued process, and �(·) is a switching process taking values in a finite

setM = {1, 2, . . . ,m}. Let b(·, ·) : Rd × M �→ R
d , σ(·, ·) : Rd × M �→ R

d × R
d ,

and for each x ∈ R
d and i ∈ M, πi (x, dz) is a σ -finite measure on R

d satisfying

∫
Rd

(1 ∧ |z|2)πi (x, dz) < ∞.

Let Q(x) = (qi j (x)) be an m × m matrix depending on x such that

qi j (x) ≥ 0 for i 	= j,
∑
j∈M

qi j (x) = 0.

Define

Q(x) f (x, ·)(i) :=
∑
j∈M

qi j (x) f (x, j).
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The generator G of the process (X (t),�(t)) is given as follows. For a function
f : Rd × M �→ R and f (·, i) ∈ C2(Rd) for each i ∈ M, define

G{(x, i) = Li f (x, i) + Q(x) f (x, ·)(i), (x, i) ∈ R
d × M, (2.1)

where

Li f (x, i) = 1

2

d∑
k,l=1

akl(x, i)
∂2 f (x, i)

∂xk∂xl
+

d∑
k=1

bk(x, i)
∂ f (x, i)

∂xk

+
∫
Rd

(
f (x + z, i) − f (x, i) − ∇ f (x, i) · z1{|z|≤1}

)
πi (x, dz),

(2.2)

a(x, i) := (
akl(x, i)

) = σ(x, i)σ ′(x, i) and ∇ f (·, i) denotes the gradient of f (·, i).
Let � = D

([0,∞),Rd ×M)
be the space of functions (mapping [0,∞) to Rd ×

M) that are right continuous with left limits endowed with the Skorohod topology.
Define (X (t),�(t)) = w(t) for w ∈ � and let {Ft } be the right continuous filtration
generated by the process (X (t),�(t)). A probability measure Px,i on � is a solution
to the martingale problem for

(G,C2
b (R

d)
)
started at (x, i) if

(a) Px,i (X (0) = x,�(0) = i) = 1,
(b) if f (·, i) ∈ C2

b (R
d) for each i ∈ M, then

f (X (t),�(t)) − f (X (0),�(0)) −
∫ t

0
G f (X (s),�(s))ds,

is a Px,i martingale.
If for each (x, i), there is only one such Px,i , we say that the martingale problem
for

(G,C2
b (R

d)
)
is well-posed.

Throughout the paper, we assume conditions (A1)–(A4) hold unless otherwise
noticed.

(A1) The functions σ(·, i) and b(·, i) are continuous onRd for each i ∈ M such that

d∑
k,l=1

|σkl(x, i)| +
d∑

k=1

|bk(x, i)| ≤ c(1 + |x |) on R
d

for some c > 0, and qi j (·) is bounded and Borel measurable onRd for i, j ∈ M.
(A2) For every bounded domain D ⊂ R

d , there exists a constant κ0 = κ0(D) ∈ (0, 1]
such that

κ0|ξ |2 ≤ ξ ′a(x, i)ξ ≤ κ−1
0 |ξ |2 for all ξ ∈ R

d , x ∈ D, i ∈ M.

(A3) supx∈Rd ,i∈M πi (x, B(0, 1)c) < ∞ and supi∈M
∫
B(0,1) |z|2πi (x, dz) ≤ c(1 +

|x |2) for some c > 0. Moreover, for every n ≥ 1, there exists a σ -finite measure
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n(dz) with
∫
Rd

(
1 ∧ |z|2) 
n(dz) < ∞ so that πi (x, dz) ≤ 
n(dz) for every

x ∈ B(0, n) and i ∈ M.
(A4) For any i ∈ M and x ∈ R

d , πi (x, dz) = π̃i (x, z)dz. Moreover, for any r ∈
(0, 1), any x0 ∈ R

d , any x, y ∈ B(x0, r/2) and z ∈ B(x0, r)c, we have

π̃i (x, z − x) ≤ αr π̃i (y, z − y),

where αr satisfies 1 < αr ≤ κ2r−β with κ2 and β being positive constants.

Remark 2.1 We comment on the conditions briefly.

(a) Under Assumptions (A1)–(A3), for each i ∈ M, there is a unique solution to
the martingale problem for (Li ,C2

b (R
d)) which is conservative (see [9, Theorem

5.2]). Note that the switched Markov process (X (t),�(t)) can be constructed
from that of Li as follows. Let Xi be the Markov process associated with Li ,
that is, Li is the infinitesimal generator of Xi . Suppose we start the process at
(x0, i0), run a subprocess X̃ i0 of Xi0 that got killed with rate −qi0i0(x); that is,

via Feynman–Kac transform exp
(∫ t

0 qi0i0(X
i0(s))ds

)
. Note that this subprocess

X̃ i0 has infinitesimal generator Li0 + qi0i0 . At the lifetime τ1 of the killed process
X̃ i0 , jump to plane j 	= i0 with probability−qi0 j (X

i0(τ1−))/qi0i0(X
i0(τ1−)) and

run a subprocess X̃ j of X j with killing rate −q j j (x) from position Xi0(τ1−).
Repeat this procedure. As pointed out in [6], since

∑
j∈M qi j (x) = 0 on R

d

for every i ∈ M, the resulting process (X (t),�(t)) is a strong Markov process
with lifetime ζ = ∞. It is easy to check that the law of (X (t),�(t)) solves the
martingale problem for

(G,C2
b (R

d)
)
so it is the desired switched jump-diffusion.

It follows from [20] that the law of (X (t),�(t)) is the unique solution to the
martingale problem for

(G,C2
b (R

d)
)
.

(b) Conditions (A1) and (A2) present the local uniform ellipticity of a(x, i) and the
linear growth bound on a(x, i)1/2 and |b(x, i)|. The measure πi (x, dz) can be
thought of as the intensity of the number of jumps from x to x + z (see [2,3]).
Condition (A4) tells us that πi (x, dy) is absolutely continuous with respect to the
Lebesgue measure dx on Rd , and the intensities of jumps from x and y to a point
z are comparable if x , y are relatively far from z but relatively close to each other.
If π̃i (x, z) is such that

c−1
i

|z|d+αi
≤ π̃i (x, z) ≤ ci

|z|d+αi

for some ci ≥ 1 and αi ∈ (0, 2), then condition (A4) is satisfied with 1 < αr < κ2
independent of r ∈ (0, 1). Condition (A4) is needed for Harnack inequality for
the switched jump-diffusion; see [6].

(c) In our recent paper [6], various properties of switching jump diffusions including
maximum principle and Harnack inequality are studied under the assumption that
a(x, i) is uniformly elliptic and b(x, i) is bounded on R

d and that there is one
single 
 so that (A3) holds with 
n = 
 for all n ≥ 1. Using localization, one
can easily see that the results of [6] hold under the current setting of this paper
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when they are applied to bounded open sets. In particular, for each bounded open
subset D ⊂ R

d , Theorems 3.4 and 4.7 of [6] as well as Proposition 4.1 (for all
x0 ∈ D) and Proposition 4.3 hold under the setting of this paper.

Recall that a regime-switching jump diffusion (X (t),�(t)) can be regarded as
the results of m jump diffusion processes X1(t), X2(t) . . . , Xm(t) switching from
one to another according to the dynamic movement of �(t), where Xi (t) is the
Markov process associated with Li . By assumption (A4), if π̃i (x, z) = 0 for some
(x, z) ∈ R

d × R
d , then π̃i (x, z) ≡ 0 on R

d × R
d ; that is, Xi (t) is a diffusion pro-

cess. If π̃i (x, z) ≡ 0 on R
d × R

d for all i ∈ M, (X (t),�(t)) is just a switching
diffusion process. Thus, the class of models under consideration includes switching
diffusions. In this paper, sufficient conditions for recurrence, positive recurrence, and
the existence of an invariant probability measure are given. We show that under the
sufficient conditions derived, recurrence and positive recurrence are independent of
the domain chosen. Furthermore, it is demonstrated that we can work with a fixed dis-
crete component. Several examples are provided in which easily verifiable conditions
on coefficients of the switching jump diffusions are given in lieu of the Lyapunov
function type of conditions.

