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Abstract

Delays are ubiquitous, pervasive, and entrenched in everyday life, thus taking it into consideration is
necessary. Dupire recently developed a functional It6 formula, which has changed the landscape of the
study of stochastic functional differential equations and encouraged a reconsideration of many problems
and applications. Based on the new development, this work examines functional diffusions with two-time
scales in which the slow-varying process includes path-dependent functionals and the fast-varying process
is a rapidly-changing diffusion. The gene expression of biochemical reactions occurring in living cells in
the introduction of this paper is such a motivating example. This paper establishes mixed functional 1t6
formulas and the corresponding martingale representation. Then it develops an averaging principle using
weak convergence methods. By treating the fast-varying process as a random “noise”, under appropriate
conditions, it is shown that the slow-varying process converges weakly to a stochastic functional differential
equation whose coefficients are averages of that of the original slow-varying process with respect to the
invariant measure of the fast-varying process.
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1. Introduction and motivation

In the seminal work [13], Dupire introduced a functional It formula using pathwise func-
tional derivatives, which quantify the sensitivity of functional variations at the endpoint of a
path. This approach was further carefully worked out and much extended by Cont and Fournié
[10], and Bally, Caramellino, and Cont [2]. The newly developed functional 1t6 formula changed
the landscape of the study of stochastic functional equations. It opens up hopes for solving many
problems that we were not able to deal with due to the lack of machinery for a long time. Mo-
tivated by the new development, aiming at substantially reducing computational complexity for
systems involving functional diffusions, this work develops averaging methods for two-time-
scale functional diffusions. It presents an effort from two distinct angles. The first one stems from
the formulation of functional diffusion systems thanks to the recent development; see Dupire [13]
and also Cont and Fournié [10]. The second perspective is on two-time-scale formulation, which
has a long illustrated history that may be traced back to the original work of Khasminskii [20].
The two features together produce a fresh new look of two-time-scale functional diffusions.

Delays are ubiquitous, pervasive, and entrenched in everyday life. As a result, they have
received considerable attention in a wide range of applications in process control, automotive
systems, biomedical sciences, epidemics, transport, communication networks, and population
dynamics [15,18,26,29]. The motivation stems from non-instant transmission phenomena, for
example, high velocity fields in wind tunnel experiments, or other memory processes, or biologi-
cal applications. In general, delay or more general functional differential equations exhibit much
more complicated dynamics than that of ordinary differential equations because of the infinite
dimensionality; see [3,34,37,44]. Systems involving uncertainty and delay are often described
by stochastic delay or functional differential equations, which are frequently the sources of in-
stability [25]. In recent years, such systems have become an important focal point of research
and investigation. It is well known that the solutions of stochastic functional or delay differential
equations are non-Markov because of the dependence of history. Thus none of the properties
of solutions based on Markov property are applicable; see [3,37,44]. Despite the effort, treating
stochastic systems with delays and functional systems remains a rather difficult task. Although
there were many excellent works on stochastic delay equations, until very recently, there were
virtually no bona fide operators and functional It6 formulas except for some general setup in a
Banach space [37].

Many applications in science and engineering contain random processes that can be modeled
by fast-slow motions or involving two-time-scale random processes; see [4,45,47,48]. There are
numerous applications of systems under consideration, especially because of the recent progress
in networked systems. Before proceeding further, let us mention a couple of motivational exam-
ples below. We shall return to Example 1.2 in Section 6.

Example 1.1. We consider a feedback control of a functional diffusion given by

1 1
d&e(r) = gh(és(t))dt + ﬁo(és(t))dw(t),
dx®(t) = f(x* (1), x;,&5(t), u (), 1)dt + o1 (x* (1), x;, 5 (1), )dw (1),

(1.1
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where h : RY > R?, o : R x C([0, T];R") x [0, T] — R4 f:R" x C([0,T];R") x
R x U x [0, T] — R”, u(z) is a feedback control living in a compact subset U of R", o7 :
R” x C([0, T]; R") x R? x [0, T] +— R"™¥", w(-) and w(-) are d-dimensional and r-dimensional
independent standard Brownian motions, respectively, x;, denoting the dependence of history, is
to be specified later, and ¢ > 0 is a small parameter. The smaller the ¢ is, the more variation is
encountered in £°(¢). The control objective is to find a feedback control u = u(x®(¢)) so that cer-
tain objective function is minimized. The system is difficult to deal with. One is thus interested
in finding an approximate solution using averaging principles. If one can show that the slowly
varying component x?(-) has a limit, one hopes to develop strategies based on the limit system.
Using such strategies in the original more complex system leads to nearly optimal controls. The
current paper provides a key approach to realize this plan.

Example 1.2. Gene expression is a complex process involving many biochemical reactions with
proteins being the final products. It is a challenging task to develop a systematic and rigorous
treatment of stochastic dynamics with time delays and to investigate combined effects of stochas-
ticity and delays in concrete models. In a deterministic approximation, one often models it by a
system with a number of differential kinetic rate equations describing transcription, translation,
and degradation. It is usually assumed that all these processes are instantaneous. However, some
reacting processes are rather slow, for example, the average translation speed is only about 2
codons/s; see [1]. Time delays or general memory in biological system are usually ascribed for
such processes.

In many biochemical reactions occurring in living cells, the number of various molecules
might be low with significant stochastic fluctuations. In addition, most reactions are not instan-
taneous, so there exist natural time delays in the evolution of cell states [5,36]. For example, the
process of degradation of both mRNA [9] and proteins [9,33,41] often consist of several steps
and can naturally be modeled using time delays. Delayed degradation of JAK?2 protein in sig-
naling pathways was considered in [9,33,35,41], and delayed protein degradation was studied in
[6]. Let us consider the following delayed protein degradation model; see also [36].

In a classical model of gene expression [42], molecules of mRNA are produced from DNA in
the process of transcription and then give rise to production of protein molecules in the process
of translation. Both types of molecules may degrade. Because the mRNA dynamics are faster
than the protein dynamics, we have a two-time-scale system; see [32,43]. Denote the intensities
of the biochemical reactions by &, /¢, k, ¥ /¢, and yp, respectively,

ky r
DNA %5 mRNaA, mRNA 25 g,
(1.2)
kp . . Vp
mRNA — Protein, Protein — @,

where the small parameter ¢ highlights the mRNA dynamics to be a fast-varying process. Denote
concentrations of mRNA and proteins by £¢ and x?, respectively. Then the equations of chemical
kinetics read

dgs 1
: df’) =~y (1),
(1.3)
dxt(t)

dr =kp§£(t)_ypxs(t)~
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Following the work [6], the authors of [36] took into account the process of protein degradation
with time delay. In [6] and [36], to simplify the mathematical models, only fixed time delay
is considered, whereas distributed delays treated as memory were considered in [5]. When the
complete memory is considered, integral delay from O to ¢ is more suitable. Then system (1.2)
may be rewritten as

kr/e vr/€

DNA —> mRNA, mRNA — @, (1.4)
k , ) .
mRNA —2 Protein, Protein i) @, Protein y“’:“ﬁ @,

where in the last reaction, “=>""shows the reaction intensity depends on the complete memory.
Then the equation about x®(¢) in (1.3) may be rewritten as

t

=kp-§€(t)—Vpxg(t)—/)/d(S)xs(S)dsy (1.5)
0

dxé(t)
dt

where y,4(s) can be seen as the degradation intensity of the protein produced at time s € [0, ¢].
This integral delay can also be seen as the approximation of multiple delays of the form

n
Y vixt— ),
i=1

where y; = () Aj, i =t —t; isthe delay, 0=ty <t; < --- <t <ty =t,and A; =141 —
t;. When more general path-dependent delay x; = {x®(6 At) : 0 <8 < T} is considered, one
may introduce functional 7 (x;) leading to a functional diffusion system with two-time scales as
follows:

dect) 1
= - kr - Vr € 1)),
T 8( v (1)
(1.6)
dxt(1) R e R
= kg€ (1) =yt (1) ).

Along with the development, when the intrinsic noises are considered as in [7,8,17], there exist
two Brownian motions w1 (#) and w; () such that the chemical Langevin equation corresponding
to the system (1.6) can be described by

1 1
d&f (1) = g(kr — v E5(1)dt + %\/kr + ¥EE(Ddw (1),
(1.7)

dx®(t) =[kp&°(t) — ypx®(t) — m(x;))dr + \/kpés(t) + ypxé(t) + mw(x))dwa(t).

The formulation is a two-time-scale diffusion system based on the chemical Langevin equa-
tion. In [36], the stochastic system with two-time scales stems from the master equation and the
stochastic simulation algorithm originally proposed by Gillespie [14]. Nevertheless, the stochas-
tic simulation algorithms are often computationally expensive and slow. One of the more efficient
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ways to reduce the computational load by using two-time-scale formulation in the chemical
Langevin equation, which was proposed and developed in our work Wu et al. [45] for diffusions
without delays. It is certainly important to establish a complexity reduction method (an averag-
ing principle) for the delay chemical Langevin equation since no existing results are available to
date.

One of the main features of the above examples is that the original systems are complex and
difficult to deal with, but one may obtain much simpler limit dynamic systems. Using the sim-
pler limit systems as a bridge, one may proceed to design feasible procedure to treat the original
systems; see [20-24,27,28,38-40,46]. To deal with the two-time-scale Markovian systems, one
may consider the associated transition probabilities through Kolmogorov-Fokker-Planck equa-
tions; see for example, Khasminskii and Yin [21-23] (see also related reference [24]). Such an
approach is essentially analytic. Another method is to use stochastic averaging to obtain certain
limit results, for example, Khasminskii [20], Kushner [27,28], and Pardoux and Veretennikov
[38]. Note that in the last reference above, partial differential equations were used as a bridge for
the averaging, whereas in [20,27,28,39,40,46] probabilistic methods were used as a primary tool.
In spite of the notable progress and effort, an averaging principle for two-time-scale stochastic
delay or functional systems has not been established to date, to the best of our knowledge.

With the recent advent of functional It6 formula, this paper aims to analyze functional diffu-
sions with two-time scales. Our main effort is to reduce the complexity. The original systems that
we are dealing with are difficult due to the fast varying processes and the noise influence. We aim
to obtain limit or averaged systems that are much simpler to deal with compared with the original
systems. We examine asymptotic properties of diffusion systems involving the path-dependent
functionals with two-time scales described by the following stochastic functional differential
equations

1 1
d&8(t) = —h(ES@))dt + —=¢ (5 (1)dw (1),
€ Ve (1.8)

dx®(t) =b(x;, & ()dt + ¥ (x/, E°(1))dw2 (1),

with non-random initial data £(0) € R”™ and x(0) € R”, where ¢ is a small parameter, x; :=
(Xwunt):0<u<T}, h=(hy,hy,...,hy) :R™ — R™, 7/ denotes the transpose of z, ¢ =
[@ijlmxty - R™ — R™N b = (b1,by,....,by) : C(I0, TER™) x R™ — R", ¢ = [Wij]axi, :
C([0, T]; R") x R™ — R"*2_and w; (r) and wo(¢) are independent standard Brownian motions
taking values in RY and R%, respectively.

Because the functional diffusion system (1.8) involves the path-dependent functionals (the
total past history), its solution is not a Markov process. Thus the techniques in the literature
for treating Markov processes are not applicable. Moreover, the weak convergence methods of
Kushner [27,28] cannot be applied directly either since we have to consider the differential of
the delay term. New approaches have to be developed. The system that we are interested in has
two parts. One part is a fast varying diffusion, and the other part is a slowly changing functional
diffusion. We develop an averaging principle to overcome the difficulties. A key of our approach
is the use of the newly developed functional It6 formula.

