
Available online at www.sciencedirect.com
ScienceDirect

J. Differential Equations 269 (2020) 1037–1077

www.elsevier.com/locate/jde

An averaging principle for two-time-scale stochastic 

functional differential equations

Fuke Wu a,1, George Yin b,2

a School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, 
PR China

b Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

Received 1 July 2019; revised 18 December 2019; accepted 28 December 2019
Available online 8 January 2020

Abstract

Delays are ubiquitous, pervasive, and entrenched in everyday life, thus taking it into consideration is 
necessary. Dupire recently developed a functional Itô formula, which has changed the landscape of the 
study of stochastic functional differential equations and encouraged a reconsideration of many problems 
and applications. Based on the new development, this work examines functional diffusions with two-time 
scales in which the slow-varying process includes path-dependent functionals and the fast-varying process 
is a rapidly-changing diffusion. The gene expression of biochemical reactions occurring in living cells in 
the introduction of this paper is such a motivating example. This paper establishes mixed functional Itô 
formulas and the corresponding martingale representation. Then it develops an averaging principle using 
weak convergence methods. By treating the fast-varying process as a random “noise”, under appropriate 
conditions, it is shown that the slow-varying process converges weakly to a stochastic functional differential 
equation whose coefficients are averages of that of the original slow-varying process with respect to the 
invariant measure of the fast-varying process.
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1. Introduction and motivation

In the seminal work [13], Dupire introduced a functional Itô formula using pathwise func-
tional derivatives, which quantify the sensitivity of functional variations at the endpoint of a 
path. This approach was further carefully worked out and much extended by Cont and Fournié 
[10], and Bally, Caramellino, and Cont [2]. The newly developed functional Itô formula changed 
the landscape of the study of stochastic functional equations. It opens up hopes for solving many 
problems that we were not able to deal with due to the lack of machinery for a long time. Mo-
tivated by the new development, aiming at substantially reducing computational complexity for 
systems involving functional diffusions, this work develops averaging methods for two-time-
scale functional diffusions. It presents an effort from two distinct angles. The first one stems from 
the formulation of functional diffusion systems thanks to the recent development; see Dupire [13]
and also Cont and Fournié [10]. The second perspective is on two-time-scale formulation, which 
has a long illustrated history that may be traced back to the original work of Khasminskii [20]. 
The two features together produce a fresh new look of two-time-scale functional diffusions.

Delays are ubiquitous, pervasive, and entrenched in everyday life. As a result, they have 
received considerable attention in a wide range of applications in process control, automotive 
systems, biomedical sciences, epidemics, transport, communication networks, and population 
dynamics [15,18,26,29]. The motivation stems from non-instant transmission phenomena, for 
example, high velocity fields in wind tunnel experiments, or other memory processes, or biologi-
cal applications. In general, delay or more general functional differential equations exhibit much 
more complicated dynamics than that of ordinary differential equations because of the infinite 
dimensionality; see [3,34,37,44]. Systems involving uncertainty and delay are often described 
by stochastic delay or functional differential equations, which are frequently the sources of in-
stability [25]. In recent years, such systems have become an important focal point of research 
and investigation. It is well known that the solutions of stochastic functional or delay differential 
equations are non-Markov because of the dependence of history. Thus none of the properties 
of solutions based on Markov property are applicable; see [3,37,44]. Despite the effort, treating 
stochastic systems with delays and functional systems remains a rather difficult task. Although 
there were many excellent works on stochastic delay equations, until very recently, there were 
virtually no bona fide operators and functional Itô formulas except for some general setup in a 
Banach space [37].

Many applications in science and engineering contain random processes that can be modeled 
by fast-slow motions or involving two-time-scale random processes; see [4,45,47,48]. There are 
numerous applications of systems under consideration, especially because of the recent progress 
in networked systems. Before proceeding further, let us mention a couple of motivational exam-
ples below. We shall return to Example 1.2 in Section 6.

Example 1.1. We consider a feedback control of a functional diffusion given by

dξε(t) = 1

ε
h(ξε(t))dt + 1√

ε
σ (ξε(t))dw(t),

dxε(t) = f (xε(t), xε, ξ ε(t), u(t), t)dt + σ (xε(t), xε, ξ ε(t), t)dw (t),

(1.1)
t 1 t 1
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where h : Rd �→ Rd , σ : Rd × C([0, T ]; Rr ) × [0, T ] �→ Rd×d , f : Rr × C([0, T ]; Rr ) ×
Rd × U × [0, T ] �→ Rr , u(t) is a feedback control living in a compact subset U of Rr , σ1 :
Rr ×C([0, T ]; Rr ) ×Rd ×[0, T ] �→ Rr×r , w(·) and w1(·) are d-dimensional and r-dimensional 
independent standard Brownian motions, respectively, xε

t , denoting the dependence of history, is 
to be specified later, and ε > 0 is a small parameter. The smaller the ε is, the more variation is 
encountered in ξε(t). The control objective is to find a feedback control u = u(xε(t)) so that cer-
tain objective function is minimized. The system is difficult to deal with. One is thus interested 
in finding an approximate solution using averaging principles. If one can show that the slowly 
varying component xε(·) has a limit, one hopes to develop strategies based on the limit system. 
Using such strategies in the original more complex system leads to nearly optimal controls. The 
current paper provides a key approach to realize this plan.

Example 1.2. Gene expression is a complex process involving many biochemical reactions with 
proteins being the final products. It is a challenging task to develop a systematic and rigorous 
treatment of stochastic dynamics with time delays and to investigate combined effects of stochas-
ticity and delays in concrete models. In a deterministic approximation, one often models it by a 
system with a number of differential kinetic rate equations describing transcription, translation, 
and degradation. It is usually assumed that all these processes are instantaneous. However, some 
reacting processes are rather slow, for example, the average translation speed is only about 2 
codons/s; see [1]. Time delays or general memory in biological system are usually ascribed for 
such processes.

In many biochemical reactions occurring in living cells, the number of various molecules 
might be low with significant stochastic fluctuations. In addition, most reactions are not instan-
taneous, so there exist natural time delays in the evolution of cell states [5,36]. For example, the 
process of degradation of both mRNA [9] and proteins [9,33,41] often consist of several steps 
and can naturally be modeled using time delays. Delayed degradation of JAK2 protein in sig-
naling pathways was considered in [9,33,35,41], and delayed protein degradation was studied in 
[6]. Let us consider the following delayed protein degradation model; see also [36].

In a classical model of gene expression [42], molecules of mRNA are produced from DNA in 
the process of transcription and then give rise to production of protein molecules in the process 
of translation. Both types of molecules may degrade. Because the mRNA dynamics are faster 
than the protein dynamics, we have a two-time-scale system; see [32,43]. Denote the intensities 
of the biochemical reactions by kr/ε, kp , γr/ε, and γp , respectively,

DNA
kr /ε−→ mRNA, mRNA

γr/ε−→ ∅,

mRNA
kp−→ Protein, Protein

γp−→ ∅,

(1.2)

where the small parameter ε highlights the mRNA dynamics to be a fast-varying process. Denote 
concentrations of mRNA and proteins by ξε and xε , respectively. Then the equations of chemical 
kinetics read

dξε(t)

dt
= 1

ε
(kr − γrξ

ε(t)),

dxε(t) = kpξε(t) − γpxε(t).

(1.3)
dt
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Following the work [6], the authors of [36] took into account the process of protein degradation 
with time delay. In [6] and [36], to simplify the mathematical models, only fixed time delay 
is considered, whereas distributed delays treated as memory were considered in [5]. When the 
complete memory is considered, integral delay from 0 to t is more suitable. Then system (1.2)
may be rewritten as

DNA
kr /ε−→ mRNA, mRNA

γr/ε−→ ∅,

mRNA
kp−→ Protein, Protein

γp−→ ∅, Protein
γd (s)=⇒ ∅,

(1.4)

where in the last reaction, “=⇒” shows the reaction intensity depends on the complete memory. 
Then the equation about xε(t) in (1.3) may be rewritten as

dxε(t)

dt
= kpξε(t) − γpxε(t) −

t∫
0

γd(s)xε(s)ds, (1.5)

where γd(s) can be seen as the degradation intensity of the protein produced at time s ∈ [0, t]. 
This integral delay can also be seen as the approximation of multiple delays of the form

n∑
i=1

γix
ε(t − τi),

where γi = γd(ti)�i , τi = t − ti is the delay, 0 = t0 < t1 < · · · < tn−1 < tn = t , and �i = ti+1 −
ti . When more general path-dependent delay xε

t = {xε(θ ∧ t) : 0 ≤ θ ≤ T } is considered, one 
may introduce functional π(xε

t ) leading to a functional diffusion system with two-time scales as 
follows:

dξε(t)

dt
= 1

ε
(kr − γrξ

ε(t)),

dxε(t)

dt
= kpξε(t) − γpxε(t) − π(xε

t ).

(1.6)

Along with the development, when the intrinsic noises are considered as in [7,8,17], there exist 
two Brownian motions w1(t) and w2(t) such that the chemical Langevin equation corresponding 
to the system (1.6) can be described by

dξε(t) = 1

ε
(kr − γrξ

ε(t))dt + 1√
ε

√
kr + γrξε(t)dw1(t),

dxε(t) = [kpξε(t) − γpxε(t) − π(xε
t )]dt +

√
kpξε(t) + γpxε(t) + π(xε

t )dw2(t).

(1.7)

The formulation is a two-time-scale diffusion system based on the chemical Langevin equa-
tion. In [36], the stochastic system with two-time scales stems from the master equation and the 
stochastic simulation algorithm originally proposed by Gillespie [14]. Nevertheless, the stochas-
tic simulation algorithms are often computationally expensive and slow. One of the more efficient 
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ways to reduce the computational load by using two-time-scale formulation in the chemical 
Langevin equation, which was proposed and developed in our work Wu et al. [45] for diffusions 
without delays. It is certainly important to establish a complexity reduction method (an averag-
ing principle) for the delay chemical Langevin equation since no existing results are available to 
date.

One of the main features of the above examples is that the original systems are complex and 
difficult to deal with, but one may obtain much simpler limit dynamic systems. Using the sim-
pler limit systems as a bridge, one may proceed to design feasible procedure to treat the original 
systems; see [20–24,27,28,38–40,46]. To deal with the two-time-scale Markovian systems, one 
may consider the associated transition probabilities through Kolmogorov-Fokker-Planck equa-
tions; see for example, Khasminskii and Yin [21–23] (see also related reference [24]). Such an 
approach is essentially analytic. Another method is to use stochastic averaging to obtain certain 
limit results, for example, Khasminskii [20], Kushner [27,28], and Pardoux and Veretennikov 
[38]. Note that in the last reference above, partial differential equations were used as a bridge for 
the averaging, whereas in [20,27,28,39,40,46] probabilistic methods were used as a primary tool. 
In spite of the notable progress and effort, an averaging principle for two-time-scale stochastic 
delay or functional systems has not been established to date, to the best of our knowledge.

With the recent advent of functional Itô formula, this paper aims to analyze functional diffu-
sions with two-time scales. Our main effort is to reduce the complexity. The original systems that 
we are dealing with are difficult due to the fast varying processes and the noise influence. We aim 
to obtain limit or averaged systems that are much simpler to deal with compared with the original 
systems. We examine asymptotic properties of diffusion systems involving the path-dependent 
functionals with two-time scales described by the following stochastic functional differential 
equations

⎧⎪⎪⎨⎪⎪⎩
dξε(t) = 1

ε
h(ξε(t))dt + 1√

ε
φ(ξε(t))dw1(t),

dxε(t) = b(xε
t , ξ

ε(t))dt + ψ(xε
t , ξ

ε(t))dw2(t),

(1.8)

with non-random initial data ξ(0) ∈ Rm and x(0) ∈ Rn, where ε is a small parameter, xε
t :=

{xε(u ∧ t) : 0 ≤ u ≤ T }, h = (h1, h2, . . . , hm)′ : Rm → Rm, z′ denotes the transpose of z, φ =
[φij ]m×l1 : Rm → Rm×l1 , b = (b1, b2, . . . , bn)

′ : C([0, T ]; Rn) × Rm → Rn, ψ = [ψij ]n×l2 :
C([0, T ]; Rn) ×Rm →Rn×l2 , and w1(t) and w2(t) are independent standard Brownian motions 
taking values in Rl1 and Rl2 , respectively.

Because the functional diffusion system (1.8) involves the path-dependent functionals (the 
total past history), its solution is not a Markov process. Thus the techniques in the literature 
for treating Markov processes are not applicable. Moreover, the weak convergence methods of 
Kushner [27,28] cannot be applied directly either since we have to consider the differential of 
the delay term. New approaches have to be developed. The system that we are interested in has 
two parts. One part is a fast varying diffusion, and the other part is a slowly changing functional 
diffusion. We develop an averaging principle to overcome the difficulties. A key of our approach 
is the use of the newly developed functional Itô formula.