3 Recurrence

This section is devoted to recurrence, positive recurrence, and null recurrence. The first
part gives definitions and the second part provides criteria for recurrence and positive
recurrence.

3.1 Definitions: Recurrence, Positive Recurrence, and Null Recurrence

For simplicity,we introduce somenotation as follows. For anyU = D × J ⊂ R
d×M,

where D ⊂ R
d and J ⊂ M. Define

τU := inf{t ≥ 0 : (X (t)),�(t)) /∈ U },
σU := inf{t ≥ 0 : (X (t)),�(t)) ∈ U }.

In particular, if U = D × M is a “cylinder”, we set

τD := inf{t ≥ 0 : X (t) /∈ D},
σD := inf{t ≥ 0 : X (t) ∈ D}.

Remark 3.1 Recall that the process (X (t),�(t)) is a strong Markov process with
lifetime ζ = ∞. Let βn = inf{t ≥ 0 : |X (t)| ≥ n} be the first exit time of the
process (X (t)),�(t)) from the bounded set B(0, n) ×M. Then the sequence {βn} is
monotonically increasing and βn → ∞ almost surely as n → ∞. We also refer to
such property of (X (t),�(t)) as regularity or no finite explosion time.

Recurrence, positive recurrence, and null recurrence are defined similarly as for
switching diffusions given in [23,24].
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Definition 3.2 Suppose U = D × J , where J ⊂ M and D ⊂ R
d is a bounded

domain. A process (X (t),�(t)) is said to be recurrent with respect to U if

Px,i (σU < ∞) = 1 for any (x, i) ∈ Uc.

If (X (t),�(t)) is recurrent with respect to U and Ex, iσU < ∞ for any (x, i) ∈ Uc,
then it said to be positive recurrent with respect to U ; otherwise, the process is null
recurrent with respect to U .

3.2 Criteria for Recurrence and Positive Recurrence

We begin this section with some preparatory results, followed by sufficient conditions
for recurrence and positive recurrence of the process (X (t),�(t)) with respect to
some cylinderU = D × M. Under these sufficient conditions, we prove that the pro-
cess (X (t),�(t)) is recurrent (resp., positive recurrent) with respect to some cylinder
D × M if and only if it is recurrent (resp., positive recurrent) with respect to D × {l}
for every l ∈ M, where D ⊂ R

d is a bounded domain. We will also prove that the
properties of recurrence and positive recurrence do not depend on the choice of the
domain D ⊂ R

d and l ∈ M. We first prove the following theorem, which asserts that
the process (X (t),�(t))will exit every bounded cylinder with a finite mean exit time.

Theorem 3.3 Let D ⊂ R
d be a bounded domain. Then

sup
(x,i)∈D×M

Ex,iτD < ∞. (3.1)

Proof By the local uniform ellipticity condition in (A2), there exists some κ0 ∈ (0, 1]
such that

κ0 ≤ a11(x, i) ≤ κ−1
0 for any (x, i) ∈ D × M. (3.2)

Let f ∈ C2
b (R

d) be such that f is nonnegative and f (x) = (x1 + β)γ if x ∈ {y :
d(y, D) < 1}, where the constants γ > 2 and β > 0 are to be specified, and x1 = e′

1x
is the first component of x , with e1 = (1, 0, . . . , 0)′ being the standard unit vector.
Define V (x, i) = f (x) for (x, i) ∈ R

d × M. Since D is bounded, we can choose
constant β > 0 such that

1 ≤ x1 + β for all (x, i) ∈ D × M,

and

γ := 2

κ0

(
sup

(x,i)∈D×M

[
|b1(x, i)|(x1 + β) + κ1(x1 + β)2

]
+ 1

)
+ 2 < ∞,

123



Appl Math Optim (2019) 80:415–445 423

where κ1 is the constant which exists by assumption (A3). Then we have by (3.2) that

b1(x, i)(x1 + β) + γ − 1

2
a11(x, i) − κ1(x1 + β)2 ≥ 1 for all (x, i) ∈ D × M.

(3.3)

Direct computation leads to

GV (x, i) = γ (x1 + β)γ−2
[
b1(x, i)(x1 + β) + γ − 1

2
a11(x, i)

]

+
∫

|z|≤1

[
f (x + z) − f (x) − ∇ f (x) · z]π̃i (x, z)(dz)

+
∫

|z|>1

[
f (x + z) − f (x)

]
π̃i (x, z)(dz). (3.4)

Since γ > 2, f (·) is convex on {x ∈ R
d : d(x, D) < 1}. It follows that

∫
|z|≤1

[
f (x + z) − f (x) − ∇ f (x) · z]π̃i (x, z)(dz) ≥ 0. (3.5)

By the nonnegativity of f , it is also clear that

∫
|z|>1

[
f (x + z) − f (x)

]
π̃i (x, z)(dz) ≥ −

∫
|z|>1

(x1 + β)γ π̃i (x, z)(dz)

≥ −κ1(x1 + β)γ . (3.6)

It follows from (3.4), (3.5), (3.6), and (3.3) that

GV (x, i) ≥ γ (x1 + β)γ−2
[
b1(x, i)(x1 + β) + γ − 1

2
a11(x, i)

]
− κ1(x1 + β)γ

≥ γ (x1 + β)γ−2
[
b1(x, i)(x1 + β) + γ − 1

2
a11(x, i) − κ1(x1 + β)2

]

≥ γ, (3.7)

for all (x, i) ∈ D×M. Let τD(t) = min{t, τD}. Then we have fromDynkin’s formula
and (3.7) that

Ex,i V (X (τD(t)),�(τD(t))) − V (x, i)

= Ex,i

∫ τD(t)

0
GV (X (s),�(s))ds ≥ γEx,iτD(t).

Hence

Ex,iτD(t) ≤ 1

γ
sup

(x,i)∈Rd×M
V (x, i) := M. (3.8)
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Note that M is finite by our construction of functions V (·). Since Ex,iτD(t) ≥
tPx,i [τD > t], it follows from (3.8) that

tPx,i
(
τD > t

) ≤ M.

Letting t → ∞, we obtain Px,i
(
τD = ∞) = 0. That is, Px,i

(
τD < ∞) = 1. This

yields that τD(t) → τD a.s. Px,i as t → ∞. Now applying Fatou’s lemma, as t → ∞
in (3.8) we obtain

Ex,iτD ≤ M < ∞. (3.9)

This proves the theorem. ��
To study the recurrence and positive recurrence of the process (X (t),�(t)), we

first present criteria based on the existence of certain Lyapunov functions. Sufficient
conditions on the existence of such Lyapunov functions will be given in Sect. 5.

Theorem 3.4 A sufficient condition for the positive recurrence of (X (t),�(t)) with
respect to U = D × M ⊂ R

d × M is the following condition (C1) holds:

(C1) For each i ∈ M, there exists a nonnegative function V (·, i) ∈ C2(Rd) satisfying

GV (x, i) ≤ −1 for any (x, i) ∈ Dc × M. (3.10)

Proof Assume that there exists a nonnegative function V (·, ·) satisfying condition
(C1) with respect to U = D × M. We show that the process (X (t),�(t)) is positive
recurrent with respect to U = D × M.

Choose n0 a positive integer sufficiently large so that D ⊂ B(0, n0). Fix any
(x, i) ∈ Dc × M. For any t > 0 and n ≥ n0, we define

σ
(n)
D (t) = min{σD, t, βn},

where βn is the first exit time from B(0, n) and σD is the first entrance time to D. Let
fn : Rd �→ R be a smooth cut-off function that takes values in [0, 1] satisfying fn = 1
on B(0, n) and fn = 0 outside of B(0, n+1). Then Vn(·, j):= fn(·)V (·, j) ∈ C2

b (R
d)

for each j ∈ M. Moreover,

0 ≤ Vn(x, i) ≤ V (x, i), (x, i) ∈ R
d × M.

It follows from (3.10) that

GVn(y, j) ≤ GV (y, j) ≤ −1 for all (y, j) ∈ B(0, n) − D.

