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a b s t r a c t

Although some implicit numerical procedures have been developed to treat high nonlin-
earity, the question whether one can use explicit schemes to achieve convergence rate
similar to that of Milstein’s procedure remained open. This brings us to the current work
that focuses on numerical solutions of stochastic differential equations using explicit
schemes. Our main goals are to obtain order one convergence in the second moment
in a finite-time interval. In contrast to the implicit schemes, explicit schemes are
advantageous, easily implementable, and computationally less intensive. To overcome
the difficulties due to super-linear growth of the coefficients, a truncation device is
used in our algorithm. In addition to reaching aforementioned goals in the analysis part,
numerical examples are provided to demonstrate our results.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

This work aims to develop efficient numerical algorithms for highly nonlinear stochastic differential equations (SDEs)
using explicit schemes. Our main goals are to obtain order-one convergence in the second moment in a finite-time interval.
Because of the need in applications, such problems have received much attention in recent years. The main challenge that
we face stems from the nonlinearity of the coefficients. The progress of numerical schemes using Milstein’s method has
much improved the convergence rates compared with that of the Euler–Maruyama (EM) methods. Although some implicit
numerical procedures have been developed to combat the high nonlinearity, whether one can use explicit procedures to
achieve higher-order convergence similar to that of Milstein’s procedure remained an open question. Focusing on explicit
schemes, the current paper settles these issues. It is shown that an explicit algorithm with built-in truncation device can
be used to improve the rates of convergence and to achieve the same convergence rate as that of the Milstein scheme.

To begin, consider a d-dimensional stochastic differential equation of the form

dx(t) = f (x(t))dt + g(x(t))dB(t), t ≥ 0, x(0) = x0∈ Rd, (1.1)

where B(t) := (B1(t), . . . , Bm(t))′ is an m-dimensional standard Brownian motion, f : Rd
↦→ Rd, g : Rd

↦→ Rd×m, with
f (x) = (f1(x), . . . , fd(x))′, g(x) = (gij(x))d×m, and z ′ denotes the transpose of a matrix or a vector z. To prove the convergence
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of the algorithm, we require f , g , and Ligj (with Ligj defined in Section 3) being locally Lipschitz. When we establish the
rates of convergence, we need additional conditions, namely, these functions satisfy the polynomial growth conditions
and the partial derivatives of f and g with respect to x up to the second order are continuous.

Stochastic differential equations have been used in a wide range of applications, including physics, control theory and
decision making, biological and ecological models, financial market modeling and analysis, cyber–physical systems, and
social networks among others; see [1] and references therein among others. More often than not, one has to deal with high
nonlinearity. As a result, analytic solutions are difficult to obtain; numerical methods are often the only viable alternative.
A method commonly used for solving stochastic differential equations is the Euler–Maruyama method. It is well known
that EM method has order 1/2 convergence rate [2,3] (comparing also the pathwise convergence rate in [4]), whereas
the Milstein scheme [5–7] has order one convergence rate. To obtain the convergence rates, linear growth was deemed
crucial in the proofs. In practice, there are many cases that the linear growth condition is violated. Take for instance, the
stochastic Ginzburg–Landau equation from statistical physics, which arises in the study of phase transitions [5,8],

dx(t) = [(η +
1
2
σ 2)x(t) − ϑx3(t)]dt + σx(t)dB(t), x(0) = x0 > 0, (1.2)

and the stochastic risk-adjusted volatility model used in finance given by [9, p. 83]

dv(t) = (β0 − β1v(t))dt + ξv2(t)dB(t). (1.3)

Neither of these equations verifies the linear growth of the coefficients. Several counterexamples for nonlinear SDEs
revealed that the mean deviations of the EM method in finite time diverge to infinity [8].

Recently, by using a tamed scheme, Wang–Gan [10] modified the Milstein method and obtained order one convergence
rate. The main assumptions used are the drift satisfying one-sided Lipschitz continuity and polynomial growth rate,
and the Taylor expansion terms g and Ligj being globally Lipschitz continuous. The truncated Milstein scheme was
developed further for nonlinear SDEs in [11], but only convergence rate being less than order one was obtained. To design
algorithms with better convergence rate, several implicit Milstein schemes were developed for SDEs with global Lipschitz
coefficients; see for examples, [12–16]. Nevertheless, it is known that more computational efforts and costs are required
using the implicit approximation in each iteration. Thus easily implementable explicit methods for nonlinear SDEs are
more desirable. By introducing more correction terms, the tamed Milstein method with order 1.5 convergence rate was
given [17]. In [18], a tamed Euler scheme was given for switching diffusions. Related work [19] considered Milstein-
type schemes for switching diffusions, in which the emphasis was on treating the interactions of continuous and the
switching components using certain arguments from martingale theory together with growth and smooth conditions on
the coefficients.

Higher-order approximations are desirable, particularly, in the multilevel Monte-Carlo (MLMC) setting due to the
need of many simulations with large discretization time step; see [20–22]. Aiming at designing an explicit numerical
scheme for highly nonlinear SDEs, in this paper, we construct a class of easily implementable numerical algorithms such
that the numerical solutions approximate the solutions of the highly nonlinear SDEs with better convergence rate (in
the sense of strong convergence). Using a truncation mechanism (see [23]), we develop modified Milstein scheme with
appropriate truncation mappings to avoid possible large excursions due to the nonlinear drift, diffusion terms, and the
Brownian motions. We prove that the modified Milstein scheme preserves order one convergence rate in the sense
of strong convergence for nonlinear SDEs with smooth coefficients with polynomial growth. Finally, some numerical
experiments are presented to support our theoretical results. We remark that these proposed techniques can further
be used to construct higher-order explicit stable schemes by adding more Taylor expansion terms.

The rest of the paper is organized as follows. Section 2 gives some notation and results on the solutions of the original
stochastic differential equations. Section 3 constructs an explicit scheme and demonstrates its convergence. Section 4
provides the rate of convergence. Section 5 provides some numerical experiments to support our theoretical results.
Finally, Section 6 gives further remarks to conclude the paper.

2. Preliminary

Throughout this paper, let (Ω,F, {Ft}t≥0,P) be a complete filtered probability space with the filtration {Ft}t≥0
satisfying the usual conditions (that is, it is right continuous and F0 contains all P-null sets). Let B(t) = (B1(t), . . . , Bm(t))′
be an m-dimensional standard Brownian motion defined on the probability space, and |·| denote both the Euclidean norm
in Rd and the Frobenius norm in Rd×m. Use C to denote a generic positive constant whose value may change for different
appearances. Moreover, let C2,1(Rd

× R+;R) denote the family of all nonnegative functions V (x, t) on Rd
× R+ whose

partial derivatives with respect to x up to the second order and the partial derivative with respect to t are continuous.
For the regularity and pth moment boundedness of the exact solution we make the following assumption.

Assumption 1. There exists a symmetric positive definite matrix Q ∈ Rd×d, p > 0, and α satisfying

lim sup
|x|→∞

(1 + x′Qx)(2x′Qf (x) + trace[g ′(x)Qg(x)]) + (p − 2)|x′g(x)|2

|x|4
≤ α. (2.1)
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Remark 2.1. For some constant α̃, Assumption 1 is equivalent to

(1 + x′Qx)(2x′Qf (x) + trace
[
g ′(x)Qg(x)

]
) + (p − 2)|x′Qg(x)|2 ≤ α̃(1 + |x|4). (2.2)

If Q = Id×d (identity matrix) (as in [23]), it becomes (1+|x|2)(2x′f (x)+|g(x)|2)+(p−2)|x′g(x)|2 ≤ α̃(1+|x|4). Furthermore,
if there is a constant p ≥ 2 such that 2x′f (x) + (p − 1)|g(x)|2 ≤ α̃(1 + |x|2), which is the assumption usually used for the
global existence of exact solution, for example, [3, p. 58, Theorem 3.5], then Assumption 1 holds. With the assumption
above, we have the regularity and moment boundedness of the exact solution as given in the next lemma.

Lemma 2.1 ([23, pp. 851–852, Theorem 2.3, Lemma 2.5]). Let Assumption 1 hold. Then SDE (1.1) with any initial value x0 ∈ Rd

has a unique regular solution x(t). For each positive integer N > |x0|, define

τN =: inf{t ∈ [0,+∞) : |x(t)| ≥ N}. (2.3)

Then for any Ft-stopping time ν satisfying 0 ≤ ν ≤ τN a.s.,

sup
0≤t≤T

E|x(t)|p ≤ C, sup
0≤t≤T

E|x(t ∧ ν)|p ≤ C, ∀ T ≥ 0, (2.4)

where C is a generic positive constant dependent on T , p, and x0, and independent of N. Moreover,

P{τN ≤ T } ≤
C
Np . (2.5)

The proof is an application of Dynkin’s formula (see [23, pp. 851–852, Theorem 2.3, Lemma 2.5]); the details are
omitted.

3. Explicit scheme and convergence in pth moment

In this section, our aim is to construct an easily implementable numerical algorithm and establish its strong conver-
gence under Assumption 1. For convenience, we define

gj(x) := (g1,j(x), . . . , gd,j(x))′, Ligj(x) := (∇xgj(x))gi =

d∑
l=1

gl,i
∂gj(x)
∂xl

, i, j = 1, . . . ,m.

To construct the numerical scheme, we first estimate the growth rate of f and g . Choose a strictly increasing continuous
function ϕ : R+ → R+ such that ϕ(r) → ∞ as r → ∞ and

sup
0<|x|∨|y|≤r

|f (x) − f (y)|
|x − y|

∨
|g(x) − g(y)|2

|x − y|2
∨

|Ligj(x) − Ligj(y)|
|x − y|

≤ ϕ(r), ∀ r > 0, i, j = 1, . . . ,m. (3.1)

Due to the local Lipschitz continuity of functions f , g, Ligj, the function ϕ is well defined. Denote by ϕ−1 the inverse
function of ϕ. Then ϕ−1

: (ϕ(0),∞) → R+ is a strictly increasing continuous function. We choose a constant K ≥

|f (0)| ∨ |g(0)|2 ∨ |Ligj(0)| ∨ ϕ(1). For a given △ ∈ (0, 1], let us define the truncation mapping π△ : Rd
→ Rd by

π△(x) =
(
|x| ∧ ϕ−1(K△

−ϱ)
) x

|x|
, (3.2)

where ϱ ∈ (0, 1/2], and we use the convention x
|x| = 0 when x = 0. Clearly, ∀x, y ∈ Rd, i, j = 1, . . . ,m,

|f (π△(x)) − f (π△(y))| ≤ K△
−ϱ

|π△(x) − π△(y)|,

|g(π△(x)) − g(π△(y))| ≤ K
1
2 △

−
ϱ
2 |π△(x) − π△(y)|,

|Ligj(π△(x)) − Ligj(π△(y))| ≤ K△
−ϱ

|π△(x) − π△(y)|.

(3.3)

Remark 3.1. If (3.1) holds with ϕ(r) ≡ C for any r > 0, define ϕ−1(r) = ∞. Then π△(x) = x, and (3.3) still holds. This is
the special case that f , g , and Ligj are all globally Lipschitz continuous.