The rest of the paper is arranged as follows. Section 2 provides necessary notation, assump-
tions, and some preliminaries. Section 3 examines the invariant measure and the exponential 
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ergodicity of the fast-varying process ξε(t). Section 4 recalls the functional Itô formula and de-
velops the mixed Itô formula and the solution of the corresponding martingale problem. Using 
these results, Section 5 derives the weak convergence of the slow-varying process xε(·) as ε → 0. 
Section 6 extends our results using weaker conditions; a two-time-scale stochastic functional dif-
ferential equation involving the affine noise in the slow-varying subsystem is treated. Moreover, 
a stochastic integro-differential equation with two-time scales is examined. In addition, Exam-
ple 1.2 is examined by using the two-time-scale analysis. Section 7 presents some concluding 
remarks. Finally, an appendix is provided at the end of the paper as technical complements.

2. Notation, assumptions, and preliminaries

Throughout this paper, unless otherwise specified, we use the following notation. Let Rn

denote the n-dimensional Euclidean space with the Euclidean norm | · |, and B(Rn) be the Borel 
set of Rn. For each N > 0, let SN = {x : |x| ≤ N} be a ball with radius N centered at the origin. 
For a vector or matrix A, denote its transpose by A′; for a matrix A, denote its trace norm by 
|A| = √

Tr(A′A). For a, b ∈Rn, 〈a, b〉 = a′b represents the inner product of a and b. Denote by 
D([0, T ]; Rn) the space of functions defined on [0, T ] with values in Rn that are right continuous 
with left limits. Denote by C([0, T ]; Rn) the family of continuous functions from [0, T ] to Rn, 
by Cl(Rn; R) the family of functions on Rn that have continuous partial derivatives up to the lth 
order, by Cl

0(R
n; R) the family of Cl(Rn; R) functions with compact support. Throughout the 

paper, K denotes a generic positive constant, whose value may change for different usage. Thus, 
K + K = K and KK = K are understood in an appropriate sense. Similarly, KN denotes the 
generic positive constant depending on N . We use ε > 0 to represent a small parameter.

In this paper, if x(t) is a stochastic process, denote by Fx
t = σ {x(s) : s ≤ t} the filtration 

generated by {x(s) : s ≤ t}, and Ex
t the corresponding conditional expectation. Based on x(t)

for t ∈ [0, T ], define the process xt = {x(u ∧ t) : 0 ≤ u ≤ T } as a function on [0, T ], that is, the 
efficient information is still in [0, t]. This implies that xt is an Fx

t -adapted stochastic process. For 
the stochastic processes ξε(·) and xε(·) dependent on ε, we define Fε

t as the σ -algebra generated 
by {ξε(s), xε(s) : s ≤ t}, and Eε

t the conditional expectation on Fε
t . In what follows, we assume 

the initial data of ξε(·) and xε(·) are non-random. Then Fε
t is contained in the σ -algebra gener-

ated by {w1(s) : s ≤ t/ε; w2(u) : u ≤ t}, which reflects the two-time-scale feature. Let M denote 
the set of real-valued progressively measurable functions that are nonzero only on a bounded 
t -interval and

Mε =
{
f ∈ M : sup

t
E|f (t)| < ∞ and f (t) is Fε

t -measurable
}
. (2.1)

Using [27,30], let us recall the definitions of the p-lim and the infinitesimal operator L̂ε as fol-
lows. Note that the p-lim was first introduced by Rishel and further worked out by Kurtz in the 
1970s. Using conditional expectation, it in fact, introduces certain operators. The essence is that 
the operator provided is a kind of infinitesimal operator. When we use the p-lim in the actual cal-
culations, some of them involve the classical Itô formula, whereas others use the functional Itô 
formula. For example, in (5.26) of this paper, the first term is from the classical Itô formula and 
the second term is from the functional Itô established in this paper. Because these Itô formulas 
are in the almost sure sense, they also work in the sense of “p-lim.



F. Wu, G. Yin / J. Differential Equations 269 (2020) 1037–1077 1043
Definition 2.1. Let f, f δ ∈ Mε
for each δ > 0. We say f =p-limδ f δ if and only if

⎧⎨⎩
sup
t,δ

E|f δ(t)| < ∞,

lim
δ→0

E|f δ(t) − f (t)| = 0 for each t.

This definition implies that p-limε f ε = 0 if f (·) = 0 and ε replaces δ and f ε ∈ Mε
for each 

ε > 0.

Definition 2.2. We say that f (·) ∈ D(L̂ε), the domain of L̂ε , and L̂εf = g if f, g ∈ Mε
and

p- lim
δ↓0

(Eε
t f (t + δ) − f (t)

δ
− g(t)

)
= 0.

Thus L̂ε is a type of infinitesimal operator. The following lemma was proved in Kurtz [30].

Lemma 2.1. If f ∈D(L̂ε), then

Mf (t) = f (t) −
t∫

0

L̂εf (u)du

is a martingale, and

Eε
t f (t + s) − f (t) =Eε

t

t+s∫
t

L̂εf (u)du w.p.1.

3. Invariant measure of the fast-varying process

To obtain the weak convergence of the slow-varying xε(t) as ε → 0, certain ergodicity is cru-
cial. In (1.8), ξε(t) is rapidly varying in contrast to xε(t). To proceed, we first consider asymptotic 
properties of ξε(t) as ε → 0. Let us define the process ξ̃ ε(t) = ξε(εt). The equation for ξε may 
be rewritten as

dξ̃ ε(t) = h(ξ̃ ε(t))dt + φ(ξ̃ ε(t))dw̃(t), (3.1)

where w̃(t) = w1(εt)/
√

ε is a standard Brownian motion. Letting ξε(t) = ξ(t/ε), ξ(t) satisfies 
the following stochastic differential equation

dξ(t) = h(ξ(t))dt + φ(ξ(t))dw̃(t). (3.2)

For the limit problem that we are interested in, we need the following condition.
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(A1) Equation (3.2) has a unique strong solution ξ(t) for any t ∈ [0, T ]. The solution is 
Fw1

εt -adapted and is a strong homogeneous Markov process. In addition,

E
(

supt∈[0,T ] |ξ(t)|2
)

≤ CT , where CT is a constant depending on T . Moreover, the pro-

cess given by (3.2) is exponentially ergodic with a unique invariant measure μ(·).

Remark 3.1. For our purposes of averaging, (A1) is all we need. It is standard nowadays that un-
der suitable conditions, one first obtains a local existence of solution and then extend the solution 
to a global solution using regularity; the proof of ergodicity follows from the non-degeneracy of 
the diffusion and certain stopping time argument. One may consult [24, Section 3.4, Section 4.4]
for some details. It is also known that even for certain degenerate diffusions, we can still have 
the desired exponential ergodicity. However, it is not clear that one can give general conditions 
to cover every possible case. Nevertheless, for given systems, they can clearly be handled in a 
case-by-case fashion. Owing to this consideration, we simply state (A1) as it is. One may won-
der what conditions will ensure (A1). To illustrate, we provide some sufficient conditions below 
together with a theorem stating the implications of the conditions. Note that the conditions in the 
following theorem are only sufficient but not necessary. Even if these conditions are not satisfied, 
(A1) may still hold. The proof of the following theorem is outlined in Appendix A; see also [44]
for a stochastic functional differential equation counterpart.

Theorem 3.2. Assume that h(·) is locally Lipschitz continuous and there exists λ1 such that for 
any y1, y2 ∈ Rm,

〈y1 − y2, h(y1) − h(y2)〉 ≤ −λ1|y1 − y2|2

and φ(·) is globally Lipschitz continuous, i.e., there exists λ2 such that

|φ(y1) − φ(y2)|2 ≤ λ2|y1 − y2|2.

Then equation (3.2) admits a unique strong solution ξ(t) globally for any t ∈ [0, T ], which is 
Fw1

εt -adapted and satisfies the following properties:

(i) the solution is a strong homogeneous Markov process;

(ii) E
(

sup
t∈[0,T ]

|ξ(t)|2
)

≤ CT , where CT is a constant depending on T ;

(iii) if 2λ1 > λ2, then (3.2) has a unique invariant measure μ(·), which is exponentially ergodic.

In lieu of the sufficient conditions above, other conditions guaranteeing these results can also 
be provided. For example, for the first equation in (1.7) of Example 1.2, letting ξε(t) = ξ(t/ε)

gives

dξ(t) = [kr − γrξ(t)]dt + √
kr + γrξ(t)dw̃(t). (3.3)

Moreover, define ξ̂ (t) = kr + γrξ(t). Then,

dξ̂(t) = γr(2kr − ξ̂ (t))dt + γr

√
ξ̂ (t)dw̃(t),
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which does not satisfy the local Lipschitz condition. However it can be shown that it has a unique 
global solution, known as the mean-reverting square root process, and this solution is pth mo-
ment bounded for any p ≥ 0 and exponentially ergodic with the stationary distribution being the 
noncentral chi-square distribution; see [11,34].

4. Functional Itô formula and martingale problem

In this section, we consider the following stochastic functional differential equation

dX(t) = B(t,Xt )dt + �(t,Xt )dW(t) (4.1)

with the deterministic initial value X(0) ∈ Rn, where Xt := {X(u ∧ t) : 0 ≤ u ≤ T }, B =
(B1, B2, . . . , Bn)

′ : R+ × D([0, T ]; Rn) → Rn, � = [�ij ]n×l2 : R+ × D([0, T ]; Rn) → Rn×l2 , 
W(t) is an l2-dimensional standard Brownian motion. We assume that there exists an FW

t -adapted 
solution x(t) on [0, T ] and B1(t) = B(t, Xt) ∈ L1(R+; Rn) and �1(t) = �(t, Xt) ∈
L2(R+; Rn×l2), where FW

t is the filtration generated by the Brownian motion W(t), L1(R+; Rn)

denotes the family of all Rn-valued measurable FW
t -adapted processes F1(t) such that ∫ T

0 |F1(t)|dt < ∞ almost surely for every T > 0, and L2(R+; Rn×l2) denotes the family of 

all Rn×l2 -valued measurable FW
t -adapted processes F2(t) such that 

∫ T

0 |F2(t)|2dt < ∞ almost 
surely for every T > 0.

In an insightful work, Dupire [13] proposed a method for defining a non-anticipative calculus, 
which extends the Itô formula to path-dependent functionals of stochastic processes. To proceed, 
we first give the definitions of the horizontal and the vertical derivatives, respectively; see also 
[2,10].

Definition 4.1. For xt = {x(u ∧ t) : 0 ≤ u ≤ T }, a non-anticipative functional F : [0, T ] ×
D([0, T ]; Rn) → R is said to be horizontally differentiable at (t, x) ∈ [0, T ] × D([0, T ]; Rn)

if the limit

DF(t, x) = lim
δ→0+

F(t + δ, xt ) − F(t, xt )

δ

exists. The DF(t, x) is called horizontal derivative of F at (t, x).

Definition 4.2. For xt = {x(u ∧ t) : 0 ≤ u ≤ T }, a non-anticipative functional F : [0, T ] ×
D([0, T ]; Rn) → R is said to be vertically differentiable at (t, x) ∈ [0, T ] × D([0, T ]; Rn) if 
the functional map

e → F(t, xt + e1[t,T ])

is differentiable at 0. Its gradient at 0 is called the vertical derivative of F at (t, x):

∇xF (t, x) = (∂1F(t, x), ∂2F(t, x), . . . , ∂nF (t, x)),

where

∂iF (t, x) = lim
F(t, xt + hei1[t,T ]) − F(t, xt )

.

h→0 h
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If F is vertically differentiable at all (t, x) ∈ [0, T ] × D([0, T ]; Rn), then ∇xF is a non-
anticipative functional called the vertical derivative of F . Repeating this procedure leads to the 
definition of the second derivative, or ∇2

xF (t, x) = [∂2
ijF (t, x)]n×n, the derivative of the gradient 

at 0 (if it exists) of the map

e → ∇xF (t, xt + e1[t,T ]).

Remark 4.1. In fact, to consider the derivative of functionals, we have to consider xt+δ − xt . 
Noting that xt = {x(t ∧ u) : 0 ≤ u ≤ T }, roughly speaking,

xt+δ − xt = 0 · 1[0,t) + [x(u) − x(t)]1[t,t+δ)(u) + [x(t + δ) − x(t)]1[t+δ,T ].

As δ → 0, we need to consider the perturbation xt +e1[t,T ]. In view of these definitions, although 
xt may be a continuous function if x(t) is a continuous process, xt + e1[t,T ] is right continuous 
and has left limit, that it is in D([0, T ]; Rn). Thus we need to have F be defined on [0, T ] ×
D([0, T ]; Rn).

Now let us define the continuity for non-anticipative functionals; see [2].