Dynkin’s formula implies that

Ex,i Vn
(
X

(
σ

(n)
D (t)

)
,�

(
σ

(n)
D (t)

))
− Vn(x, i)

= Ex,i

∫ σ
(n)
D (t)

0
GVn (X (s),�(s)) ds ≤ −Ex,iσ

(n)
D (t).
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Note that the function Vn is nonnegative; hence we have Ex,iσ
(n)
D (t) ≤ Vn(x, i) =

V (x, i).Meanwhile, since the process (X (s),�(s)) is regular,βn → ∞ a.s asn → ∞.
As a result, σ (n)

D (t) → σD(t) a.s as n → ∞, where σD(t) = min{σD, t}. By virtue of
Fatou’s lemma, we obtain Ex,iσD(t) ≤ V (x, i). Now the argument after (3.8) in the
proof of Theorem 3.3 yields that

Ex,iσD ≤ V (x, i) < ∞. (3.11)

Since (x, i) ∈ Dc×M is arbitrary, we conclude that (X (t),�(t)) is positive recurrent
with respect to U . ��
Theorem 3.5 A sufficient condition for the recurrence of (X (t),�(t)) with respect to
U = D × M ⊂ R

d × M is the following condition (C2) holds:

(C2) For each i ∈ M, there exists a nonnegative function V (·, i) ∈ C2(Rd) satisfying

GV (x, i) ≤ 0, for any (x, i) ∈ Dc × M,

inf
|x |≥n, i∈M

V (x, i) → ∞, n → ∞. (3.12)

Proof Assume that there exists a nonnegative functionV (·, ·) satisfying condition (C2)
with respect to U . We show that the process (X (t),�(t)) is recurrent with respect to
U .

Choose n0 to be a positive integer sufficiently large so that D ⊂ B(0, n0). Fix any
(x, i) ∈ Dc × M. For any t > 0 and n ≥ n0, we define

σ
(n)
D (t) = min{σD, t, βn},

where βn is the first exit time from B(0, n) and σD is the first entrance time to D. Let
fn : Rd �→ R be a smooth cut-off function that takes values in [0, 1], 1 on B(0, n),
and 0 outside of B(0, n + 1). Denote Mn := inf

|y|≥n, j∈M
V (y, j). Then

Vn(·, j) := fn(·)V (·, j) + (
1 − fn(·)

)
Mn ∈ C2

b (R
d), for each j ∈ M.

Moreover, Vn(y, j) ≤ V (y, j) for all (y, j), Vn(y, j) = V (y, j) for (y, j) ∈
B(0, n) × M, and Vn(y, j) ≥ M for (y, j) ∈ B(0, n)c × M. Detailed computa-
tions and (3.12) yield that

GVn(y, j) ≤ GV (y, j) ≤ 0 for all (y, j) ∈ B(0, n) − D.

Now Dynkin’s formula implies that

Ex,i Vn
(
X

(
σ

(n)
D (t)

)
,�

(
σ

(n)
D (t)

))
− Vn(x, i)

= Ex,i

∫ σ
(n)
D (t)

0
GVn (X (s),�(s)) ds ≤ 0.
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Consequently,

Ex,i Vn
(
X

(
σ

(n)
D (t)

)
,�

(
σ

(n)
D (t)

))
≤ Vn(x, i) = V (x, i).

By virtue of Fatou’s lemma, we obtain

Ex,i Vn (X (σD ∧ βn) ,� ((σD ∧ βn))) ≤ V (x, i).

Then we have

V (x, i) ≥ Ex,i

[
Vn (X (βn) ,� (βn)) 1{βn<σD}

]

≥ MnPx,i (βn < σD).

It follows from (3.12) that as n → ∞,

Px,i (βn < σD) ≤ V (x, i)

Mn
→ 0.

Note that Px,i (σD = ∞) ≤ Px,i (βn < σD). Hence Px,i (σD = ∞) = 0. Since
(x, i) ∈ Dc ×M is arbitrary, we conclude that (X (t),�(t)) is recurrent with respect
to U . ��

Now we recall the definition of harmonic functions with respect to process
(X (t),�(t), namely, G-harmonic functions.

Definition 3.6 Let U = ⋃m
i=1 Di × {i} with Di ⊂ R

d being a bounded domain. A
bounded and Borel measurable function f : Rd × M �→ R is said to be G-harmonic
in U if for any relatively compact open subset V of U ,

f (x, i) = Ex,i
[
f (X (τV ),�(τV ))

]
for all (x, i) ∈ V,

where τV = inf{t ≥ 0 : (X (t),�(t)) /∈ V } is the first exit time of V .

Definition 3.7 The generator G or the matrix function Q(·) is said to be strictly irre-
ducible on D ⊂ R

d if for any i, j ∈ M and i 	= j , there exists q0i j > 0 such that

inf
x∈D qi j (x) ≥ q0i j .

In the rest of this section, we assume that the Q-matrix in the operator G is strictly
irreducible on any bounded domain ofRd . We are in a position to prove that if the pro-
cess (X (t),�(t)) is recurrent (resp., positive recurrent) with respect to some cylinder
D × M ⊂ R

d × M, then it is recurrent (resp., positive recurrent) with respect to any
cylinder E × M ⊂ R

d × M.

Lemma 3.8 Suppose that the operatorG is strictly irreducible onanyboundeddomain
of Rd . Let D ⊂ R

d be a bounded domain. Suppose that

Px,i (σD < ∞) = 1 for any (x, i) ∈ Dc × M. (3.13)
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Then for any bounded domain E ⊂ R
d , we have

Px,i (σE < ∞) = 1 for any (x, i) ∈ Ec × M. (3.14)

Proof Without loss of generality, we suppose that E ⊂ D. Otherwise, let D̃ be a suffi-
ciently large bounded domain containing both D and E . Then (3.13) and our arguments
hold for D̃ in place of D. It is sufficient to prove (3.14) for (x, i) ∈ (

D \ E
)×M. Let

G be a bounded domain such that D ⊂ G. Define a sequence of stopping times by

τ0 = 0, τ1 = inf{t > 0 : X (t) ∈ Gc}, (3.15)

and for n = 1, 2, . . . ,

τ2n = inf{t > τ2n−1 : X (t) ∈ D},
τ2n+1 = inf{t > τ2n : X (t) ∈ Gc}. (3.16)

It follows from (3.13), Theorem 3.3, and the strongMarkov property that τn < ∞ Px,i

a.s. for n = 1, 2, . . . Define u(y, j) = Py, j (σE < τG) for (y, j) ∈ R
d × M. Then

u(y, j) = Ey, j1{X (τG\E )∈E}. Hence u(y, j) is a G-harmonic function in
(
G \ E

)×M.

By Remark 2.1(c) and [6, Theorem 3.4], u(y, j) > 0 for all (y, j) ∈ (G \ E) × M.
Let H be a domain such that D ⊂ H ⊂ H ⊂ G. Define

v(y, j) = Ey, j u (X (τH ),�(τH )) for (y, j) ∈ H × M.

Again by Remark 2.1(c) and [6, Theorem 3.4], v(y, j) > 0 for (y, j) ∈ H × M.
By Remark 2.1(c) and the Harnack inequality [6, Theorem 4.7], there is a constant
δ1 ∈ (0, 1) such that inf

(y, j)∈D×M
v(y, j) ≥ δ1. Since u(y, j) is a G-harmonic function

in
(
G \ E

)×M, it is a G-harmonic function in
(
H \ E

)×M. Thus, for any (y, j) ∈
D × M,

u(y, j) = Ey, j
[
u (X (τH ),�(τH )) 1τH<σE

] + Ey, j
[
1σE<τH

]
≥ v(y, j).

It follows that

inf
(y, j)∈D×M

Py, j (σE < τG) ≥ δ1. (3.17)

Define

A0 = {X (t) ∈ E for some t ∈ [0, τ1)}, (3.18)

and for n = 1, 2, . . . ,

An = {X (t) ∈ E for some t ∈ [τ2n, τ2n+1)}. (3.19)
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Note that the event Ac
0 implies τG < σE . Hence we have from (3.17) that

Px,i (A
c
0) ≤ Px,i (τG < σE ) ≤ 1 − δ1.