Next we construct our numerical algorithm to approximate the exact solution of SDE (1.1). For any given step-size
△ ∈ (0, 1], define⎧⎨⎩ỹ0 = x0,

yk = π△(ỹk),
ỹk+1 = yk + f (yk)△ +

∑m
j=1 gj(yk)△Bj(k) +

∑m
i,j=1 L

igj(yk)Ii,j(k),
(3.4)

where tk = k△, △B(k) := B(tk+1)−B(tk) and Ii,j(k) =
∫ tk+1
tk

∫ s
tk
dBi(u)dBj(s). We refer to the numerical method as a truncated

Milstein scheme.
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Remark 3.2. Similar to the classical Milstein scheme for SDEs, we simply assume that the terms Ii,j(k) can be simulated.
In some applications, the considered SDEs have commutative diffusion term (that is, Ligj = Ljgi, i, j = 1, . . . ,m). Thanks
to the commutativity that Ii,j(k) + Ij,i(k) = △Bi(k)△Bj(k) for i ̸= j, the second equation of our scheme takes a simple form
as

ỹk+1 = yk + f (yk)△ +

m∑
j=1

gj(yk)△Bj(k) +
1
2

m∑
i,j=1

Ligj(yk)(△Bi(k)△Bj(k) − δi,j△),

where δi,j = 1 for i = j, otherwise δi,j = 0.

The numerical solutions yk are obtained by truncating the intermediate terms ỹk according to the growth rate of the
drift and diffusion coefficients to avoid their possible large excursions due to the nonlinearities of the coefficients and the
Brownian motion increments. Consequently, from (3.3) we have the following nice linear property

|f (yk)| ≤ K△
−ϱ(1 + |yk|), |g(yk)| ≤ K

1
2 △

−
ϱ
2 (1 + |yk|), |Ligj(yk)| ≤ K△

−ϱ(1 + |yk|), (3.5)

for all k ≥ 0, 1 ≤ i, j ≤ m. Moreover, the truncated Milstein method is an explicit one, so it is easy to be used. To proceed,
we define the numerical procedure by

y(t) := yk, ∀t ∈ [tk, tk+1), (3.6)

and

ȳ(t) = yk + f (yk)(t − tk) +

m∑
j=1

gj(yk)(Bj(t) − Bj(tk)) +

m∑
i,j=1

Ligj(yk)Ii,j(tk, t), (3.7)

∀t ∈ [tk, tk+1), where Ii,j(s, t) :=
∫ t
s

∫ r
tns

dBi(u)dBj(r) and nt := [t/△].
In order to estimate the pth moment of the numerical solution y(t), we cite an inequality from [24].

Lemma 3.1 ([24, p.2929, Lemma 3.3]). For any given positive constant p with 2i < p ≤ 2(i + 1) (i is a nonnegative integer),
the following inequality

(1 + u)
p
2 ≤ 1 +

p
2
u +

p(p − 2)
8

u2
+ u3Pi(u) (3.8)

holds for any u > −1, where Pi(u) represents a ith-order polynomial of u which coefficients depend only on p.

Lemma 3.2. Under Assumption 1, the truncation scheme defined by (3.4) satisfies that

sup
0<△≤1

sup
0≤t≤T

E|y(t)|p ≤ C, ∀ T > 0, (3.9)

where p is given by Assumption 1.

Proof. For any integer k ≥ 0, we have

ỹ′

k+1Q ỹk+1

= y′

kQyk + 2y′

kQ
m∑
j=1

gj(yk)△Bj(k) + 2△y′

kQf (yk)

+(
m∑
j=1

gj(yk)△Bj(k))′Q
m∑
j=1

gj(yk)△Bj(k) + 2y′

kQ
m∑

i,j=1

Ligj(yk)Ii,j(k)

+2△f ′(yk)Q
m∑
j=1

gj(yk)△Bj(k) + △
2f ′(yk)Qf (yk)

+2△f ′(yk)Q
m∑

i,j=1

Ligj(yk)Ii,j(k) + 2(
m∑
j=1

gj(yk)△Bj(k))′Q (
m∑

i,j=1

Ligj(yk)Ii,j(k))

+(
m∑

i,j=1

Ligj(yk)Ii,j(k))′Q
m∑

i,j=1

Ligj(yk)Ii,j(k).

Then

(1 + ỹ′

k+1Q ỹk+1)
p
2 = (1 + y′

kQyk)
p
2 (1 +

9∑
i=1

ξk,i)
p
2 , (3.10)
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where

ξk,1 = (1 + y′

kQyk)
−12y′

kQ
m∑
j=1

gj(yk)△Bj(k),

ξk,2 = (1 + y′

kQyk)
−12△y′

kQf (yk),

ξk,3 = (1 + y′

kQyk)
−1(

m∑
j=1

gj(yk)△Bj(k))′Q
m∑
j=1

gj(yk)△Bj(k),

ξk,4 = (1 + y′

kQyk)
−12y′

kQ
m∑

i,j=1

Ligj(yk)Ii,j(k),

ξk,5 = (1 + y′

kQyk)
−12△f ′(yk)Q

m∑
j=1

gj(yk)△Bj(k),

ξk,6 = (1 + y′

kQyk)
−1

△
2f ′(yk)Qf (yk),

ξk,7 = (1 + y′

kQyk)
−12△f ′(yk)Q

m∑
i,j=1

Ligj(yk)Ii,j(k),

ξk,8 = (1 + y′

kQyk)
−12(

m∑
j=1

gj(yk)△Bj(k))′Q (
m∑

i,j=1

Ligj(yk)Ii,j(k)),

ξk,9 = (1 + y′

kQyk)
−1(

m∑
i,j=1

Ligj(yk)Ii,j(k))′Q
m∑

i,j=1

Ligj(yk)Ii,j(k).

For the given p > 0, there exists a unique nonnegative integer u such that 2u < p ≤ 2(u + 1). Thanks to Lemma 3.1 and
(3.10), we have

E
(
(1 + ỹ′

k+1Q ỹk+1)
p
2 |Ftk

)
≤ (1 + y′

kQyk)
p
2

[
1 +

p
2
E

(
9∑

i=1

ξk,i|Ftk

)
+

p(p − 2)
8

E

(
(

9∑
i=1

ξk,i)2|Ftk

)

+

u∑
j=0

CjE

(
(

9∑
i=1

ξk,i)j+3
|Ftk

)⎤⎦ ,
(3.11)

where C0, C2, . . . , Cu are constants depending only on p. The fact that △B(k) is independent of Ftk implies that

E(△Bi(k)|Ftk ) = 0, E((△Bi(k))2|Ftk ) = △, E(△Bi(k)△Bj(k)|Ftk ) = 0, ∀i ̸= j,

E(Ii,j(k)|Ftk ) = 0, E((Ii,j(k))2|Ftk ) = △
2/2, E(△Bl(k)Ii,j(k)|Ftk ) = 0,

i, j, l = 1, . . . ,m, ∀k ≥ 0.
(3.12)

This implies

E(ξk,1|Ftk ) = E(ξk,4|Ftk ) = E(ξk,5|Ftk ) = E(ξk,7|Ftk ) = E(ξk,8|Ftk ) = 0, (3.13)

and

E(ξk,2|Ftk ) = (1 + y′

kQyk)
−12y′

kQf (yk)△,

E(ξk,3|Ftk ) = (1 + y′

kQyk)
−1trace[g ′(yk)Qg(yk)]△.

(3.14)

Because of the symmetric positive definite matrix Q , one observes from (3.5) that

E(ξk,6|Ftk ) ≤ (1 + y′

kQyk)
−1

△
2
|Q ||f (yk)|2

≤ (1 + y′

kQyk)
−1K 2

△
2−2ϱ

|Q |(1 + |yk|)2 ≤ C△, (3.15)

and

E(ξk,9|Ftk ) ≤
△

2

2
(1 + y′

kQyk)
−1

|Q |

m∑
i,j=1

|Ligj(yk)|
2

≤
△

2

2
(1 + y′

kQyk)
−1

|Q |

m∑
i,j=1

K 2
△

−2ϱ(1 + |yk|)2 ≤ C△. (3.16)
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Combining (3.13)–(3.16) yields

E((
9∑

i=1

ξk,i)|Ftk ) ≤ (1 + y′

kQyk)
−1(2y′

kQf (yk) + trace[g ′(yk)Qg(yk)])△ + C△. (3.17)

Noting that

E((△Bi(k))2n−1
|Ftk ) = 0, and E(|△Bi(k)|n|Ftk ) ≤ C△

n/2, ∀n ≥ 1, i = 1, . . . ,m, (3.18)

we have that

E((ξk,1)2|Ftk ) = 4(1 + y′

kQyk)
−2

|y′

kQg(yk)|
2
△. (3.19)

One observes that

E((ξk,1ξk,2)|Ftk ) = E((ξk,1ξk,3)|Ftk ) = E((ξk,1ξk,4)|Ftk )
= E((ξk,1ξk,6)|Ftk ) = E((ξk,1ξk,7)|Ftk ) = 0.

Furthermore, owing to (3.5), we have

E((ξk,1ξk,5)|Ftk ) ≤ 4(1 + y′

kQyk)
−2

|yk||Q |
2
|f (yk)||g(yk)|2△2

≤ 4(1 + y′

kQyk)
−2K 2

|Q |
2
|yk|(1 + |yk|)3△2−2ϱ

≤ C△,

and by the Hölder inequality,

E((ξk,1ξk,8)|Ftk )

≤ 4(1 + y′

kQyk)
−2

|Q |
2
|yk|E[(|

m∑
j=1

gj(yk)△Bj(k)|2
m∑

i,j=1

|Ligj(yk)||Ii,j(k)|)|Ftk ],

≤ C(1 + y′

kQyk)
−2

|yk|[E(|
m∑
j=1

gj(yk)△Bj(k)|4|Ftk )]
1
2 [E((

m∑
i,j=1

|Ligj(yk)||Ii,j(k)|)2|Ftk )]
1
2 ,

≤ C(1 + y′

kQyk)
−2

|yk||g(yk)|2
m∑

i,j=1

|Ligj(yk)|△2,

≤ C(1 + y′

kQyk)
−2

|yk|(1 + |yk|)3△2−2ϱ
≤ C△.

An application of the Burkholder–Davis–Gundy inequality leads to

E(|Ii,j(k)|4) ≤ CE|

∫ tk+1

tk

|Bi(s) − Bi(tk)|2ds|2≤ C△E
∫ tk+1

tk

|Bi(s) − Bi(tk)|4ds ≤ C△
4, (3.20)

which together with (3.5) implies

E((ξk,1ξk,9)|Ftk )

≤ 2(1 + y′

kQyk)
−2

|Q |
2
|yk|E[(|

m∑
j=1

gj(yk)△Bj(k)||
m∑

i,j=1

Ligj(yk)Ii,j(k)|2)|Ftk ]

≤ C(1 + y′

kQyk)
−2

|yk|[E(|
m∑
j=1

gj(yk)△Bj(k)|2|Ftk )]
1
2 [E(|

m∑
i,j=1

Ligj(yk)Ii,j(k)|4|Ftk )]
1
2

≤ C(1 + y′

kQyk)
−2

|yk|(
m∑
j=1

|gj(yk)|)△
1
2 [

m∑
i,j=1

|Ligj(yk)|4E(|Ii,j(k)|4)]
1
2

≤ C(1 + y′

kQyk)
−2

|yk|(
m∑
j=1

|gj(yk)|)△
1
2 (

m∑
i,j=1

|Ligj(yk)|
2
)△2

≤ C(1 + y′

kQyk)
−2

|yk|(1 + |yk|)3△
5
2 (1−ϱ) ≤ C△

5
4 .