Definition 4.3 (Joint continuity in (t, x)). A continuous non-anticipative functional is a continu-
ous map F : [0, T ] × D([0, T ]; Rn) → R if, for any (t, x) ∈ [0, T ] × D([0, T ]; Rn), any � > 0, 
there exists an η > 0, for any (̃t , ̃x) ∈ [0, T ] × D([0, T ]; Rn) satisfying

d∞((t, x), (̃t , x̃)) = sup
u∈[0,T ]

{|x(t ∧ u) − x̃(t ∧ u)| + |t − t̃ |} < η

such that

|F(t, x) − F (̃t, x̃)| < �.

The set of jointly continuous non-anticipative functionals is denoted by C0,0([0, T ] × D(0, T );
Rn).

Next, we introduce the notion of “local boundedness” for functionals. We call a functional F
“boundedness preserving” if it is bounded on each bounded set of paths [2,10].

Definition 4.4. A non-anticipative functional F : [0, T ] × D([0, T ]; Rn) → R is said to be 
boundedness preserving if for any compact K ∈ Rn and t0 < T , there exists a KK,t0 > 0, for 
all t ≤ t0 and x ∈ D([0, T ]; K) such that |F(t, x)| ≤ KK,t0 .

Let X(t) be the solution to (4.1). Then X(t) is a semimartingale whose quadratic variation 
process can be represented by

[X](t) =
t∫
|�(u,Xu)|2du, (4.2)
0
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which is a finite quadratic variation process since � ∈ L2(R+; Rn×l2). To consider the derivative 
of functionals, let us give the following definition.

Definition 4.5 (C1,2 functionals). Define C1,2([0, T ] × D([0, T ]; Rn); R) as the family of con-
tinuous non-anticipative functionals V ∈ C0,0([0, T ] × D([0, T ]; Rn); R) such that

(i) V admits a horizontal derivative DV (t, x) for all t, x ∈ [0, T ] ×D([0, T ]; Rn), and DV (t, ·)
is continuous for any t ∈ [0, T );

(ii) ∇xV and ∇2
xV are jointly continuous;

(iii) DV , ∇xV and ∇2
xV are boundedness preserving.

For any V ∈C1,2([0, T ] ×D([0, T ]; Rn); R), Dupire and Cont et al. established the following 
functional Itô formula; see [2,10,13].

Theorem 4.2 (Functional Itô formula). Let X(t) be the solution of (4.1). For any V ∈
C1,2([0, T ] × D([0, T ]; Rn); R),

V (t,Xt ) = V (0,X0) +
t∫

0

DV (u,Xu)du +
t∫

0

∇xV (u,Xu)dX(u)

+1

2

t∫
0

|∇2
xV (u,Xu)|d[X](u)

= V (0,X0) +
t∫

0

LV (u,Xu)du +
t∫

0

∇xV (u,Xu)�(u,Xu)dW(u) a.s., (4.3)

where

L =D +
n∑

i=1

Bi(t, x)∂i + 1

2

n∑
i,j=1

�i(t, x)�j (t, x)∂2
ij (4.4)

is an infinitesimal generator for any (t, x) ∈ [0, T ] × D([0, T ]; Rn). In particular, Y(t) =
V (t, Xt) is a continuous semimartingale and

V (t,Xt ) − V (0,X0) −
t∫

0

LV (u,Xu)du (4.5)

is a local martingale with respect to the σ -algebra FW
t .

If V is assumed to be bounded (for example, V ∈C1,2([0, T ] × D([0, T ]; Rn); R) with com-
pact support), (4.5) is in fact a martingale and for any δ > 0,
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EW
t V (t + δ,Xt+δ) − V (t,Xt ) =

t+δ∫
t

LV (u,Xu)du a.s., (4.6)

where EW
t is the conditional expectation with respect to FW

t .
For v ∈ C1,2([0, T ] ×Rn; R) with compact support, the generator L becomes L according to 

the standard Itô formula. That is,

L(t, x)· = ∂·
∂t

+
n∑

i=1

Bi(t, x)
∂·
∂yi

+ 1

2

n∑
i,j=1

�i(t, x)�j (t, x)
∂2·

∂yi∂yj

(4.7)

for x ∈ C([0, T ]; Rn) and y = (y1, y2, . . . , yn)
′ ∈ Rn. Theorem 4.2 implies that

v(t,X(t)) − v(0,X(0)) −
t∫

0

L(u,Xu)v(u,X(u))du

is a martingale with respect to the filtration FW
t , and for any δ > 0,

EW
t v(t + δ,X(t + δ)) − v(t,X(t)) =

t+δ∫
t

L(u,Xu)v(u,X(u))du a.s. (4.8)

Remark 4.3. Let us emphasize that here v is a function defined on [0, T ] ×Rn, but the operator 
L is a functional operator on [0, T ] ×D([0, T ]; Rn), and the argument of Xu in L(u, Xu) is from 
that of the coefficients of B and �. In fact, the two generators L and L are the same when the 
horizontal derivative in functionals is the partial derivative w.r.t. time t and the vertical derivative 
is the partial derivative w.r.t. the state variable of the functions.

In this paper, we need to consider the derivative of V (t, y, x) for (t, y, x) ∈ [0, T ] × Rn ×
D([0, T ]; Rn), so we need to extend the existing functional Itô formula to include mixed deriva-
tives. First, we give the definition of C0,0,0([0, T ] × Rn × D([0, T ]; Rn); R) similar to Defini-
tion 4.3 by choosing

d∞((t, y, x), (̃t , ỹ, x̃)) = sup
u∈[0,T ]

|x(t ∧ u) − x̃(t ∧ u)| + |y − ỹ| + |t − t̃ | < η.

Then we can define C1,2,2 functionals followed by mixed functional Itô formula.

Definition 4.6 (C1,2,2 functionals). Define C1,2,2([0, T ] ×Rn ×D([0, T ]; Rn); R) as the family 
of the jointly continuous non-anticipative functional V ∈ C0,0,0([0, T ] ×Rn ×D([0, T ]; Rn); R)

such that

(i) V admits a horizontal derivative DV (t, y, x) for all t, y, x ∈ [0, T ] ×Rn × D([0, T ]; Rn), 
and DV (t, ·, ·) is continuous for any t ∈ [0, T );

(ii) ∇xV , ∇2
xV , Vy , Vyy , and ∇x(Vy) are jointly continuous;

(iii) DV , ∇xV , ∇2
xV , Vy , Vyy , and ∇x(Vy) are boundedness preserving.
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Theorem 4.4 (Mixed functional Itô formula). Let X(t) be the solution of (4.1). For any V ∈
C1,2,2([0, T ] ×Rn × D([0, T ]; Rn); R),

V (t,X(t),Xt )

= V (0,X(0),X0) +
t∫

0

DV (u,X(u),Xu)du

+
t∫

0

[Vy(u,X(u),Xu) + ∇xV (u,X(u),Xu)]dX(u)

+1

2

t∫
0

|[Vyy(u,X(u),Xu) + ∇2
xV (u,X(u),Xu) + 2∇xVy(u,X(u),Xu)]|d[X](u)

= V (0,X(0),X0) +
t∫

0

L(u,Xu)V (u,X(u),Xu)du

+
t∫

0

[Vy(u,X(u),Xu) + ∇xV (u,X(u),Xu)]�(u,Xu)dW(u) a.s., (4.9)

where D, ∇x , and ∇2
x were defined previously,

Vy(t, y, x) =
(∂V (t, y, x)

∂y1
,
∂V (t, y, x)

∂y2
, . . . ,

∂V (t, y, x)

∂y2

)
,

Vyy =
[∂2V (t, y, x)

∂yi∂yj

]
n×n

and ∇xVy(t, y, x) =
[
∂i

(∂V (t, y, x)

∂yj

)]
n×n

,

and

L(t, x)· = D ·+
n∑

i=1

Bi(t, x)
[ ∂

∂yi

+ ∂i

]
·+1

2

n∑
i,j=1

�i(t, x)�j (u, x)
[ ∂2

∂yi∂yj

+ 2∂i

( ∂

∂yj

)
+ ∂2

ij

]
·

is an infinitesimal generator for any (t, x) ∈ [0, T ] × D([0, T ]; Rn). In particular, Y(t) =
V (t, X(t), Xt) is a continuous semimartingale and

V (t,X(t),Xt ) − V (0,X(0),X0) −
t∫

0

L(u,Xu)V (u,X(u),Xu)du

is a local martingale with respect to the filtration FW
t .
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Proof. Let us denote a sequence π = {πN }N≥1 of partitions of [0, T ] as

πN = {0 = tN0 < tN1 < · · · < tNk(N) = T },

and |πN | = sup{|tNi+1 − tNi |, i = 1, 2, . . . , k(N)} be the mesh size of the partition πN . For exam-
ple, one can choose tNi = iT /2N , i = 0, 1, . . . , k(N) = 2N , and |πN | = 2−N . Note that X(t, ω)

represents a sample trajectory of the solution. In the proof, for notional simplicity, we omit ω
and write X(t, ω) as X(t) henceforth. Since any solution of (4.1) is continuous on [0, T ], it is 
uniformly continuous, which implies that for any trajectory X(t),

ηN = sup{|X(u) − X(tNi+1)| + |tNi+1 − tNi |, u ∈ [tNi , tNi+1)} → 0 as N → ∞.

Since DV , ∇xV , ∇2
xV , Vy , Vyy , and ∇x(Vy) are boundedness preserving, for sufficiently large 

N and two sample paths X(t), X∗(t∗) ∈ D([0, T ]; Rn) and t, t∗ < T , if

d∞((t,X(t)), (t∗,X∗(t∗))) := sup
u∈[0,T ]

{|X(t ∧ u) − X∗(t∗ ∧ u)| + |t − t∗|} ≤ ηN,

then DV , ∇xV , ∇2
xV , Vy , Vyy , and ∇x(Vy) are bounded. For any i < k(n) − 1, consider the 

decomposition of increments into “horizontal”, and “vertical” terms as

V (tNi+1,X(tNi+1),XtNi+1
) − V (tNi ,X(tNi ),XtNi

)

= V (tNi+1,X(tNi+1),XtNi+1
) − V (tNi ,X(tNi+1),XtNi+1

) + V (tNi ,X(tNi+1),XtNi+1
)

− V (tNi ,X(tNi ),XtNi
)

=: I1 + I2. (4.10)

Denote �N
i = tNi+1 − tNi and �(u) = V (tNi +u, X(tNi+1), XtNi+1

). Since V ∈ C1,2,2([0, T ] ×Rn ×
D([0, T ]; Rn); R), � is differentiable and

I1 =
�N

i∫
0

DV (tNi + u,X(tNi+1),XtNi+1
)du.

Noting that when xt becomes xt + e1[t,T ], x(t) becomes x(t) + e. We denote

�(u) = V (tNi ,X(tNi ) + u,XtNi
+ u1[tNi ,T ]).

Since V ∈ C1,2,2([0, T ] ×Rn × D([0, T ]; Rn); R), � ∈ C2(Rn; R),

d�(u)

du
= Vy(t

N
i ,X(tNi ) + u,XtNi

+ u1[tNi ,T ]) + ∇xV (tNi ,X(tNi ) + u,XtNi
+ u1[tNi ,T ]),

and
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d2�(u)

du2 = Vyy(t
N
i ,X(tNi ) + u,XtNi

+ u1[tNi ,T ]) + ∇2
xV (tNi ,X(tNi ) + u,XtNi

+ u1[tNi ,T ])

+2∇x(Vy(t
N
i ,X(tNi ) + u,XtNi

+ u1[tNi ,T ])).

Denote δXN
i = X(tNi+1) − X(tNi ). Taking a Taylor expansion leads to

I2 = d�(u)

du

∣∣∣
u=0

δXN
i + 1

2
Tr

[d2�(u)

du2

∣∣∣
u=0

(δXN
i )′δXN

i

]
+ rN

i

= [Vy(t
N
i ,X(tNi ),XtNi

) + ∇xV (tNi ,X(tNi ),XtNi
)]δXN

i

+1

2
|[Vyy(t

N
i ,X(tNi ),XtNi

) + ∇2
xV (tNi ,X(tNi ),XtNi

)

+2∇x(Vy(t
N
i ,X(tNi ),XtNi

))](δXN
i )′δXN

i | + rN
i ,

where rN
i is the remainder of the order o(|δXN

i |2). Applying the same method as [2,10] gives 
the first equation in (4.9). Substituting the finite quadratic variation process (4.2) into the first 
equation gives the second equation in (4.9). In addition, (4.9) reveals that Y(t) is a continuous 
semimartingale and

V (t,X(t),Xt ) − V (0,X(0),X0) −
t∫

0

L(u,Xu)V (u,X(u),Xu)du

is a local martingale with respect to the filtration FW
t as desired. �

Similar to (4.6) and (4.8), this theorem yields that if V is further bounded, for any δ > 0,

EW
t V (t + δ,X(t + δ),Xt+δ) − V (t,X(t),Xt ) =EW

t

t+δ∫
t

L(u,Xu)V (u,X(u),Xu)du a.s.