By the strong Markov property, induction on n yields

Px,i

(
n⋂

k=0

Ac
k

)
≤ (1 − δ1)

n+1. (3.20)

Thus, we have

Px,i (σE = ∞) = Px,i (X (t) /∈ E for any t ≥ 0)

≤ lim
n→∞Px,i

(
n⋂

k=0

Ac
k

)

≤ lim
n→∞(1 − δ1)

n+1 = 0.

This proves the lemma. ��
Lemma 3.9 Suppose that the operatorG is strictly irreducible onanyboundeddomain
of Rd . Let D ⊂ R

d be a bounded domain and suppose that G satisfies condition (C1)
with respect to D × M. Then for any bounded domain E ⊂ R

d , we have

Ex,iσE < ∞ for any (x, i) ∈ Ec × M. (3.21)

Proof Since G satisfies condition (C1) with respect to D × M,

Ey, jσD < ∞ for any (y, j) ∈ Dc × M. (3.22)

Using the same reasoning as in the proof for Lemma 3.8, without loss of generality,
we may assume that E ⊂ D. It suffices to prove (3.22) for (x, i) ∈ (

D \ E
) × M.

Let G be a bounded domain such that D ⊂ G.
Define a sequence of stopping times {τn} and events A0, A1, A2, . . . as in (3.15),

(3.16), (3.18), and (3.19) in the proof of Lemma 3.8. It follows from (3.22), Theo-
rem 3.3, and the strong Markov property that τn < ∞ Px,i a.s. for n = 1, 2, . . .

We now prove that

M2 := sup
(y, j)∈D×M

Ey, jτ2 < ∞. (3.23)

From Theorem 3.3, we have M1 := sup
(y, j)∈D×M

Ey, jτ1 < ∞. Meanwhile, by (3.11)

in the proof of Theorem 3.4, we obtain

Ey, jσD ≤ V (y, j) for (y, j) ∈ Gc × M.
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Hence to prove (3.23), it suffices to show that

sup
(y, j)∈D×M

∫
Gc

m∑
k=1

V (z, k)Pτ1(y, j, dz, k) < ∞,

wherePτ1(y, j, ·, ·) is the distributionof (X y, j (τ1),�
y, j (τ1)). SinceV (·, ·) is bounded

on compact sets, it is enough if we can find an open ball B(0, R) with R sufficiently
large such that {y : d(y,G) < 2} ⊂ B(0, R) and

sup
(y, j)∈D×M

∫
B(0,R)c

m∑
k=1

V (z, k)Pτ1(y, j, dz, k) < ∞. (3.24)

Let a point x∗ ∈ ∂G. Then for any x ∈ G and z ∈ B(0, R)c, there is a sequence
{xi : i = 0, . . . , ñ} such that x0 = x, xñ = x∗, |xi − xi−1| < 1/2 and xi ∈ G for
i = 1, . . . , ñ. Since G is bounded, ñ can be independent of x . By assumption (A4),
we have

π̃k(xi−1, z − xi−1) ≤ α1/2π̃k(xi , z − xi ), i = 1, . . . , ñ, k = 1, . . . ,m.

Thus, there is a positive constant K = αñ
1/2, depending only on G such that

π̃k(x, z − x) ≤ K π̃k(x
∗, z − x∗) for x ∈ G, z ∈ B(0, R)c, k = 1, . . . ,m.

Let (y, j) ∈ D×M and A ⊂ B(0, R)c. By virtue of Chen et al. [6, Proposition 4.3],

∑
s≤t

1{X (s−)∈G,X (s)∈A,�(s)=k} −
∫ t

0
1{X (s)∈G,�(s)=k}

∫
A

π̃k(X (s), z − X (s))dzds,

is a Py, j -martingale. We deduce that

Py, j (X (τ1 ∧ t) ∈ A,�(τ1 ∧ t) = k) = Ey, j

[ ∑
s≤τ1∧t

1{X (s−)∈G,X (s)∈A,�(s)=k}
]

= Ey, j

[ ∫ τ1∧t

0
1{X (s)∈G,�(s)=k}

∫
A

π̃k(X (s), z − X (s))dzds

]

≤ KEy, j

[ ∫ τ1∧t

0

∫
A

π̃k(x
∗, z − x∗)dzds

]

≤ KEy, j (τ1 ∧ t) μk(A), (3.25)

where μk is a measure on B(0, R)c with density π̃k(x∗, z − x∗). Using assumption
(A3) and the fact that A∩ B(0, R) ⊂ B(0, R)c ∩ B(0, R) = ∅, we have μk(A) < ∞.
Letting t → ∞ and using Fatou’s lemma on the left-hand side and the dominated
convergence theorem on the right-hand side in (3.25), we have

Py, j (X (τ1) ∈ A,�(τ1) = k) ≤ KEy, j (τ1)μk(A) ≤ KM1μk(A),
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where M1 = sup
(z,k)∈D×M

Ez,k(τ1). Hence

Pτ1(y, j, A, k) ≤ KM1μk(A) for all k ∈ M.

It follows that

∫
B(0,R)c

m∑
k=1

V (z, k)Pτ1(y, j, dz, k) ≤ KM1

m∑
k=1

∫
B(0,R)c

V (z, k)π̃k(x
∗, z − x∗)dz

= KM1

m∑
k=1

∫
B(−x∗,R)c

V (z + x∗, k)π̃k(x
∗, z)dz. (3.26)

Choose R sufficiently large such that B(0, R)c − x∗ ⊂ {z ∈ R
d : |z| > 1}. Since G

satisfies condition (C1) with respect to D×M and x∗ /∈ D, we have GV (x∗, k) < ∞
for all k ∈ M, which leads to the finiteness of the last term in (3.26). The desired
inequality (3.24) then follows.

To continue, note that τ2n ≤ σE < τ2n+1 implies
n−1⋂
k=0

Ac
k . Then it follows from

(3.20) that

Px,i (τ2n ≤ σE < τ2n+1) ≤ Px,i

(
n−1⋂
k=0

Ac
k

)
≤ (1 − δ1)

n .

Therefore we have

Ex,iσE =
∞∑
n=0

Ex,iσE1[τ2n≤σE<τ2n+2]

≤
∞∑
n=0

Px,i
(
τ2n ≤ σE < τ2n+2

)
Ex,iτ2n+2

≤
∞∑
n=0

Px,i
(
τ2n ≤ σE < τ2n+1

) n∑
k=0

Ex,i (τ2k+2 − τ2k)

≤
∞∑
n=0

(1 − δ1)
n(n + 1)M2 < ∞.

This completes the proof of the lemma. ��
In the next two lemmas, we show that, under the irreducibility assumption of the Q-

matrix, if the process (X (t),�(t)) is recurrent (resp., positive recurrent) with respect
to some cylinder D × M ⊂ R

d × M, then it is recurrent (resp., positive recurrent)
with respect to D × {l} ⊂ R

d × M for any l ∈ M, where D ⊂ R
d is any bounded

domain.
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Lemma 3.10 Suppose that the operator G is strictly irreducible on any bounded
domain of Rd . Let D ⊂ R

d be a bounded domain. Suppose that

Py, j (σD < ∞) = 1 for any (y, j) ∈ Dc × M. (3.27)

Then for any (x, i) ∈ R
d × M and l ∈ M, we have

Px,i (σD×{l} < ∞) = 1. (3.28)

Proof Fix l ∈ M. It suffices to prove (3.28) when (x, i) ∈ D × (M \ {l}) since the
process (X (t),�(t)), starting from (y, j) ∈ Dc ×Mwill reach D×M in finite time
Py, j -a.s. by (3.27).