The above inequalities imply that

E((ξk,1
9∑

i=2

ξk,i)|Ftk ) ≤ C△. (3.21)



X. Li and G. Yin / Journal of Computational and Applied Mathematics 374 (2020) 112771 7

Owing to the positive definiteness of Q and (3.5), one obtains that

E((
9∑

i=2

ξk,i)2|Ftk ) ≤ C
9∑

i=2

E(ξ 2k,i|Ftk )

≤ C(1 + y′

kQyk)
−2
(
|yk|2|f (yk)|2△2

+ |g(yk)|4△2
+ |yk|2

m∑
i,j=1

|Ligj(yk)|
2
△

2

+ |f (yk)|2|g(yk)|2△3
+ |f (yk)|4△4

+ |f (yk)|2
m∑

i,j=1

|Ligj(yk)|
2
△

4

+ |g(yk)|2
m∑

i,j=1

|Ligj(yk)|2△3
+

m∑
i,j=1

|Ligj(yk)|4△4
)

≤ C
(
△

2−2ϱ
+ △

3−3ϱ
+ △

4−4ϱ
)

≤ C△. (3.22)

Combining (3.19)–(3.22) yields

E((
9∑

i=1

ξk,i)2|Ftk ) = E((ξk,1)2|Ftk ) + 2E((ξk,1
9∑

i=2

ξk,i)|Ftk ) + E((
9∑

i=2

ξk,i)2|Ftk )

≤ 4(1 + y′

kQyk)
−2

|y′

kQg(yk)|
2
△ + C△. (3.23)

Similar to (3.23), we have

C0E((
9∑

i=1

ξk,i)3|Ftk )

= C0

[
E((3ξ 2k,1

9∑
i=2

ξk,i + 3ξk,1(
9∑

i=2

ξk,i)2 + (
9∑

i=2

ξk,i)3)|Ftk )
]

≤ C
(
E(ξ 2k,1

9∑
i=2

|ξk,i||Ftk ) + E(|ξk,1|
9∑

i=2

ξ 2k,i|Ftk ) + E(
9∑

i=2

|ξk,i|
3
|Ftk )

)
≤ C△ (3.24)

due to E((ξk,1)3|Ftk ) = 0. Using the truncation convenience (3.5), we also obtain that for any integer j ≥ 1,

CjE((
9∑

i=1

ξk,i)j+3
|Ftk ) ≤ CE(

9∑
i=1

|ξk,i|
j+3

|Ftk )

≤ C(1 + y′

kQyk)
−(j+3)

(
|yk|j+3

|g(yk)|j+3
△

j+3
2 + |yk|j+3

|f (yk)|j+3
△

j+3

+ |g(yk)|2(j+3)
△

j+3
+ |yk|j+3

m∑
i,j=1

|Ligj(yk)|
j+3

△
j+3

+ |f (yk)|j+3
|g(yk)|j+3

△
3(j+3)

2

+ |f (yk)|2(j+3)
△

2(j+3)
+ |f (yk)|j+3

m∑
i,j=1

|Ligj(yk)|
j+3

△
2(j+3)

+ |g(yk)|j+3
m∑

i,j=1

|Ligj(yk)|
j+3

△
3(j+3)

2 +

m∑
i,j=1

|Ligj(yk)|
2(j+3)

△
2(j+3)

)
≤ C

(
△

(1−ϱ)(j+3)
2 + △

(1−ϱ)(j+3)
+ △

3(1−ϱ)(j+3)
2 + △

2(1−ϱ)(j+3)
)

≤ C△. (3.25)

Combining (3.17), (3.23)–(3.25) and using (2.2)-the equivalent form of Assumption 1, for any k ≥ 0,

E
(
(1 + ỹ′

k+1Q ỹk+1)
p
2 |Ftk

)
≤ (1 + y′

kQyk)
p
2

[
1 + C△ +

p
2
(1 + y′

kQyk)(2y
′

kQf (yk) + trace[g ′(yk)Qg(yk)]) + (p − 2)|y′

kQg(yk)|
2

(1 + y′

kQyk)2
△

]
≤ (1 + y′

kQyk)
p
2 (1 + C△). (3.26)
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Thanks to the nice property of the truncated Milstein scheme (3.4) that

y′

kQyk =

(
|ỹk| ∧ ϕ−1(K△

−ϱ)
|ỹk|

)2

ỹ′

kQ ỹk ≤ ỹ′

kQ ỹk

for any positive integer k, we obtain

E
(
(1 + y′

k+1Qyk+1)
p
2

)
≤ E

(
(1 + ỹ′

k+1Q ỹk+1)
p
2

)
= E

[
E
(
(1 + ỹ′

k+1Q ỹk+1)
p
2 |Ftk

)]
≤ (1 + C△)E

(
(1 + y′

kQyk)
p
2

)
.

For any T > 0, 0 ≤ k△ ≤ T and any t ∈ [tk, tk+1), solving the above linear first-order difference inequality, we obtain

E
(
(1 + y′(t)Qy(t))

p
2

)
≤ E

(
(1 + y′

kQyk)
p
2

)
≤ (1 + C△)kE(1 + y′

0Qy0)
p
2 ≤ eCT (1 + x′

0Qx0)
p
2 .

Therefore, we get that

λ̂
p
2 sup

0<△≤1
sup

0≤t≤T
E|y(t)|p ≤ E

(
(1 + y′(t)Qy(t))

p
2

)
≤ C,

where λ̂ > 0 represents the smallest eigenvalue of Q . The desired result follows. ■

Note that ȳ(tk) = y(tk) = yk, that is ȳ(t) and y(t) coincide at the grid points. For any t ≥ 0, one observes from (3.6)
and (3.7) that

ȳ(t) − y(t) = f (y(t))(t − tnt ) +

m∑
j=1

gj(y(t))(Bj(t) − Bj(tnt )) +

m∑
i,j=1

Ligj(y(t))Ii,j(tnt , t). (3.27)

Lemma 3.3. Let Assumption 1 hold. For any △ ∈ (0, 1], define

ζ△ := inf{t ≥ 0 : |ȳ(t)| ≥ ϕ−1(K△
−ϱ)}. (3.28)

Then for any Ft-stopping time ν satisfying 0 ≤ ν ≤ ζ△ a.s.,

sup
0<△≤1

sup
0≤t≤T

E|ȳ(t ∧ ν)|p ≤ C, ∀ T > 0, (3.29)

where C is a positive constant independent of △ and p is given by Assumption 1. Moreover,

P{ζ△ ≤ T } ≤
C

(ϕ−1(K△−ϱ))p
. (3.30)

Proof. Clearly, ζ△ is a Ft stopping time. For any Ft-stopping time ν satisfying 0 ≤ ν ≤ ζ△ a.s. we have |ȳ(t ∧ ν)| ≤

ϕ−1(K△
−ϱ) a.s. and ȳ(t ∧ ν), y(t ∧ ν) are Ft∧ν , Ftnt∧ν measurable, respectively. Then for any t ≥ 0, it follows from (3.27)

that

ȳ(t ∧ ν) = y(t ∧ ν) + f (y(t ∧ ν))(t ∧ ν − tnt∧ν ) +

m∑
j=1

gj(y(t ∧ ν))(Bj(t ∧ ν) − Bj(tnt∧ν ))

+

m∑
i,j=1

Ligj(y(t ∧ ν))Ii,j(tnt∧ν , t ∧ ν).

Then

(1 + ȳ′(t ∧ ν)Q ȳ(t ∧ ν))
p
2 = (1 + y′(t ∧ ν)Qy(t ∧ ν))

p
2

(
1 + (1 + y′(t ∧ ν)Qy(t ∧ ν))−1

9∑
i=1

ξ̃t∧ν,i

) p
2
, (3.31)

where

ξ̃t,1 = 2y′(t)Q
m∑
j=1

gj(y(t))(Bj(t) − Bj(tnt )),
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ξ̃t,2 = 2(t − tnt )y
′(t)Qf (y(t)),

ξ̃t,3 = (
m∑
j=1

gj(y(t))(Bj(t) − Bj(tnt )))
′Q

m∑
j=1

gj(y(t))(Bj(t) − Bj(tnt )),

ξ̃t,4 = 2y′(t)Q
m∑

i,j=1

Ligj(y(t))Ii,j(tnt , t),

ξ̃t,5 = 2(t − tnt )f
′(y(t))Q

m∑
j=1

gj(y(t))(Bj(t) − Bj(tnt )),

ξ̃t,6 = (t − tnt )
2f ′(y(t))Qf (y(t)),

ξ̃t,7 = 2(t − tnt )f
′(y(t))Q

m∑
i,j=1

Ligj(y(t))Ii,j(tnt , t),

ξ̃t,8 = 2(
m∑
j=1

gj(y(t))(Bj(t) − Bj(tnt )))
′Q (

m∑
i,j=1

Ligj(y(t))Ii,j(tnt , t)),

ξ̃t,9 = (
m∑

i,j=1

Ligj(y(t))Ii,j(tnt , t))
′Q

m∑
i,j=1

Ligj(y(t))Ii,j(tnt , t).

