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ABSTRACT. Gene regulatory networks, which are complex high-dimensional
stochastic dynamical systems, are often subject to evident intrinsic fluctua-
tions. It is deemed reasonable to model the systems by the chemical Langevin
equations. Since the mRNA dynamics are faster than the protein dynamics, we
have a two-time scales system. In general, the process of protein degradation
involves time delays. In this paper, we take the system memory into consider-
ation in which we consider a model with a complete memory represented by an
integral delay from O to t. Based on the averaging principle and perturbed test
function method, this work examines the weak convergence of the slow-varying
process. By treating the fast-varying process as a random noise, under appro-
priate conditions, it is shown that the slow-varying process converges weakly
to the solution of a stochastic differential delay equation whose coefficients are
the average of those of the original slow-varying process with respect to the
invariant measure of the fast-varying process.

1. Introduction. Gene expression is a complex process involving many biochem-
ical reactions with proteins as the final products. Most reactions are not instan-
taneous, there exists natural time delays in the evolution of cell states [3,18]. For
example, the process of degradation of both mRNA and protein [5] often consists of
several steps and can naturally be modeled by using time delays. Delayed degrada-
tion of JAK2 protein in signaling pathways was considered in [5] and delayed protein
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degradation was studied in [4]. [3] also considered the stability of the Hesl gene ex-
pression consisting of a cascade of reactions with discrete as well as distributed
delays.

In many biochemical reactions occurring in living cells, the number of various
molecules might be low with significant stochastic fluctuations. For the biochem-
ical reaction systems subject to the intrinsic noise that originates from the inner
stochasticity of the systems and is generated by intermolecular collisions affecting
the timing of individual reaction [2], the reaction processes can be modeled as a
discrete Markov process with jumps from one discrete state to another representing
chemical reactions. The stochastic simulation algorithm (SSA), originally proposed
by Gillespie [9], is an exact simulation for the systems subject to intrinsic noise,
but it is often computationally expensive. This is especially true in case of highly
reactive biochemical systems comprising a large number of molecular species. To
reduce the computational load, one of the ways is to use the chemical Langevin
equation (CLE) [10,17].

In a classical model of gene expression [21], molecules of mRNA are produced
from DNA in the process of transcription and then give rise to the production
of protein molecules in the process of translation. Both types of molecules may
degrade. Since the mRNA dynamics are faster than the protein dynamics, we have
a two-time scales system; see [22,23]. Denote the intensities of the biochemical
reactions by k, /e, k,, /¢ and ~y,, respectively,

DNA 275, nRNA, mRNA 2225 ¢,

(1)

k
mRNA —2 Protein, Protein BRLEN 0,

where the small parameter € shows that the mRNA dynamics are faster than protein.
Denote the concentrations of mRNA and protein by ¢ and ¢°, respectively. Then
the standard equations of chemical kinetics read

ey 1 <
{ #(t) = ~(ky (1), 2)
§°(t) = kpr=(t) — 1a" (1)

Following the work [4], [18] took into account the process of protein degradation with
time delays. In [4] and [18], to simplify the mathematical models, only fixed time
delay is considered, whereas distributed delays treated as memory were considered
in [3]. When the complete memory is considered, integral delay from 0 to ¢ is more
suitable. Then system (1) can be rewritten as

DNA /%, mRNA, mRNA 2275 ¢, 5

k
mMRNA —2 Protein, Protein —2 (), Protein 22 ¢,

and the second equation in (2) can be rewritten as

§F (1) = pr(t) — 2 (1) — / a($)g° (5)ds,

where v4(s) can be seen as the degradation intensity of the proteins produced at
time s € [0,¢]. When the intrinsic fluctuations are considered, the corresponding
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chemical Langevin equation (see [23]) is given by

e () = é(kr e (1))t + %\/kr e (8 duws (1)

a'(®) = (k' () = 30" () = [ (o)’ ()ds) (1)

+\/kpr5(t) +pa (t) + /0 Y (8)q® (s)dsdwa(t),

where w1 (t) and wo(t) are two independent Brownian motions.