Choose ε > 0 sufficiently small such that B0 ⊂ B0 ⊂ B1 ⊂ B1 ⊂ D, where

B0 = B(x, ε) and B1 = B(x, 2ε). (3.29)

Define

τ0 = 0, τ1 = inf{t > 0 : X (t) ∈ Bc
0}, (3.30)

and for n = 1, 2, . . . ,

τ2n = inf{t ≥ τ2n−1 : X (t) ∈ Bc
1}, τ2n+1 = inf{t ≥ τ2n : X (t) ∈ B0}. (3.31)

Note that (3.27), Theorem 3.3, and Lemma 3.8 imply that τn < ∞ Px,i -a.s.. Define

u(y, j) = Py, j

(
σB0×{l} < τB1

)
, (y, j) ∈ R

d × M.

Then u(·) is G-harmonic in B1 × M \ (B0 × {l}), and hence in particular in (B1 \
B0) ×M. By Remark 2.1(c) and [6, Theorem 3.4], u > 0 on (B1 \ B0) ×M. Let H
be a domain such that B0 ⊂ H ⊂ H ⊂ B1. Define

v(y, j) = Ey, j u (X (τH ),�(τH )) for (y, j) ∈ H × M.

Clearly, v ≥ 0 is an G-harmonic function on H × M. By Remark 2.1(c) and
the Harnack inequality [6, Theorem 4.7], there is a constant δ2 ∈ (0, 1) such that

inf
(y, j)∈B0×M

v(y, j) ≥ δ2. For any (y, j) ∈ B0 × M, by the definition of u(y, j),

u(y, j) ≥ Ey, j
[
u (X (τH ),�(τH )) 1τH<σB0×{l}

] + Ey, j
[
1σB0×{l}<τH

] ≥ v(y, j).

Thus,

inf
B0×M

Py, j

(
σB0×{l} < τB1

)
≥ δ2. (3.32)
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Redefine

A0 = {�(t) = l for some t ∈ [τ0, τ2)}, (3.33)

and for n = 1, 2, . . . ,

An = {�(t) = l for some t ∈ [τ2n+1, τ2n+2)}. (3.34)

The event Ac
0 implies σB0×{l} > τB1 . Hence we have by (3.32) that

Px,i (A
c
0) ≤ Px,i

(
σB0×{l} > τB1

)
≤ 1 − δ2,

i.e., Px,i (Ac
0) ≤ 1− δ2. By virtue of the strong Markov property and induction on n,

Px,i

(
n⋂

k=0

Ac
k

)
≤ (1 − δ2)

n+1. (3.35)

Thus, we have

Px,i ((X (t),�(t)) /∈ D × {l} for any t ≥ 0)

≤ Px,i ((X (t),�(t)) /∈ B1 × {l} for any t ≥ 0)

≤ lim
n→∞Px,i

(
n⋂

k=0

Ac
k

)

≤ lim
n→∞(1 − δ2)

n+1 = 0.

As a result,

Px,i (σD×{l} = ∞) = Px,i ((X (t),�(t)) /∈ D × {l} for any t ≥ 0) = 0,

i.e., Px,i (σD×{l} < ∞) = 1, as desired. ��

Lemma 3.11 Suppose that the operator G is strictly irreducible on any bounded
domain ofRd . Let D ⊂ R

d be a bounded domain and suppose thatG satisfies condition
(C1) with respect to D × M. Then for any (x, i) ∈ R

d × M and l ∈ M, we have

Ex,iσD×{l} < ∞. (3.36)

Proof Fix any l ∈ M. As in Lemma 3.10, it suffices to prove (3.36) when (x, i) ∈
D × (M \ {l}). Let the balls B and B1, stopping times τ0, τ1, …, and events A0, A1,
…, as in (3.29)–(3.31),(3.33), and (3.34) in the proof of Lemma 3.10.
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Observe that τ2n ≤ σD, l < τ2n+2 implies
n−1⋂
k=0

Ac
k . Hence we have by (3.32) that

Px,i
(
τ2n ≤ σD×{l} < τ2n+2

) ≤ Px,i

(
n−1⋂
k=0

Ac
k

)
≤ (1 − δ2)

n .

By virtue of Theorem 3.3, we have M1 := sup
(x,i)∈B×M

Ex,iτ1 < ∞. Similar to the

proof of (3.23), we also obtain M2 := sup
n

Ex,i (τ2n+3 − τ2n+1) < ∞. Therefore, we

have

Ex,iσD, l =
∞∑
n=0

Ex,iσD, l1[τ2n≤σD, l<τ2n+2]

≤
∞∑
n=0

Px,i
(
τ2n ≤ σD, l < τ2n+2

)
Ex,iτ2n+3

≤
∞∑
n=0

Px,i
(
τ2n ≤ σD, l < τ2n+2

)[ n∑
k=0

Ex,i (τ2k+3 − τ2k+1) + τ1

]

≤
∞∑
n=0

(1 − δ1)
n (nM2 + M2 + M1) < ∞.

The proof of the lemma is complete. ��
Byvirtue of Lemmas 3.8 and 3.11, the process (X (t),�(t)) is recurrentwith respect

to some cylinder D × M if and only if it is recurrent with respect to the product set
D × {l} for any l ∈ M. Also we have proved that the property of recurrence is
independent of the choice of the bounded domain D ⊂ R

d . Moreover, similar results
also hold for positive recurrence. We summarize these into the following theorem.

Theorem 3.12 Suppose that the operator G is strictly irreducible on any bounded
domain of Rd . Assume that D, E ⊂ R

d are bounded domains and l ∈ M. The
following assertions hold:

(i) The process (X (t),�(t)) is recurrent with respect to D × M if and only if it
is recurrent with respect to E × M. The process (X (t),�(t)) is recurrent with
respect to E × M, if and only if it is recurrent with respect to E × {l}.

(ii) Suppose that condition (C1) is satisfied. The process (X (t),�(t)) is positive
recurrent with respect to D×M if and only if it is positive recurrent with respect
to E × M, and (X (t),�(t)) is recurrent with respect to E × M if and only if it
is recurrent with respect to E × {l}.

4 Existence of Invariant Probability Measures

In this section, we establish invariant probability measures of the process (X (t),�(t))
under the standing assumption (A1)–(A4) and condition (C1). That is, the process is
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positive recurrentwith respect toU = E×{l}, where E ⊂ R
d is a bounded domain and

l ∈ M is fixed throughout this section. By using a method introduced by Khasminskii
[8], we characterize the invariant probability measure using an embedded Markov
chain.

We work with a bounded domain D ⊂ R
d with E ⊂ D. Let τ0 = 0 and redefine

stopping times τ1, τ2, . . . , inductively as follows.

τ2n+1 = inf{t > τ2n : X (t) /∈ D},
τ2n+2 = inf{t > τ2n+1 : X (t) ∈ E,�(t) = l}. (4.1)

Now we can divide an arbitrary sample path of the process (X (t),�(t)) into cycles:

[τ0, τ2), [τ2, τ4), . . . , [τ2n, τ2n+2), . . .

Since the process (X (t),�(t)) is recurrent with respect to E×{l}, by Theorem 3.3, all
stopping times τ0 < τ1 < τ2 < τ3 < · · · are finite a.s. By virtue of the recurrence of
(X (t),�(t)), we may assume without loss of generality that (X (0),�(0)) = (x, l) ∈
E × {l}. It follows from the strong Markov property of the process (X (t),�(t)) that
the sequence

(X̃n, l) := (X (τ2n), l) , n = 0, 1, . . . is a Markov chain in E × {l}. (4.2)

Therefore, the sequence (X̃n) is a Markov chain in E .

To establish the existence of a unique stationary distribution of the Markov chain
(X̃n), we first recall a result on invariant probability measures of Doob; see [4, Sect.
4.1].