As in the proof of Lemma 3.2, we prove the assertion for the given positive constant p with 2u < p ≤ 2(u + 1) (u is a
nonnegative integer). By virtue of (3.8), we know that

E
(
(1 + ȳ′(t ∧ ν)Q ȳ(t ∧ ν))

p
2 |Ftnt∧ν

)
≤ (1 + y′(t ∧ ν)Qy(t ∧ ν))

p
2

[
1 +

p
2
(1 + y′(t ∧ ν)Qy(t ∧ ν))−1E(

9∑
i=1

ξ̃t∧ν,i|Ftnt∧ν )

+
p(p − 2)

8
(1 + y′(t ∧ ν)Qy(t ∧ ν))−2E((

9∑
i=1

ξ̃t∧ν,i)2|Ftnt∧ν )

+

u∑
j=0

Cj(1 + y′(t ∧ ν)Qy(t ∧ ν))−(j+3)E((
9∑

i=1

ξ̃t∧ν,i)j+3
|Ftnt∧ν )

⎤⎦.
(3.32)

Since B(t) is a continuous martingale, by virtue of the Doob martingale stopping time theorem [3, p.11, Theorem 3.3] and
[3, p.26, Theorem 5.17], one observes that for any t ≥ 0, ∀i, j, l = 1, . . . ,m,

E(Bi(t ∧ ν) − Bi(tnt∧ν )|Ftnt∧ν ) = 0,

E(Ii,j(tnt∧ν , t ∧ ν)|Ftnt∧ν ) = E
(∫ t∧ν

tnt∧ν

∫ s

tnt∧ν

dBi(u)dBj(s)|Ftnt∧ν

)
= E

(∫ t∧ν

tnt∧ν

(Bi(s) − Bi(tnt∧ν ))dBj(s)|Ftnt∧ν

)
= 0,

E((Bi(t ∧ ν) − Bi(tnt∧ν ))(Bj(t ∧ ν) − Bj(tnt∧ν ))|Ftnt∧ν ) = 0,∀i ̸= j,

E((Bl(t ∧ ν) − Bl(tnt∧ν ))Ii,j(tnt∧ν , t ∧ ν)|Ftnt∧ν )

= E
(
(Bl(t ∧ ν) − Bl(tnt∧ν ))

∫ t∧ν

tnt∧ν

∫ s

tnt∧ν

dBi(u)dBj(s)|Ftnt∧ν

)
= 0,

(3.33)

and

E(|Bj(t ∧ ν) − Bj(tnt∧ν )|
2
|Ftnt∧ν ) = t ∧ ν − tnt∧ν .
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Moreover, using the Hölder inequality and the Doob martingale stopping time theorem [3, p. 11, Theorem 3.3] yields
that for any constant n ≥ 2, ∀i, j = 1, . . . ,m,

E(|Ii,j(tnt∧ν , t ∧ ν)|n|Ftnt∧ν )

= E
(
|

∫ t∧ν

tnt∧ν

∫ s

tnt∧ν

dBi(v)dBj(s)|n|Ftnt∧ν

)
≤ E

((∫ t∧ν

tnt∧ν

|

∫ s∧ν

tnt∧ν

dBi(v)|
2

ds
) n

2
|Ftnt∧ν

)
≤ (t ∧ ν − tnt∧ν )

n−2
2

∫ t∧ν

tnt∧ν

E
(
|Bi(s ∧ ν) − Bi(tnt∧ν )|

n
|Ftnt∧ν

)
ds

≤ C(t ∧ ν − tnt∧ν )
n.

(3.34)

For the case of 0 < n < 2, the above result still holds by virtue of Jensen’s inequality. By the techniques similar to
Lemma 3.2, (3.33) and (3.34) together with (3.1) and (3.3) imply

E((
9∑

i=1

ξ̃t∧ν,i)|Ftnt∧ν ) ≤ (t ∧ ν − tnt∧ν )(2y
′(t ∧ ν)Qf (y(t ∧ ν))

+ trace[g ′(y(t ∧ ν))Qg(y(t ∧ ν))]) + C△(1 + y′(t ∧ ν)Qy(t ∧ ν)).

(3.35)

For any integer n ≥ 1, i = 1, . . . ,m, one observes that

E((Bi(t ∧ ν) − Bi(tnt∧ν ))
2n−1

|Ftnt∧ν ) = 0, (3.36)

and

E(|Bi(t ∧ ν) − Bi(tnt∧ν )|
n
|Ftnt∧ν ) ≤ △

n
2 . (3.37)

Using similar techniques as in Lemma 3.2, we derive from (3.34), (3.36) and (3.37) that

E((
9∑

i=1

ξ̃t,i)2|Ftnt∧ν ) ≤ (t ∧ ν − tnt∧ν )|y
′(t ∧ ν)Qg(y(t ∧ ν))|2

+ C△(1 + y′(t ∧ ν)Qy(t ∧ ν))2.

(3.38)

and

C0E((
9∑

i=1

ξ̃t,i)3|Ftnt∧ν ) ≤ C△(1 + y′(t ∧ ν)Qy(t ∧ ν))3. (3.39)

Similar to (3.25), using the truncation convenience (3.5), we can also prove that for any integer j ≥ 1,

CjE((
9∑

i=1

ξ̃t,i)j+3
|Ftnt∧ν ) ≤ CE(

9∑
i=1

|ξ̃t,i|
j+3

|Ftnt∧ν ) ≤ C△(1 + y′(t ∧ ν)Qy(t ∧ ν))j+3. (3.40)

Combining (3.35), (3.38)–(3.40), by Assumption 1, for any t ≥ 0,

E
(
(1 + ȳ′(t ∧ ν)Q ȳ(t ∧ ν))

p
2

)
= E

(
E
(
(1 + ȳ′(t ∧ ν)Q ȳ(t ∧ ν))

p
2 |Ftnt∧ν

))
≤ E

[
(1 + y′(t ∧ ν)Qy(t ∧ ν))

p
2

(
1 + C△

+
p
2
2y′(t ∧ ν)Qf (y(t ∧ ν)) + trace[g ′(y(t ∧ ν))Qg(y(t ∧ ν))]

1 + y′(t ∧ ν)Qy(t ∧ ν)
(t ∧ ν − tnt∧ν )

+
p(p − 2)|y′(t ∧ ν)Qg(y(t ∧ ν))|2

2(1 + y′(t ∧ ν)Qy(t ∧ ν))2
(t ∧ ν − tnt∧ν )

)]
≤ E(1 + y′(t ∧ ν)Qy(t ∧ ν))

p
2 (1 + C△). (3.41)
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Similar to (3.41), we arrive at that for any 0 ≤ t ≤ T ,

E(1 + y′(t ∧ ν)Qy(t ∧ ν))
p
2 = E

(
E
(
(1 + y′(t ∧ ν)Qy(t ∧ ν))

p
2 |F(t−△)∧ν

))
≤ E(1 + y′((t − △) ∧ ν)Qy((t − △) ∧ ν))

p
2 (1 + C△)

≤ E(1 + y′((t − 2△) ∧ ν)Qy((t − 2△) ∧ ν))
p
2 (1 + C△)2

≤ · · ·

≤ E(1 + y′((t − nt△) ∧ ν)Qy((t − nt△) ∧ ν))
p
2 (1 + C△)nt

= E(1 + y′

0Qy0)
p
2 (1 + C△)nt

≤ eCTE(1 + x′

0Qx0)
p
2 =: C . (3.42)

Inserting (3.41) into (3.42) leads to

sup
0<△≤1

sup
0≤t≤T

E
(
(1 + ȳ′(t ∧ ν)Q ȳ(t ∧ ν))

p
2

)
≤ C .

Therefore the desired assertion follows from

(ϕ−1(K△
−ϱ))pP{ν ≤ T } ≤ E

(
|ȳ(T ∧ ν)|p

)
≤ λ̂−p/2E

(
(1 + ȳ′(T ∧ ν)Q ȳ(T ∧ ν))

p
2

)
≤ C,

where λ̂ > 0 represents the smallest eigenvalue of Q . The proof is complete. ■

The following theorem gives the pth-moment convergence of the truncated Milstein scheme.

Theorem 3.1. Under Assumption 1, for any q ∈ (0, p) and p given in Assumption 1,

lim
△→0

E|ȳ(T ) − x(T )|q = lim
△→0

E|y(T ) − x(T )|q = 0, ∀ T ≥ 0, (3.43)

where p is given by Assumption 1.

Proof. The desired result is a slight modification of the argument in [23, Theorem 3.3]. Thus the details are omitted. ■

4. Convergence rate

In this section, our aim is to establish a better rate of convergence result than that of the classical EM method under
Assumption 1 and additional conditions on f and g . We shall show that the rate is order 1 similar to the standard results
for the explicit Milstein scheme with globally Lipschitz f , g and Ligj. To obtain the rate of convergence, we need somewhat
stronger conditions compared with the convergence alone, which are stated as follows.

Assumption 2. f , g ∈ C2, namely, their partial derivatives up to the second order are continuous. Moreover, there exist
positive constants p0 > 1, L, C0, l, l0, and symmetric positive definite matrix Q0 such that ∀x, y ∈ Rd,

2(x − y)′Q0(f (x) − f (y)) + p0trace[(g(x) − g(y))′Q0(g(x) − g(y))] ≤ L|x − y|2, (4.1)

|f (x) − f (y)| ∨ |Ligj(x) − Ligj(y)| ≤ C0(1 + |x|l + |y|l)|x − y|, (4.2)

|(fk)x(x)| ∨ |(fk)xx(x)| ∨ |(gkj)x(x)| ∨ |(gkj)xx(x)| ≤ C0(1 + |x|l0 ), (4.3)
k = 1, . . . , d; i, j = 1, . . . ,m.

Remark 4.1. One observes that if Assumption 2 holds, then there exists a positive constant C1 ≥ C0 such that

|g(x) − g(y)|2 ≤ C1(1 + |x|l + |y|l)|x − y|2. (4.4)

In addition,

|f (x)| ≤ |f (x) − f (0)| + |f (0)| ≤ L(1 + |x|l)|x| + |f (0)| ≤ C(1 + |x|l+1), (4.5)

similarly,

|Ligj(x)| ≤ C(1 + |x|l+1), i, j = 1, . . . ,m, (4.6)

and by Young’s inequality,

|g(x)| ≤ C[|x|2 + |x|(1 + |x|l+1)]1/2 + |g(0)| ≤ C(1 + |x|l/2+1). (4.7)

Remark 4.2. Under Assumption 2, we define ϕ in (3.1) by ϕ(r) = 2C1(1+ r l) for any r > 0. Then ϕ−1(r) = (r/2C1 − 1)1/l
for all r > 2C1. Thus, π△(x) =

(
|x| ∧ (K△

−ϱ/2C1 − 1)1/l
)
x/|x| for any x ∈ Rd, where ϱ ∈ (0, 1/2].
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Define the stopping time θ̄△ := τϕ−1(K△−ϱ) ∧ ζ△, where τN and ζ△ are defined by (2.3) and (3.28), respectively. Define
another auxiliary process x̃(t) := x(tk) = xk for any t ∈ [tk, tk+1). Then the moment deviations between ȳ(t ∧ θ̄△) and
y(t ∧ θ̄△), x(t ∧ θ̄△) and x̃(t ∧ θ̄△), are estimated as follows.

Lemma 4.1. If Assumptions 1 and 2 hold with 2p ≥ l + 2, for any q0 ∈ (0, 2p/(l + 2)],

sup
0≤t≤T

E(|ȳ(t ∧ θ̄△) − y(t ∧ θ̄△)|
q0 ) ≤ C△

q0
2 , sup

0≤t≤T
E(|x(t ∧ θ̄△) − x̃(t ∧ θ̄△)|

q0 ) ≤ C△
q0
2 , (4.8)

∀T > 0, ∀△ ∈ (0, 1], where C is a positive constant independent of △, p and l are given by Assumptions 1 and 2, respectively.

Proof. For any T > 0, any t ∈ [0, T ], it follows from (3.27) that

E(|ȳ(t ∧ θ̄△) − y(t ∧ θ̄△)|
q0 )

≤ C
(
E(|f (y(t ∧ θ̄△))|

q0
|t ∧ θ̄△ − tnt∧θ̄△ |

q0 ) +

m∑
j=1

E(|gj(y(t ∧ θ̄△))|
q0

|Bj(t ∧ θ̄△) − Bj(tnt∧θ̄△ )|q0 )

+

m∑
i,j=1

E(|Ligj(y(t ∧ θ̄△))|
q0

|Ii,j(tnt∧θ̄△ , t ∧ θ̄△)|
q0 )
)
.