The rest of the paper is arranged as follows. Section 2 provides necessary notation, assump-
tions, and some preliminaries. Section 3 examines the invariant measure and the exponential
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ergodicity of the fast-varying process £¢(¢). Section 4 recalls the functional 1td formula and de-
velops the mixed Itd formula and the solution of the corresponding martingale problem. Using
these results, Section 5 derives the weak convergence of the slow-varying process x°(-) as ¢ — 0.
Section 6 extends our results using weaker conditions; a two-time-scale stochastic functional dif-
ferential equation involving the affine noise in the slow-varying subsystem is treated. Moreover,
a stochastic integro-differential equation with two-time scales is examined. In addition, Exam-
ple 1.2 is examined by using the two-time-scale analysis. Section 7 presents some concluding
remarks. Finally, an appendix is provided at the end of the paper as technical complements.

2. Notation, assumptions, and preliminaries

Throughout this paper, unless otherwise specified, we use the following notation. Let R”
denote the n-dimensional Euclidean space with the Euclidean norm | - |, and B(R") be the Borel
set of R”. For each N > 0, let Sy = {x : |[x| < N} be a ball with radius N centered at the origin.
For a vector or matrix A, denote its transpose by A’; for a matrix A, denote its trace norm by
|A| = /Tr(A’A). For a, b € R", {a, b) = a’b represents the inner product of a and b. Denote by
D([0, T]; R™) the space of functions defined on [0, T'] with values in R” that are right continuous
with left limits. Denote by C([0, T]; R") the family of continuous functions from [0, 7] to R”,
by C!(R”; R) the family of functions on R” that have continuous partial derivatives up to the /th
order, by C(l) (R”; R) the family of C!(R"; R) functions with compact support. Throughout the
paper, K denotes a generic positive constant, whose value may change for different usage. Thus,
K + K =K and KK = K are understood in an appropriate sense. Similarly, K denotes the
generic positive constant depending on N. We use ¢ > 0 to represent a small parameter.

In this paper, if x(¢) is a stochastic process, denote by F;* = o {x(s) : s <t} the filtration
generated by {x(s) : s <¢}, and Ef the corresponding conditional expectation. Based on x ()
for ¢ € [0, T'], define the process x; = {x(u At) : 0 <u < T} as a function on [0, T'], that is, the
efficient information is still in [0, ¢]. This implies that x; is an ;" -adapted stochastic process. For
the stochastic processes £°(-) and x°(-) dependent on ¢, we define F; as the o -algebra generated
by {£°(s), x®(s) : s < t}, and E{ the conditional expectation on ;. In what follows, we assume
the initial data of £°(-) and x°(-) are non-random. Then F is contained in the o -algebra gener-
ated by {w(s) : s <t/e; wa(u) : u < t}, which reflects the two-time-scale feature. Let M denote
the set of real-valued progressively measurable functions that are nonzero only on a bounded
t-interval and

M = {f e M :supE|f(t)] < oo and f(¢) is ]—"f—measurable}. (2.1)
t

Using [27,30], let us recall the definitions of the p-lim and the infinitesimal operator L as fol-
lows. Note that the p-lim was first introduced by Rishel and further worked out by Kurtz in the
1970s. Using conditional expectation, it in fact, introduces certain operators. The essence is that
the operator provided is a kind of infinitesimal operator. When we use the p-lim in the actual cal-
culations, some of them involve the classical Itd formula, whereas others use the functional It6
formula. For example, in (5.26) of this paper, the first term is from the classical 1t6 formula and
the second term is from the functional Itd established in this paper. Because these 1t6 formulas
are in the almost sure sense, they also work in the sense of “p-lim.
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Definition 2.1. Let f, f® ¢ M for each § > 0. We say f =p-lims f? if and only if

supE| £°(1)| < o0,
t,8

gin})E|f‘s(t)—f(t)| =0 foreach r.

This definition implies that p-lim, f¢ =0 if f(-) =0 and ¢ replaces § and f* € M’ for each
e>0.

Definition 2.2. We say that f(-) € D([ﬁ5 ), the domain of Y ,and Le f=gif f,ge M’ and

Efft+8)—f@)
8

p-lim ( g(t)) —0.

810
Thus £f is a type of infinitesimal operator. The following lemma was proved in Kurtz [30].

Lemma 2.1. If f € D(L?), then

t
M) = f(1) — / £¢ f(w)du
0

is a martingale, and
t+s
EE f(t +5)— f(t) =Ef / LE f(u)du w.p.1.
t
3. Invariant measure of the fast-varying process
To obtain the weak convergence of the slow-varying x°(¢) as ¢ — 0, certain ergodicity is cru-
cial. In (1.8), £¢(¢) is rapidly varying in contrast to x°(¢). To proceed, we first consider asymptotic

properties of £¢(¢) as ¢ — 0. Let us define the process E°(t) = £°(er). The equation for £° may
be rewritten as

dEE (1) = h(EE (1))dt + ¢ (ES (1))dw (1), 3.1)

where W(r) = wj(et)/4/€ is a standard Brownian motion. Letting £¢(¢) = §(¢/¢), &£(¢) satisfies
the following stochastic differential equation

d&(t) = h(E®)dt 4 ¢ (§(1))dw(t). (3.2)

For the limit problem that we are interested in, we need the following condition.
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(A1) Equation (3.2) has a unique strong solution £(¢) for any ¢ € [0, T']. The solution is
Fo'-adapted and is a strong homogeneous Markov process. In addition,

E(sup,e[oyﬂ |§(t)|2) < Cr, where Cr is a constant depending on 7. Moreover, the pro-

cess given by (3.2) is exponentially ergodic with a unique invariant measure fi(-).

Remark 3.1. For our purposes of averaging, (A1) is all we need. It is standard nowadays that un-
der suitable conditions, one first obtains a local existence of solution and then extend the solution
to a global solution using regularity; the proof of ergodicity follows from the non-degeneracy of
the diffusion and certain stopping time argument. One may consult [24, Section 3.4, Section 4.4]
for some details. It is also known that even for certain degenerate diffusions, we can still have
the desired exponential ergodicity. However, it is not clear that one can give general conditions
to cover every possible case. Nevertheless, for given systems, they can clearly be handled in a
case-by-case fashion. Owing to this consideration, we simply state (A1) as it is. One may won-
der what conditions will ensure (A1). To illustrate, we provide some sufficient conditions below
together with a theorem stating the implications of the conditions. Note that the conditions in the
following theorem are only sufficient but not necessary. Even if these conditions are not satisfied,
(A1) may still hold. The proof of the following theorem is outlined in Appendix A; see also [44]
for a stochastic functional differential equation counterpart.

Theorem 3.2. Assume that h(-) is locally Lipschitz continuous and there exists Ay such that for
any y1, y» € R™,

1 = y2, k(1) — h(32)) < —Aily1 — y2l?

and ¢ (+) is globally Lipschitz continuous, i.e., there exists Lo such that

o (V1) — d ()1 < Aaly1 — 2l

Then equation (3.2) admits a unique strong solution &(t) globally for any t € [0, T], which is
Fo'-adapted and satisfies the following properties:

(1) the solution is a strong homogeneous Markov process;
(i1) ]E( sup |§(t)|2> < Cr, where C7 is a constant depending on T;

1€[0,T]
(iil) if2X1 > Ay, then (3.2) has a unique invariant measure |(-), which is exponentially ergodic.

In lieu of the sufficient conditions above, other conditions guaranteeing these results can also

be provided. For example, for the first equation in (1.7) of Example 1.2, letting £¢(¢) = &(¢/¢)
gives

d§@) = [kr — yr§®1dt + Vkr + yrE@©)dw(1). (3.3

Moreover, define é (t) =k, + v+&(t). Then,

dE(1) = v, 2k, — E(D))d1 + v E@)d D (D),
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which does not satisfy the local Lipschitz condition. However it can be shown that it has a unique
global solution, known as the mean-reverting square root process, and this solution is pth mo-
ment bounded for any p > 0 and exponentially ergodic with the stationary distribution being the
noncentral chi-square distribution; see [11,34].

4. Functional It6 formula and martingale problem
In this section, we consider the following stochastic functional differential equation
dX(t)=B(t, Xp)dt + ¥, X,)dW (1) 4.1)

with the deterministic initial value X (0) € R”, where X; .= {X(u At) :0<u <T}, B =
(B1,Ba,...,By) iRy x D([0, TI; R") = R", W = [W;;],x, : Ry x D([0, T]; R") — R<D2
W (¢) is an [;-dimensional standard Brownian motion. We assume that there exists an .Ftw-adapted
solution x(¢t) on [0,T] and B(t) = B(t,X;) € LI(R+;R”) and V(t) = V({#, X,) €
L2(R; R"*2), where ]-",W is the filtration generated by the Brownian motion W (1), L1 (R, ; R")
denotes the family of all R”-valued measurable JF)Y-adapted processes Fj(¢) such that
fOT |F1(t)|dt < oo almost surely for every T > 0, and L?(R; R"*2) denotes the family of

all R"*2.yalued measurable .Flw—adapted processes F(t) such that fOT |F2(t)|2dt < 00 almost
surely for every 7' > 0.

In an insightful work, Dupire [13] proposed a method for defining a non-anticipative calculus,
which extends the Itd formula to path-dependent functionals of stochastic processes. To proceed,
we first give the definitions of the horizontal and the vertical derivatives, respectively; see also
[2,10].

Definition 4.1. For x;, = {x(u A t) : 0 < u < T}, a non-anticipative functional F : [0, T] x
D([0,T];R") — R is said to be horizontally differentiable at (¢, x) € [0, T] x D([0, T']; R")
if the limit

F(t+56, — F(,
DF(t.x) = lim L4 F9:x) = F(t.x)
§—0t )

exists. The DF (¢, x) is called horizontal derivative of F at (¢, x).
Definition 4.2. For x;, = {x(u A t) : 0 < u < T}, a non-anticipative functional F : [0, T] x

D([0, T]; R") — R is said to be vertically differentiable at (¢,x) € [0, T] x D([0, T]; R") if
the functional map

e— F(t,x; +ely 1))
is differentiable at 0. Its gradient at O is called the vertical derivative of F at (¢, x):
Vi F(t,x)=(01F(t,x),0F(t,x),...,0,F(z,x)),

where

F(t,x; +he1 1)) — F(t, x;)
. )

% F(t.x) = lim
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If F is vertically differentiable at all (t,x) € [0, T] x D([0, T]; R"), then V,F is a non-
anticipative functional called the vertical derivative of F. Repeating this procedure leads to the
definition of the second derivative, or V)%F (t,x)= [Bizj F(t, x)]nxn, the derivative of the gradient
at 0 (if it exists) of the map

e— Vi F(t,x; + el 1)).

Remark 4.1. In fact, to consider the derivative of functionals, we have to consider x;45 — x;.
Noting that x; = {x(t Au) : 0 <u < T}, roughly speaking,

Xeqgs — X =010 5 + [x @) — x @)z 148y () + [x(t +8) — x (O Lr45,77]-

As 8§ — 0, we need to consider the perturbation x; +elj; 7]. In view of these definitions, although
x; may be a continuous function if x(¢) is a continuous process, x; 4 el|;, 7] is right continuous
and has left limit, that it is in D([0, T]; R"). Thus we need to have F be defined on [0, T] x
D([0, TT; R™).

Now let us define the continuity for non-anticipative functionals; see [2].
Definition 4.3 (Joint continuity in (¢, x)). A continuous non-anticipative functional is a continu-

ousmap F :[0,T] x D([0, T]; R") — R if, for any (¢, x) € [0, T] x D([0, T]; R™), any A > 0,
there exists an 1 > 0, for any @, %) €[0,T] x D([0, T]; R™) satisfying

doo((t, %), (1,%)) = sup {|x(t Au) —X(t Au)|+ |t —T]} <7
uel0,T]

such that
|F(t,x) — F(1,%)| < A.