Theorem 4.1 Suppose that S is a compact metric space, that B(S) is the Borel σ -
algebra, and that P is a linear operator from B(S) into itself, where B(S) is the
Banach space of bounded and Borel measurable functions from S into R, such that

{ ‖Pφ‖ ≤ ‖φ‖, for all φ ∈ B(S),

Pφ = φ if φ = 1,
(4.3)

where ‖ · ‖ denotes the sup norm. Assume that there exists a δ > 0 such that

P1F (x) − P1F (y) ≤ 1 − δ for x, y ∈ S, F ∈ B(S). (4.4)

Then there exists a unique probability measure on (S,B(S)) denoted by μ̃ such that

∣∣∣∣Pnφ(x) −
∫
S
φdμ̃

∣∣∣∣ ≤ Ke−ρn‖φ‖,

where ρ = − ln(1 − δ) and K = 2/(1 − δ). The measure μ̃ is the unique invariant
probability measure under P on (S,B(S)); that is, the unique probability measure on
S such that
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∫
S
φdμ̃ =

∫
S
Pφdμ̃ for φ ∈ B(S).

Lemma 4.2 Suppose that the operator G is strictly irreducible on D. The Markov
chain (X̃n) has a unique invariant probability measure μ̃ on E and for g ∈ B(E), we
have

∫
E
Ex, l g(X̃1)μ̃(dx) =

∫
E
g(x)μ̃(dx). (4.5)

Proof For each φ ∈ B(E) and φ ≥ 0, define

f (x, i) = Ex,iφ (X (τ2)) , (x, i) ∈ R
d × M. (4.6)

We claim that f (·) is G-harmonic in D×M. Indeed, let f (x, i) = Ex,iφ
(
X (σE×{l})

)
for (x, i) ∈ Dc × M. By the strong Markov property, we obtain

f (x, i) = Ex,i f (X (τ1),�(τ1)) , (x, i) ∈ R
d × M.

Thus, f (·) is G-harmonic in D × M. Next we define

Pφ(x) = Ex, lφ (X (τ2)) for φ ∈ B(E), x ∈ E .

It follows from (4.6) that Pφ(x) = f (x, l) for x ∈ E . Using the Harnack inequality
for G-harmonic functions (see Remark 2.1(c) and [6, Theorem 4.7]), there exists a
positive constant κE such that

Pφ(x) ≤ κE Pφ(y) for all x, y ∈ E, φ ∈ B(E). (4.7)

Note that κE is independent of φ ∈ B(E). It can be seen that P : B(E) �→ B(E) is a
linear operator satisfying (4.3). To proceed, we need to verify (4.4).

In the contrary, assume that (4.4) were not true. Since P1F (x) ∈ [0, 1] for all
x ∈ E and F ∈ B(E), it follows from our assumption that there is a sequence
(xk, yk, Fk) ⊂ E × E × B(E) such that

P1Fk (xk) → 1, P1Fk (yk) → 0 as k → ∞.

This implies that

P1Fk (yk)
P1Fk (xk)

→ 0 as k → ∞,

contradicting (4.7). Thus (4.4) holds, and the conclusion follows from Theorem 4.1.
��
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Remark 4.3 Let τ be anFt -stopping time withEx,iτ < ∞ and let f : Rd × M �→ R

be a Borel measurable function. Then for any (x, i) ∈ R
d × M,

Ex,i

∫ τ

0
f (X (t + s),�(t + s))ds = Ex,i

∫ τ

0
EX (s),�(s) f (X (t),�(t))ds. (4.8)

Indeed, since τ is anFt -stopping time, the function1[s<τ ] isFs-measurable. Therefore,

Ex,i

∫ τ

0
f (X (t + s),�(t + s))ds =

∫ ∞
0

Ex,iEx,i
(
1[s<τ ] f (X (t + s),�(t + s)) |Fs

)
ds

= Ex,i

∫ ∞
0

1[s<τ ]Ex,i ( f (X (t + s),�(t + s)) |Fs) ds

= Ex,i

∫ τ

0
EX (s),�(s) f (X (t),�(t))ds,

as desired.

Theorem 4.4 Suppose that the operator G is strictly irreducible on D and that condi-
tion (C1) holds. The process (X (t),�(t)) has an invariant probability measure ν̃(·, ·).
Proof Let A ∈ B(Rd) and i ∈ M. Using the cycle times given in (4.1), we define

ν(A, i) :=
∫
E

μ̃(dx)Ex, l

∫ τ2

0
1A×{i}(X (t),�(t))dt, (4.9)

where
∫ τ2
0 1A×{i}(X (t),�(t))dt is the time spent by the path of (X (t),�(t)) in the

set (A × {i}) in the first cycle [0, τ2). Then ν(·, ·) is a positive measure defined on
B (

R
d × M)

.
We claim that for any bounded and Borel measurable function g(·, ·) : Rd × M

�→ R,

m∑
j=1

∫
Rd

g(x, j)ν(dx, j) =
∫
E

μ̃(dx)Ex, l

∫ τ2

0
g((X (s),�(s))ds, (4.10)

holds. Indeed, if g(y, j) = 1A×{i}(y, j) for some A ∈ B(Rd) and i ∈ M, then (4.10)
follows directly from (4.9). Similarly, we obtain that (4.10) holds for g being a simple
function

g(y, j) =
n∑

k=1

ck1Uk (y, j) where Uk ∈ B(Rd × M), ck ∈ R.

Finally, if g is a bounded and Borel measurable function, (4.10) follows by approxi-
mating g by simple functions. Let f be a bounded and Borel measurable function on
R
d × M. It follows from (4.10) for g(x, i) = Ex,i f (X (t),�(t)) and (4.8) that
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m∑
i=1

∫
Rd

Ex,i f (X (t),�(t))ν(dx, i)

=
∫
E

μ̃(dx)Ex,l

∫ τ2

0
EX (s),�(s) f (X (t),�(t))ds

=
∫
E

μ̃(dx)Ex,l

∫ τ2

0
f (X (t + s),�(t + s))ds

=
∫
E

μ̃(dx)Ex,l

∫ τ2

0
f (X (u),�(u))du

+
∫
E

μ̃(dx)Ex, l

∫ t+τ2

τ2

f (X (u),�(u))du

−
∫
E

μ̃(dx)Ex, l

∫ t

0
f (X (u),�(u))du. (4.11)

Using (4.5) with g(x) = Ex,l
∫ t+τ2
τ2

f (X (u),�(u))du, we obtain that

∫
E

μ̃(dx)Ex,l

∫ t+τ2

τ2

f (X (u),�(u))du

=
∫
E

μ̃(dx)Ex,lEX̃1,l

∫ t

0
f (X (u),�(u))du

=
∫
E

μ̃(dx)Ex, l

∫ t

0
f (X (u),�(u))du. (4.12)

As noted in (4.2), (X̃n, l) = (X (2n), l), sampled from the switching jump diffusion,
is a discrete time Markov chain. By (4.11), (4.12), and (4.10), we have

m∑
i=1

∫
Rd

Ex,i f (X (t),�(t))ν(dx, i) =
m∑
i=1

∫
Rd

f (x, i)ν(dx, i).

In view of the proof of Lemma 3.11, we have

sup
x∈E

Ex, lτ2 < ∞. (4.13)

By (4.13) and (4.9), for each j ∈ M, we obtain

ν(Rd , j) ≤
∫
E
Ex, l [τ2]μ̃(dx) < ∞.

Thus, the normalized measure

ν̃(A, i) = ν(A, i)∑m
j=1 ν(Rd , j)

, (A, i) ∈ B(Rd) × M,
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defines a desired invariant probability measure. This concludes the proof. ��
The following result further characterizes invariant probability measures of

(X (t),�(t)).

Proposition 4.5 Under conditions of Theorem 4.4, let ν̃ be an invariant probability
measure of (X (t),�(t)). Then for any bounded domain D ⊂ R

d and any l ∈ M,
ν̃(D, l) > 0.

Proof Weargue by contradiction. Suppose that ν̃(D, l) = 0. Let x0 ∈ D and r ∈ (0, 1)
such that B(x0, 2r) ∈ D. By Remark 2.1(c) and [6, Proposition 4.1], there exists a
constant c1 > 0 such that

Px,i

(
τB(x,r) ≤ c1r

2
)

≤ 1

2
for (x, i) ∈ B(x0, r) × M.

Let t0 = c1r2. It follows that

Px,l
(
τB(x0,2r) ≤ t0

) ≤ Px,l
(
τB(x,r) ≤ t0

)

≤ 1

2
, x ∈ B(x0, r). (4.14)

Define

τ ∗ = inf{t > 0 : �(t) 	= �(0)}, τ ∗
B(x0,2r) = τB(x0,2r) ∧ τ ∗.