Since the information of DNA is from protein, the synthesis of mRNA can be
generalized as a function of the concentrations of protein. In general, gene regulatory
networks are complex high-dimensional stochastic dynamical systems. System (4)
can be generalized as

ari(0) = 2" () = s ()t + 2[R 0) + i (Otw 1),

(5)

g (1) = (9a(r5 (1)) — 005 (1) — )t + \ [ (0)) + 6,05 (1) + g dwia0),

for i = 1,2,...,n with deterministic initial data 7(0) € R™ and ¢(0) € R", where
re(t) = (r5(t),r5(t), ..., (1) and ¢=(t) = (¢€(t), (), ..., ¢5(t)) represent the
concentrations of mRNA and protein at time ¢, respectively, f; : R® — R and
gi : R — R, represent synthesis of mRNA and protein in the gene i, respectively,
@G = fg m;(s)q5 (s)ds represents that the complete memory is considered, m;(s) can
be seen as the degradation intensity of the proteins produced at time s € [0,¢],
vi,0; > 0 are degradation rates of mRNA and protein, respectively, w;;(¢) and
w;a(t) (i =1,2,...,n) are independent standard Brownian motions.

[23] considered the asymptotic behavior of gene regulatory networks with two-
time scales by virtue of the averaging principle and the Fokker-Planck equation.
This paper considers not only two-time scales, but also the complete memory rep-
resented by an integral from 0 to ¢t under the special function g;. Since the second
equation in (5) involves the delay, its solution is non-Markov. Thus the techniques
in the literature which only treating Markov processes are not applicable. It is cer-
tainly important to establish a complexity reduction method for the delay system
with two-time scales since no existing results are available to date. By treating the
fast-varying process as a random noise, this paper will overcome the difficulties so
as to achieve the complexity reduction.

The rest of the paper is arranged as follows. Section 2 provides necessary
notation, assumptions and some preliminaries. Section 3 examines the transi-
tion probability density and invariant measure of the fast-varying process 75 (t)
for i = 1,2,...,n. By using the perturbed test function, martingale method and
weak convergence techniques, Section 4 shows that the slow-varying process ¢°(-)
converges weakly to the solution of a stochastic differential delay equation whose
coefficients are the average of those of the original slow-varying process with respect
to the invariant measure of the fast-varying process as ¢ — 0. Based on the estab-
lished results, this section also examines the stochastic differential delay equation
(4) and gives its asymptotic properties. The final section gives some concluding
remarks.



4420 YUN LI, FUKE WU AND GEORGE YIN

2. Notation, assumptions and preliminaries. Throughout this paper, unless
otherwise specified, we use the following notation. Let R™ denote the n-dimensional
Euclidean space with the Euclidean norm | - |, and B(R™) be the Borel o-algebra
of R™. For each N > 0, let Sy = {z : |z| < N} be a ball with radius N centered
at the origin. For a vector or matrix A, denote its transpose by A'; for a matrix
A, denote its trace norm by |A| = \/T,.(A"A). Denote by D([0,T];R™) the family
of functions on [0,T] with values in R™ that are right continuous with left limits
endowed with the Skorohod topology. Denote by C™(R™; R) the family of functions
on R™ with values in R that have continuous partial derivatives up to the mth-
order, CJ*(R™;R) the family of C™(R";R) functions with compact support, and
By(R™;R) the family of bounded and measurable functions on R™ with values in R.
Denote by C*™([0, T] x R™; R) the family of functions V (¢, ) on [0, 7] x R” that are
kth-order continuously differentiable with respect to ¢ and mth-order continuously
differentiable with respect to z, and C&™ ([0, T] x R™; R) the family of C*™ ([0, T] x
R™; R) functions with compact support. L2([0, 7] x€; R"*!) denotes the family of all
R™*!_valued measurable F;-adapted processes ®(t) such that EfOT | (t)|?dt < oo.
Throughout this paper, K denotes a generic positive constant, whose value may
change for different usage. Thus, K + K = K and KK = K are understood in an
appropriate sense.

In this paper, if ¢(t) is a stochastic process, denote by F{ the o-algebra generated
by {q(s) : s <t} and E{ the corresponding conditional expectation. For the stochas-
tic process ¢°(t) and < (t) depending on €, we denote by Ff the o-algebra generated
by {¢°(s),7¢(s) : s <t} and Ef the corresponding conditional expectation.

Let .# denote the set of real-valued progressively measurable processes that are
non-zero only on a bounded t-interval and

ME = {f € A :supE|f(t)| < co and f(¢) is ff—measurable}. (6)
t
Following [12, 14], let us recall the definitions of the p-lim and the infinitesimal
operator L¢ as follows.
Definition 2.1. Let f, f° € .#¢ for each § > 0. We say f = p- 6lir[r)1 f? if and only
—0+
if
sup E|f°(t)| < oo,
t,0
lim E|f%(t) — f(t)| =0, VO<t<T.
6—04

Definition 2.2. Let f, g € .#Z°. If

we say that f(-) € 2(£F) and L5f = g, where Z(Lf) denotes the domain of the
operator L.