Since y(t ∧ θ̄△) is Ftnt∧θ̄△
-adapted, it follows from (3.34) and (3.37) that

E(|ȳ(t ∧ θ̄△) − y(t ∧ θ̄△)|
q0 )

≤ C
(
E(|f (y(t ∧ θ̄△))|

q0
△

q0 ) +

m∑
j=1

E(|gj(y(t ∧ θ̄△))|
q0E(|Bj(t ∧ θ̄△) − Bj(tnt∧θ̄△ )|q0 |Ftnt∧θ̄△

))

+

m∑
i,j=1

E(|Ligj(y(t ∧ θ̄△))|
q0E(|Ii,j(tnt∧θ̄△ , t ∧ θ̄△)|

q0
|Ftnt∧θ̄△

))
)

≤ C
(
E|f (y(t ∧ θ̄△))|

q0
△

q0 +

m∑
j=1

E|gj(y(t ∧ θ̄△))|
q0

△
q0
2 +

m∑
i,j=1

E(|Ligj(y(t ∧ θ̄△))|
q0 )△q0

)
.

Due to (3.5), (4.7), and Lemma 3.3, for any q0 ∈ (0, 2p/(l + 2)] ⊆ (0, p],

E(|ȳ(t ∧ θ̄△) − y(t ∧ θ̄△)|
q0 )

≤ CE(1 + |y(t ∧ θ̄△)|)q0△q0(1−ϱ) + CE(1 + |y(t ∧ θ̄△)|
l
2 +1)q0△

q0
2

≤ C△
q0
2 + C(E|y(t ∧ θ̄△)|

p)
q0
p △

q0
2 + C(E|y(t ∧ θ̄△)|

p)
(l+2)q0

2p △
q0
2

≤ C△
q0
2 + C( sup

0≤t≤T
E|ȳ(t ∧ θ̄△)|

p)
q0
p △

q0
2 + C( sup

0≤t≤T
E|ȳ(t ∧ θ̄△)|

p)
(l+2)q0

2p △
q0
2

≤ C△
q0
2 .

The first part of the desired assertion follows. Similarly, the second part of (4.8) follows by virtue of Lemma 2.1. ■

Using Assumption 2, the following results on the exact solutions follow from Jensen’s inequality and Lemma 2.1
directly.

Lemma 4.2. If Assumptions 1 and 2 hold, then for any q1 ∈ (0, p/(l0 ∨ (l+ 1))], any T > 0, i = 1, . . . , d; j = 1, . . . ,m, any
△ ∈ (0, 1], we have

sup
0≤t≤T

E|f (x(t ∧ θ̄△))|
q1

≤ C, sup
0≤t≤T

E|gj(x(t ∧ θ̄△))|
q1

≤ C,

sup
0≤t≤T

E|(fi)x(x(t ∧ θ̄△))|
q1

≤ C, sup
0≤t≤T

E|(gij)x(x(t ∧ θ̄△))|
q1

≤ C,

sup
0≤u≤1

sup
0≤t≤T

E|(fi)xx(ux(t ∧ θ̄△) + (1 − u)x̃(tnt ∧ θ̄△))|
q1

≤ C,

sup
0≤u≤1

sup
0≤t≤T

E|(gij)xx(ux(t ∧ θ̄△) + (1 − u)x̃(tnt ∧ θ̄△))|
q1

≤ C,

where p and l0, l are given by Assumptions 1 and 2, respectively.

Noting that ȳ(t) defined in (3.7) is related to k and tk, for any k and any tk ≤ s ≤ t < tk+1,

ȳ(t) − ȳ(s) = f (y(s))(t − s) +

m∑
j=1

gj(y(s))(Bj(t) − Bj(s)) +

m∑
i,j=1

Ligj(y(s))Ii,j(s, t). (4.9)
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In order to derive the convergence rate, we analyze the exact solution x(t). For convenience, for any twice differential
function ψ = (ψ1, . . . , ψd)′ : Rd

→ Rd, ∀u = (u1, . . . , ud)′ and v = (v1, . . . , vd)′ ∈ Rd, define

ψx(·)(u) = ⟨∇xψ(·), u⟩ =

d∑
i=1

∂ψ(·)
∂xi

ui, |ψx(·)| =

√ d∑
j=1

|(ψj)x(·)|2,

ψxx(·)(u, v) =

d∑
i,j=1

∂2ψ(·)
∂xi∂xj

uivj, |ψxx(·)| =

√ d∑
j=1

|(ψj)xx(·)|2.

Note that

|ψx(·)(u)| ≤ |ψx(·)||u|, |ψxx(·)(u, v)| ≤ |ψxx(·)||u||v|. (4.10)

It follows from Assumption 2 and the Taylor formula that

f (x(t)) − f (xk) =

m∑
j=1

fx(xk)
∫ t

tk

gj(x(s))dBj(s) + fx(xk)
∫ t

tk

f (x(s))ds

+

∫ 1

0
(1 − u)fxx(ux(t) + (1 − u)xk)(x(t) − xk, x(t) − xk)du, ∀t ≥ tk.

Using Assumption 2 and the Taylor formula again yields that for each 1 ≤ j ≤ m, ∀t ≥ tk,

gj(x(t)) − gj(xk)

= (gj)x(xk)(x(t) − xk) +

∫ 1

0
(1 − u)(gj)xx(ux(t) + (1 − u)xk)(x(t) − xk, x(t) − xk)du

=

m∑
i=1

Ligj(xk)(Bi(t) − Bi(tk)) +

m∑
i=1

(gj)x(xk)
∫ t

tk

(gi(x(s)) − gi(xk))dBi(s)

+ (gj)x(xk)
∫ t

tk

f (x(s))ds +

∫ 1

0
(1 − u)(gj)xx(ux(t) + (1 − u)xk)(x(t) − xk, x(t) − xk)du.

Thus, rearranging x(t) and using the above equalities yields that for any 0 ≤ s ≤ t ,

x(t) − x(s) =

∫ t

s
f (x(r))dr +

m∑
j=1

∫ t

s
gj(x(r))dBj(r)

= f (x̃(s))(t − s) +

m∑
j=1

gj(x̃(s))(Bj(t) − Bj(s)) +

m∑
i,j=1

Ligj(x̃(s))Ii,j(s, t)

+

3∑
i=1

∫ t

s

(
Ri(f , s, r)dr +

m∑
j=1

Ri(gj, s, r)dBj(r)
)
, (4.11)

where

R1(f , s, r) =

m∑
j=1

fx(x̃(s))
∫ r

tns

gj(x(v))dBj(v),

R2(f , s, r) = fx(x̃(s))
∫ r

tns

f (x(v))dv,

R3(f , s, r) =

∫ 1

0
(1 − u)fxx(ux(r) + (1 − u)x̃(s))(x(r) − x̃(s), x(r) − x̃(s))du,

R1(gj, s, r) =

m∑
i=1

(gj)x(x̃(s))
∫ r

tns

(gi(x(v)) − gi(x̃(s)))dBi(v),

R2(gj, s, r) = (gj)x(x̃(s))
∫ r

tns

f (x(v))dv,

R3(gj, s, r) =

∫ 1

0
(1 − u)(gj)xx(ux(r) + (1 − u)x̃(s))(x(r) − x̃(s), x(r) − x̃(s))du.

(4.12)

In order to estimate the error of estimation, we look for the moment bound on the last term of (4.11).
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Lemma 4.3. Let Assumptions 1 and 2 hold with p/4 ≥ l0 ∨ (l + 2). Then

sup
0≤k△≤T

E|

∫ tk+1∧θ̄△

tk∧θ̄△
R1(f , tk ∧ θ̄△, s)ds|2≤ C△

3
;

sup
0≤k△≤T

E|

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(f , tk ∧ θ̄△, s)ds|2≤ C△

4, i = 2, 3;

sup
0≤k△≤T

E|

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(gj, tk ∧ θ̄△, s)dBj(s)|2≤ C△

3, i = 1, 2, 3, j = 1, . . . ,m.

(4.13)

Proof. For any integer k, we estimate the remaining terms of (4.11) one by one. Using the Hölder inequality, Lemmas 2.1
and 4.2 lead to

E|

∫ tk+1∧θ̄△

tk∧θ̄△
R1(f , tk ∧ θ̄△, s)ds|2

= E|

∫ tk+1∧θ̄△

tk∧θ̄△
I{tk≤θ̄△}fx(x̃(tk ∧ θ̄△))

m∑
j=1

∫ s

tntk∧θ̄△

gj(x(u))dBj(u)ds|2

≤ m△

m∑
j=1

E
∫ tk+1

tk

I{tk≤θ̄△}I{tk∧θ̄△≤s≤θ̄△}|fx(x̃(tk ∧ θ̄△))
∫ s∧θ̄△

tk∧θ̄△
gj(x(u))dBj(u)|2ds

≤ m△

m∑
j=1

∫ tk+1

tk

(
E|fx(x̃(tk ∧ θ̄△))|

4
) 1

2
(
E|

∫ s

tk

I{tk∧θ̄△≤u≤θ̄△}gj(x(u))dBj(u)|4
) 1

2
ds

≤ C△

m∑
j=1

∫ tk+1

tk

(
E(
∫ s

tk

|gj(x(u ∧ θ̄△))|
2du)2

) 1
2
ds

≤ C△
3
2

m∑
j=1

∫ tk+1

tk

(∫ s

tk

E|gj(x(u ∧ θ̄△))|
4du

) 1
2
ds ≤ C△

3,

and

E|

∫ tk+1∧θ̄△

tk∧θ̄△
R2(f , tk ∧ θ̄△, s)ds|2

= E|I{tk≤θ̄△}

∫ tk+1∧θ̄△

tk∧θ̄△
fx(x̃(tk ∧ θ̄△))

∫ s

tntk∧θ̄△

f (x(u))duds|2

= E|

∫ tk+1∧θ̄△

tk∧θ̄△
I{tk≤tk∧θ̄△}fx(x̃(tk ∧ θ̄△))

∫ s

tntk∧θ̄△

f (x(u))duds|2

≤ △

∫ tk+1

tk

E(I{tk=tk∧θ̄△}I{tk∧θ̄△≤s≤θ̄△}|fx(x̃(tk ∧ θ̄△))
∫ s∧θ̄△

tk∧θ̄△
f (x(u))du|2)ds

≤ △

∫ tk+1

tk

(
E|fx(x̃(tk ∧ θ̄△))|

4
) 1

2
(
E|

∫ s∧θ̄△

tk∧θ̄△
f (x(u))du|4

) 1
2
ds

≤ C△
5
2

∫ tk+1

tk

(∫ s

tk

E|f (x(u ∧ θ̄△))|
4du

) 1
2
ds ≤ C△

4.