The set of jointly continuous non-anticipative functionals is denoted by C%°([0, T] x D(0, T);
R™).

Next, we introduce the notion of “local boundedness” for functionals. We call a functional F
“boundedness preserving” if it is bounded on each bounded set of paths [2,10].

Definition 4.4. A non-anticipative functional F : [0, T] x D([0,T]; R") — R is said to be
boundedness preserving if for any compact K € R" and #y < T, there exists a Kk , > 0, for

all t < tp and x € D([0, T']; K) such that |F(f, x)| < K 4, -

Let X (¢) be the solution to (4.1). Then X (¢) is a semimartingale whose quadratic variation
process can be represented by

t
[X1(t) = / | (u, X, du, (4.2)
0
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which is a finite quadratic variation process since W € L2(R ; R"*%2). To consider the derivative
of functionals, let us give the following definition.

Definition 4.5 (C!-2 functionals). Define C2([0, T] x D([0, T]; R"); R) as the family of con-
tinuous non-anticipative functionals V € C 0.0(10, T]1 x D([0, T]; R™); R) such that

(i) V admits a horizontal derivative DV (¢, x) forall ¢, x € [0, T] x D([0, T]; R"),and DV (¢, -)
is continuous for any ¢ € [0, T');
(i) V,V and V%V are jointly continuous;
@iii) DV, V,V and VfV are boundedness preserving.

Forany V e C L2([0, T1x D([0, T]; R"); R), Dupire and Cont et al. established the following
functional It6 formula; see [2,10,13].

Theorem 4.2 (Functional Ité formula). Let X (t) be the solution of (4.1). For any V €
CY2([0,T1 x D([0, TI; R"); R),

t t
V(t, X,) =V (0, Xo)+/DV(u,Xu)du+/va(u,Xu)dX(u)
0 0

t
% / V2V (u, X)Id[X1()
0

t t
=V, XO)—}—[EV(M,Xu)du+/VXV(u,Xu)\II(u,Xu)dW(u) as., (4.3)
0 0

where
n 1 n
L=D+) Bit, )0 +5 Y Wilt, )Wt )] (4.4)
i=1 i,j=1
is an infinitesimal generator for any (t,x) € [0, T] x D([0, T]; R"™). In particular, Y (t) =
V(t, X;) is a continuous semimartingale and

t
Vi, X)) — V0, Xo) — / LV (u, X,)du 4.5)
0

is a local martingale with respect to the o -algebra .F,W.

If V is assumed to be bounded (for example, V € C12([0, T'] x D([0, T]; R™); R) with com-
pact support), (4.5) is in fact a martingale and for any § > 0,
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t+38
EVV(+68, Xips)—V(t, X)) = / LV (u, X,)du as., (4.6)

t

where E}V is the conditional expectation with respect to F.
For v e C12([0, T] x R"; R) with compact support, the generator £ becomes L according to
the standard It6 formula. That is,

92
0y;dy;

R 3 1 ¢
L(t’x)‘:5+23f(t’x)a_yi+z D Wi, 0V, x) 47)
i=1

i,j=1
forx € C([0, T]; R™) and y = (y1, y2, ..., yu) € R". Theorem 4.2 implies that

t
v(t,X(t))—v(O,X(O))—/L(u,Xu)v(u,X(u))du
0

is a martingale with respect to the filtration 7V, and for any § > 0,

t+8
IEth(t+8,X(t+5))—v(t,X(t)):/L(u,XM)v(u,X(u))du a.s. 4.8)

t

Remark 4.3. Let us emphasize that here v is a function defined on [0, T] x R", but the operator
L is a functional operator on [0, T] x D([0, T]; R™), and the argument of X, in L(u, X,,) is from
that of the coefficients of B and W. In fact, the two generators £ and L are the same when the
horizontal derivative in functionals is the partial derivative w.r.t. time ¢ and the vertical derivative
is the partial derivative w.r.t. the state variable of the functions.

In this paper, we need to consider the derivative of V (¢, y, x) for (¢, y,x) € [0, T] x R" x
D([0, T]; R™), so we need to extend the existing functional It6 formula to include mixed deriva-
tives. First, we give the definition of (CO’O*O([O, T] x R" x D([0, T]; R™); R) similar to Defini-
tion 4.3 by choosing

doo((t,y, %), (1,5,%)) = sup |x(t Au) =Xt Auw)|+ |y =T+ 1t =1] <n.
uel0,T]

Then we can define C'22 functionals followed by mixed functional Itd formula.

Definition 4.6 (C>2 functionals). Define C1-22([0, T] x R” x D([0, T]; R"); R) as the family
of the jointly continuous non-anticipative functional V e C%%9([0, T]x R” x D([0, T]; R*); R)
such that

(i) V admits a horizontal derivative DV (¢, y, x) for all ¢, y, x € [0, T] x R" x D([0, T]; R"),
and DV (¢, -, -) is continuous for any ¢ € [0, T');
(i) V,V, V)%V, Vy, Vyy, and V, (Vy) are jointly continuous;
(iii) DV, V,V, V)%V, Vy, Vyy, and V, (V) are boundedness preserving.
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Theorem 4.4 (Mixed functional It6 formula). Let X (t) be the solution of (4.1). For any V €
CL22([0, TT x R" x D([0, T]; R"); R),

V([,X(t),Xt)
t
= V(O,X(O),X())—i—/DV(u,X(u),Xu)du
0

t
—}—/[Vy(u, X)), Xu)+ViV(u, X(w), X,)1dX (u)
0

t
1
+3 f |[Vyy (s X (), Xu) + V2V @, X (), Xi) + 2V Vy (u, X (), X,)1|d[X ()
0

t
= V(O,X(O),XO)—}—/]L(u,Xu)V(u,X(u),Xu)du
0

t
—i—/[Vy(u,X(u),Xu)—i—VxV(u,X(u),Xu)]‘-IJ(u,Xu)dW(u) a.s., 4.9)
0

where D, V,, and Vf were defined previously,

AV, y,x) aV({, y,x) 3V(t,y,X)>

v, ,x):(
iy ay1 ay2 ay2

2V (t,y,x)
Vyy = [7

avit,y, x))]
3yiayj nxn’

]m and Vi Vy(t,y,x) = [a,( o

and

- 3 1 « 32 3 5
L(t, x)- :D.-g-;B,-(t,x)[a—yi +a,-] .+§wz::1 wi(t,x)wj(u,x)[m +28"<W,-) +a,.j].

is an infinitesimal generator for any (t,x) € [0,T] x D([0, T]; R™). In particular, Y(t) =
V(t, X(t), X;) is a continuous semimartingale and

1
Vi, X (@), X;)—V(0, X(0), Xo) — /]L(u, X))V, X(u), Xy)du
0

is a local martingale with respect to the filtration }"tW.
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Proof. Let us denote a sequence 7 = {my}n>1 of partitions of [0, T'] as

v ={0=1) <t} <---<tly, =T}

and |Ty| = sup{|tfi1 — tiN|,i =1,2,...,k(N)} be the mesh size of the partition 7. For exam-

ple, one can choose ¥ =iT/2V,i=0,1,...,k(N) =2V, and |ry| =2V. Note that X (, w)
represents a sample trajectory of the solution. In the proof, for notional simplicity, we omit
and write X (¢, w) as X (¢) henceforth. Since any solution of (4.1) is continuous on [0, T], it is
uniformly continuous, which implies that for any trajectory X (¢),

N
i

ny =sup{|X @) — XN DI+ 168, =t uelt] 1N )} -0 as N — oo.

Since DV, V,\V, V%V, Vy, Vyy, and V,(Vy) are boundedness preserving, for sufficiently large
N and two sample paths X (¢), X*(t*) € D([0, T]; R*) and ¢, t* < T, if

doo((t, X (1)), (%, X*(t%))) := s[t(l)pT]{IX(t Au) =X @ Au)| + |t — ¥} < nw,
ue|l,

then DV, V.V, VfV, Vy, Vyy, and V,(Vy) are bounded. For any i < k(n) — 1, consider the
decomposition of increments into “horizontal”, and “vertical” terms as

VR X ). X ) = VA XA, X )
=V X @D Xy ) =V X @) X )+ VE X @) Xow )
— V@ X)), X )
=1L+ b. (4.10)

Denote AY =1/} | — ¥ and A@u) = V(Y +u, X (¢]}}). X,n ). Since V € C122([0, T] x R" x
i+

D([0, T]; R™); R), A is differentiable and

AN

N N
I = / Dv( +”’X(ti+l)’xzﬁl)d”'

0

Noting that when x; becomes x; 4 el|;, 7}, x () becomes x () 4+ e. We denote
_ N N
Fw)=vE , X@;")+u, X,ny+ M].[t_N’T]).

Since V € CH22([0, T] x R" x D([0, T1; R"); R), T' € C2(R"; R),

dl'(u)
du

= Vi@ XA +u Xy +ulyy 1)+ Vo V@ X G +u Xy +ulyy 1),

and
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d*T (u)

= Vg (M, XA +u, Xy oy 1)+ VIV @ XA +u Xy +ulyy )

+2Vx(Vy(tiN, X(tiN) +u, X,n+ MI[Z.N,T]))'

Denote § X lN =X (t.jfL =X (tiN ). Taking a Taylor expansion leads to

1

dr (u) v 1_rd’T@)
=Y sxd —T[

du luo” T2 a2
=V, X @), X)) + Ve VN, X @), x 18X )Y

I

_exysx) [+

1
IV 6 X @, X + VIV XA, X,

2V (Vy (Y X @) XpoIGX) XY+ 1Y

where rl.N is the remainder of the order o(|6 X lN ). Applying the same method as [2,10] gives
the first equation in (4.9). Substituting the finite quadratic variation process (4.2) into the first
equation gives the second equation in (4.9). In addition, (4.9) reveals that Y (¢) is a continuous
semimartingale and

t
Vi, X(t), X)) — V(0, X)), Xp) — /L(u, X)V(u, X(u), X,)du
0

is a local martingale with respect to the filtration F" as desired. O
Similar to (4.6) and (4.8), this theorem yields that if V is further bounded, for any § > 0,

t+6
IEZWV(t—i—S,X(t—i—S),X,M)—V(t,X(t),Xt)z]E;’V/]L(u,Xu)V(u,X(u),Xu)du as.
t

@11

Remark 4.5. In this theorem, if V € C 1’2([0, T1x D([0, T]; R™); R), (4.9) becomes (4.3) (resp.,
Ve Cl*z([O, T1 x R"™; R), and the formula corresponding to (4.8) holds.

5. Weak convergence and averaged system

In this section, we show that the sequence x®(-) converges weakly to a stochastic process that
is the solution of an appropriate stochastic functional differential equation. In order to obtain the
desired weak convergence, we need to prove tightness first.

To begin, we need to verify

lim limsupP<sup x| > NO) =0 foreach T < oo, 5.1

No—oo o0 t<T
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where P (A) denotes the probability of A. The verification of (5.1) is usually quite involved, and
requires complicated calculations. To circumvent the difficulties, we use the truncation technique
as follows. For each N > 0 sufficiently large such that |x(0)] < N, consider

dx®N () =bN PN () dr + yN (EN L EF (1) dwa (1), (5.2)

where xf’N ={x5N(@t Au):0<u<T)}, &°(t) = £(t/¢) is the solution of the first equation in

(1.8), BN (x, ) = b(x, )" (x), ¥ (x, &) = ¥ (x, §)¢" (x), and

1, when x € C([0,T]; Sy),
g (x)=10, when x € C([0, TT; R" — Sy41),
smooth,  otherwise.