It can be seen that for any x ∈ B(x0, r), there is a number c2 > 0 such that Px,l(τ
∗ >

t0) ≥ exp(−c2t0). We deduce that

Px,l(τ
∗ ≤ t0) = 1 − Px,l(τ

∗ > t0)

≤ 1 − exp(−c2t0)

≤ c2t0.

Take a smaller r if needed to have c2c1r2 ≤ 1/8. Then we obtain Px,l(τ
∗ ≤ t0) ≤ 1/8

for all x ∈ B(x0, r). Together with (4.14), we arrive at

Px,l

(
τ ∗
B(x0,2r) ≥ t0

)
≥ 1 − Px,l

(
τB(x0,2r) ≤ t0

) − Px,l(τ
∗ ≤ t0)

≥ 1

4
, x ∈ B(x0, r). (4.15)

Let K ⊂ R
d be a compact set satisfying

∑m
i=1 ν̃(K, i) > 1/2. By Lemma 3.11 and

its proof, there is a constant c3 such that

Ex,iσB(x0,r), l ≤ c3 for any (x, i) ∈ K × M.
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Then for t1 = 2c3,

inf
(x,i)∈K×M

Px,i
(
σB(x0,r), l > t1

) ≤ c3
t1

= 1

2
. (4.16)

Since ν̃ is an invariant probability measure of (X (t),�(t)),

m∑
i=1

∫
Rd

Ex,i1D×{l}(X (t),�(t))̃ν(dx, i) =
m∑
i=1

∫
Rd

1D×{l}(X (t),�(t))̃ν(dx, i)

= ν̃(D, l).

Using (4.15) and (4.16), we obtain

ν̃(D, l) = 1

t0 + t1

m∑
i=1

∫ t0+t1

0
dt

∫
Rd

Ex,i1D×{l}(X (t),�(t))̃ν(dx, i)

≥ 1

t0 + t1

m∑
i=1

∫ t0+t1

0
dt

∫
K
Ex,i1B(x0,2r)×{l}(X (t),�(t))̃ν(dx, i)

= 1

t0 + t1

m∑
i=1

∫
K

ν̃(dx, i)Ex,i

∫ t0+t1

0
1B(x0,2r)×{l}(X (t),�(t))dt

≥ 1

t0 + t1

m∑
i=1

∫
K

ν̃(dx, i)Ex,i

[
1{σB(x0,r), l≤t1}EX (σB(x0,r), l ), l

[
1{τ∗

B(x0,2r)≥t0}
∫ t0+t1

τ∗
B(x0,r)

1B(x0,2r)×{l}(X (t),�(t))dt
]]

≥
∑m

i=1 ν̃(K, i)

t0 + t1
inf

(x,i)∈K×M
Px,i

(
σB(x0,r), l ≤ t1

)
inf

x∈B(x0,r)
Px,l

(
τ ∗
B(x0,2r) ≥ t0

)
t0

≥ t0
16(t0 + t1)

,

contradicting to ν̃(D, l) = 0. This proves the proposition. ��

5 Examples

This section is devoted to several examples. In the first two examples, we give sufficient
conditions for the existence of Lyapunov functions needed in the theorems above and
thus the main results of this paper apply. In the third example, we point out the effect
of spatial jumping component to the asymptotic properties of regime-switching jump
diffusions. In the last example, we mention the implication of the main results to
controlled two-time-scale system.

Example 5.1 Assume that assumptions (A1)–(A4) hold and that the operator G is
strictly irreducible. We further assume that there exists a constant δ ∈ (0, 2) such that
for any i ∈ M and N ∈ (0,∞),
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b′(x, i)x
|x |2−δ

+ N
∫

|z|>1
|z|δπ̃i (x, z)dz → −∞ as |x | → ∞. (5.1)

Then condition (C1) is satisfied and the process (X (t),�(t)) is positive recurrent.
To show this, let f ∈ C2(Rd) be a nonnegative function such that f (x) = |x |δ for
|x | ≥ 1. Define V (x, i) = f (x) for (x, i) ∈ R

d × M. Moreover, the gradient and
Hessian matrix are given by

∇ f (x) = δx

|x |2−δ
, ∇2 f (x) = δ Id

|x |2−δ
− δ(2 − δ)xx ′

|x |4−δ
, |x | ≥ 1,

where Id is the d × d identity matrix. For |x | ≥ 1, we have

GV (x, i) = 1

2
tr
[
a(x, i)∇2 f (x)

]
+ δb′(x, i)x

|x |2−δ

+
∫

|z|≤1

[
f (x + z) − f (x) − ∇ f (x) · z]π̃i (x, z)(dz)

+
∫

|z|>1

[
f (x + z) − f (x)

]
π̃i (x, z)(dz). (5.2)

Since ∇2 f (·) and a(·, i) are bounded, we have

1

2
tr
[
a(x, i)∇2 f (x)

]

+
∫

|z|≤1

[
f (x + z) − f (x) − ∇ f (x) · z]π̃i (x, z)(dz) ≤ c1, x ∈ R

d , (5.3)

for some constant c1. Also for some constant c2, we have

∫
|z|>1

[
f (x + z) − f (x)

]
π̃(x, z)(dz)

≤ c2

∫
|z|>1

|z|δπ̃i (x, z)dz for all |x | ≥ 1. (5.4)

It follows from (5.2), (5.3), and (5.4) that

GV (x, i) ≤ c1 + δb′(x, i)x
|x |2−δ

+ c2

∫
|z|>1

|z|δπ̃i (x, z)dz.

Using (5.1), there exists a constant c3 such that LV (x, i) ≤ −1 for |x | ≥ c3 and
i ∈ M. By virtue of Theorem 3.4, the process (X (t),�(t)) is positive recurrent.

Example 5.2 Suppose that assumptions (A1)–(A4) hold and d = 1. We assume that
the operator G is strictly irreducible and

∫
|z|≥1 |z|π̃i (x, z)dz < ∞ for any (x, i).
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Define

A(x, i) = b(x, i) +
∫
1<|z|≤|x |

zπ̃i (x, z)dz, B(x, i) =
∫

|z|>|x |
|z|π̃i (x, z)dz.

We claim that the process (X (t,�(t)) is positive recurrent if

lim sup
|x |→∞

[
A(x, i)sgn(x) + B(x, i)

]
< 0. (5.5)

Indeed, let f ∈ C2(R) be a nonnegative function such that f (x) = |x | for |x | > 1 and
f (x) ≤ |x | for |x | ≤ 1. Define V (x, i) = f (x) for (x, i) ∈ R × M. For sufficiently
large |x |, we claim that

I1 : =
∫

|z|≤1

[
f (x + z) − f (x) − f ′(x)z

]
π̃i (x, z)(dz) = 0,

I2 : =
∫
1<|z|≤|x |

[
f (x + z) − f (x)

]
π̃i (x, z)(dz) ≤ sgn(x)

∫
1<|z|≤|x |

zπ̃i (x, z)dz,

I3 : =
∫

|z|>|x |
[
f (x + z) − f (x)

]
π̃i (x, z)(dz) ≤

∫
|z|>|x |

|z|π̃i (x, z)dz. (5.6)

Indeed, suppose x > 0 and |x | is large. It is clear that I1 = 0. Note that for z ∈
[−x,−x + 1], f (x + z) ≤ x + z and for z ∈ [−x + 1,−1], f (x + z) = x + z. It
follows that

I2 =
∫ x

1

[
f (x + z) − f (x)

]
π̃i (x, z)(dz) +

∫ −1

−x

[
f (x + z) − f (x)

]
π̃i (x, z)(dz)

=
∫ x

1
zπ̃i (x, z)(dz) +

∫ −x+1

−x

[
f (x + z) − f (x)

]
π̃i (x, z)(dz)

+
∫ −1

−x+1

[
f (x + z) − f (x)

]
π̃i (x, z)(dz)