(4.11)

Remark 4.5. In this theorem, if V ∈ C1,2([0, T ] ×D([0, T ]; Rn); R), (4.9) becomes (4.3) (resp., 
v ∈ C1,2([0, T ] ×Rn; R), and the formula corresponding to (4.8) holds.

5. Weak convergence and averaged system

In this section, we show that the sequence xε(·) converges weakly to a stochastic process that 
is the solution of an appropriate stochastic functional differential equation. In order to obtain the 
desired weak convergence, we need to prove tightness first.

To begin, we need to verify

lim
N →∞ lim supP

(
sup |xε(t)| ≥ N0

)
= 0 for each T < ∞, (5.1)
0 ε→0 t≤T
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where P (A) denotes the probability of A. The verification of (5.1) is usually quite involved, and 
requires complicated calculations. To circumvent the difficulties, we use the truncation technique 
as follows. For each N > 0 sufficiently large such that |x(0)| ≤ N , consider

dxε,N (t) = bN(x
ε,N
t , ξ ε(t))dt + ψN(x

ε,N
t , ξ ε(t))dw2(t), (5.2)

where xε,N
t = {xε,N (t ∧ u) : 0 ≤ u ≤ T }, ξε(t) = ξ(t/ε) is the solution of the first equation in 

(1.8), bN(x, ξ) = b(x, ξ)qN(x), ψN(x, ξ) = ψ(x, ξ)qN(x), and

qN(x) =
⎧⎨⎩

1, when x ∈ C([0, T ];SN),

0, when x ∈ C([0, T ];Rn − SN+1),

smooth, otherwise.

From the definition, it can be seen that xε,N(t) = xε(t) up until the first exit from SN = {x : |x| ≤
N}. Then xε,N (t) is said to be the N -truncation of xε(t). According to the definition of xt , it is 
easily seen that xε,N

t ∈ D([0, T ]; SN) if xε,N (t) ∈ SN since ‖xε,N
t ‖∞ := supu∈[0,T ]{xε,N (t ∧ u) :

0 ≤ u ≤ T } ≤ N . Let Fε,N
t = σ {ξε(s), xε,N (s) : s ≤ t}. We can also give the corresponding def-

initions for Mε,N
and L̂ε,N . It is clear that F ξε

t ⊂ Fε,N
t . To proceed, the following assumptions 

are needed.

(A2) The functions b(x, ξ), ψ(x, ξ), ∇xbi(x, ξ), ∇xψij (x, ξ), ∇2
xbi(x, ξ) and ∇2

xψij (x, ξ), i, j =
1, 2, . . . , n are boundedness preserving with respect to x ∈ D([0, T ]; Rn), and continuous 
and bounded with respect to ξ ∈Rm for x ∈ D([0, T ]; G), where G ⊂Rn is a compact set.

(A3) For G ⊂Rn being a compact set, x ∈ D([0, T ]; G), b(x, ·) and ψ(x, ·)ψ ′(x, ·) = A(x, ·) =
[aij (x, ·)]n×n are integrable functionals with respect to the measure μ, and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Rn

b(x, ξ)μ(dξ) = b̄(x),

∫
Rn

aij (x, ξ)μ(dξ) = āij (x),

that is, b̄(x) = Eμb(x, ξ) and āij (x) = Eμaij (x, ξ), where Eμ is the expectation with 
respect to the invariant measure μ. Moreover, A(·, ·) is nonnegative definite.

(A4) The following equation

dx(t) = b̄(xt )dt + ψ̄(xt )dB(t) (5.3)

has a solution that is unique in the weak sense (i.e., uniqueness in the sense of distribution) 
on [0, T ] for each continuous deterministic initial value x(0), where B(t) is a standard 
Brownian motion, b̄ = (b̄1, b̄2, . . . , b̄n)

′, ψ̄(·)ψ̄ ′(·) = Ā(·).

Define the transition function

Pt (x,A) = p(x,0;A, t) = P (ξ(t) ∈ A|ξ(0) = x) (5.4)
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by using the transition probabilities. Let us introduce the notation

Pt,sF (x) =
∫
Rm

p(x, s;dy, t)F (y), t ≥ s, x ∈ Rm, F ∈ Bb(R
m;R). (5.5)

Then the linear operators Pt = Pt,0 is called the Markovian transition semigroup or Markovian 
semigroup associated with the transition function Pt(x, A). Note that PtF (x) = EF(ξ(t; x))

for the Markov process ξ(t) with the deterministic initial value ξ(0) = x. If {ξ(t)}t≥0 is a time 
homogeneous process, then Pt−s =Pt,s

Denote by μ the invariant measure of the Markov process ξ (see Theorem 3.2 for the existence 
of μ). Then we can write

μb(x, ξ) =Eμb(x, ξ) = b̄(x) and μaij (x, ξ) =Eμaij (x, ξ) = āij (x).

Likewise, for an appropriate function F , we use μF to denote the integral of F with respect to 
the invariance measure μ. According to the Markov property of ξ = (ξ(t))t≥0, (A3) implies that 
for any bounded and continuous functional b(x, ·) and aij (x, ·), and deterministic initial value 
ξ(0), ⎧⎪⎪⎨⎪⎪⎩

lim
t→∞Pξ

t b(x, ξ(0)) = lim
t→∞Eξ

t b(x, ξ) = lim
t→∞Eb(x, ξ(t)) = b̄(x),

lim
t→∞Pξ

t aij (x, ξ(0)) = lim
t→∞Eξ

t aij (x, ξ) = lim
t→∞Eaij (x, ξ(t)) = āij (x),

where Pξ
t has the same definition as Pt and the superscript ξ denotes the transition probabilities 

are for ξ(t), and Eξ
t denotes the conditional expectation with respect to F ξ

t generated by the 
process ξ(t). Note that the nonnegative definiteness of A(·) implies that Ā(·) = [āij (·)]n×n is 
nonnegative definite as well. Next, we state the main weak convergence theorem of this section. 
Its proof will be divided into several parts.

Theorem 5.1. If (A1)-(A4) hold, then {xε(·)} is tight in D([0, T ]; Rn), and the limit of any 
weakly convergent subsequence satisfies equation (5.3) with the same initial value as xε(0) =
x(0) that is non-random and independent of ε, that is, xε(·) converges weakly to x(·) determined 
by (5.3).

To prove the theorem, we use the martingale problem formulation. We say that x(t) of (5.3), is 
a solution of the martingale problem with operator L, in that for any function f ∈ C1,2([0, T ] ×
Rn; R)

Mf (t) = f (t, x(t)) − f (0, x(0)) −
t∫

0

L(u,xu)f (u, x(u))du (5.6)

is a local martingale, where for x ∈ D([0, T ]; Rn),
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L(t, x)· = ∂·
∂t

+
n∑

i=1

b̄i (x)
∂·
∂yi

+ 1

2

n∑
i,j=1

āij (x)
∂2·

∂yi∂yj

. (5.7)

As was mentioned in the beginning of this section, it is not easy to verify (5.1). We thus begin 
the proof of Theorem 5.1 by working with the N -truncated process. Corresponding to this trun-
cation, we have the operators LN , LN and LN , which are operators L, L and L with x, y, b̄, ψ̄ , 
and Ā replaced by xN, yN, b̄N , ψ̄N , and ĀN , respectively. Not only can assumption (A2) guar-
antee the existence and uniqueness of the strong solution of the stochastic functional differential 
truncated equation (5.2), but also the tightness. We proceed with the following theorem.

Theorem 5.2. Under assumption (A2), there exists a unique strong solution xε,N(t) for the 
stochastic functional differential truncated equation (5.2) for any initial value xε,N(0) = x(0) ∈
SN that is non-random and independent of ε. Moreover, this solution is continuous and 
Fε,N

t -adapted, and it is also tight in D([0, T ]; Rn).

To prove this theorem, we need the following lemma (see [27, Theorem 3, p.47] or [31] for a 
proof).

Lemma 5.3. Let {Xε(·)} be a sequence of Fε
t -measurable processes with paths in D([0, T ]; Rn)

satisfying

lim
N0→∞ lim sup

ε→0
P {sup

t≤T

|Xε(t)| ≥ N0} = 0 (5.8)

for each T < ∞ and ε > 0. For any δ > 0, let there be a random variable γε(δ) such that⎧⎨⎩
Eε

t γε(δ) ≥ Eε
t min{1, |Xε(t + s) − Xε(t)|2}, all 0 ≤ s ≤ δ, t ≤ T ,

lim
δ→0

lim sup
ε→0

Eγε(δ) = 0,
(5.9)

then Xε(·) is tight in D([0, T ]; Rn).

Proof of Theorem 5.2. Assumption (A2) shows that for any x ∈ D([0, T ]; SN), bN(x, ξ), 
ψN(x, ξ), ∇xb

N
i (x, ξ), ∇xψ

N
ij (x, ξ), ∇2

xbN
i (x, ξ), and ∇2

xψN
ij (x, ξ), i, j = 1, 2, . . . , n are 

bounded with respect to x, and continuous and bounded for any ξ ∈ Rm. Thus bN(·, ξ) and 
ψN(·, ξ) satisfy the linear growth condition and the Lipschitz condition for any ξ ∈ Rm. Mod-
ifying the argument of [34, Chapter 5], it can be shown that the truncated stochastic functional 
differential equation (5.2) has a unique strong solution and this solution is continuous and 
Fε,N

t -adapted.
From (5.2) and the elementary inequality (a + b + c)2 ≤ 3(a2 + b2 + c2),

|xε,N (t)|2 ≤ 3|x(0)|2 + 3
∣∣∣ t∫

0

bN(xε,N
u , ξε(u))du

∣∣∣2 + 3
∣∣∣ t∫

0

ψN(xε,N
u , ξε(u))dw2(u)

∣∣∣2
.

Applying the Hölder inequality and the Burkholder-Divis-Gundy inequality [34, Theorem 7.3, 
p.40] gives
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E
[

sup
t≤T

|xε,N (t)|2
]

≤ 3E|x(0)|2 + 3T

T∫
0

E|bN(xε,N
u , ξε(u))|2du

+ 12

T∫
0

E|ψN(xε,N
u , ξε(u))|2du. (5.10)

Assumption (A2) shows that bN(x, ξ) and ψN(x, ξ) are bounded for x ∈ D([0, T ]; SN) and any 
ξ ∈ Rn. This implies that there exists K dependent T such that

E
[

sup
t≤T

|xε,N (t)|2
]

≤ K,

which shows that (5.8) holds by using the Chebyshev inequality.
Considering (5.2), for any δ > 0, T > 0, and 0 ≤ v ≤ δ ∧ 1

xε,N (t + v) − xε,N (t) =
t+v∫
t

bN (xε,N
u , ξε(u))du +

t+v∫
t

ψN(xε
u, ξ

ε(u))dw2(u).

Recalling the familiar elementary inequality (a + b)2 ≤ 2(|a|2 + |b|2), this implies that

Eε
t |xε,N (t + v) − xε,N (t)|2 ≤ KEε

t

∣∣∣ t+v∫
t

bN (xε,N
u , ξε(u))du

∣∣∣2

+ KEε
t

∣∣∣ t+v∫
t

ψN(xε
u, ξ

ε(u))dw2(u)

∣∣∣2
. (5.11)

Note that xε,N (t) ∈ SN+1 for any t ≥ 0. According to (A2), bN(x, ξ) is bounded for any x ∈
D([0, T ]; SN) and ξ ∈ Rm. This implies that there exists a random variable K̃ε

N,1(δ) such that

Eε
t

∣∣∣ t+v∫
t

bN(xε,N
u , ξε(u))du

∣∣∣2 ≤ Eε
t K̃

ε
N,1(δ) (5.12)

satisfying lim supε→0 EK̃ε
N,1(δ) = O(δ2). According to the martingale isometry [34, Page 28, 

Theorem 5.21], there exists a random variable K̃ε
N,2(δ) such that

Eε
t

∣∣∣ t+v∫
t

ψN(xε
u, ξ

ε(u))dw2(u)

∣∣∣2 =Eε
t

t+v∫
t

|ψN(xε
u, ξ

ε(u))|2du ≤Eε
t K̃

ε
N,2(δ) (5.13)

satisfying lim supε→0 EK̃ε
N,2(δ) = O(δ). Substituting (5.12) and (5.13) into (5.11) gives that 

there is a K̃ε (δ) such that Eε
t |xε,N (t + v) − xε,N (t)|2 ≤ Eε

t K̃
ε (δ) satisfying
N N
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lim
δ→0

lim sup
ε→0

EK̃ε
N (δ) = 0.

Applying Lemma 5.3 yields the desired result. This completes the proof. �
Since xε,N(·) is tight, by Prohorov’s theorem, it is sequentially compact. Thus we can extract 

a weakly convergent subsequence. Do so and still index the convergent subsequence by ε and 
denote the limit as xN(·). By the Skorohod representation, with a slight abuse of notation (without 
changing notation), we may assume that xε,N(·) converges to xN(·) in the sense of w.p.1. We 
proceed to characterize the limit process xN(·) by use of the martingale problem formulation. In 
what follows, we characterize the weak limit by applying the following lemma [39,46].