From the definition, it can be seen that x® () = x®(¢) up until the first exit from Sy = {x : |x| <
N?}. Then x% (¢) is said to be the N-truncation of x¢(¢). According to the definition of x;, it is
easily seen that x*" € D([0, T1; Sy) if x5V (1) € Sy since [|xF" || o0 := sup,, 0,71 {(xN (¢ Au) :
O0<u<T}<N.Let .ES’N = {E°(s), x>N(s) : s < t}. We can also give the corresponding def-
initions for MS’N and £&N It is clear that .7-",é ‘c Fi N To proceed, the following assumptions
are needed.

(A2) The functions b(x, &), ¥ (x, &), Vibi(x, &), Vitij(x, &), V)%b[(x, &) and V)%t/fij(x, &),i,j=
1,2, ..., n are boundedness preserving with respect to x € D([0, T']; R"), and continuous
and bounded with respect to & € R™ for x € D([0, T]; G), where G C R” is a compact set.

(A3) For G C R" being a compact set, x € D([0, T]; G), b(x, -) and ¥ (x, )¢¥'(x, ) = A(x, ) =
[aij(x, -)]nxn are integrable functionals with respect to the measure u, and

/ b(x,&)u(dé) = b(x),

Rn
[ asx.oomiae) =a; o
Rn
that is, b(x) = E; b(x,8) and a;j(x) = E,a;j(x,§), where E, is the expectation with

respect to the invariant measure p. Moreover, A(-, -) is nonnegative definite.
(A4) The following equation

dx(t) = b(x;)dt + ¥ (x;)d B(1) (5.3)
has a solution that is unique in the weak sense (i.e., uniqueness in the sense of distribution)
on [0, T] for each _contir_luo_us dete{minigtic i_nitial Va_lue x(0), where B(t) is a standard
Brownian motion, b = (b, ba, ..., b,) , (Y (-) = A().

Define the transition function

Pi(x,A)=p(x,0; A, 1) =P(§(r) € Al§(0) = x) (5.4
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by using the transition probabilities. Let us introduce the notation

P,,SF(x):/p(x,s;dy,t)F(y), t>s,x eR"™, FeB,(R™ R). (5.5)
Rm

Then the linear operators P; = P; o is called the Markovian transition semigroup or Markovian
semigroup associated with the transition function P;(x, A). Note that P, F(x) = EF (&(t; x))
for the Markov process £(¢) with the deterministic initial value £(0) = x. If {£(¢)};>0 is a time
homogeneous process, then P;_; = Py ¢

Denote by u the invariant measure of the Markov process & (see Theorem 3.2 for the existence
of u). Then we can write

pb(x,§) =B, b(x,§) =b(x) and paij(x,§) =E,aij(x,§) = aij(x).

Likewise, for an appropriate function F, we use uF to denote the integral of F' with respect to
the invariance measure p. According to the Markov property of & = (£(¢));>0, (A3) implies that
for any bounded and continuous functional b(x, -) and a;;(x, -), and deterministic initial value

£(0),
lim Pfb(x,£0) = lim Efb(x,§) = lim Eb(x, £()) = b(x),
Jlim Pfayj (e, £0) = lim Efa;j(x.§) = lim Eaij(x,§(1) = aij (x),

where Pf has the same definition as P; and the superscript & denotes the transition probabilities
are for £(¢), and Ef denotes the conditional expectation with respect to ]:f generated by the
process £(t). Note that the nonnegative definiteness of A(-) implies that A() = [a; (M nxn 18
nonnegative definite as well. Next, we state the main weak convergence theorem of this section.
Its proof will be divided into several parts.

Theorem 5.1. If (A1)-(A4) hold, then {x*(-)} is tight in D([0, T]; R"), and the limit of any
weakly convergent subsequence satisfies equation (5.3) with the same initial value as x¢(0) =
x(0) that is non-random and independent of ¢, that is, x¢(-) converges weakly to x(-) determined
by (5.3).

To prove the theorem, we use the martingale problem formulation. We say that x (¢) of (5.3), is
a solution of the martingale problem with operator L, in that for any function f € C'2([0, T] x
R™; R)

t
My(t) = f(t, x(2)) = £(0,x(0)) — / L(u, xy) f(u, x(u))du (5.6)
0

is a local martingale, where for x € D([0, T']; R"),
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2

L(t,x) = ——i—Zb(x) “+3 Z ,,(x)a 5 (5.7)
J

As was mentioned in the beginning of this section, it is not easy to verify (5.1). We thus begin
the proof of Theorem 5.1 by working with the N-truncated process. Corresponding to this trun-
cation, we have the operators LY, £V and L, which are operators L, £ and L with x, y, b, ¥,
and A replaced by xV, yV, bV ¢V, and AV, respectively. Not only can assumption (A2) guar-
antee the existence and uniqueness of the strong solution of the stochastic functional differential
truncated equation (5.2), but also the tightness. We proceed with the following theorem.

Theorem 5.2. Under assumption (A2), there exists a unique strong solution x>V (t) for the
stochastic functional differential truncated equation (5.2) for any initial value x&N(0) =x(0) €
Sy that is non-random and independent of €. Moreover, this solution is continuous and
}'f’N-adapted, and it is also tight in D([0, T]; R").

To prove this theorem, we need the following lemma (see [27, Theorem 3, p.47] or [31] for a
proof).

Lemma 5.3. Let {X* ()} be a sequence of F; -measurable processes with paths in D([0, T]; R™)
satisfying

lim limsupP{sup|X®(r)| > No} = (5.8)

No—o00 o 0 t<T

foreach T < oo and € > 0. For any 6 > 0, let there be a random variable y.(§) such that

]Efyg(S)z]ESmin{l,|X8(t+s)—X8(t)|2}, all 0<s <6, t<T,

hm limsupEy. (8) = (5.9)

e—0

then X (-) is tight in D([0, T]; R™).

Proof of Theorem 5.2. Assumption (A2) shows that for any x € D([0,T]; Sn), bN(x,E),
YN E), Vb (x,8), Ve (x,8), VY (x,8), and VRY(x,€),i,j = 1,2,....n are
bounded with respect to x, and continuous and bounded for any £ € R™. Thus bV (-, £) and
YN (., &) satisfy the linear growth condition and the Lipschitz condition for any & € R"™. Mod-
ifying the argument of [34, Chapter 5], it can be shown that the truncated stochastic functional
differential equation (5.2) has a unique strong solution and this solution is continuous and
FiN _adapted.
From (5.2) and the elementary inequality (a + b + )2 <3@+b2+c),

1 1
2 2
NP <3007 +3] [ ViV wndul +3] w0 g wdun
0 0

Applying the Holder inequality and the Burkholder-Divis-Gundy inequality [34, Theorem 7.3,
p-40] gives
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T
E[ sup v (1)?] < 3EIx () +37 / EIb™ (v, € (0)) Pdu
t<T 0
T
+ 12/]E|1pN(x,i’N,$g(u))|2du. (5.10)
0

Assumption (A2) shows that b" (x, &) and ¥ (x, &) are bounded for x € D([0, T]; Sy) and any
& € R”. This implies that there exists K dependent 7' such that

E[sup |x8’N(t)|2] <K,

t<T

which shows that (5.8) holds by using the Chebyshev inequality.
Considering (5.2), forany § > 0,7 > 0,and 0 <v <§ A 1

t+v t+v

2N (1 4 v) — x5V (1) = / BV (N 9 (u))du + / O (£ (u))dwa ().
t

t

Recalling the familiar elementary inequality (a + b)? <2(|al?® + |b|?), this implies that

t+v
Ef[x®N(t +v) —x*N(0)]* < KES /bN(xZ*N,gs(u))du‘Z
t
t+v 5
+ KE; /WN(fo,ée(u))dwz(u)‘ : (5.11)
t

Note that x®V (1) € Sy for any t > 0. According to (A2), bY (x, &) is bounded for any x €
D([0, T]; Sy) and &€ € R™. This implies that there exists a random variable K 18\,11(8) such that

t+v
/ bN (&N E8 (u))du ? <EfKG (8) (5.12)

t

Ey

satisfying limsup,_, El?fv 18 = 0(8?). According to the martingale isometry [34, Page 28,
Theorem 5.21], there exists a random variable K 15\, »(8) such that

t+v t+v

& N/ & g€ 2_ e N,/ & s¢ 2 & e
E; U (e, E)dwa(w)| =E; [ Y7 (x,, " w)"du <E; Ky ,(8) (5.13)
t t

satisfying limsup,_, ]EI?X, »(8) = O(3). Substituting (5.12) and (5.13) into (5.11) gives that
there is a I?fv (8) such that EZ x>V (r + v) — x&N (1)|? < EZ K, (8) satisfying
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(Slin})lim supIEI?fv 6) =0.

e—0

Applying Lemma 5.3 yields the desired result. This completes the proof. O

Since x (-) is tight, by Prohorov’s theorem, it is sequentially compact. Thus we can extract
a weakly convergent subsequence. Do so and still index the convergent subsequence by ¢ and
denote the limit as xV (-). By the Skorohod representation, with a slight abuse of notation (without
changing notation), we may assume that x&V () converges to xN (") in the sense of w.p.1. We
proceed to characterize the limit process x (-) by use of the martingale problem formulation. In
what follows, we characterize the weak limit by applying the following lemma [39,46].

Lemma 5.4. Let X®(-) be an R"-valued process defined on [0, T], with X(0) = X (0) being
deterministic and independent of ¢. Let {X (-)} be tight on D([0, T1; R"). Suppose (A4) holds
and L is the corresponding operator defined by (5.7). For each f(-) € Cg (R"™; R) (or any dense

subset of it), each T < oo, there exists f°(-) € D(ﬁe) such that

p- gij)I})[fs(') - f(X?(N]=0, (5.14)
and
P-sli_I)I})[ﬁAefg(-)—L(',X?)f(Xs('))]=0- (5.15)

Then, X¢(-) = x(-), where x(-) is the solution of the stochastic differential equation (5.3).

According to the definition of p-lim, to prove (5.14) for x* (¢), for any f(-) € Cé (R™; R),
we need to look for a function f&N(.) e D(ﬁe’N ) and verify the corresponding conditions

StupIElfg’N(t) — fEN@)] < 00,

5.16
lir%E|f8’N(t) — f&x®N ()| =0 foreach 1. (.16)

Similarly, to prove (5.15) for the above x%V (¢) and f(-), we need to verify the conditions

supEILEN N (1) — LV (0, xEN) £ (5N ()| < o0,
t,e

I (5.17)
lir%IE|£€’Nf8’N(t) — LN, x5V F(x®N (1)) = 0 foreach 1.
e—

Remark 5.5. In the process of the averaging, the fast-changing variable £¢(¢) is treated as noise
and is averaged out. Noting the underlying system is a functional differential equation, we use
the perturbed test functional method to examine the weak convergence. Introducing the perturbed
test functionals allows us to eliminate the noise terms £°(¢) through averaging, and obtain the
desired terms in the limit.