Using the Hölder inequality, Lemmas 4.1 and 4.2 yields

E|

∫ tk+1∧θ̄△

tk∧θ̄△
R3(f , tk ∧ θ̄△, s)ds|2

= E(|
∫ tk+1

tk

I{tk∧θ̄△≤s≤θ̄△}

∫ 1

0
(1 − u)fxx(ux(s) + (1 − u)x̃(tk ∧ θ̄△))

(x(s) − x̃(tk ∧ θ̄△), x(s) − x̃(tk ∧ θ̄△))duds|2)

≤ △

∫ tk+1

tk

E|

∫ 1

0
(1 − u)fxx(ux(s ∧ θ̄△) + (1 − u)x̃(tk ∧ θ̄△))

(x(s ∧ θ̄△) − x̃(tk ∧ θ̄△), x(s ∧ θ̄△) − x̃(tk ∧ θ̄△))du|2ds
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≤ △

∫ tk+1

tk

∫ 1

0

(
E|fxx(ux(s ∧ θ̄△) + (1 − u)x̃(tk ∧ θ̄△))|

4
) 1

2

×

(
E|x(s ∧ θ̄△) − x̃(tk ∧ θ̄△)|

8
) 1

2
duds ≤ C△

4.

For each j = 1, . . . ,m, using similar techniques yields that

E|

∫ tk+1∧θ̄△

tk∧θ̄△
R1(gj, tk ∧ θ̄△, s)dBj(s)|2

= E|

m∑
i=1

∫ tk+1∧θ̄△

tk∧θ̄△
I{tk≤θ̄△}(gj)x(x̃(tk ∧ θ̄△))

∫ s

tntk∧θ̄△

(gi(x(u)) − gi(x̃(tk ∧ θ̄△)))dBi(u)dBj(s)|2

≤ m
m∑
i=1

E
∫ tk+1

tk

I{tk≤θ̄△}I{tk∧θ̄△≤s≤θ̄△}|(gj)x(x̃(tk ∧ θ̄△))
∫ s∧θ̄△

tk∧θ̄△
(gi(x(u)) − gi(x̃(tk ∧ θ̄△)))dBi(u)|2ds

≤ m
m∑
i=1

∫ tk+1

tk

(
E|(gj)x(x̃(tk ∧ θ̄△))|

4
) 1

2
(
E|

∫ s∧θ̄△

tk∧θ̄△
(gi(x(u)) − gi(x̃(tk ∧ θ̄△)))dBi(u)|4

) 1
2
ds

≤ C△
1
2

m∑
i=1

∫ tk+1

tk

(∫ s

tk

E|gi(x(u ∧ θ̄△)) − gi(x̃(tk ∧ θ̄△))|
4du

) 1
2
ds

≤ C△
1
2

m∑
i=1

∫ tk+1

tk

(∫ s

tk

E
[
(1 + |x(u ∧ θ̄△)|

2l
+ |x̃(tk ∧ θ̄△)|

2l)|x(u ∧ θ̄△) − x̃(tk ∧ θ̄△)|
4
]
du
) 1

2
ds

≤ C△
1
2

m∑
i=1

∫ tk+1

tk

[ ∫ s

tk

(
E(1 + |x(u ∧ θ̄△)|

4l
+ |x̃(tk ∧ θ̄△)|

4l)
) 1

2

×

(
E|x(u ∧ θ̄△) − x̃(tk ∧ θ̄△)|

8
) 1

2
du
] 1

2
ds ≤ C△

3,

and

E|

∫ tk+1∧θ̄△

tk∧θ̄△
R2(gj, tk ∧ θ̄△, s)dBj(s)|2

= E|

∫ tk+1∧θ̄△

tk∧θ̄△
I{tk≤θ̄△}(gj)x(x̃(tk ∧ θ̄△))

∫ s

tntk∧θ̄△

f (x(u))dudBj(s)|2

= E
∫ tk+1

tk

I{tk≤θ̄△}I{tk∧θ̄△≤s≤θ̄△}|(gj)x(x̃(tk ∧ θ̄△))
∫ s∧θ̄△

tk∧θ̄△
f (x(u))du|2ds

≤

∫ tk+1

tk

(
E|(gj)x(x̃(tk ∧ θ̄△))|

4
) 1

2
(
E|

∫ s∧θ̄△

tk∧θ̄△
f (x(u))du|4

) 1
2
ds

≤ C△
3
2

∫ tk+1

tk

(∫ s

tk

E|f (x(u ∧ θ̄△))|
4du

) 1
2
ds ≤ C△

3.

Owing to Lemmas 4.1 and 4.2, one further obtains

E|

∫ tk+1∧θ̄△

tk∧θ̄△
R3(gj, tk ∧ θ̄△, s)ds|2

= E(|
∫ tk+1

tk

I{tk≤θ̄△}I{tk∧θ̄△≤s≤θ̄△}

∫ 1

0
(1 − u)(gj)xx(ux(s) + (1 − u)x̃(tk ∧ θ̄△))

(x(s) − x̃(tk ∧ θ̄△), x(s) − x̃(tk ∧ θ̄△))dudBj(s)|2)

=

∫ tk+1

tk

E|

∫ 1

0
(1 − u)(gj)xx(ux(s ∧ θ̄△) + (1 − u)x̃(tk ∧ θ̄△))

(x(s ∧ θ̄△) − x̃(tk ∧ θ̄△), x(s ∧ θ̄△) − x̃(tk ∧ θ̄△))du|2ds

≤

∫ tk+1

tk

∫ 1

0

(
E|(gj)xx(ux(s ∧ θ̄△) + (1 − u)x̃(tk ∧ θ̄△))|

4
) 1

2

×

(
E|x(s ∧ θ̄△) − x̃(tk ∧ θ̄△)|

8
) 1

2
duds ≤ C△

3.

The proof is complete. ■
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After this preparation we begin to analyze the error of strong convergence. To clarity, define ē(t) = x(t) − ȳ(t),
e(t) := x̃(t) − y(t). Combining (4.9) with (4.11) yields that for any k and any tk ≤ s ≤ t < tk+1,

ē(t) − ē(s) =

(
f (x̃(s)) − f (y(s))

)
(t − s) +

m∑
j=1

(
gj(x̃(s)) − gj(y(s))

)
(Bj(t) − Bj(s))

+

m∑
i,j=1

(
Ligj(x̃(s)) − Ligj(y(s))

)
Ii,j(s, t)

+

3∑
i=1

∫ t

s

(
Ri(f , s, r)dr +

m∑
j=1

Ri(gj, s, r)dBj(r)
)
.

(4.14)

Theorem 4.1. If Assumptions 1 and 2 hold with p/4 ≥ l0 ∨ (l+ 2), for the numerical solution defined by (3.4) and (3.7) with
ϱ ∈ [2l/(p − 2), 1/2],

E|ȳ(T ) − x(T )|2 ≤ C△
2, ∀ T > 0. (4.15)

Proof. Since it is rather technical we divide the proof into 3 steps.
Step 1. Define Ω1 := {ω : θ̄△ > T }. Using the Young inequality, for any κ > 0, we have

E|ē(T )|2 = E
(
|ē(T )|2IΩ1

)
+ E

(
|ē(T )|2IΩc

1

)
≤ E

(
|ē(T )|2IΩ1

)
+

2△κ

p
E
(
|ē(T )|p

)
+

p − 2
p△2κ/(p−2) P(Ω

c
1). (4.16)

It follows from Lemmas 2.1 and 3.2 that

2△κ

p
E
(
|ē(T )|p

)
≤ C△

κ
[
E
(
|x(T )|p

)
+ E

(
|ȳ(T )|p

)]
≤ C△

κ . (4.17)

By virtue of Lemmas 2.1 and 3.3 one observes that

p−2
p△2κ/(p−2) P(Ωc

1) ≤
p − 2

p△2κ/(p−2) (P{τϕ−1(K△−ϱ) ≤ T } + P{ζ△ ≤ T })

≤
p − 2

p△2κ/(p−2)

2C
(ϕ−1(K△−ϱ))p

≤ C△
ϱp
l −

2κ
p−2 .

(4.18)

Step 2.We estimate the first term E
(
|ē(T )|2IΩ1

)
on the right side of (4.16). Obviously, E

(
|ē(T )|2IΩ1

)
≤ E

(
|ē(T ∧ θ̄△)|

2
)
.

Next, our main aim is to estimate the upper bound of E
(
|ē(T ∧ θ̄△)|

2
)
. Since this step is rather technical and complex

we divide it into 3 small parts.
Step 2. Part I Expand ē′(tk+1 ∧ θ̄△)Q0ē(tk+1 ∧ θ̄△). Note that for any 0 ≤ k(ω)△ ≤ T ∧ θ̄△, ȳ(tk) = y(tk) = yk = ỹk, then

(4.14) holds with replacing s, t by tk, tk+1, respectively. For any fixed k with 0 ≤ k△ ≤ T (if k = nT , we just let tk+1 = T ),
it follows from (4.14) that

ē(tk+1 ∧ θ̄△) − ē(tk ∧ θ̄△)
=

(
f (x̃(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△))

)
(tk+1 ∧ θ̄△ − tk ∧ θ̄△)

+

m∑
j=1

(
gj(x̃(tk ∧ θ̄△)) − gj(y(tk ∧ θ̄△))

)
(Bj(tk+1 ∧ θ̄△) − Bj(tk ∧ θ̄△))

+

m∑
i,j=1

(
Ligj(x̃(tk ∧ θ̄△)) − Ligj(y(tk ∧ θ̄△))

)
Ii,j(tk ∧ θ̄△, tk+1 ∧ θ̄△)

+

3∑
i=1

∫ tk+1∧θ̄△

tk∧θ̄△

(
Ri(f , tk ∧ θ̄△, r)dr +

m∑
j=1

Ri(gj, tk ∧ θ̄△, r)dBj(r)
)
.