Lemma 5.4. Let Xε(·) be an Rn-valued process defined on [0, T ], with Xε(0) = X(0) being 
deterministic and independent of ε. Let {X(·)} be tight on D([0, T ]; Rn). Suppose (A4) holds 
and L is the corresponding operator defined by (5.7). For each f (·) ∈ C4

0(Rn; R) (or any dense 
subset of it), each T < ∞, there exists f ε(·) ∈ D(L̂ε) such that

p- lim
ε→0

[f ε(·) − f (Xε(·))] = 0, (5.14)

and

p- lim
ε→0

[L̂εf ε(·) − L(·,Xε· )f (Xε(·))] = 0. (5.15)

Then, Xε(·) ⇒ x(·), where x(·) is the solution of the stochastic differential equation (5.3).

According to the definition of p-lim, to prove (5.14) for xε,N (t), for any f (·) ∈ C4
0(Rn; R), 

we need to look for a function f ε,N (·) ∈ D(L̂ε,N ) and verify the corresponding conditions⎧⎨⎩ sup
t,ε

E|f ε,N (t) − f (xε,N (t))| < ∞,

lim
ε→0

E|f ε,N (t) − f (xε,N (t))| = 0 for each t.
(5.16)

Similarly, to prove (5.15) for the above xε,N(t) and f (·), we need to verify the conditions⎧⎨⎩ sup
t,ε

E|L̂ε,Nf ε,N (t) − LN(t, x
ε,N
t )f (xε,N (t))| < ∞,

lim
ε→0

E|L̂ε,Nf ε,N (t) − LN(t, x
ε,N
t )f (xε,N (t))| = 0 for each t.

(5.17)

Remark 5.5. In the process of the averaging, the fast-changing variable ξε(t) is treated as noise 
and is averaged out. Noting the underlying system is a functional differential equation, we use 
the perturbed test functional method to examine the weak convergence. Introducing the perturbed 
test functionals allows us to eliminate the noise terms ξε(t) through averaging, and obtain the 
desired terms in the limit.

Proof of Theorem 5.1. For any f (·) ∈ C4
0(Rn; R), to use the perturbed test functional method, 

for any t < T , we choose
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f
ε,N
1 (t) := V1(t, x

ε,N (t), x
ε,N
t ) =

T∫
t

f ′
y(x

ε,N (t))Eξε

t [bN(x
ε,N
t , ξ ε(u)) − b̄N (x

ε,N
t )]du, (5.18)

f
ε,N
2 (t) := V2(t, x

ε,N (t), x
ε,N
t ) =

n∑
i,j=1

T∫
t

fyiyj
(xε,N (t))Eξε

t [aN
ij (x

ε,N
t , ξ ε(u)) − āN

ij (x
ε,N
t )]du.

(5.19)

In building the perturbations, the slow-changing variable xε,N(t) and the corresponding delay 
term xε,N

t are considered as parameters. Making change of variable u/ε to u yields that

f
ε,N
1 (t) = ε

T/ε∫
t/ε

f ′
y(x

ε,N (t))Eξ
t/ε[bN(x

ε,N
t , ξ(u)) − b̄N (x

ε,N
t )]du, (5.20)

f
ε,N
2 (t) = ε

n∑
i,j=1

T/ε∫
t/ε

fyiyj
(xε,N (t))Eξ

t/ε[aN
ij (x

ε,N
t , ξ(u)) − āN

ij (x
ε,N
t )]du. (5.21)

Note that Eξ
t is the conditional expectation with respect to the σ -algebra F ξ

t generated by ξ(t)

in (3.2). Define

f ε,N (t) = f (xε,N (t)) + f
ε,N
1 (t) + 1

2
f

ε,N
2 (t). (5.22)

Assumption (A2) shows that b(x, ξ) is boundedness preserving on x and b(x, ·) is continu-
ous and bounded, which implies that bN(x, ·) is a bounded and continuous function for any 
x ∈ D([0, T ]; SN), i.e., bN(x, ·) ∈ Cb(Rm; Rn). Note that the invariant measure μ is ergodic 
exponentially. Applying (A3), (A.17) in the appendix, and homogeneity of ξ(·) gives

sup
t≤T

|f ε,N
1 (t)| = ε sup

t≤T

∣∣∣ T/ε∫
t/ε

fy(x
ε,N (t))Eξ

t/ε[bN(x
ε,N
t , ξ(u)) − b̄N (x

ε,N
t )]du

∣∣∣,

≤ ε|fy(x
ε,N (t))| sup

t≤T

T/ε∫
t/ε

|Pt/ε,ub
N(x

ε,N
t , ξ(t/ε)) − μbN(x

ε,N
t , ξ)|du

= ε|fy(x
ε,N (t))| sup

t≤T

T/ε∫
t/ε

|Pu−t/εb
N(x

ε,N
t , ξ(t/ε)) − μbN(x

ε,N
t , ξ)|du

≤ εK sup
t≤T

T/ε∫
e− ς̃

2 (u−t/ε)du,
t/ε



1058 F. Wu, G. Yin / J. Differential Equations 269 (2020) 1037–1077
= εK(1 − e− ς̃ (T −t)
2ε )

= O(ε), (5.23)

which implies

|f ε,N
1 (t)| → 0 w.p.1 as ε → 0,

since f (·) ∈ C4
0(Rn; R). Assumption (A2) also reveals that ψ(x, ξ) is boundedness preserv-

ing on x and ψ(x, ·) is bounded and continuous, which implies that ψN(x, ·) ∈ Cb(Rm; Rn×l2)

for any x ∈ D([0, T ]; SN). This, together with the definition of A(x, ξ) in (A3), implies that 
aij (x, ·) ∈ Cb(Rm; R) for any x ∈ D([0, T ]; SN). Applying the technique similar to (5.23) gives

sup
t≤T

|f ε,N
2 (t)| = ε

n∑
i,j=1

sup
t≤T

∣∣∣ T/ε∫
t/ε

fyiyj
(xε,N (t))Eξ

t/ε[aN
ij (x

ε,N
t , ξ(u)) − āN

ij (x
ε,N
t )]du

∣∣∣
≤ ε

n∑
i,j=1

|fyiyj
(xε,N (t))| sup

t≤T

∣∣∣ T/ε∫
t/ε

Eξ
t/ε[aN

ij (x
ε,N
t , ξ(u)) − āN

ij (x
ε,N
t )]du

∣∣∣
= ε

n∑
i,j=1

|fyiyj
(xε,N (t))| sup

t≤T

T/ε∫
t/ε

|Px
u−t/εa

N
ij (x

ε,N
t , ξ(t/ε)) − μaN

ij (x
ε,N
t , ξ)|du

≤ εK sup
t≤T

T/ε∫
t/ε

e− ς̃
2 (u−t/ε)du,

= εK(1 − e− ς̃ (T −t)
2ε )

= O(ε), (5.24)

where μaN
ij (x

ε,N
t , ξ) = EμaN

ij (x
ε,N
t , ξ), which implies |f ε,N

2 (t)| → 0 w.p.1 as ε → 0 since 

f (·) ∈ C4
0(Rn; R). Note that (5.23) and (5.24) also imply that there exist ε0 > 0 and η,

sup
t≥0,ε∈(0,ε0)

E|f ε,N (t) − f (xε,N (t))| ≤ sup
t≥0,ε∈(0,ε0)

[E|f ε,N
1 (t)| +E|f ε,N

2 (t)|] < η,

and

lim
ε→0

E|f ε,N (t) − f (xε,N (t))| = 0 for each t. (5.25)

Thus (5.16) holds. According to Definition 2.1,

p- lim
ε→0

[f ε,N (·) − f (xε,N (·))] = 0,

that is, (5.14) holds.
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To prove (5.15), for (t, y, x) ∈ [0, T ] ×Rn × D([0, T ]; Rn), let us define

V (t, y, x) = V1(t, y, x) + 1

2
V2(t, y, x).

According to the definitions of f ε,N (·), Lε,N , LN , LN , applying (4.7) and (4.11) gives

Lε,Nf ε,N (t) = p- lim
δ→0

Eε,N
t f ε,N (t + δ) − f ε,N (t)

δ

= p- lim
δ→0

Eε,N
t f (xε,N (t + δ)) − f (xε,N (t))

δ

+ p- lim
δ→0

Eε,N
t V (t + δ, xε,N (t + δ), x

ε,N
t+δ ) − V (t, xε,N (t), x

ε,N
t )

δ
= LN(t, x

ε,N
t )f (xε,N (t)) +LN(t, x

ε,N
t )V (t, xε,N (t), x

ε,N
t ),

(5.26)

where Eε,N
t is the conditional expectation with respect to the σ -algebra Fε,N

t , and LNV (t, y, x) =
LN(t, xε,N

t )V1(t, y, x) +LN(t, xε,N
t )V2(t, y, x)/2.

Let us first examine LN(t, xε,N
t )V1(t, xε,N (t), xε,N

t ). Note that

LN(t, x
ε,N
t )V1(t, x

ε,N (t), x
ε,N
t )

= ε

n∑
i=1

LN(t, x
ε,N
t )

[ T/ε∫
t/ε

fyi
(xε,N (t))Eξ

t/ε[bN
i (x

ε,N
t , ξ(u)) − b̄N

i (x
ε,N
t )]du

]
. (5.27)

Note that F ξε

t ⊂Fε,N
t . This implies that when we apply Eε,N

t to ξε(·), it is equivalent to use Eξε

t . 
This, together with the definition of LN yields

εLN(t, x
ε,N
t )

[ T/ε∫
t/ε

fyi
(xε,N (t))Eξ

t/ε(b
N
i (x

ε,N
t , ξ(u)) − b̄N

i (x
ε,N
t ))du

]

= I ε
1 (xε,N (t), x

ε,N
t , ξ ε(t)) + ε

n∑
j=1

I ε
2j (t, x

ε,N (t), x
ε,N
t ) + ε

2

n∑
k,j=1

I ε
3kj (t, x

ε,N (t), x
ε,N
t )

+ ε

n∑
j=1

I ε
4j (t, x

ε,N (t), x
ε,N
t ) + ε

n∑
k,j=1

I ε
5kj (t, x

ε,N (t), x
ε,N
t ) + ε

2

n∑
k,j=1

I ε
6kj (t, x

ε,N (t), x
ε,N
t ),

(5.28)

where

I ε
1 (y, x, ξε(t)) = −fyi

(y)[bN
i (x, ξε(t)) − b̄N

i (x)],

I ε
2j (t, y, x) =

T/ε∫
fyiyj

(y)Eξ
t/ε[bN

i (x, ξ(u)) − b̄N
i (x)]dubN

j (x, ξε(t)),
t/ε
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I ε
3kj (t, y, x) =

T/ε∫
t/ε

fyiykyj
(y)Eξ

t/ε[bN
i (x, ξ(u)) − b̄N

i (x)]duaN
kj (x, ξε(t)),

I ε
4j (t, y, x) =

T/ε∫
t/ε

fyi
(y)∂j [Eξ

t/ε(b
N
i (x, ξ(u)) − b̄N

i (x))]dubN
j (x, ξε(t)),

I ε
5kj (t, y, x) =

T/ε∫
t/ε

fyiyk
(y)∂j [Eξ

t/ε(b
N
i (x, ξ(u)) − b̄N

i (x))]duaN
kj (x, ξε(t)),

I ε
6kj (t, y, x) =

T/ε∫
t/ε

fyi
(y)∂2

kj [Eξ
t/ε(b

N
i (x, ξ(u)) − b̄N

i (x))]duaN
kj (x, ξε(t)).

It can be seen that I ε
1 is from the differential on t in this integral, I ε

2j are from the differentials 

on xε,N (t), I ε
3j are from the second-order differentials on xε,N(t), I ε

4j are from the functional 

differentials on xε,N
t , I ε

5kj and I ε
6kj are from the mixed partial derivatives on xε,N(t) and xε,N

t . 

Recall that bN(x, ·) ∈ Cb(Rm; Rn). This, together with the boundedness preserving property of 
b(x, ξ) on x, leads to that bN(x, ξ) is bounded for any x ∈ D([0, T ]; SN) and ξ ∈Rm. Since and 
f (·) ∈ C4

0(Rn; R), similar to (5.23),

sup
t≤T

|I ε
2j (t, x

ε,N (t), x
ε,N
t )|

= sup
t≤T

∣∣∣ T/ε∫
t/ε

fyiyj
(xε,N (t))Eξ

t/ε[bN
i (x

ε,N
t , ξ(u)) − b̄N

i (xt )]dubN
j (x

ε,N
t , ξ ε(t))

∣∣∣

≤ KN sup
t≤T

∣∣∣ T/ε∫
t/ε

|fyiyj
(xε,N (t))|e− ς̃

2 (u−t/ε)du

∣∣∣
= 2

ς̃
KN(1 − e− ς̃ (T −t)

2ε ) < ∞,

which implies

ε sup
t≤T

∣∣∣ n∑
j=1

I ε
2j (t, x

ε,N (t), x
ε,N
t )

∣∣∣ ≤ ε sup
t≤T

n∑
j=1

|I ε
2j (t, x

ε,N (t), x
ε,N
t )| = O(ε).