Proof of Theorem 5.1. For any f(-) € C, 6‘ (R™; R), to use the perturbed test functional method,
for any t < T, we choose
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T
fEN @ =i N @), xp ) = / AN B Y b N, £ ) — BN (fM)ldu, (5.18)

T

N0 = Vo, 2N (@0, 10N = Z / ooy, @SN O)ES [al N, €2 ) — @l (xf N ))du.
i,j=1%
(5.19)

In building the perturbations, the slow-changing variable x*V (¢) and the corresponding delay
term x; N are considered as parameters. Making change of variable u /¢ to u yields that

T/e

M =e / AN EE] Y 6N g @) = BN (o M)du, (5.20)
t/e
n T/e

V=) f iy @ NS [l PN g@)) —all fMldu. (521)
1.J=147

Note that Ef is the conditional expectation with respect to the o -algebra }'f generated by £(f)
in (3.2). Define

1
FEN@ = faEN oy + 7N + Eff’N(t)- (5.22)

Assumption (A2) shows that b(x, &) is boundedness preserving on x and b(x,-) is continu-
ous and bounded, which implies that bN(x,-) is a bounded and continuous function for any
x € D([0,T]; Sy), i.e., b (x,-) € Cp(R™; R"). Note that the invariant measure y is ergodic
exponentially. Applying (A3), (A.17) in the appendix, and homogeneity of £(-) gives

T/e
supl ;" ()] = & sup| f Sy N EE [0V (™ £w) = BV () ldu.
t<T t<T e
T/e
<& fy x5V (1)) sup / 1Prjeub™ F N €@t /e)) — ub™ (xf N, €)|du
lSTt/s
T/e
=e|fy(x*N(1))| sup / Pucreb® 8N, 6t /€)) — ub™ (xfN, €)|du
lth/&
T/e
gsKsup/e*%(”*t/E)du,
t<T

t/e
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S(r=n

=eK(l—e "2 )
= 0(e), (5.23)

which implies
1SN — 0 wp.lase— 0,

since f(-) € Cg (R™; R). Assumption (A2) also reveals that y(x, &) is boundedness preserv-
ing on x and ¥ (x, -) is bounded and continuous, which implies that ¥ (x, -) € C;(R™; R"*%2)
for any x € D([0, T]; Sy). This, together with the definition of A(x, ) in (A3), implies that
ajj(x,-) € Cp,(R™; R) for any x € D([0, T']; Sn). Applying the technique similar to (5.23) gives

T/e

n
sup| f5 M ()] =& ) sug\ / Friy; SN OIS [al (N () — aly (xf’N)]du\
t<T ij:l’f ,
s /e
T/e
n
<& 3 Ly GEN @)l sup| / Ef el Y 6w =l ™)l
ij=1 =T
T/e
n
=2 Y | fyy; 5N (@) sup / 1Py ealy 0N &G )2)) — paly (0N £)\du
ij=1 A
T/e
SeKsup/e_%(”_’/‘E)du,
t<T
t/e
=¢eK(1 —e_g(gs_[))
=0(e), (5.24)

where uag(xf’N,é) = Euaf}’(xf’N,E), which implies |f28’N(t)| — 0 w.p.l1 as ¢ — 0O since
f()e CS (R™; R). Note that (5.23) and (5.24) also imply that there exist &9 > 0 and 7,

sup  EIfSN@) - foesNanl< osup (BN OIFEILSN 0N <,

t>0,e€(0,¢&9) t>0,e€(0,&9)

and
lim E| FEN@) — F&®N (1)) =0 foreach 1. (5.25)
Thus (5.16) holds. According to Definition 2.1,
p-lim[f*% () = F=N ()] =0,

that is, (5.14) holds.
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To prove (5.15), for (¢, y,x) € [0, T] x R” x D([0, T]; R"), let us define
1
Vi, y,x)=Vi(t,y,x)+ Evz(t, V,X).

According to the definitions of &V (.), £&N, LN, 1LV, applying (4.7) and (4.11) gives

BN N +8) — 2N @)

,Cg’Nfg’N(t) =p- Bhn})

1)
EfY faoN @ +8) — £V @)

= p-jimy 5 (5.26)
tplim ESNV (e +8, x5V (@ +8), x50 — vie, xoN 1), x5 )
§—0

)
=LV, PN N ) + LY (0 xf NV 25N (1), 1P,
where Ef’N is the conditional expectation with respect to the o -algebra ]-'f’N ,and LNV (t,y,x)=
LN, xP™M) Vi, y, ) + LV (0, x0 M) Va(e, v, x) /2.

Let us first examine LY (7, x> V) Vi (7, x5V (1), xV). Note that

LY @, xE NV, x5V 1), x5V

n T/e
=y LVaaf)| / PN OB [6Y (5N £ = BY (M) du . 5.27)
i=1 t7e

Note that ]:,52 C .EE’N. This implies that when we apply Ef’N to £%(-), it is equivalent to use Efg.
This, together with the definition of L yields

T/e
L aox ™[ [ o O 6N 6. ) — BY

t/e

n n
N N N N £ N .N
=I5 (x5, x0 7 EC() + & E llfj(t,xe (1), xF )+§k§ llégkj(t,xf ), x;")
j= =

n n n
&
R CE AR DR AUE S OR A RS I (AT O A

j=1 k.j=1 k,j=1
(5.28)

where

Iy, x, E5(1)) = — f OB (x, &5(1)) — BN (x)],
T/e
I5;(t, y,x) = / Friyy OVES (b (x. £)) — BY (1)1dubY (x, €5 (1)),
t/e
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T/e
15, y,%) = / Frives; OVE; o [bY (x, @) — BY (x)lduap (x. £ (1)),
t/e
T/e
I§(t,y,x) = / Fr OGIES b (x,£w)) — Y (0)Idub? (x, & (1)),
t/e
T/e
I5;(t, y,x) = / Frise DIES o bY (x, £ @) — BY (x))lduap (x. £ (1)),
t/e
T/e
Ig(t,y, %) = / Fr DOHIE;  (bY (x.£w)) — BY (1)) ldua (x.£°(1)).

t/e

It can be seen that ] is from the differential on # in this integral, /5 ; are from the differentials
on x&N(r), I3 ; are from the second-order differentials on xV (¢), I 4 ; are from the functional
differentials on x; . ngj and ngj are from the mixed partial derivatives on x* (¢) and x; o

Recall that bV (x, -) € C,(R™; R"). This, together with the boundedness preserving property of
b(x, &) on x, leads to that b (x, &) is bounded for any x € D([0, T']; Sy) and & € R™. Since and
f() € C§(R"; R), similar to (5.23),

sup 13, (¢, <" (1), ;™)

t<T
T/e
= sup ] f Py N OIE; [ (N ) = B ()ldub) (™ (1)
t/e
T/e
<KNsup‘f|fy,yj(x8N(t))|e F=t/e) gy
t/e

2 _§a-n
=—-Ky(l—e "2 ) <oo,
9

which implies
n
8sup‘212 (t, x5N (@), xf )‘ <esup Y |15, xN (1), x| = O(e).
t<T =T 5

Likewise, we have

= sup
t<T

Z L5 (e, x5 N (), xf )‘ —sup Z 115t x5N (1), 5 M) = 0 ()

f<Tk i=1
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since AN (x, &) is bounded for any x € D([0, T]; Sy) and & € R™ according to ajj(x,-) €
Cp(R™; R) and the boundedness preserving property of ¥ (x, &) for x. By (A2), Vb (x, &)
is boundedness preserving for any x € D([0, T]; R"), and continuous and bounded with re-
spect to & € R™. Therefore, for any i, j = 1,2,...,n, 8jblN(x, ) € Cp(R™; R) for any x €
D([0, T]; Sn). Hence applying similar technique to the estimation of 7 f and recalling the
boundedness of bV (x, £) for any x € D([0, T]; Sy) and & € R™ give that

sup | 15 (¢, x5V (1), x;M))|
t<T

T/e
= sup| / PN @) B, 6 (687 £ = BY e M) ldub (Y, 67 0)|
=T t/e
T/e
= sup| f PN OIS 000 (N 60 = 0B (i 1dubY (x5, €0 0)|
=T t/e
T/e
<KNsup/ | fys 5 (1) e 2@/ g

t/e

.
—Zkn(d—e %) < o0
B

with probability 1, which implies that

t<T

n
esup‘ZIM(t V@), x| 5S?B[T)Z|Ijj(t,x£’N(t),xf’N)| = 0(e).
==

The same technique as the estimation of /5 ; gives

—sup‘ Z 15, 3N (0, x| = 0(e).

t<T

Similarly, (A2) also leads to that for any i, j = 1,2,...,n, 8i2ij(x, ) € Cp,(R™; R) for any
x € D([0, T]; Sy). This, together with the boundedness of av(x, &) for any x € D([0, T]; Sn)

and & € R™, yields

sup |16k, (&, xN (1), xpM))

T/e

< sup \ / P N )0 [B] b (ep Y £ @) — B (e )Idual (xp N €5 (1)

t/e
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T/e
< Ky sup| / Fu N @IES, @b (f N £ ) — 06 (™)) Idu
T
= t/e
T/e
< Ky sup / | fy SN @) e™ 3@ gy
t<T
t/e
< 21{1\/ (1 _ eié(zg—t)) < 00,

which leads to that

n n
€ N, _ ¢ N
5 2 L x M@0 < 5 3 G N 0, 5 = 0.
k,j=1 k,j=1
Substituting these estimates into (5.28) gives

LY@ xp M Vi, N @0, x0N) = 0(e) = Y L N )N N g5 () — BY (V)]
i=1

=0() — fL &N EN €5 () — BV (M) (5.29)

with probability 1. To proceed, let us estimate LY (¢, x V) Vo (r, x5V (1), xV). Note that

LY@, xf Mo e, x5V (), xPN)

n T/e

= Y LV / P 5N OIES (@l ™ £ 0) — @ (N du ]
i,j=1 t/e
(5.30)
Similar to (5.28), we have
T/e
eLY (x| f Py 5N O (@l N £ 0)) — @ (N du]
t/e

n n
=N @O PN EEO) +e Y TG xtN @0, xp ) + e I5 e x N @), xp )
k=1 k=1

n n
£ &
+5 > T xN @0, xpN) + 5 > T xN @0, xpN)
k=1 k=1

n
&
5 2 Tt x N @), (5.31)
k=1
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where

TE (%, E5(0) = — fyuy; D)) (6, E5(1) — @)} ()],
T/e

T (t,y,x) = f Frivie OB elall (x. £) — @l (0)1dub) (x. £ (1)),
t/e
T/e

VAR f Fory; OVORIE] (@ (x, £)) — @ly () lduby (x, & (1)),
t/e
T/e

Jfkl(t,y,x)Z / fyiy,-ykyl()’)]E,/g (X S(u))_a (x)]duakl(x £5(1)),
e/t
T/e

J5 (2, yax)—/fy,y,vk()’)al[ ,/s(a ((x,E(u) —a »,-(X))]duaﬁ(x,ég(t)),
e/t
T/e

Jou (@, y,x) = / Friyy OVIGIES (@l (x, £ @) — @l (1)) |dua)) (x. £(1)).
e/t

Recall that a;; (x,§) = 52:1 Vi (x, &)Yy (x, §). Condition (A2) implies that ¥ (x, §), V¥, (x, &),
and Vfw,'j (x,&),i,j=1,2,...,n are boundedness preserving with respect to x € D([0, T]; R"),
and continuous and bounded with respect to & € R” for x € D([0, T']; Sy). These imply that for
any x € D([0,T]; Sn), A(x,-) € Cp(R™; R"™*"), dka;j(x,-) and a,g,a,-,-(x, ) e Cp(R™; R) for
i,j=1,2,...,n. Applying the same technique as the estimates of /5 | (t, x(t), x;) yields

n
ssup‘ijk(t,xs’N(t),xf’N)‘ = 0(¢) and —sup‘ Z i (2, xSV (), xf M = 0(e).
=T j=1 21

.. . s e . .
Similar to the estimates of /;; i s Lsyi T and Ibkj, we obtain
n
e sup| by T 5V @), x| = 0Ge) and
t<T

5;«;31;’ Z T (6 x5 (1), xF )‘ —0() (W=5,6).