Thus £° is a type of infinitesimal operator. The following lemma was proved in
Kurtz [12].

Lemma 2.3. If f € 2(L°), then

My(t) = f(t) - / £° f(u)du
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is a martingale, and
t+s R
ESf(t+5) — £(1) :]Ef/ £ F(u)du, wopl.
t

3. Invariant measure of the fast-varying process. To obtain the weak conver-
gence of the slow-varying process ¢°(t) as ¢ — 0, the properties of the fast-varying
process r¢(t) are crucial. In (5), r¢(t) is rapidly varying in contrast to ¢°(¢). To
proceed, we first consider asymptotic properties of r7¢(¢). Let us define the process
R:(t) = ri(et) for any i = 1,2,...,n. Then R:(t) satisfies

ARE (1) = (filg" (1)) — %RE(0))dt + \[Fi(g" (1)) + 7R ()i (1),

where w;1(t) = w;1(gt)/+/2 is a standard Brownian motion. When the fast-varying
process is analyzed and ¢ is small, the slow-varying process ¢° varies slowly. Let us
define a fixed-Q process R;(-) = R;(-|Q) by

dR;(t) = (f;(Q) — viRi(t))dt + / f;(Q) + viRi(t)dwi (t), (7)

where @ is treated as a parameter. Hence, although R(t) = (R1(t), Ra(t), ..., Ru(t))
is a n-dimensional process, it can be seen as n scalar processes and satisfies the fol-
lowing theorem.

/

Theorem 3.1. There exists a unique global solution R;(t) for (7) for allt >0 and
this solution holds the following properties:

(i) fi(Q) +viRi(t) > 0;
(i) R;(t) is a homogeneous Markov process and there exists transition probability
density

Yibi (Bi + iz, 83 Bi + vixo, t), x> —;,
pi(z, 8520,t) = { 0. 7 < —g; (8)

where pi(y, 5 yo,t) = ce """ (v/u)3 [,(2(uv)2), y > 0, ¢ = 2/[y; (1—e~ (=70,
u=cype "D v=cy, q= 4& — 1 and 1, is the modified Bessel function
of the first kind of order q gwen by

k
Zk'l“k—s{q+1)<2)2+q’

in which T'(z) = fo e~ 't*=Ldt is a gamma function. Moreover, there exists
an invariant measure with the density

24pi 4
—(x+ )t Lo 2 e > —o;,
pila) = 3 Tagy ") z 9)
0, T < —p;,

where i = fi(Q)/i;
(iii) the mth-order moment E[R;(t)]™ is uniformly bounded for any integer m > 0.

Proof. Define 8; = f;(Q) and R;(t) = B; + % R;(t). Then, according to (7), R;(t)
satisfies the following stochastic differential equation
dR;(t) = 7i(2B; — Ri(t))dt + v;1/ Ri(t)diir (¢), (10)

which is a mean-reverting square root process. This implies that (10) has a unique
nonnegative solution R;(t) on ¢t > 0, see [6,16], which implies that (7) has a unique
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solution R;(t) on t> 0 with f;(Q) + v R:(t) > 0, that is, R;(t) > —p;. Hence,
nonnegativity of the solution of (7) cannot be guaranteed. Moreover, the solution
R; (t) of (10) is a homogeneous Markov process and its transition probability density
is given by p;(y, 550, ); see [6,23]. As s — oo, it is easily observed that R;(-) tends
to a gamma distribution with the density

(2)"
Vi dpi—1 —2

1i(y) = T Loy,
fi(y) (g e Yy

0, y <0,
according to p;(y, s; Yo, t).
Note that R;(-) = 8; +viRi(:). For x > —¢;, the transition probability density
of the solution R;(-) of (7) is given by
pi(w,s;70,t) = vipi(Bi + vz, 5; Ri(t) = x0,1)
= 7ibi(Bi + iz, 8; Bi + viwo, t). (11)
For x < —y;, the transition probability density p;(z,s;xo,t) = 0. The stationary
density of R;(-) can be expressed as follows
ﬂ(m b )ele2ete) g g
pi(w) = vif1i(Bi +viz) = ¢ T(de;) ‘ ’ -
0, T < —p;.