Likewise, we have

ε

2
sup
t≤T

∣∣∣ n∑
I ε

3kj (t, x
ε,N (t), x

ε,N
t )

∣∣∣ ≤ ε

2
sup
t≤T

n∑
|I ε

3kj (t, x
ε,N (t), x

ε,N
t )| = O(ε)
k,j=1 k,j=1



F. Wu, G. Yin / J. Differential Equations 269 (2020) 1037–1077 1061
since AN(x, ξ) is bounded for any x ∈ D([0, T ]; SN) and ξ ∈ Rm according to aij (x, ·) ∈
Cb(Rm; R) and the boundedness preserving property of ψ(x, ξ) for x. By (A2), ∇xb

N(x, ξ)

is boundedness preserving for any x ∈ D([0, T ]; Rn), and continuous and bounded with re-
spect to ξ ∈ Rm. Therefore, for any i, j = 1, 2, . . . , n, ∂j b

N
i (x, ·) ∈ Cb(Rm; R) for any x ∈

D([0, T ]; SN). Hence applying similar technique to the estimation of I ε
2j and recalling the 

boundedness of bN(x, ξ) for any x ∈ D([0, T ]; SN) and ξ ∈Rm give that

sup
t≤T

|I ε
4j (t, x

ε,N (t), x
ε,N
t )|

= sup
t≤T

∣∣∣ T/ε∫
t/ε

fyi
(xε,N (t))∂j [Eξ

t/ε(b
N
i (x

ε,N
t , ξ(u)) − b̄N

i (x
ε,N
t ))]dubN

j (x
ε,N
t , ξ ε(t))

∣∣∣

= sup
t≤T

∣∣∣ T/ε∫
t/ε

fyi
(xε,N (t))[Eξ

t/ε∂j b
N
i (x

ε,N
t , ξ(t)) − ∂j b̄

N
i (x

ε,N
t )]dubN

j (x
ε,N
t , ξ ε(t))

∣∣∣

≤ KN sup
t≤T

T/ε∫
t/ε

|fyi
(xε,N (t))|e− ς̃

2 (u−t/ε)du

= 2

ς̃
KN(1 − e− ς̃ (T −t)

2ε ) < ∞

with probability 1, which implies that

ε sup
t≤T

∣∣∣ n∑
j=1

I ε
4j (t, x

ε,N (t), x
ε,N
t )

∣∣∣ ≤ ε sup
t≤T

n∑
j=1

|I ε
4j (t, x

ε,N (t), x
ε,N
t )| = O(ε).

The same technique as the estimation of I ε
3j gives

ε

2
sup
t≤T

∣∣∣ n∑
k,j=1

I ε
5kj (t, x

ε,N (t), x
ε,N
t )

∣∣∣ = O(ε).

Similarly, (A2) also leads to that for any i, j = 1, 2, . . . , n, ∂2
ij b

N(x, ·) ∈ Cb(Rm; R) for any 

x ∈ D([0, T ]; SN). This, together with the boundedness of aN(x, ξ) for any x ∈ D([0, T ]; SN)

and ξ ∈ Rm, yields

sup
t≤T

|I ε
6kj (t, x

ε,N (t), x
ε,N
t )|

≤ sup
t≤T

∣∣∣ T/ε∫
fyi

(xε,N (t))∂2
kj [Eξ

t/ε(b
N
i (x

ε,N
t , ξ(u)) − b̄N

i (x
ε,N
t ))]duaN

kj (x
ε,N
t , ξ ε(t))

∣∣∣

t/ε
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≤ KN sup
t≤T

∣∣∣ T/ε∫
t/ε

fyi
(xε,N (t))[Eξ

t/ε(∂
2
kj b

N
i (x

ε,N
t , ξ(u)) − ∂2

kj b̄
N
i (x

ε,N
t ))]du

∣∣∣
≤ KN sup

t≤T

T/ε∫
t/ε

|fyi
(xε,N (t))|e− ς̃

2 (u−t/ε)du

≤ 2KN

ς̃
(1 − e− ς̃ (T −t)

2ε ) < ∞,

which leads to that

ε

2

n∑
k,j=1

I ε
6kj (t, x

ε,N (t), x
ε,N
t ) ≤ ε

2

n∑
k,j=1

|I ε
6kj (t, x

ε,N (t), x
ε,N
t )| = O(ε).

Substituting these estimates into (5.28) gives

LN(t, x
ε,N
t )V1(t, x

ε,N (t), x
ε,N
t ) = O(ε) −

n∑
i=1

[fyi
(xε,N (t))(bN

i (x
ε,N
t , ξ ξ (t)) − b̄N

i (x
ε,N
t ))]

= O(ε) − fy(x
ε,N (t))[bN(x

ε,N
t , ξ ε(t)) − b̄N (x

ε,N
t )] (5.29)

with probability 1. To proceed, let us estimate LN(t, xε,N
t )V2(t, xε,N (t), xε,N

t ). Note that

LN(t, x
ε,N
t )V2(t, x

ε,N (t), x
ε,N
t )

= ε

n∑
i,j=1

LN(t, x
ε,N
t )

[ T/ε∫
t/ε

fyiyj
(xε,N (t))Eξ

t/ε(a
N
ij (x

ε,N
t , ξ(u)) − āN

ij (x
ε,N
t ))du

]
.

(5.30)

Similar to (5.28), we have

εLN(t, x
ε,N
t )

[ T/ε∫
t/ε

fyiyj
(xε,N (t))Eξ

t/ε(a
N
ij (x

ε,N
t , ξ(u)) − āN

ij (x
ε,N
t ))du

]

= J ε
1 (xε,N (t), x

ε,N
t , ξ ε(t)) + ε

n∑
k=1

J ε
2k(t, x

ε,N (t), x
ε,N
t ) + ε

n∑
k=1

J ε
3k(t, x

ε,N (t), x
ε,N
t )

+ ε

2

n∑
k,l=1

J ε
4kl(t, x

ε,N (t), x
ε,N
t ) + ε

2

n∑
k,l=1

J ε
5kl(t, x

ε,N (t), x
ε,N
t )

+ ε

2

n∑
J ε

6kl(t, x
ε,N (t), x

ε,N
t ), (5.31)
k,l=1
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, 
where

J ε
1 (y, x, ξε(t)) = −fyiyj

(y)[aN
ij (x, ξε(t)) − āN

ij (x)],

J ε
2k(t, y, x) =

T/ε∫
t/ε

fyiyj yk
(y)Eξ

t/ε[aN
ij (x, ξ(u)) − āN

ij (x)]dubN
k (x, ξε(t)),

J ε
3k(t, y, x) =

T/ε∫
t/ε

fyiyj
(y)∂k[Eξ

t/ε(a
N
ij (x, ξ(u)) − āN

ij (x))]dubN
k (x, ξε(t)),

J ε
4kl(t, y, x) =

T/ε∫
ε/t

fyiyj ykyl
(y)Eξ

t/ε[aN
ij (x, ξ(u)) − āN

ij (x)]duaN
kl (x, ξε(t)),

J ε
5kl(t, y, x) =

T/ε∫
ε/t

fyiyj yk
(y)∂l[Eξ

t/ε(a
N
ij (x, ξ(u)) − āN

ij (x))]duaN
kl (x, ξε(t)),

J ε
6kl(t, y, x) =

T/ε∫
ε/t

fyiyj
(y)∂2

kl[Eξ
t/ε(a

N
ij (x, ξ(u)) − āN

ij (x))]duaN
kl (x, ξ(t)).

Recall that aij (x, ξ) = ∑l2
l=1 ψil(x, ξ)ψlj (x, ξ). Condition (A2) implies that ψ(x, ξ), ∇xψij (x, ξ)

and ∇2
xψij (x, ξ), i, j = 1, 2, . . . , n are boundedness preserving with respect to x ∈ D([0, T ]; Rn), 

and continuous and bounded with respect to ξ ∈Rm for x ∈ D([0, T ]; SN). These imply that for 
any x ∈ D([0, T ]; SN), A(x, ·) ∈ Cb(Rm; Rn×n), ∂kaij (x, ·) and ∂2

klaij (x, ·) ∈ Cb(Rm; R) for 
i, j = 1, 2, . . . , n. Applying the same technique as the estimates of I ε

2j (t, x(t), xt ) yields

ε sup
t≤T

∣∣∣ n∑
k=1

J ε
2k(t, x

ε,N (t), x
ε,N
t )

∣∣∣ = O(ε) and
ε

2
sup
t≤T

∣∣∣ n∑
k,l=1

J ε
4kl(t, x

ε,N (t), x
ε,N
t )

∣∣∣ = O(ε).

Similar to the estimates of I ε
4j , I ε

5kj , and I ε
6kj , we obtain

ε sup
t≤T

∣∣∣ n∑
k=1

J ε
3k(t, x

ε,N (t), x
ε,N
t )

∣∣∣ = O(ε) and

ε

2
sup
t≤T

∣∣∣ n∑
k,l=1

J ε
vkl(t, x

ε,N (t), x
ε,N
t )

∣∣∣ = O(ε) (v = 5,6).

These estimates lead to

LN(t, x
ε,N
t )V2(t, x

ε,N (t), x
ε,N
t ) = O(ε) −

n∑
i,j=1

fyiyj
(xε,N (t))[aN

ij (x
ε,N
t , ξ ε(t)) − āN

ij (x
ε,N
t )]

(5.32)
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with probability 1. The estimates of LN(t, xε,N
t )V1(t, xε,N (t), xε,N

t ) and LN(t, xε,N
t )V2(t,

xε,N (t), xε,N
t ), together with (5.26), yield

L̂ε,Nf ε,N (t) = O(ε) + LN(t, x
ε,N
t )f (xε,N (t)) − fy(x

ε,N (t))[bN(x
ε,N
t , ξ ε(t)) − b̄N (x

ε,N
t )]

−1

2

n∑
i,j=1

fyiyj
(xε,N (t))[aN

ij (x
ε,N
t , ξ ε(t)) − āN

ij (x
ε,N
t )] (5.33)

with probability 1. Applying the generator LN defined by (4.7) to the solution process xε,N(t) in 
the stochastic functional differential equation (5.2) gives

LN(t, x
ε,N
t )f (xε,N (t)) = fy(x

ε,N (t))bN(x
ε,N
t , ξ ε(t)) + 1

2

n∑
i,j=1

fyiyj
(xε,N (t))aN

ij (x
ε,N
t , ξ ε(t)).

Substituting this into (5.33) yields

L̂ε,Nf ε,N (t) = O(ε) + fy(x
ε,N (t))b̄N (x

ε,N
t ) + 1

2

n∑
i,j=1

fyiyj
(xε,N (t))āN

ij (x
ε,N
t )

= O(ε) + LN(t, x
ε,N
t )f (xε,N (t)) (5.34)

with probability 1, which implies that (5.17) holds since f (·) ∈ C4
0(Rn; Rn) and the definition of 

f ε(·). Thus (5.15) holds. This, together with (5.25) yields xε,N (·) ⇒ xN(·) as ε → 0 by virtue 
of Lemma 5.4, where xN(·) solves the martingale problem with operator LN .

Next, we move from the weak convergence of the truncated process to that of untruncated 
processes. The argument is similar to that of [27, p.46]. For any continuous deterministic initial 
value x(0), let P (·) and PN(·) denote the probabilities induced by x(·) and xN(·), respectively, 
on the Borel sets of D([0, T ]; Rn). By (A4), the martingale problem has a unique solution 
for each x(0), so P (·) is unique. For each T < ∞, the uniqueness implies that P (·) agrees 
with PN(·) on all Borel sets of the set of paths in D([0, T ]; SN) for each t ≤ T . However, 
P {supt≤T |x(t)| ≤ N} → 1 as N → ∞. This together with the weak convergence of xε,N(·) im-
plies that xε(·) ⇒ x(·). Moreover, the uniqueness implies that the limit does not depend on the 
chosen subsequences. The proof is thus complete. �
6. Extension and examples

In assumption (A2), some requirements may be weakened. It is important to do this since in a 
wide range of applications for control systems, biology, and communications systems, the b and 
ψ etc. may not be boundedness preserving, but only possess such properties in a local sense. In 
this section, we relax assumption (A2).