(4.19)

Then, one observes that

ē′(tk+1 ∧ θ̄△)Q0ē(tk+1 ∧ θ̄△) = ē′(tk ∧ θ̄△)Q0ē(tk ∧ θ̄△) +

14∑
i=1

ηi(tk ∧ θ̄△, tk+1 ∧ θ̄△), (4.20)
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where

η1(s, t) = 2ē′(s)Q0

m∑
j=1

(gj(x̃(s)) − gj(y(s)))(Bj(t) − Bj(s)),

η2(s, t) = 2ē′(s)Q0(f (x̃(s)) − f (y(s)))(t − s),

η3(s, t) = 2ē′(s)Q0

m∑
i,j=1

(Ligj(x̃(s)) − Ligj(y(s)))Ii,j(s, t),

η4(s, t) =

m∑
j=1

(Bj(t) − Bj(s))(gj(x̃(s)) − gj(y(s)))′Q0

m∑
j=1

(gj(x̃(s)) − gj(y(s)))(Bj(t) − Bj(s)),

η5(s, t) = 2(t − s)(f (x̃(s)) − f (y(s)))′Q0

m∑
j=1

(gj(x̃(s)) − gj(y(s)))(Bj(t) − Bj(s)),

η6(s, t) = 2
m∑
j=1

(Bj(t) − Bj(s))(gj(x̃(s)) − gj(y(s)))′Q0

m∑
i,j=1

(Ligj(x̃(s)) − Ligj(y(s)))Ii,j(s, t),

η7(s, t) = 2ē′(s)Q0

3∑
i=1

∫ t

s
(Ri(f , s, r)dr +

m∑
j=1

Ri(gj, s, r)dBj(r)),

η8(s, t) = (t − s)2(f (x̃(s)) − f (y(s)))′Q0(f (x̃(s)) − f (y(s))),

η9(s, t) =

m∑
i,j=1

Ii,j(s, t)(Ligj(x̃(s)) − Ligj(y(s)))′Q0

m∑
i,j=1

(Ligj(x̃(s)) − Ligj(y(s)))Ii,j(s, t),

η10(s, t) = 2(t − s)(f (x̃(s)) − f (y(s)))′Q0

m∑
i,j=1

(Ligj(x̃(s)) − Ligj(y(s)))Ii,j(s, t),

η11(s, t) = 2
m∑
j=1

(Bj(t) − Bj(s))(gj(x̃(s)) − gj(y(s)))′Q0

×

3∑
i=1

∫ t

s

(
Ri(f , s, r)dr +

m∑
l=1

Ri(gl, s, r)dBl(r)
)
,

η12(s, t) = 2(t − s)(f (x̃(s)) − f (y(s)))′Q0

3∑
i=1

∫ t

s

(
Ri(f , s, r)dr +

m∑
l=1

Ri(gl, s, r)dBl(r)
)
,

η13(s, t) = 2
m∑

i,j=1

Ii,j(s, t)(Ligj(x̃(s)) − Ligj(y(s)))′Q0

×

3∑
i=1

∫ t

s

(
Ri(f , s, r)dr +

m∑
l=1

Ri(gl, s, r)dBl(r)
)
,

η14(s, t) =

3∑
i=1

∫ t

s

(
Ri(f , s, r)dr +

m∑
l=1

Ri(gl, s, r)dBl(r)
)′

Q0

×

3∑
i=1

∫ t

s

(
Ri(f , s, r)dr +

m∑
l=1

Ri(gl, s, r)dBl(r)
)
.

Step 2. Part II. Our aim of this part is to compute the super bound of each E(ηi(tk ∧ θ̄△, tk+1 ∧ θ̄△)). By virtue of the
Doob martingale stopping time theorem [3, p.11, Theorem 3.3], we know that ∀i, j, l = 1, . . . ,m, k ≥ 0,

E(Bi(tk+1 ∧ θ̄△) − Bi(tk ∧ θ̄△)|Ftk∧θ̄△ ) = 0,

E(Ii,j(tk ∧ θ̄△, tk+1 ∧ θ̄△)|Ftk∧θ̄△ ) = E
(∫ tk+1∧θ̄△

tk∧θ̄△

∫ s

tntk∧θ̄△

dBi(u)dBj(s)|Ftk∧θ̄△

)
= E

(∫ tk+1∧θ̄△

tk∧θ̄△
(Bi(s) − Bi(tntk∧θ̄△

))dBj(s)|Ftk∧θ̄△

)
= 0,

E((Bi(tk+1 ∧ θ̄△) − Bi(tk ∧ θ̄△))(Bj(tk+1 ∧ θ̄△) − Bj(tk ∧ θ̄△))|Ftk∧θ̄△ ) = 0,∀i ̸= j,
E((Bl(tk+1 ∧ θ̄△) − Bl(tk ∧ θ̄△))Ii,j(tk ∧ θ̄△, tk+1 ∧ θ̄△)|Ftk∧θ̄△ )
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= E
(
(Bl(tk+1 ∧ θ̄△) − Bl(tk ∧ θ̄△))

∫ tk+1∧θ̄△

tk∧θ̄△

∫ s

tntk∧θ̄△

dBi(u)dBj(s)|Ftk∧θ̄△

)
= 0,

E((Bi(tk+1 ∧ θ̄△) − Bi(tk ∧ θ̄△))2|Ftk∧θ̄△ ) = E(tk+1 ∧ θ̄△ − tk ∧ θ̄△|Ftk∧θ̄△ ) ≤ △.

For convenience, define χk = tk+1 ∧ θ̄△ − tk ∧ θ̄△. Then one observes that

E(η1(tk ∧ θ̄△, tk+1 ∧ θ̄△)) = 0, E(η3(tk ∧ θ̄△, tk+1 ∧ θ̄△)) = 0,

E(η5(tk ∧ θ̄△, tk+1 ∧ θ̄△)) = 0, E(η6(tk ∧ θ̄△, tk+1 ∧ θ̄△)) = 0,
E(η10(tk ∧ θ̄△, tk+1 ∧ θ̄△)) = 0.

(4.21)

Now we begin to estimate E(η2(tk ∧ θ̄△, tk+1 ∧ θ̄△)). Note that

E(η2(tk ∧ θ̄△, tk+1 ∧ θ̄△))
= 2E(ē′(tk ∧ θ̄△)Q0(f (x̃(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△)))χk)
= 2E(e′(tk ∧ θ̄△)Q0(f (x̃(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△)))χk)

+ 2E((x(tk ∧ θ̄△) − x̃(tk ∧ θ̄△))′Q0(f (x̃(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△)))χk)

+ 2E((y(tk ∧ θ̄△) − ȳ(tk ∧ θ̄△))′Q0(f (x̃(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△)))χk). (4.22)

By virtue of Lemma 4.2 and Hölder’s inequality, one obtains from Assumption 2

E((x(tk ∧ θ̄△) − x̃(tk ∧ θ̄△))′Q0(f (x̃(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△)))χk)

= E
(
E
(
(x(tk ∧ θ̄△) − x(tntk∧θ̄△

))′|Ftntk∧θ̄△

)
Q0(f (x(tntk∧θ̄△

)) − f (ȳ(tntk∧θ̄△
)))χk

)
= E

(∫ tk∧θ̄△

tntk∧θ̄△

f ′(x(s))dsQ0(f (x(tntk∧θ̄△
)) − f (ȳ(tntk∧θ̄△

)))χk

)

≤ C△E
(
|

∫ tk∧θ̄△

tntk∧θ̄△

f (x(s))ds||f (x(tntk∧θ̄△
)) − f (ȳ(tntk∧θ̄△

))|
)

≤ C△E
(∫ tk

tk−△

|f (x(s ∧ θ̄△))|ds(1 + |x(tntk∧θ̄△
)|l + |ȳ(tntk∧θ̄△

)|l)|e(tk ∧ θ̄△)|
)

≤ C△E
(
(
∫ tk

tk−△

|f (x(s ∧ θ̄△))|ds)2(1 + |x(tntk∧θ̄△
)|l + |ȳ(tntk∧θ̄△

)|l)2
)

+C△E(|e(tk ∧ θ̄△)|
2)

≤ C△

(
E(
∫ tk

tk−△

|f (x(s ∧ θ̄△))|ds)4
) 1

2
(
E(1 + |x(tntk∧θ̄△

)|l + |ȳ(tntk∧θ̄△
)|l)4

) 1
2

+C△E(|e(tk ∧ θ̄△)|
2)

≤ C△
5
2

(
E|

∫ tk

tk−△

|f (x(s ∧ θ̄△))|
4ds|

) 1
2

+ C△E(|e(tk ∧ θ̄△)|
2)

≤ C△
3
+ C△E(|e(tk ∧ θ̄△)|

2).

(4.23)

Similarly, we obtain

E((y(tk ∧ θ̄△) − ȳ(tk ∧ θ̄△))′Q0(f (x̃(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△)))χk)

≤ C△
3
+ C△E(|e(tk ∧ θ̄△)|

2). (4.24)

Inserting (4.23) and (4.24) into (4.22) implies

E(η2(tk ∧ θ̄△, tk+1 ∧ θ̄△)) ≤ 2E(e′(tk ∧ θ̄△)Q0(f (x̃(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△)))χk)

+ C△
3
+ C△E(|e(tk ∧ θ̄△)|

2).
(4.25)

Note that

E(η4(tk ∧ θ̄△, tk+1 ∧ θ̄△)|Ftk∧θ̄△ )

= trace[(g(x̃(tk ∧ θ̄△)) − g(y(tk ∧ θ̄△)))′Q0(g(x̃(tk ∧ θ̄△)) − g(y(tk ∧ θ̄△)))]χk.
(4.26)
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To estimate E(η7(tk ∧ θ̄△, tk+1 ∧ θ̄△)), by virtue of the Doob martingale stopping time theorem [3, p.11, Theorem 3.3], we
obtain

E(2ē′(tk ∧ θ̄△)Q0

∫ t∧θ̄△

tk∧θ̄△
R1(f , tk ∧ θ̄△, s)ds)

= E(2ē′(tk ∧ θ̄△)Q0

m∑
j=1

∫ tk+1∧θ̄△

tk∧θ̄△
fx(x(tntk∧θ̄△

))
∫ s

tntk∧θ̄△

gj(x(u))dBj(u)ds)

=

m∑
j=1

E
(
2ē′(tk ∧ θ̄△)Q0fx(x̃(tk ∧ θ̄△))E

(∫ tk+1∧θ̄△

tk∧θ̄△

∫ s

tntk∧θ̄△

gj(x(u))dBj(u)ds |Ftk∧θ̄△

))
= 0.

The above equality implies that

E(η7(tk ∧ θ̄△, tk+1 ∧ θ̄△))

=

3∑
i=2

E
(
2e′(tk ∧ θ̄△)Q0

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(f , tk ∧ θ̄△, s)ds

)
= 2△E(|e(tk ∧ θ̄△)|

2) + △
−1

|Q0|
2
|

3∑
i=2

E|

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(f , tk ∧ θ̄△, s)ds|2.