(12)

Moreover, one can compute the moment generating function with respect to the
invariant measure

R oo 24 dpi—1_—2(atpi)
E,, (e*) = / e“* (x4 @) e 20T¥dy
' — i F(4SDZ) ’

24997; N +o00

— —op; dpi—1,-(2-a)yg
T(dpi) / e /
24tpi 1 “+oo

— e i 4<Pi*16*yd
T () (2—a>4w/o Y Y

—4deq
- (1 - %) e, (13)

where 0 < « < 2. This implies that the mth-order moment with respect to the
invariant measure for any integer m > 0 is given by

Eu (R)™ = (1)@ +2m(=1)"""]" + dm(m — 1)(=1)" 2y}

@i(dpi +1) - (dp; +m — 1)
2m72

m(m = 1)(=1)" 2 :

(14)

Since initial value R;(0) = r;(0) is a constant, we can obtain the probability density
function of R;(t)

— g
ao—u—v(V\2 _\1 o

Fry)(2) = { Tice <ﬂ) I (2(@v)?), 2 =i (15)
0, xr < _Qpiv

where ¢ = 2/[v;(1 —e "), u = &(B; +7i7:(0))e 7, © = ¢(B; +v;x). Consequently,
the moment generating function of R;(t) is given by
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+o0 g
B = / eam%ée‘ﬁ_i(g) “I,(2(av)?)dx
P u

ukektatl 400 . )

e Z m/ (Bi + viz) a0t ,—e(Bi+7iT) g,

*k k 1 +
— =i Z tat / ooyk-&-qe (e— )ydy
ET(k+q+1)

ukektatl — +oo
= plp—aw Z ! (—_ E) (k+q+1)/ Y eevay
RI(k+q+1) Vi 0
ok

— o Upaypi i % (1 B %)-(k+q+l)7 (16)

k=0

= €

in which ¢ — a/y; > 0. Note that & — 0 as t — co. According to (13) and (16), it
is easy to verify that

3 OéRi (t) — OtRi
tlirgo Ee E,, (e*™).

Hence,
tlim E[R;(t)]" =E,, (R;)™, ¥Ym > 0.

Thus, the mth-order moment of R;(t) is uniformly bounded for any integer m > 0.
This completes the proof. O

4. Weak convergence and averaged system. In this section, we show that the
sequence ¢°(t) converges weakly to a stochastic process that is the solution of an
appropriate stochastic differential equation. In order to obtain the desired weak
convergence, we first need to prove tightness.

To address this issue, we need to verify

lim limsup]P’({ sup [¢°(t)| > No}) =0, for each T' < oo, (17)
No—oo g0 0<t<T

where P(A) denotes the probability of A. The verification of (17) is usually quite

involved, and requires complicated calculations. To circumvent the difficulties, we

use the truncation technique as follows. For any i = 1,2,...,n, and any (x,y,r) €
R™ x R™ x R", define

Sizi —y;i and ¥i(2,y,7) = \/gi(ri) + Sz + yi.

5) can therefore be rewritten as

bi(,y,7) = gi(r:

) =
The second equation of (

dgs (t) = bi(q° (1), ¢5, = (£))dt + i (q° (), g, 7 () dwia (1),
where r€(t) = (r$(t),75(t),...,r5(t)) = (Ri(1), Ry(L),.. .,Rn(g)), is the solution

r'n

of the equation (7) under fixed ¢°. For each N > 0 sufficient large such that
l¢(0)] < N, define

dg;™ () = 0N (¢5N (t), 7™, re (1) dt + N (N (1), g7 N 7o (1)) dwia (1), (18)
where b (z,y,7) = bi(z,y,r)hN (), ¥ (z,y,7) = Pi(z,y,r)hN (x) and

1, if x € Sy,
RN (z) = ¢ 0, if € R™ — Sy,
smooth, otherwise.
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Hence, according to the definitions of b (z,y,7) and ¥ (z,y,7), (18) can be rewrit-
ten as

ag?N () = (i) - 82N () — g5 )N (@Y (1)t

o0 0) + 8N (1) + g VBN (N () dwia (). (19)

From the definition, it can be seen that ¢=" (t) = ¢°(¢) up until the first exit from
Sy = {x : |z| < N}. Then ¢=(t) is said to be the N-truncation of ¢°(t). Let
FoN = o(qoN(s),7(s) : s <t). We can also give the corresponding definitions for
AN and L5V . Tt follows that ]-"f’N C o(F"2VF"), where FV? and F]" are gen-
erated by the n-dimensional Brownian motion Wa(t) = (wia(t), waa(t), . .., wna(t))
and the stochastic process r¢(t), respectively. To proceed, the following assumptions
are needed.