=
∫ x

1
zπ̃i (x, z)(dz) +

∫ −x+1

−x
zπ̃i (x, z)(dz) +

∫ −1

−x+1
zπ̃i (x, z)(dz)

=
∫
1<|z|≤|x |

zπ̃i (x, z)dz.
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Note also that for z ∈ [−x − 1,−x], f (x + z) ≤ −x − z and for z ∈ [−∞,−x − 1],
f (x + z) = −x − z. It follows that

I3 =
∫ ∞

1

[
f (x + z) − f (x)

]
π̃i (x, z)(dz) +

∫ −1

−∞
[
f (x + z) − f (x)

]
π̃i (x, z)(dz)

=
∫ ∞

1
zπ̃i (x, z)(dz) +

∫ −x−1

−∞
[
f (x + z) − f (x)

]
π̃i (x, z)(dz)

+
∫ −x

−x−1

[
f (x + z) − f (x)

]
π̃i (x, z)(dz)

=
∫ ∞

1
zπ̃i (x, z)(dz)

+
∫ −x−1

−∞
(−z − 2x)π̃i (x, z)(dz) +

∫ −x

−x−1
(−z − 2x)π̃i (x, z)(dz)

≤
∫

|z|>|x |
|z|π̃i (x, z)dz.

Thus, (5.6) is proved for x > 0. Similar argument leads to (5.6) for x < 0. Detailed
computations give us that GV (x, i) = A(x, i)sgn(x) + B(x, i) for sufficiently large
|x | and i ∈ M. By (5.5), condition (C1) is satisfied. Thus, (X (t),�(t)) is positive
recurrent.

Example 5.3 To illustrate the effect of the jump component on asymptotic proper-
ties of regime-switching jump diffusions, consider a Markov process

(
X0(t),�0(t)

)
associated with the operator

G0 f (x, i) = 1

2
a(x, i)

∂2 f (x, i)

∂x2
+ b(x, i)

∂ f (x, i)

∂x
+Q(x) f (x, ·)(i), (x, i) ∈ R × M,

where Q(·) is strictly irreducible and assumptions (A1)–(A2) are satisfied. Then(
X0(t),�0(t)

)
is the unique solution of the stochastic differential equations with

regime-switching given by

dX0(t) = b
(
X0(t),�(t)

)
dt +

√
2a(X0(t),�(t))dw(t),

P

(
�0(t + �t) = j |�0(t) = i, X0(s),�0(s), s ≤ t

)
= qi j

(
X0(t)

)
�t + o(�t).

Suppose b(x, i) = 1 for x > 1 and b(x, i) = −1 for x < −1. Using [23, Theorem
3.23], we can check that there exits (y, l) ∈ R

d ×M and a bounded domain D ⊂ R
d

such that Py,l(σD = ∞) > 0. Hence,
(
X0(t),�0(t)

)
is not recurrent (i.e., it is

transient). It follows thatPy,l

(
|X0(t)| → ∞ as t → ∞

)
= 1 for all (y, l) ∈ R×M;

see [23, Chapter 3].
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Next we consider a Markov process (X (t),�(t)) associated with the operator

G f (x, i) = G0 f (x, i)

+
∫
Rd

(
f (x + z, i) − f (x, i) − ∇ f (x, i) · z1{|z|<1}

)
π̃i (x, z)dz,

where π̃i (x, z) satisfies assumptions (A3)–(A4) and (5.5). Ignoring the drift term
b(x, i), condition (5.5) means that for x < 0 and |x | is sufficiently large, the intensity
of large jumps to the right (i.e., z > 0) is much stronger than that to the left (i.e.,
z < 0); while for x > 0 and |x | is sufficiently large, the intensity of large jumps to the
left is much stronger than that to the right. By our preceding example, (X (t),�(t))
is positive recurrent. Thus, the jump component has certain stabilization effect on
regime-switching Markov processes.

Example 5.4 In this example, we consider a controlled two-time-scale system.
Because it is meant to be for demonstration purpose only, we will be very brief.
Suppose that we have a fast varying switching jump diffusion Z ε(t) = (Xε(t),�ε(t))
with the generator Lε given by (2.1) (with the corresponding coefficients indexed by
ε) such that aε(x, i) = â(x, i)/ε, bε(x, i) = b̂(x, i)/ε, πε

i (x, dz) = π̂i (x, dz)/ε,
and Qε(x) = Q̂(x)/ε, and that b̂(·, ·), â(x, i), π̂i (·, ·), and Q̂(·) satisfy conditions
(A1)–(A4). Hence conditions (A1)–(A4) are all satisfied for this operator. Moreover,
we suppose that Q̂(·) is strictly irreducible on some bounded domain of Rd .

Consider a second controlled process Y ε(·) depending on Xε(·)with operator given
by

Lζ f (y) = [∇ f (y)]′
∫
U
b1(y, ζ, c)mt (dc) + 1

2
tr[σ1(y, ζ )σ ′

1(y, ζ )∇2 f (y)],

where Lζ denotes that the operator depends on ζ = (x, i) as a parameter, mt (·) is
a relaxed control representation (see [10, Chapter 3.2] for the notation), and U is
a compact subset of Rd1 (for some positive integer d1) representing the control set.
Suppose that for each i ∈ M and each x and each c, b1(·, ζ, c) and σ1(·, ζ ) areC2 and
satisfy the linear growth and Lipschitz condition. Both Xε(·) and Y ε(·) take values
in R

d . Note that (Xε(·),�ε(·)) is fast varying, whereas Y ε(·) is slowly changing.
Although it varies fast, (Xε(·),�ε(·)) does not blow up. With a time scale change,
consider Xε

0(t) = Xε(εt) and �ε
0(t) = �ε(εt). As ε → 0, (Xε

0(·),�ε
0(·)) is running

on an infinite horizon [0,∞). Using the results of this paper, it can be shown that as
ε → 0, the fast process (Xε

0(·),�ε
0(·)) has an invariant measure ν̂(·, ·).

Consider a control problem in a finite horizon [0, T1] with T1 < ∞. We wish to
minimize an objective function

J ε
ζ (y,mε(·)) = E

∫ T1

0

∫
U
G(Y ε(t), Xε(t),�ε(t), c)mε

t (dc),

where G(·) is a running cost function. In the above, we index the relaxed control m
by ε to indicate that it is a feedback control. Using the approach in [10], we can show
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that (Y ε(·),mε(·)) converges weakly to (Y (·),m(·)), which is a controlled diffusion
process with operator given by

L f (y) = [∇ f (y)]′
∫
U
b1(y, c)mt (dc) + 1

2
tr[a1(y)∇2 f (y)], (5.7)

where

b1(y, c) =
∑
j∈M

∫
b1(y, x, j, c)̂ν(dx, j),

a1(y) =
∑
j∈M

∫
σ1(y, x, j)σ

′
1(y, x, j )̂ν(dx, j). (5.8)

The limit cost function (the limit of J ε
ζ ) then becomes

J (y,m(·)) = E

∑
j∈M

∫ T1

0

∫
U

∫
G(Y (t), x, j, c)mt (dc)̂ν(dx, j).

Then we can find the optimal control or near optimal control of the averaged system
(5.7) and use it in the original system for approximation to get near optimality. Note
that in [10], the controlled systems are given by using the corresponding differential
equations, whereas here we present the system using the associated operators. They
are in fact, equivalent. The key idea in [10] is to use controlled martingale to obtain the
optimality. Here using the operators, the controlled martingales can be easily setup. In
contrast to [10], the jump process in this paper can have σ -finite jump measure. The
established invariant measure enables us to extend the results in [10] to jumps living
in a non-compact set. Our results thus paved a way for further study on various control
and optimization problems involving ergodicity.

6 Further Remarks

This paper focused on recurrence and ergodicity of a class of switching jump diffusion
processes. Criteria for recurrence and positive recurrence were derived, and existence
of invariant measure was obtained. The results obtained here will help future study in
controlled dynamic systems, in particular, long-run average cost per unit time problems
for controlled switching jump diffusions. Such study will have great impact on various
applications involving optimal controls in an infinite horizon.
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