These estimates lead to

LY, x0 M) Va e, x5V (1), xPN) = O(e) — ny,y,u”(r))[afv(x EC ) —al (™))
i 1
= (5.32)
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with probability 1. The estimates of LYz, x*™)Vy(r, x5V (1), x*N) and LN (¢, x5V)Va(r,
x&N (1), xN), together with (5.26), yield

LEN FEN 1y = 0(e) + LY (0, x0 ™) f (SN (1) — fy BN b f N, 68 (1)) — BN (x5M)]

——ny,y N enlal (xp N &5 1) — af (™)) (5.33)

i,j=1

with probability 1. Applying the generator LY defined by (4.7) to the solution process x* (¢) in
the stochastic functional differential equation (5.2) gives

N xt ™My oM @) = fae N @b ol g5 0) + - Z Py N @)alf (f N E5 ().

l]l

Substituting this into (5.33) yields

LNV = 0G) + f N OBN M) 5 3 fuyy N @) ()

ij=1

=0@) + LY, x5y Fx>N (1) (5.34)

with probability 1, which implies that (5.17) holds since f(-) € Cé (R"; R™) and the definition of
fE(-). Thus (5.15) holds. This, together with (5.25) yields N =N ase—0 by virtue
of Lemma 5.4, where x” (-) solves the martingale problem with operator LV .

Next, we move from the weak convergence of the truncated process to that of untruncated
processes. The argument is similar to that of [27, p.46]. For any continuous deterministic initial
value x(0), let P(-) and PV (-) denote the probabilities induced by x(-) and x" (), respectively,
on the Borel sets of D([0, T]; R"). By (A4), the martingale problem has a unique solution
for each x(0), so P(-) is unique. For each T < oo, the uniqueness implies that P(-) agrees
with PV (-) on all Borel sets of the set of paths in D([0, T]; Sy) for each + < T. However,
P{sup,~7 [x()| < N} = 1 as N — oo. This together with the weak convergence of x&N () im-
plies that x¢(-) = x(-). Moreover, the uniqueness implies that the limit does not depend on the
chosen subsequences. The proof is thus complete. O

6. Extension and examples

In assumption (A2), some requirements may be weakened. It is important to do this since in a
wide range of applications for control systems, biology, and communications systems, the b and
¥ etc. may not be boundedness preserving, but only possess such properties in a local sense. In
this section, we relax assumption (A2).

(A2) b(x,8), ¥ (x, &), Vibi(x, &), Vitij(x, €), V2bi(x, &) and V2ij(x,§),i, j=1,2,....n
are continuous with respect to £ € R™ for x € D([0, T']; G), where G C R" is a compact
set; Moreover, there exist the boundedness preserving functionals K(x) and K»(x) such
that
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b(x, &)V [Vibi(x, £)| V|V, b'(x £ < Ki(x)(1+ £, (6.1)

WG )V I Vatij (6, )|V IVE Y (0, 6)] < Ka(x)(1+ [E). (6.2)

Remark 6.1. In this assumption, since K1 (x) and K»(x) are both boundedness preserving func-
tionals, for any x € D([0, T], Sn), both K (x) and K (x) are bounded, that is, there exist Ky > 0
such that K1 (x)V K(x) < K. This implies that E|p" (x, &)|VE YV (x, &) < Ky(1+E|E) <
oo if Assumption (A1) holds. According to the existing results, we cannot obtain the existence
of the solution of (5.2). However, if both bV (-, £) and ¥V (-, &) are continuous functionals for

any & € R™, this condition can guarantee the existence of the weak solution for (5.2); see [19].

Theorem 6.2. Assume the conditions Theorem 5.1 with the modification of replacing (A2) by
(A2’). The results in Theorem 5.1 continue to hold.

To prove this theorem, let us present the following lemma.
Lemma 6.3. Let F : R™ — R" be a continuous function such that

IF()| < K1+ |y).

Then under conditions in Theorem 3.2, forany t < T,

/ [ES F(e°@)) — uFldu = 0(e).

Proof. For any ¢ > 0, following (A.6) in the appendix,

1
Elg0 e SEIEO) + ¢ [ IO + 22— |¢(0)| a-e).  ©63)

This implies that for any deterministic initial value £(0) = yo,

—1

1
Jim BlE0F < [« hO)P + 5 |¢(0>|2]
and

El&(1)[* < |yol* + B.

Moreover, noting that the initial value is deterministic and &(¢) is a Markov process, we have

E,l¢* = f &% 1 (dE)

= lim /|.§|2p(z,0;d$,t)
r—00
]Rm



1066 F. Wu, G. Yin/ J. Differential Equations 269 (2020) 1037-1077

= lim E(|&(0)[*|F0)

= lim E£(1)|* < B,
11— o0

where p(z, 0; d&, t) denotes the transition probability as in (5.4).
According to the definition of the distance in variation (see the definition in Lemma A.1 or

[16]), applying (A.17) gives

Var(P; — p) := sup (Pr — n)g
lgl=1

= sup /g(w)(p(z,o; dw, 1) — p(dw))

Iglism

< Ke 3! (6.4)

Noting |F(y)| < K (1 + |y|?) and making a change of variable similar to (5.20), the Cauchy-
Schwarz inequality, the Markov property, and the stationarity give that

T
/ (ES" F(&° () — pFldu
t

T/e
= [ 18], Fe) - uridu
t/e
T/e
—¢ / [P et F(E)) — i Fdu
t/e
T/e
—¢ / (Pucsye F(EW)) — wFldu
t/e
T/e
12
581(/[/(1+|w|2)(p(z,0;dw,u—t/£)+,u(dw))]
t/e Rm

12
x[f|p(z,0;dw,u—t/s)—u(dw)|] du
R»
T/e
12
<ok [ [ [P 0dwu—i/e -+ pa@w))] Py - w1

I/S Rm
T/e
<K f (1 +ElE@ — 1/8)P + EleP)lvar(Pucsse — w1 du

t/e
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T/e
<e(l+|yl*+2B) / [var(Py—re — 1'% du
t/e
T/e
faK/e_%(”_’/g)du
t/e

s(r—n

584?1((1—6_ %= )=0(e). (6.5)

The desired assertion thus follows. O

Proof of Theorem 6.2. We first prove that when (A2) is replaced by (A2’), {x&N ()} is tight
in D([0, T]; R™). In reference to the proof of Theorem 5.2, we need to use x&N (1) and esti-
mate (5.12) and (5.13) under Assumption (A2’). Note that K1(-) and K>(-) are boundedness
preserving. This implies that there exists a constant K such that |[Kj(x)| Vv |K2(x)| < Ky for
x € D([0, T]; Sn). To prove the probability boundedness of x&V (1), based on (5.10),

E[ suplx*V ()]

t<T
T T
53E|x(0)|2+3T/E|bN(xj'N,§5(u))|2du+ IZE/ [N (k&N &8 ()2 du
0

0
T T

<3E[x(0)* + 3T / EK (5N (1 + |85 )P du + / EK>(x&N) (1 + |5 )P du
0 0

T T
<3E[x(0)* + KN/U +EI&¢ ()} du + KN/(l +EI&¢ )P du
0 0

=K, (6.6)

which gives the desired boundedness in (5.8) by the Chebyshev inequality. Applying the Holder
inequality yields that there exists a random variable K f’N(é) such that

t+3 t+6

Ef / PV (SN 6 w))du| < OB / BN (e N 6° ) Pdu
t

t
t+6

< SEE f KGN (1 + 85 P)du

t

<E[K7N )

such that
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hm hmsup]EKe N(S) = hrn 0(82) = 6.7)
=0 .0

Under Assumption (A2’), applying the martingale isometry to the second term in (5.11), there is
a random variable KE’N (8) such that

146

f N oY £ )dww)|

t

Ey

t+6
=E; / Ko (™M) (1 + (&5 ) P)du < ESKS™N (8) (6.8)

satisfying

lim limsup EKS (8) = lim 0(8) =

§=0 ¢0
Taking K&V (8) = K© N(8) + Ks N (8), and using (6.7) and (6.8) yield that

lim limsup K&V (§) = hm 0(@8) =

=0 o0

This, together with (6.6), gives that x®V (-) is tight in D([0, T]; R”) by Lemma 5.3.

In the proof of Theorem 5.1, we need to re-estimate (5.23), (5.24), (5.28), and (5.31) under
Assumption (A2’). Let us give the estimate (5.23). Since there exists the boundedness preserving
functional K;(x) such that |b(x,&)| < Ki(x)(1 + |§|2), for any x € D([0, T]; Sy), there must
be constant K such that [b" (x, £)| < K (1 + |&|%). Under assumption (A1), applying Lemma 6.3
directly gives

T
sup | £ (1)] = sup| / F@ENE] BV e 6 @) = 5 )1du| = 0. (6.9)

t<T t<T t

Similarly, (5.24), (5.28), and (5.31) can be obtained under assumption (A2’). We have therefore
proved the desired assertion. 0O

Let us use the above method developed to examine the following 2-dimensional two-time-
scale functional diffusion system with the slow-varying component involving affine noise:

1 1
d&8(t) = —h(E°())dt + —=¢ (EE(1)dw (1),
€ Ve (6.10)

dx®(t) = b(x))E (t)dt + ¥ (x))E* ()dws (1),
where /(-) and ¢ (-) are appropriate scalar measurable functions such that assumption (A1) is sat-

isfied, b(-) and ¥ (-) Vib; (), Vi (), V2b; (-) and V24 (-), i, j = 1,2, ..., n are boundedness
preserving functionals. Let u be the invariant measure of the stochastic differential equation
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d&(1) =h(E@)dt + ¢(E@)dw (1)

and
§=Eu6= / §u(ds) and B =E,& = f §2u(ds).
Applying Theorem 6.2 gives the following result.

Corollary 6.4. As ¢ — 0, x°(-) the solution of (6.10) converges weakly to x(-) that is a solution
of the stochastic functional differential equation

dx(t) = Eb(x)dt + /&Y (x)|dD (1),
where W(t) is a scalar standard Brownian motion.

Let us consider the following two-dimensional stochastic integro-differential equation as an
example:

1 1
d&8(t) = —;aés(t)dt + %Pdwl(t)a

: ' 6.11)
dx® (1) =,B(/xg(s)ds)éa(t)dt—l—y(/x‘g(s)ds>€8(t)dw2(t)

0 0

with initial value £(0) and x(0) and o > 0, p # 0, where B(-) and y(-) are two continuous
functions, w1 (¢) and w(¢) are two independent scalar standard Brownian motions.
It is well-known that

dE(t) = —a&(t)dt + pdi (1) 6.12)

defines a mean-reverting Ornstein-Uhlenbeck process with the normal distribution

—a ,02(1 _ e—Zat)
£ ~ N (5, P,

which implies that the invariant measure w of (6.12) is exponentially ergodic with the normal
distribution N (0, p%/(2)). It is easily observed that

2
Eu& =0 and ]Eﬂg2=/52u(dg)= g—a.

According to Corollary 6.4, as ¢ — 0, x®(¢) in (6.11) converges weakly to x(¢) satisfying the
following stochastic integro-differential equation

t

dx () = %y(!x(s)ds)d@(t),

where w(t) is a standard Brownian motion.
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Example 6.5. Now let us return to Example 1.2 in the introduction section. Although it is known
that (3.3) has a unique global solution and this solution is pth moment bounded for any p > 0
and exponentially ergodic with the stationary distribution being the noncentral chi-square distri-
bution, we only know that k, + y-£(¢) > 0. Moreover, if y, < 4k,, k. + y,:£(¢) > 0. If y, > 4k,
k, + y-&(t) can reach zero (see [11,34]). This implies that it is possible for the solution of the
chemical Langevin equation to be negative. In fact, for the chemical Langevin equation (1.7), it
is more difficult to prove k,£°(t) 4 ypx®(t) + m(x;) > O since this term involves the delay and
£¢(r) may be negative. Let us define

bE(xf, E5(1)) = kp&° (1) — ypx (1) — 7 (x/) and WE(Xf,EE(t))=\/kpég(t)+)/px€(t)+ﬂ(xf-

Although it is possible to replace b*(-) and ¥°(-) by some positive functions or modify the
processes by adding reflections, neither of these is common in the actual practice of chemical
reactions. The most popular way of handling this is still to use the original model and simply
assume the positiveness mentioned above.