Inserting the second inequality of (4.13) into the above equation arrives at

E(η7(tk ∧ θ̄△, tk+1 ∧ θ̄△)) ≤ △E(|e(tk ∧ θ̄△)|
2) + C△

3. (4.27)

It follows from the nice property (3.3) of the truncated scheme that

E(η8(tk ∧ θ̄△, tk+1 ∧ θ̄△)) ≤ C△
2
△

−2ϱE|e(tk ∧ θ̄△)|
2

≤ C△E|e(tk ∧ θ̄△)|
2
. (4.28)

Similarly, using (3.3) again yields that

E(η9(tk ∧ θ̄△, tk+1 ∧ θ̄△)) ≤ C△E|e(tk ∧ θ̄△)|
2
. (4.29)

To estimate E(η11(tk ∧ θ̄△, tk+1 ∧ θ̄△)), choose a sufficiently small constant such that 0 < ι < p0 − 1. Noting

η11(s, t) = 2
m∑
j=1

(Bj(t) − Bj(s))(gj(x̃(s)) − gj(y(s)))′Q0

3∑
i=1

∫ t

s

[
Ri(f , s, r)dr +

m∑
l=1

Ri(gl, s, r)dBl(r)
]

≤ ι
[ m∑
j=1

(Bj(t) − Bj(s))(gj(x̃(s)) − gj(y(s)))′
]
Q0
[ m∑
j=1

(Bj(t) − Bj(s))(gj(x̃(s)) − gj(y(s)))
]

+
12
ι

|Q0|

3∑
i=1

|

∫ t

s
Ri(f , s, r)dr|2+

12m
ι

|Q0|

3∑
i=1

m∑
l=1

|

∫ t

s
Ri(gl, s, r)dBl(r)|2,

by virtue of Lemma 4.3, we have

E(η11(tk ∧ θ̄△, tk+1 ∧ θ̄△)) = E
(
E(η11(tk ∧ θ̄△, tk+1 ∧ θ̄△))|Ftk∧θ̄△

)
≤ ιE(trace[(g(x̃(tk ∧ θ̄△)) − g(y(tk ∧ θ̄△)))′Q0(g(x̃(tk ∧ θ̄△)) − g(y(tk ∧ θ̄△)))]χk)

+C
3∑

i=1

E|

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(f , tk ∧ θ̄△, s)ds|2+C

3∑
i=1

m∑
l=1

E|

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(gl, tk ∧ θ̄△, s)dBl(s)|2

≤ ιE(trace[(g(x̃(tk ∧ θ̄△)) − g(y(tk ∧ θ̄△)))′Q0(g(x̃(tk ∧ θ̄△)) − g(y(tk ∧ θ̄△)))]χk)

+C△
3. (4.30)

Using the truncation property (3.3), one derives from Lemma 4.3 that

E(η12(tk ∧ θ̄△, tk+1 ∧ θ̄△))

≤ 2E(|tk+1 ∧ θ̄△ − tk ∧ θ̄△|
2
|f (x(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△))|

2)

+ 3|Q0|
2

3∑
i=1

E|

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(f , tk ∧ θ̄△, s)ds|2

+ 3m|Q0|
2

3∑
i=1

m∑
j=1

E|

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(gj, tk ∧ θ̄△, s)dBj(s)|2
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≤ 2K 2
△

2−2ϱE(|e(tk ∧ θ̄△)|
2) + C△

3
+ C△

4

≤ 2K 2
△E(|e(tk ∧ θ̄△)|

2) + C△
3. (4.31)

Furthermore, we obtain

E(η13(tk ∧ θ̄△, tk+1 ∧ θ̄△)) ≤ 2K 2
△E(|e(tk ∧ θ̄△)|

2) + C△
3. (4.32)

It follows from Lemma 4.3 that

E(η14(tk ∧ θ̄△, tk+1 ∧ θ̄△))

≤ 6|Q0|

3∑
i=1

E|

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(f , tk ∧ θ̄△, s)ds|2

+ 6m|Q0|

3∑
i=1

m∑
j=1

E|

∫ tk+1∧θ̄△

tk∧θ̄△
Ri(gj, tk ∧ θ̄△, s)dBj(s)|2≤ C△

3.

(4.33)

Step 2. Part III. Complete the estimates of E(|ē(t ∧ θ̄△)|
2) and E

(
|ē(T )|2IΩ1

)
. Under Assumption 2, using (4.21) and

(4.25)–(4.33) together with (4.20) imply

E(ē′(tk+1 ∧ θ̄△)Q0ē(tk+1 ∧ θ̄△)) − E(ē′(tk ∧ θ̄△)Q0ē(tk ∧ θ̄△))

=

14∑
i=1

E(ηi(tk ∧ θ̄△, tk+1 ∧ θ̄△))

≤ C△
3
+ C△E|e(tk ∧ θ̄△)|

2
+ E

((
2e′(tk ∧ θ̄△)Q0(f (x̃(tk ∧ θ̄△)) − f (y(tk ∧ θ̄△)))

+p0trace[(gj(x̃(tk ∧ θ̄△)) − gj(y(tk ∧ θ̄△)))′Q0(gj(x̃(tk ∧ θ̄△)) − gj(y(tk ∧ θ̄△)))]
)
χt

)
≤ C△

3
+ C△E(|e(tk ∧ θ̄△)|

2)
≤ C△

3
+ C△E(e′(tk ∧ θ̄△)Q0e(tk ∧ θ̄△)).

(4.34)

Then we arrive at

E(ē′(tk+1 ∧ θ̄△)Q0ē(tk+1 ∧ θ̄△)) ≤ C△
2
+ C△

k∑
i=0

E(e′(ti ∧ θ̄△)Q0e(ti ∧ θ̄△)).

Using the same techniques as the above inequality yields that for any 0 ≤ i ≤ k and any t ∈ [ti, ti+1],

E(ē′(t ∧ θ̄△)Q0ē(t ∧ θ̄△)) ≤ C△
2
+ C△

k∑
i=0

E(e′(ti ∧ θ̄△)Q0e(ti ∧ θ̄△)),

which implies

sup
0≤t≤T

E(ē′(t ∧ θ̄△)Q0ē(t ∧ θ̄△)) ≤ C△
2
+ C△

nT∑
i=0

E(e′(ti ∧ θ̄△)Q0e(ti ∧ θ̄△))

≤ C△
2
+ C△

nT∑
i=0

sup
0≤s≤ti

E(e′(s ∧ θ̄△)Q0e(s ∧ θ̄△))

≤ C△
2
+ C△

nT∑
i=0

sup
0≤s≤ti

E(ē′(s ∧ θ̄△)Q0ē(s ∧ θ̄△)).

(4.35)

An application of the discrete Gronwall inequality leads to

sup
0≤t≤T

E(ē′(t ∧ θ̄△)Q0ē(t ∧ θ̄△)) ≤ C△
2eCT ≤ C△

2. (4.36)

Therefore, by the positivity of Q0, the desired result follows, namely,

E(|ē(T )|2IΩ1 ) ≤ sup
0≤t≤T

E(|ē(t ∧ θ̄△)|
2) ≤ C△

2. (4.37)

Step 3. Inserting (4.17), (4.18), and (4.37) into (4.16) yields

E|ē(T )|2 ≤ C△
2
+ C△

κ
+ C△

ϱp
l −

2κ
p−2 . (4.38)

Let κ = 2 and ϱp
l −

2κ
p−2 ≥ 2, which implies ϱ ≥

2l
p−2 . Therefore, the desired assertion follows. ■
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As a consequence of Theorem 3.1, we have the following corollary.

Corollary 4.1. Under the conditions of Theorem 4.1, for the numerical solution defined by (3.4) with ϱ ∈ [2l/(p − 2), 1/2],

sup
0≤k△≤T

E|yx − xk|2 ≤ C△
2, ∀ T > 0. (4.39)

Remark 4.3. Zong–Wu–Xu [16] and Higham–Mao–Szpruch [13] obtained the optimal rate 1 for implicit Milstein schemes
of strong convergence under the conditions that the functions f and g are C2, and there exist a constant c such that

|f (x) − f (y)| ∨ |g(x) − g(y)| ∨ |Ligj(x) − Ligj(y)| ≤ c|x − y|, ∀x, y ∈ Rd, i, j = 1, . . . ,m.

Note that a similar convergence rate result was also obtained by Wang–Gan [10] for a modified tamed Milstein scheme
under the conditions that f is one-sided Lipschitz with polynomial growth, and g and Ligj are globally Lipschitz. In contrast
to the aforementioned results, we are using explicit schemes with truncations. Our conditions are much weaker. We
managed to show that the order 1 convergence is preserved under weaker conditions.

5. Numerical examples

In this section, we consider an example of a nonlinear system and conduct simulations using of our numerical scheme.

Example 5.1. Let us consider the Ginzburg–Landau equation from statistical physics in the study of phase transitions.
Its stochastic version with multiplicative noise is given by

dx(t) = [(η +
1
2
σ 2)x(t) − ϑx3(t)]dt + σx(t)dB(t), x(0) = x0 > 0, (5.1)

where σ , ϑ > 0; see [5,8]. It can be verified that Assumptions 1 and 2 hold with all p, p0 > 2 and l = l0 = 2. Then (5.1)
has a unique regular solution.

Let ϕ1(r) = C1(r2 + 1), ∀r > 0, where C1 = |η| + 3ϑ +
3
2σ

2
+ 1, ϕ−1

1 (r) =
√
r/C1 − 1, ∀r > C1. Define

K = ϕ1(1 ∨ |x0|), ϱ = 0.2. For a fixed △ ∈ (0, 1], the truncated EM scheme for (5.1) is⎧⎪⎨⎪⎩
y0 = x0,

yk =

(
ỹk ∧

√
(1 ∨ x20 + 1)△−0.2 − 1

)
ỹk
|ỹk|
,

ỹk+1 = yk + (η +
1
2σ

2)yk△ − ϑy3k△ + σyk△B(k) +
1
2σ

2yk((△B(k))2 − △).

(5.2)

By virtue of Theorem 4.1, the numerical solution of this scheme approximates the exact solution

X(t) =
x0 exp {ηt + σB(t)}√

1 + 2x20ϑ
∫ t
0 exp {2ηs + 2σB(s)}ds

(5.3)

given by [8, p. 1568] in the mean square sense with error estimate △. To demonstrate, we carry out numerical experiments
by implementing (5.2) using MATLAB. We compare the truncated EM method with the backward EM scheme and
the tamed EM scheme (see, e.g., [25]) numerically. Consider (5.1) with η = −1, σ = 1, ϑ = 1, x0 = 10 and
T = 1. Fig. 1 plots the root mean square approximation error (E|x(T ) − X(T )|2)1/2 between the exact solution of
(5.1) and the numerical solution by the backward EM scheme, and the error (E|x(T ) − y(T )|2)1/2 between the exact
solution and that of the truncated Milstein scheme, as functions of the runtime and step sizes, respectively, when
△ ∈ {2−12, 2−13, 2−14, 2−15, 2−16, 2−17

}.

6. Concluding remarks

This paper developed explicit scheme for highly nonlinear stochastic differential equations with better strong con-
vergence rate compared to the usual EM procedure. We constructed explicit numerical schemes that allowed both drift
and diffusion coefficients being not globally Lipschitzian and growth faster than linear. We obtained convergence and
moment boundedness of the numerical solutions under local Lipschitz condition and structure conditions required by
the analytic solutions. Under additional mild conditions, order one rate of convergence was obtained. Our results were
demonstrated through numerical experiments. It is worth mentioning that, by taking higher-order Taylor expansions and
truncating the local Lipschitz continuous expansion coefficients, we can obtain higher-order stable schemes for nonlinear
SDEs (cf. [5, pp. 351–364, Section 10.4-10.6] although only the case of global Lipschitz and linear growth was allowed
for all the functions involved in [5]). The implementation of such schemes is normally computationally more intensive,
however.
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Fig. 1. The root mean square approximation errors for 1000 sample points between the exact solution x(T ) of SDE (5.1) and the numerical solutions:
X(T ) by the implicit EM scheme, and y(T ) by the truncated Milstein scheme, as functions of the runtime and step sizes, respectively, when
△ ∈ {2−12, 2−13, 2−14, 2−15, 2−16, 2−17

}.
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