(A2’) b(x, ξ), ψ(x, ξ), ∇xbi(x, ξ), ∇xψij (x, ξ), ∇2
xbi(x, ξ) and ∇2

xψij (x, ξ), i, j = 1, 2, . . . , n
are continuous with respect to ξ ∈ Rm for x ∈ D([0, T ]; G), where G ⊂ Rn is a compact 
set; Moreover, there exist the boundedness preserving functionals K1(x) and K2(x) such 
that
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|b(x, ξ)| ∨ |∇xbi(x, ξ)| ∨ |∇2
xxbi(x, ξ)| ≤ K1(x)(1 + |ξ |2), (6.1)

|ψ(x, ξ)| ∨ |∇xψij (x, ξ)| ∨ |∇2
xxψ(x, ξ)| ≤ K2(x)(1 + |ξ |2). (6.2)

Remark 6.1. In this assumption, since K1(x) and K2(x) are both boundedness preserving func-
tionals, for any x ∈ D([0, T ], SN), both K1(x) and K2(x) are bounded, that is, there exist KN > 0
such that K1(x) ∨K2(x) ≤ KN . This implies that E|bN(x, ξ)| ∨E|ψN(x, ξ)| ≤ KN(1 +E|ξ |2) <
∞ if Assumption (A1) holds. According to the existing results, we cannot obtain the existence 
of the solution of (5.2). However, if both bN(·, ξ) and ψN(·, ξ) are continuous functionals for 
any ξ ∈Rm, this condition can guarantee the existence of the weak solution for (5.2); see [19].

Theorem 6.2. Assume the conditions Theorem 5.1 with the modification of replacing (A2) by
(A2’). The results in Theorem 5.1 continue to hold.

To prove this theorem, let us present the following lemma.

Lemma 6.3. Let F :Rm →Rn be a continuous function such that

|F(y)| ≤ K(1 + |y|2).
Then under conditions in Theorem 3.2, for any t < T ,

T∫
t

[Eξε

t F (ξε(u)) − μF ]du = O(ε).

Proof. For any ς > 0, following (A.6) in the appendix,

E|ξ(t)|2 ≤ e−ςtE|ξ(0)|2 + ς−1
[
κ−1|h(0)|2 + κ−1

2 − 1

1 − κ2
|φ(0)|2

]
(1 − e−ςt ). (6.3)

This implies that for any deterministic initial value ξ(0) = y0,

lim
t→∞E|ξ(t)|2 ≤ 1

ς

[
κ−1|h(0)|2 + κ−1

2 − 1

1 − κ2
|φ(0)|2

]
=: B

and

E|ξ(t)|2 ≤ |y0|2 + B.

Moreover, noting that the initial value is deterministic and ξ(t) is a Markov process, we have

Eμ|ξ |2 =
∫
Rm

|ξ |2μ(dξ)

= lim
t→∞

∫
m

|ξ |2p(z,0;dξ, t)
R
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= lim
t→∞E(|ξ(t)|2|F0)

= lim
t→∞E|ξ(t)|2 ≤ B,

where p(z, 0; dξ, t) denotes the transition probability as in (5.4).
According to the definition of the distance in variation (see the definition in Lemma A.1 or 

[16]), applying (A.17) gives

Var(Pt − μ) := sup
|g|≤1

(Pt − μ)g

= sup
|g|≤1

∫
Rm

g(w)(p(z,0;dw, t) − μ(dw))

≤ Ke− ς̃
2 t . (6.4)

Noting |F(y)| ≤ K(1 + |y|2) and making a change of variable similar to (5.20), the Cauchy-
Schwarz inequality, the Markov property, and the stationarity give that

T∫
t

[Eξε

t F (ξε(u)) − μF ]du

= ε

T/ε∫
t/ε

[Eξ
t/εF (ξ(u)) − μF ]du

= ε

T/ε∫
t/ε

[Pt/ε,uF (ξ(u)) − μF ]du

= ε

T/ε∫
t/ε

[Pu−t/εF (ξ(u)) − μF ]du

≤ εK

T/ε∫
t/ε

[ ∫
Rm

(1 + |w|2)(p(z,0;dw,u − t/ε) + μ(dw))
]1/2

×
[ ∫
Rm

|p(z,0;dw,u − t/ε) − μ(dw)|
]1/2

du

≤ εK

T/ε∫
t/ε

[ ∫
Rm

(1 + |w|2)(p(z,0;dw,u − t/ε) + μ(dw))
]1/2[var(Pu−t/ε − μ)]1/2du

≤ εK

T/ε∫
(1 +E|ξ(u − t/ε)|2 +Eμ|ξ |2)[var(Pu−t/ε − μ)]1/2du
t/ε
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≤ ε(1 + |y0|2 + 2B)

T/ε∫
t/ε

[var(Pu−t/ε − μ)]1/2du

≤ εK

T/ε∫
t/ε

e− ς̃
4 (u−t/ε)du

≤ ε
4K

ς̃
(1 − e− ς̃ (T −t)

4ε ) = O(ε). (6.5)

The desired assertion thus follows. �
Proof of Theorem 6.2. We first prove that when (A2) is replaced by (A2’), {xε,N(·)} is tight 
in D([0, T ]; Rn). In reference to the proof of Theorem 5.2, we need to use xε,N(t) and esti-
mate (5.12) and (5.13) under Assumption (A2’). Note that K1(·) and K2(·) are boundedness 
preserving. This implies that there exists a constant KN such that |K1(x)| ∨ |K2(x)| ≤ KN for 
x ∈ D([0, T ]; SN). To prove the probability boundedness of xε,N(t), based on (5.10),

E
[

sup
t≤T

|xε,N (t)|2
]

≤ 3E|x(0)|2 + 3T

T∫
0

E|bN(xε,N
u , ξε(u))|2du + 12E

T∫
0

|ψN(xε,N
u , ξε(u))|2du

≤ 3E|x(0)|2 + 3T

T∫
0

EK1(x
ε,N
u )(1 + |ξε(u)|2)du +

T∫
0

EK2(x
ε,N
u )(1 + |ξε(u)|2)du

≤ 3E|x(0)|2 + KN

T∫
0

(1 +E|ξε(u)|2)du + KN

T∫
0

(1 +E|ξε(u)|2)du

≤ KN, (6.6)

which gives the desired boundedness in (5.8) by the Chebyshev inequality. Applying the Hölder 
inequality yields that there exists a random variable K̃ε,N

1 (δ) such that

Eε
t

∣∣∣ t+δ∫
t

bN(xε,N
u , ξε(u))du

∣∣∣2 ≤ δEε
t

t+δ∫
t

|bN(xε,N
u , ξε(u))|2du

≤ δEε
t

t+δ∫
t

K1(x
ε,N
u )(1 + |ξε(u)|2)du

≤ Eε
t K̃

ε,N
1 (δ)

such that



1068 F. Wu, G. Yin / J. Differential Equations 269 (2020) 1037–1077
lim
δ→0

lim sup
ε→0

EK̃
ε,N
1 (δ) = lim

δ→0
O(δ2) = 0. (6.7)

Under Assumption (A2’), applying the martingale isometry to the second term in (5.11), there is 
a random variable K̃ε,N

2 (δ) such that

Eε
t

∣∣∣ t+δ∫
t

σN(xε,N
u , ξε(u))dw(u)

∣∣∣2

=Eε
t

t+δ∫
t

K2(x
ε,N
u )(1 + |ξε(u)|2)du ≤Eε

t K̃
ε,N
2 (δ) (6.8)

satisfying

lim
δ→0

lim sup
ε→0

EK̃
ε,N
2 (δ) = lim

δ→0
O(δ) = 0.

Taking K̃ε,N (δ) = K̃
ε,N
1 (δ) + K̃

ε,N
2 (δ), and using (6.7) and (6.8) yield that

lim
δ→0

lim sup
ε→0

K̃ε,N (δ) = lim
δ→0

O(δ) = 0.

This, together with (6.6), gives that xε,N(·) is tight in D([0, T ]; Rn) by Lemma 5.3.
In the proof of Theorem 5.1, we need to re-estimate (5.23), (5.24), (5.28), and (5.31) under 

Assumption (A2’). Let us give the estimate (5.23). Since there exists the boundedness preserving 
functional K1(x) such that |b(x, ξ)| ≤ K1(x)(1 + |ξ |2), for any x ∈ D([0, T ]; SN), there must 
be constant K such that |bN(x, ξ)| ≤ K(1 + |ξ |2). Under assumption (A1), applying Lemma 6.3
directly gives

sup
t≤T

|f ε,N
1 (t)| = sup

t≤T

∣∣∣ T∫
t

fy(x
ε,N (t))Eξε

t [bN(x
ε,N
t , ξ ε(u)) − b̄N (x

ε,N
t )]du

∣∣∣ = O(ε). (6.9)

Similarly, (5.24), (5.28), and (5.31) can be obtained under assumption (A2’). We have therefore 
proved the desired assertion. �

Let us use the above method developed to examine the following 2-dimensional two-time-
scale functional diffusion system with the slow-varying component involving affine noise:⎧⎪⎪⎨⎪⎪⎩

dξε(t) = 1

ε
h(ξε(t))dt + 1√

ε
φ(ξε(t))dw1(t),

dxε(t) = b(xε
t )ξ

ε(t)dt + ψ(xε
t )ξ

ε(t)dw2(t),

(6.10)

where h(·) and φ(·) are appropriate scalar measurable functions such that assumption (A1) is sat-
isfied, b(·) and ψ(·) ∇xbi(·), ∇xψij (·), ∇2

xbi(·) and ∇2
xψij (·), i, j = 1, 2, . . . , n are boundedness 

preserving functionals. Let μ be the invariant measure of the stochastic differential equation
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dξ(t) = h(ξ(t))dt + φ(ξ(t))dw̃(t)

and

ξ̄ =Eμξ =
∫

ξμ(dξ) and ξ̄2 =Eμξ2 =
∫

ξ2μ(dξ).

Applying Theorem 6.2 gives the following result.

Corollary 6.4. As ε → 0, xε(·) the solution of (6.10) converges weakly to x(·) that is a solution 
of the stochastic functional differential equation

dx(t) = ξ̄ b(xt )dt +
√

ξ̄2|ψ(xt )|dŵ(t),

where ŵ(t) is a scalar standard Brownian motion.

Let us consider the following two-dimensional stochastic integro-differential equation as an 
example: ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dξε(t) = −1

ε
αξε(t)dt + 1√

ε
ρdw1(t),

dxε(t) = β
( t∫

0

xε(s)ds
)
ξε(t)dt + γ

( t∫
0

xε(s)ds
)
ξε(t)dw2(t)

(6.11)

with initial value ξ(0) and x(0) and α > 0, ρ �= 0, where β(·) and γ (·) are two continuous 
functions, w1(t) and w2(t) are two independent scalar standard Brownian motions.

It is well-known that

dξ(t) = −αξ(t)dt + ρdw̃(t) (6.12)

defines a mean-reverting Ornstein-Uhlenbeck process with the normal distribution

ξ(t) ∼ N
(
ξ(0)e−αt ,

ρ2(1 − e−2αt )

2α

)
,

which implies that the invariant measure μ of (6.12) is exponentially ergodic with the normal 
distribution N(0, ρ2/(2α)). It is easily observed that

Eμξ = 0 and Eμξ2 =
∫

ξ2μ(dξ) = ρ2

2α
.

According to Corollary 6.4, as ε → 0, xε(t) in (6.11) converges weakly to x(t) satisfying the 
following stochastic integro-differential equation

dx(t) = ρ√
2α

γ
( t∫

0

x(s)ds
)
dŵ(t),

where ŵ(t) is a standard Brownian motion.
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Example 6.5. Now let us return to Example 1.2 in the introduction section. Although it is known 
that (3.3) has a unique global solution and this solution is pth moment bounded for any p > 0
and exponentially ergodic with the stationary distribution being the noncentral chi-square distri-
bution, we only know that kr + γrξ(t) ≥ 0. Moreover, if γr ≤ 4kr , kr + γrξ(t) > 0. If γr > 4kr , 
kr + γrξ(t) can reach zero (see [11,34]). This implies that it is possible for the solution of the 
chemical Langevin equation to be negative. In fact, for the chemical Langevin equation (1.7), it 
is more difficult to prove kpξε(t) + γpxε(t) + π(xε

t ) > 0 since this term involves the delay and 
ξε(t) may be negative. Let us define

bε(xε
t , ξ

ε(t)) = kpξε(t)−γpxε(t)−π(xε
t ) and ψε(xε

t , ξ
ε(t)) =

√
kpξε(t) + γpxε(t) + π(xε

t ).

Although it is possible to replace bε(·) and ψε(·) by some positive functions or modify the 
processes by adding reflections, neither of these is common in the actual practice of chemical 
reactions. The most popular way of handling this is still to use the original model and simply 
assume the positiveness mentioned above.

To obtain the desired asymptotic results, we assume that (a) π(x) is boundedness preserving 
and (b) kpξε(t) + γpxε(t) + π(xε

t ) > 0 for the solution ξε(t) and xε(t) of (1.7). It follows that 
assumption (A2’) holds. According to the mean-reverting property,

Eμξ = lim
t→∞Eξ(t) = kr

γr

.