To obtain the desired asymptotic results, we assume that (a) 7 (x) is boundedness preserving
and (b) k,&°(t) + ypx®(t) + 7 (x;) > O for the solution £°(¢) and x*(¢) of (1.7). It follows that
assumption (A2’) holds. According to the mean-reverting property,

k
E, & = lim E&(r) = —.
—00 yr

Theorem 6.2 yields that there exists a standard Brownian motion VT/(I) such that x¢(¢) in (1.7)
converges weakly to x (¢) satisfying the following stochastic functional differential equation

kpk, kyk, ~
dx(t) = [ 1; —Ypx(t) — n(xt)]dt —i—\/ ;)/ + ypx(t) + 7w (x)dW(1).

r r
7. Concluding remarks

This paper develops averaging principles for functional diffusion systems with two-time
scales, in which the functional term involves complete history, i.e., x; = {x(u A1) : 0 <u <T}.
In this paper, the fast varying process is assumed to be a diffusion process. Using the ergodicity
results in [3, Chapter 1], we can allow the fast process to satisfy a stochastic functional differ-
ential equation as long as the spectrum gap is small enough or the convergence to the invariant
measure is fast enough (exponential ergodic), the approach presented in the paper still works.

We point out, however, in the two-time scale system discussed in this paper, the fast-varying
process is independent of the slow-varying variable. When the slow-varying variable and the
history appear in the fast-varying process, the system becomes more difficult to deal with. We
will have to consider the transition probability involving the slow-varying variable as a parameter.
This will be considered in our future work.

Appendix A. Proof of Theorem 3.2

We begin by recalling a lemma that was proved in [12, Lemma 7.1.5, P125].
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Lemma A.1. Let Py, t > 0 be a Markov semigroup on Bp(R™;R) and let K > 0 and t > 0 be
fixed. Then the following results are equivalent:

@) for all F € Ci(Rm; R) for all x,y € R™, |PiF(x) — P;F(y)| < K| Fllolx — y|, where
Cg (R™; R) is the set of bounded and continuous functions whose first and second partial
derivatives are bounded;

(ii) for all F € B,(R™;R) for all x,y € R™, |P;F(x) — PiF(y)| < K||Fllolx — yl|, where
I Fllo = supyeron | F(x)I;

@iii) for any x,y € R™, the distance in variation Var(P;(x,-) — P;(y,-)) < K| Fllolx — y| be-
tween P;(x,-) and P;(y, -), where the distance in variation between P;(x,-) and P;(y, ) is
defined by

Var(Pi(x,) = Pi(y, ) = SUPl/d(Pt(X,dZ)—Pt(yvdZ))F(Z)-
IF()I<

Rm
Proof of Theorem 3.2. It is easily observed by conditions in this theorem,

2y'h(y) < =2x11y1* +2y'h(0) < =221 ]y1* + |yI* + |k (0) %, (A.D)
(M1 <21p ()] + 2x2ly]%, (A.2)

which implies that

29'h(y) + [p () < (=2x1 + 225 + Dy [* + [h(0)]> + 2| (0)|2.

This reveals that the coefficients satisfy the monotone condition. This condition, together with the
(local) Lipschitz conditions on 4(-) and ¢ (-), yields the existence and uniqueness of the global
strong solution of system (3.2) with E(sup, 9.7 1§(#) |2) < Cr and this solution is ]:,’b—adapted,
where ]-',’1’ =o{w(s); s <t} (see [34, p.58 Theorem 3.5]). Note that w(r) = w (¢t)/+/c implies
that ]-"}D = ]-":,) !'. Hence the solution x(¢) is ]-';‘; !_adapted. Reference [34] also implies that this
solution is homogeneous and has the strong Markov property.

Now let us examine the invariant measure. For any ¢ > 0, applying the It6 formula to
eS'|&(1)|? yields that for any 1 > 5 > 0,

t

eS'E|E(1))? = eS*EIE(s)* + E / eSU[lE@)* + 28" Wh(Ew)) + | E@)*1du.  (A.3)

N

According to the theorem’s conditions, for any k1 > 0 we can reestablish the following inequality
for (A.1):

2y'h(y) < =20lyl* +2y'h(0) < =2011y1* + xly* + &7 RO (A4)
Similarly, for any «; € (0, 1), we also reestablish (A.2) as follows:

(N> < A2ly > + 28" ()P (0) — [P O) > < Aaly* +k2lp (NI + 15 P 0) > — 19(0) 2,
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which implies that

—1

lp(I* < |y| +2 1 |¢(0)| (A.5)

Substituting (A.4) and (A.5) into (A.3) yields

t

Elg(0)]* <e E[E(s)]> + e 5'E / eSU[1E@)I? + 28" wWh(E W) + 1 (& (w))|*1du

N

t

A
< e SU9IEE(s)> — e—ng/eg" [ZM - ﬁ — (k1 + g)]lé(u)|2du
—K2

N

_1 £

[t + 22— |¢(0)| ]e_gt/egudu.

u

Note that 241 > A;. Choose k1, k7 and ¢ sufficiently small such that

A2
20 ———— — (k1 +¢)>0.
1 —kp

We therefore have
1
ElE0P < e BEP + ¢! [k O + 2—— |¢<0>| a—es). A6

For the initial time s with different initial values &(s) = y; and &(s) = y», define e(r) =
&(t; y1) — &(t; y2). Then according to Eq. (3.1), we can write the equation about e(¢) as follows:

de(t) = h(t)dt + ¢(1)dw (1), (A7)

where A(t) := h(E(t; y1)) — h((t; y2)) and ¢(1) := $p(&(t; y1)) — ¢ ((t; y2)). For any & > 0,
applying the It formula to <’ |e(r)|? gives

t
EEle)? = e Ele(s)* + E / S 1E le(u) | + 2¢' )k (u) + | w) |*1du

N

It is easily observed that

¢ (Oh(t) < —rle()?, (A.8)
16(1)[* < Aale())?, (A.9)

which implies that
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t
Ele®)> <e S 9Ee(s)]? — e S'E / €S20 — A + &) e(u))>du.

N

Note 2A1 > X, again. Let us choose ¢ sufficiently small such that 241 — 1> + ¢ > 0, which shows
that

Ele®)> < e SC9E|e(s)|?. (A.10)

Since the solution £(¢) is a strong homogenous Markov process, we can adopt the remote start
method to examine invariant measure. The idea can be described as follows. For the solution & (¢)
with the initial value £(s) = y, in lieu of letting + — oo, we can keep ¢ as fixed and letting the
initial time s — —oo. To use this method, let us consider the following stochastic differential
equation

<>
d&(t) = h(x,E()dt + ¢ (x,E)d W (1), (A.11)
with the initial data y(s) = y € R”, where W(t) is a double-sided Wiener process defined by

w(t), >0,

H Cy—
W)= {E(—t), 1 <0,

where w(t) is another Brownian motion independent of w(¢). Define the filtration

Fo=(F

r>t

and ]:'f) =o0({w@) —w(ry) : —o0o <ry <rp <r},N), where N is the set of all P-null sets.
Eq. (A.11) is the same as Eq. (3.2) if the initial time may be any s € R. Hence the estimates of
(A.6) and (A.10) still hold. By the Markov property of £(¢), for any —oo < sp < §1 <t < 00,
with ¢ fixed, applying (A.10) gives

EI&(t; £(s2)) — E(1; (1)) 1> = EIE(r, £(515 £(52))) — E(t; E(s1))
<E|£(s1; £(52)) — E(s1)[Pe S5V (A.12)
< 2(E[£(s1; £(52)) 1> + E[E(s)|P)e S50,

In (A.6), for any initial value £(s) =y and ¢ > s,

—1 _1
ElE0P <ElyP+ 67! [k 1 02 + Z——ls O]
-

where implies that E|&(s1; £(s2)) |2 and E|£(s1)|* are bounded for any bounded initial value y.
This establishes that there exists constant K such that

EI&(1; £(s2)) — £ E(s1)P < Ke $U™D - 0 (A.13)
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as s1 — —oo. This implies that every sequence {£ (—n)} is a Cauchy sequence; all the sequences
have the same limit £* as n — oo. Let us denote its distribution by w(-). In addition, (A.13)
reveals that £* is independent of the initial value y. Noting that &(¢) is a homogeneous Markov
process, for any A € R, we have

p(y,s; A, 0)=p(y,0; A, 1 —5).

The time homogeneity also implies that
p(y,—s;A,0) > u(A) ass— oo.

Note that P, F(y) = EF (£(¢; y)) for any deterministic initial value y. For any F € B,(R™; R),
P:F is also bounded. By the time homogeneity of £(¢), it follows from the Chapman-
Kolmogorov equation of the transition probability that

WP, F = / Py F(2)u(dz)
Rm

~ lim f PF(2)p(y, —s: dz. 0)
S—>00
Rm

= lim f F(w)p(z,0;dw,t)p(y, —s;dz,0)

§—>00
Rm Rm
= tim [ Few) [ p.0:dw.0p(y. ~sidz.0
§—>00
Rm Rm

= lim fF(w)p(y,—s;dw,t)
§—>00
Rm

= lim /F(w)p(y,—(t—i—s);dw,O)
§—>00
R

= / F(w)p(dw)
]Rm
=uF, (A.14)
which implies that @ (-) is an invariant measure of the solution £(¢). Choosing different initial

values y; and y, at time zero and applying the second inequality in (A.12) give that for some
constant K,

E|&(t; y1) — £(t; y2)|> < K|y1 — ya|?e™5". (A.15)

Note that F € Cg (R™; R) implies that F satisfies the Lipschitz condition. This, together with
(A.15) and the Lyapunov inequality, gives that for any F € Cg(Rm; R),
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IPrF(y1) = PrF(y2)| = [EF (@ y1) —EF (& y2))|
= |EF & 1) — FE@S y2))I
= KiE[5@; y1) =@ »)l
< Ky (BIE@ y) — £ )
< KiVE|y1 — yale™ ¥,

where K| > 0 is the Lipschitz constant. By Lemma A.l, for F € B, (R™; R), there exists a
constant K > 0 such that

|PiF(y1) — PiF ()| < Kly1 — yale 3. (A.16)

This, together with the definition of the invariant measure, yields

PAF(y) = uF| S/IPzF(y)—PtF(Z)IM(dz)SKe_%’/Iy—zlu(dz)- (ALT)
Rm™ Rm

Then by [12, P40], w(-) is strongly exponential ergodic. If both w'(-) and w2(-) are invariant
measures, it follows from (A.16) that

\W'F — u2F| < / / 1P F(y) — P F(2)n' (dy)u?(dz)
R'"Rm_
sKe—%f/f|y—z|u1<dym2(dz)—>o
Rm Rm

(A.18)

as t — oo, which implies the uniqueness of the invariant measure. [J
References

[1] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell, 4th ed., Garland,
New York, 2002.

[2] V. Bally, L. Caramellino, R. Cont, Stochastic Integration by Parts and Functional 1t6 Calculus, Advanced Courses
in Mathematics CRM Barcelona, Birkhduser, Basel, 2016.

[3] J. Bao, G. Yin, C. Yuan, Asymptotic Analysis for Functional Stochastic Differential Equations, Springer Briefs in
Mathematics, Springer, 2016.

[4] J. Bao, G. Yin, C. Yuan, Two-time-scale stochastic partial differential equations driven by «-stable noise: averaging
principles, Bernoulli 23 (2017) 645-669.

[5] M. Bodnar, General model of a cascade of reactions with times: global stability analysis, J. Differ. Equ. 259 (2015)
777-795.

[6] D. Bratsun, D. Volfson, L.S. Tsimring, J. Hasty, Delay-induced stochastic oscillations in gene regulation, Proc. Natl.
Acad. Sci. USA 102 (41) (2005) 14593-14598.

[7] T. Brett, T. Galla, Stochastic processes with distributed delays: chemical Langevin equation and linear-noise ap-
proximation, Phys. Rev. Lett. 110 (25) (2013) 250601.

[8] T. Brett, T. Galla, Gaussian approximations for stochastic systems with delay: chemical Langevin equation and
application to a Brusselator system, J. Chem. Phys. 140 (12) (2014) 124112.

[9] C. Clayton, M. Shapira, Post-transcriptional regulation of gene expression in trypanosomes and leishmanias, Mol.
Biochem. Parasitol. 156 (2) (2007) 93-101.


http://refhub.elsevier.com/S0022-0396(19)30670-9/bib416C626572747332303032s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib416C626572747332303032s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib42616C6C7932303136s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib42616C6C7932303136s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib42616F32303136s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib42616F32303136s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib42616F32303137s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib42616F32303137s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib426F646E617232303135s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib426F646E617232303135s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4272617473756E32303035s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4272617473756E32303035s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib427265747432303133s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib427265747432303133s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib427265747432303134s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib427265747432303134s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib436C6179746F6E32303037s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib436C6179746F6E32303037s1

1076 F. Wu, G. Yin/ J. Differential Equations 269 (2020) 10371077

[10] R. Cont, D.A. Fournié, Functional Itd calculus and stochastic integral representation of martingales, Ann. Probab.
41 (1) (2013) 109-133.

[11] J.C. Cox, J.E. Ingersoll Jr., S.A. Ross, A theory of the term structure of interest rates, Econometrica 53 (1985)
385-408.

[12] G. Da Prato, J. Zabczyk, Ergodicity for Infinite-Dimensional Systems, Cambridge University Press, Cambridge,
1996.

[13] B. Dupire, Functional It6 Calculus, Portfolio Research paper 2009-04, 2009, Bloomberg.

[14] D.T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical
reactions, J. Comput. Phys. 22 (4) (1976) 403—434.

[15] K. Gopalsamy, Stability and Oscillations in Delay Difference Differential Equations of Population Dynamics,
Kluwer Academic, Dordrecht, 1992.

[16] A. Guillin, C. Léonard, L. Wu, N. Yao, Transportation-information inequalities for Markov processes, Probab.
Theory Relat. Fields 144 (2009) 669-695.

[17] C. Gupta, J.M. Lépez, R. Azencott, M.R. Bennett, K. Josi¢, W. Ott, Modeling delay in genetic networks: from delay
birth-death processes to delay stochastic differential equations, J. Chem. Phys. 140 (20) (2014) 204108.

[18] J.K. Hale, S.M.V. Lunel, Introduction to Functional Differential Equations, Springer, Berlin, 1993.

[19] K. It6, M. Nisio, On stationary solution of a stochastic equation, Kyoto J. Math. 4 (1964) 1-75.

[20] R.Z. Khasminskii, On stochastic processes defined by differential equations with a small parameter, Theory Probab.
Appl. 11 (1966) 211-228.

[21] R.Z. Khasminskii, G. Yin, Asymptotic series for singularly perturbed Kolmogorov-Fokker-Planck equations, SIAM
J. Appl. Math. 56 (1996) 1766-1793.

[22] R.Z. Khasminskii, G. Yin, On transition densities of singularly perturbed diffusions with fast and slow components,
SIAM J. Appl. Math. 56 (1996) 1794-1819.

[23] R.Z. Khasminskii, G. Yin, Limit behavior of two-time-scale diffusions revisited, J. Differ. Equ. 212 (2005) 85-113.

[24] R.Z. Khasminskii, Stochastic Stability of Differential Equations, 2nd ed, Springer, Heidelberg, 2012.

[25] V.B. Kolmanovskii, V.R. Nosov, Stability of Functional Differential Equations, Academic Press, New York, 1986.

[26] Y. Kuang, Delay Differential Equations with Applications in Population Dynamics, Academic Press, Boston, 1993.

[27] H.J. Kushner, Approximation and Weak Convergence Methods for Random Processes, with Applications to
Stochastic Systems Theory, MIT Press, Cambridge, MA, 1984.

[28] H.J. Kushner, Weak Convergence Methods and Singularly Perturbed Stochastic Control and Filtering Problems,
Birkhéuser, Boston, MA, 1990.

[29] H.J. Kushner, Numerical Methods for Controlled Stochastic Delay Systems, Birkhduser Boston, Boston, MA, 2008.

[30] T. Kurtz, Semigroups of conditioned shifts and approximation of Markov processes, Ann. Probab. 3 (4) (1975)
618-642.

[31] T. Kurtz, Approximation of Population Processes, CBMS-NSF Regional Conference Series in Applied Mathemat-
ics, vol. 36, SIAM, Philadelphia, 1981.

[32] B. Lewin, Genes IX, Jones & Bartlett Publishers, Burlington, MA, 2007.

[33] Y. Liu, J. Loros, J.C. Dunlap, Phosphorylation of the Neurospora clock protein frequency determines its degradation
rate and strongly influences the period length of the circadian clock, Proc. Natl. Acad. Sci. 97 (1) (2000) 234-239.

[34] X. Mao, Stochastic Differential Equations and Applications, second edition, Horwood, Chichester, 2007.

[35] I. Melzner, M.A. Weniger, A.J. Bucur, S. Briiderlein, K. Dorsch, C. Hasel, F. Leithduser, O. Ritz, M.J.S. Dyer,
T.EE. Barth, P. Méller, Biallelic deletion within 16p13. 13 including SOCS-1 in Karpas 1106P mediastinal B-cell
lymphoma line is associated with delayed degradation of JAK?2 protein, Int. J. Cancer 118 (8) (2006) 1941-1944.

[36] J. Miekisz, J. Poleszczuk, M. Bodnar, Stochastic models of gene expression with delayed degradation, Bull. Math.
Biol. 73 (2011) 2231-2247.

[37] S.-E.A. Mohammed, Stochastic Functional Differential Equations, Longman, Harlow/New York, 1986.

[38] E. Pardoux, A.Yu. Veretennikov, On the Poisson equation and diffusion approximation I, Ann. Probab. 29 (3) (2001)
1061-1085;

E. Pardoux, A.Yu. Veretennikov, On the Poisson equation and diffusion approximation II, Ann. Probab. 31 (3)
(2003) 1166-1192;
E. Pardoux, A.Yu. Veretennikov, On the Poisson equation and diffusion approximation III, Ann. Probab. 33 (3)
(2005) 1111-1133.

[39] K.M. Ramachandran, A singularly perturbed stochastic delay system with small parameter, Stoch. Anal. Appl. 11
(1993) 209-230.

[40] K.M. Ramachandran, Stability of stochastic delay differential equation with a small parameter, Stoch. Anal. Appl.
26 (4) (2008) 710-723.


http://refhub.elsevier.com/S0022-0396(19)30670-9/bib436F6E7432303133s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib436F6E7432303133s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib436F7831393835s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib436F7831393835s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib446131393936s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib446131393936s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib44757069726532303039s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib47696C6C657370696531393736s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib47696C6C657370696531393736s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib476F7031393932s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib476F7031393932s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4775696C6C696E32303039s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4775696C6C696E32303039s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib477570746132303134s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib477570746132303134s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib48616C6531393933s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib49746F31393637s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B6861736D696E736B696931393636s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B6861736D696E736B696931393636s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B6861736D696E736B69693139393661s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B6861736D696E736B69693139393661s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B6861736D696E736B696931393936s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B6861736D696E736B696931393936s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B6861736D696E736B696932303035s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B6861736D696E736B696932303132s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B6F6C31393836s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B75616E6731393933s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B7573686E657231393834s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B7573686E657231393834s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B7573686E657231393930s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B7573686E657231393930s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B7573686E657232303038s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B7572747A31393735s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B7572747A31393735s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B7572747A31393831s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4B7572747A31393831s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4C6577696E32303037s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4C697532303030s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4C697532303030s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4D616F32303037s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4D656C7A6E657232303036s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4D656C7A6E657232303036s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4D656C7A6E657232303036s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4D69656B69737A32303131s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4D69656B69737A32303131s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib4D6F68616D6D656431393836s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib506172646F7578323030312D30332D3035s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib506172646F7578323030312D30332D3035s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib506172646F7578323030312D30332D3035s2
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib506172646F7578323030312D30332D3035s2
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib506172646F7578323030312D30332D3035s3
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib506172646F7578323030312D30332D3035s3
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib52616D616368616E6472616E31393933s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib52616D616368616E6472616E31393933s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib52616D616368616E6472616E32303038s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib52616D616368616E6472616E32303038s1

F. Wu, G. Yin/ J. Differential Equations 269 (2020) 1037-1077 1077

[41] P. Smolen, D.A. Baxter, J.H. Byrne, Modeling circadian oscillations with interlocking positive and negative feed-
back loops, J. Neurosci. 21 (17) (2001) 6644-6656.

[42] M. Thattai, A. van Oudenaarden, Intrinsic noise in gene regulatory networks, Proc. Natl. Acad. Sci. USA 98 (2001)
8614-8619.

[43] M. Turcotte, J. Garcia-Ojalvo, G.M. Siiel, A genetic timer through noise-induced stabilization of an unstable state,
Proc. Natl. Acad. Sci. USA 105 (41) (2008) 15732-15737.

[44] E. Wu, G. Yin, H. Mei, Stochastic functional differential equations with infinite delay: existence and uniqueness of
solutions, solution maps, Markov properties and ergodicity, J. Differ. Equ. 262 (2012) 1226-1252.

[45] FE. Wu, T. Tian, J.B. Rawlings, G. Yin, Approximate method for stochastic chemical kinetics with two-time scales
by chemical Langevin equations, J. Chem. Phys. 144 (17) (2016) 174112.

[46] G. Yin, K.M. Ramachandran, A differential delay equation with wideband noise perturbations, Stoch. Process. Appl.
35 (1990) 231-249.

[47] G. Yin, H.Q. Zhang, Singularly perturbed Markov chains: limit results and applications, Ann. Appl. Probab. 17
(2007) 207-229.

[48] G. Yin, Q. Zhang, Continuous-Time Markov Chains and Applications: A Two-Time-Scale Approach, Springer, New
York, 2013.


http://refhub.elsevier.com/S0022-0396(19)30670-9/bib536D6F6C656E32303031s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib536D6F6C656E32303031s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib5468617474616932303031s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib5468617474616932303031s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib547572636F74746532303038s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib547572636F74746532303038s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib577532303137s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib577532303137s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib577532303136s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib577532303136s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib59696E31393930s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib59696E31393930s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib59696E32303037s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib59696E32303037s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib59696E32303132s1
http://refhub.elsevier.com/S0022-0396(19)30670-9/bib59696E32303132s1

	An averaging principle for two-time-scale stochastic functional differential equations
	1 Introduction and motivation
	2 Notation, assumptions, and preliminaries
	3 Invariant measure of the fast-varying process
	4 Functional Itô formula and martingale problem
	5 Weak convergence and averaged system
	6 Extension and examples
	7 Concluding remarks
	Appendix A Proof of Theorem 3.2
	References