Theorem 6.2 yields that there exists a standard Brownian motion W̃(t) such that xε(t) in (1.7)
converges weakly to x(t) satisfying the following stochastic functional differential equation

dx(t) =
[kpkr

γr

− γpx(t) − π(xt )
]
dt +

√
kpkr

γr

+ γpx(t) + π(xt )dW̃ (t).

7. Concluding remarks

This paper develops averaging principles for functional diffusion systems with two-time 
scales, in which the functional term involves complete history, i.e., xt = {x(u ∧ t) : 0 ≤ u ≤ T }. 
In this paper, the fast varying process is assumed to be a diffusion process. Using the ergodicity 
results in [3, Chapter 1], we can allow the fast process to satisfy a stochastic functional differ-
ential equation as long as the spectrum gap is small enough or the convergence to the invariant 
measure is fast enough (exponential ergodic), the approach presented in the paper still works.

We point out, however, in the two-time scale system discussed in this paper, the fast-varying 
process is independent of the slow-varying variable. When the slow-varying variable and the 
history appear in the fast-varying process, the system becomes more difficult to deal with. We 
will have to consider the transition probability involving the slow-varying variable as a parameter. 
This will be considered in our future work.

Appendix A. Proof of Theorem 3.2

We begin by recalling a lemma that was proved in [12, Lemma 7.1.5, P125].
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Lemma A.1. Let Pt , t ≥ 0 be a Markov semigroup on Bb(Rm; R) and let K > 0 and t > 0 be 
fixed. Then the following results are equivalent:

(i) for all F ∈ C2
b(Rm; R) for all x, y ∈ Rm, |PtF (x) − PtF (y)| ≤ K‖F‖0|x − y|, where 

C2
b(Rm; R) is the set of bounded and continuous functions whose first and second partial 

derivatives are bounded;
(ii) for all F ∈ Bb(Rm; R) for all x, y ∈ Rm, |PtF (x) − PtF (y)| ≤ K‖F‖0|x − y|, where 

‖F‖0 = supx∈Rm |F(x)|;
(iii) for any x, y ∈ Rm, the distance in variation Var(Pt (x, ·) − Pt(y, ·)) ≤ K‖F‖0|x − y| be-

tween Pt(x, ·) and Pt(y, ·), where the distance in variation between Pt(x, ·) and Pt (y, ·) is 
defined by

Var(Pt (x, ·) − Pt (y, ·)) = sup
|F(·)|≤1

∫
Rm

d(Pt (x, dz) − Pt(y, dz))F (z).

Proof of Theorem 3.2. It is easily observed by conditions in this theorem,

2y′h(y) ≤ −2λ1|y|2 + 2y′h(0) ≤ −2λ1|y|2 + |y|2 + |h(0)|2, (A.1)

|φ(y)|2 ≤ 2|φ(0)|2 + 2λ2|y|2, (A.2)

which implies that

2y′h(y) + |φ(y)|2 ≤ (−2λ1 + 2λ2 + 1)|y|2 + |h(0)|2 + 2|φ(0)|2.

This reveals that the coefficients satisfy the monotone condition. This condition, together with the 
(local) Lipschitz conditions on h(·) and φ(·), yields the existence and uniqueness of the global 
strong solution of system (3.2) with E(supt∈[0,T ] |ξ(t)|2) ≤ CT and this solution is F w̃

t -adapted, 
where F w̃

t = σ {w̃(s); s ≤ t} (see [34, p.58 Theorem 3.5]). Note that w̃(t) = w1(εt)/
√

ε implies 
that F w̃

t = Fw1
εt . Hence the solution x(t) is Fw1

εt -adapted. Reference [34] also implies that this 
solution is homogeneous and has the strong Markov property.

Now let us examine the invariant measure. For any ς > 0, applying the Itô formula to 
eςt |ξ(t)|2 yields that for any t > s ≥ 0,

eςtE|ξ(t)|2 = eςsE|ξ(s)|2 +E

t∫
s

eςu[ς |ξ(u)|2 + 2ξ ′(u)h(ξ(u)) + |φ(ξ(u))|2]du. (A.3)

According to the theorem’s conditions, for any κ1 > 0 we can reestablish the following inequality 
for (A.1):

2y′h(y) ≤ −2λ1|y|2 + 2y′h(0) ≤ −2λ1|y|2 + κ1|y|2 + κ−1
1 |h(0)|2. (A.4)

Similarly, for any κ2 ∈ (0, 1), we also reestablish (A.2) as follows:

|φ(y)|2 ≤ λ2|y|2 + 2φ′(y)φ(0) − |φ(0)|2 ≤ λ2|y|2 + κ2|φ(y)|2 + κ−1|φ(0)|2 − |φ(0)|2,
2
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which implies that

|φ(y)|2 ≤ λ2

1 − κ2
|y|2 + κ−1

2 − 1

1 − κ2
|φ(0)|2. (A.5)

Substituting (A.4) and (A.5) into (A.3) yields

E|ξ(t)|2 ≤ e−ς(t−s)E|ξ(s)|2 + e−ςtE

t∫
s

eςu[ς |ξ(u)|2 + 2ξ ′(u)h(ξ(u)) + |φ(ξ(u))|2]du

≤ e−ς(t−s)E|ξ(s)|2 − e−ςtE

t∫
s

eςu
[
2λ1 − λ2

1 − κ2
− (κ1 + ς)

]
|ξ(u)|2du

+
[
κ−1|h(0)|2 + κ−1

2 − 1

1 − κ2
|φ(0)|2

]
e−ςt

t∫
u

eςudu.

Note that 2λ1 > λ2. Choose κ1, κ2 and ς sufficiently small such that

2λ1 − λ2

1 − κ2
− (κ1 + ς) > 0.

We therefore have

E|ξ(t)|2 ≤ e−ς(t−s)E|ξ(s)|2 + ς−1
[
κ−1|h(0)|2 + κ−1

2 − 1

1 − κ2
|φ(0)|2

]
(1 − e−ς(t−s)). (A.6)

For the initial time s with different initial values ξ1(s) = y1 and ξ2(s) = y2, define e(t) =
ξ(t; y1) − ξ(t; y2). Then according to Eq. (3.1), we can write the equation about e(t) as follows:

de(t) = h̃(t)dt + φ̃(t)dw̃(t), (A.7)

where h̃(t) := h(ξ(t; y1)) − h(ξ(t; y2)) and φ̃(t) := φ(ξ(t; y1)) − φ(ξ(t; y2)). For any ς̃ > 0, 
applying the Itô formula to eς̃t |e(t)|2 gives

eς̃tE|e(t)|2 = eς̃sE|e(s)|2 +E

t∫
s

eς̃u[ς̃ |e(u)|2 + 2e′(u)h̃(u) + |φ̃(u)|2]du.

It is easily observed that

e′(t)h̃(t) ≤ −λ1|e(t)|2, (A.8)

|φ̃(t)|2 ≤ λ2|e(t)|2, (A.9)

which implies that
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E|e(t)|2 ≤ e−ς̃ (t−s)E|e(s)|2 − e−ς̃ tE

t∫
s

eς̃u(2λ1 − λ2 + ς̃ )|e(u)|2du.

Note 2λ1 > λ2 again. Let us choose ς̃ sufficiently small such that 2λ1 −λ2 + ς̃ > 0, which shows 
that

E|e(t)|2 ≤ e−ς̃ (t−s)E|e(s)|2. (A.10)

Since the solution ξ(t) is a strong homogenous Markov process, we can adopt the remote start 
method to examine invariant measure. The idea can be described as follows. For the solution ξ(t)

with the initial value ξ(s) = y, in lieu of letting t → ∞, we can keep t as fixed and letting the 
initial time s → −∞. To use this method, let us consider the following stochastic differential 
equation

dξ(t) = h(x, ξ(t))dt + φ(x, ξ(t))d
←→
W (t), (A.11)

with the initial data y(s) = y ∈ Rm, where 
←→
W (t) is a double-sided Wiener process defined by

←→
W (t) :=

{
w̃(t), t ≥ 0,

w(−t), t < 0,

where w(t) is another Brownian motion independent of w̃(t). Define the filtration

F̄t :=
⋂
r>t

F̄0
r

and F̄0
r := σ({w̄(r2) − w̄(r1) : −∞ < r1 ≤ r2 ≤ r}, N ), where N is the set of all P -null sets. 

Eq. (A.11) is the same as Eq. (3.2) if the initial time may be any s ∈ R. Hence the estimates of 
(A.6) and (A.10) still hold. By the Markov property of ξ(t), for any −∞ < s2 < s1 < t < ∞, 
with t fixed, applying (A.10) gives

E|ξ(t; ξ(s2)) − ξ(t; ξ(s1))|2 =E|ξ(t, ξ(s1; ξ(s2))) − ξ(t; ξ(s1))|2
≤ E|ξ(s1; ξ(s2)) − ξ(s1)|2e−ς̃ (t−s1) (A.12)

≤ 2(E|ξ(s1; ξ(s2))|2 +E|ξ(s1)|2)e−ς̃ (t−s1).

In (A.6), for any initial value ξ(s) = y and t ≥ s,

E|ξ(t)|2 ≤ E|y|2 + ς−1
[
κ−1|h(x,0)|2 + κ−1

2 − 1

1 − κ2
|φ(0)|2

]
,

where implies that E|ξ(s1; ξ(s2))|2 and E|ξ(s1)|2 are bounded for any bounded initial value y. 
This establishes that there exists constant K such that

E|ξ(t; ξ(s2)) − ξ(t; ξ(s1))|2 ≤ Ke−ς̃ (t−s1) → 0 (A.13)
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as s1 → −∞. This implies that every sequence {ξ(−n)} is a Cauchy sequence; all the sequences 
have the same limit ξ∗ as n → ∞. Let us denote its distribution by μ(·). In addition, (A.13)
reveals that ξ∗ is independent of the initial value y. Noting that ξ(t) is a homogeneous Markov 
process, for any A ∈Rm, we have

p(y, s;A, t) = p(y,0;A, t − s).

The time homogeneity also implies that

p(y,−s;A,0) → μ(A) as s → ∞.

Note that PtF (y) = EF(ξ(t; y)) for any deterministic initial value y. For any F ∈ Bb(Rm; R), 
PtF is also bounded. By the time homogeneity of ξ(t), it follows from the Chapman-
Kolmogorov equation of the transition probability that

μPtF =
∫
Rm

PtF (z)μ(dz)

= lim
s→∞

∫
Rm

PtF (z)p(y,−s;dz,0)

= lim
s→∞

∫
Rm

∫
Rm

F (w)p(z,0;dw, t)p(y,−s;dz,0)

= lim
s→∞

∫
Rm

F (w)

∫
Rm

p(z,0;dw, t)p(y,−s;dz,0)

= lim
s→∞

∫
Rm

F (w)p(y,−s;dw, t)

= lim
s→∞

∫
Rm

F (w)p(y,−(t + s);dw,0)

=
∫
Rm

F (w)μ(dw)

= μF, (A.14)

which implies that μ(·) is an invariant measure of the solution ξ(t). Choosing different initial 
values y1 and y2 at time zero and applying the second inequality in (A.12) give that for some 
constant K ,

E|ξ(t;y1) − ξ(t;y2)|2 ≤ K|y1 − y2|2e−ς̃ t . (A.15)

Note that F ∈ C2
b(Rm; R) implies that F satisfies the Lipschitz condition. This, together with 

(A.15) and the Lyapunov inequality, gives that for any F ∈ C2(Rm; R),
b
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|PtF (y1) −PtF (y2)| = |EF(ξ(t;y1)) −EF(ξ(t;y2))|
= |E(F (ξ(t;y1)) − F(ξ(t;y2)))|
≤ K1E|ξ(t;y1) − ξ(t;y2)|
≤ K1(E|ξ(t;y1) − ξ(t;y2)|2) 1

2

≤ K1
√

K|y1 − y2|e− ς̃
2 t ,

where K1 > 0 is the Lipschitz constant. By Lemma A.1, for F ∈ Bb(Rm; R), there exists a 
constant K > 0 such that

|PtF (y1) −PtF (y2)| ≤ K|y1 − y2|e− ς̃
2 t . (A.16)

This, together with the definition of the invariant measure, yields

|PtF (y) − μF | ≤
∫
Rm

|PtF (y) −PtF (z)|μ(dz) ≤ Ke− ς̃
2 t

∫
Rm

|y − z|μ(dz). (A.17)

Then by [12, P40], μ(·) is strongly exponential ergodic. If both μ1(·) and μ2(·) are invariant 
measures, it follows from (A.16) that

|μ1F − μ2F | ≤
∫
Rm

∫
Rm

|PtF (y) −PtF (z)|μ1(dy)μ2(dz)

≤ Ke− ς̃
2 t

∫
Rm

∫
Rm

|y − z|μ1(dy)μ2(dz) → 0
(A.18)

as t → ∞, which implies the uniqueness of the invariant measure. �
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