(A1) The second equation of (5) has a unique strong solution ¢ (¢) on [0, 7] for
each r§(t) with each deterministic initial value ¢;(0), for any i = 1,2, ..., n.

(A2) fi(x), %fi(x) and %fi(a:) are uniformly bounded with respect to x €
G for any 4,5 = 1,2,...,n, where G C R™ is a compact set. For i = 1,2,....n,
gi(ri) = a;r? + byr; + ¢; for any a;,b;,¢; € R and m;(¢) is uniformly bounded with
respect to ¢ € [0,7]. Denote b(x,y,r) = (b1(z,y,7),b2(x,y,7),...,bn(x,y,7)),
¢(,’E, Y, T) = diag(wl (1‘, Y, 7")7 1/12(1" Y, ’I“), s 7wn(x7 Y, T))7 a(m, Y, T) = diag(al ('757 Y, 7“)7
as(z,y,7), ..., an(z,y,7)), where a;(x,y,r) = ?(z,y,r).
Remark 1. Here we only consider g;(r;) = airf + b;r; + ¢;. In the concluding
remarks of Section 5, we show that for any sufficiently smooth function g;, the
results still hold. With respect to the invariant measure in the Theorem 3.1, the
expectation of b;(z,y,r) = g;(r;) — §;z; — y; and a;(z,y,7) = ¢;(r;) + diz; + y; is
given by

/Rbi(xayar),ui(ri)dri = /Rgz'(ﬁ)ui(ﬁ)dm — 0% — i

aifff aifi | biBi
= §’+ B-i-i-l-ci—(sixi—yi
i i Yi
= bz('rvy)
and
/ai(fc,y,r)#i(ﬁ)dri = /gi(Ti)ui(Ti)dT¢+5¢€Ci+yi
R R
32 3. b: B;
- a”§1+alﬁz+ zBz+ci+6ia;mtyi
Vi i Vi
= a;(z,y),

forany i =1,2,...,n.

Remark 2. If g;(r§(t)) + d;z; +y; > 0 forany ¢ € [0,T], w € Q, z; € Rand y; € R,
then the second equation of (5) has a unique strong solution. Under Assumption
(A1), since the second equation of (5) has a unique strong solution ¢£(¢) on [0,T]
for each r§(t), it can be observed that a;(x,y) > 0 since [p gi(r;)pi(ri)dr; is the
mean of g;(-) with respect to the invariant measure.

(A3) The following stochastic differential equation
dq(t) = b(g(t), gr)dt + (q(t), q:)dBI(t) (20)
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has a unique weak solution (i.e., uniqueness in the sense of the distribution) on
[0, 7] for each deterministic initial value ¢(0), where b(z,y) = (b1 (2, y), ba(2,y), - . .,
b’ﬂ(xv y))/a ’(/J(Q?, y) = diag(%(% Y), '(/]2(377 y)’ s 7wn($7 y))7 where %2(337 y) = Ebi(.T, Y),
B(t) is an n-dimensional standard Brownian motion.

Next, we state the main theorem in this paper. Its proof will be divided into
several parts.

Theorem 4.1. If (A1)-(A3) hold, then {q°(-)} is tight in D([0, T];R™), and the
limit of any weakly convergent subsequence satisfies equation (20) with the same
initial value as ¢°(0) = q(0) which is deterministic and independent of €.

We say that ¢(¢) of (20), is a solution of the martingale problem with operator
L, in that for any function f € C3?([0,T] x R™; R),

My (0) = J(t.a(0) = F0.00) = [ Lla(s)af(sale)ds (21)
is a martingale, where for any =,y € R",
L(x )~—Q+Zn:5-(x )i+lzn:a-(x )a—z' (22)
YY) = ot r i\T, Y 8l'i 2i:1 i\T, Y 83)22

As mentioned, it is difficult to verify (17). We thus begin the proof of Theorem
4.1 by working with the N-truncated process. Corresponding to this truncation,
we have the operators £ and LV, which are operators £ and L with x, Y, b
and 1 replaced by =V, y™, b¥ and ¢V, respectively. Not only can assumption
(A1) guarantee the existence and uniqueness of the strong solution of the truncated
stochastic differential equation (19), but also the tightness. We proceed with the
following theorem.

Theorem 4.2. Under assumption (A1), there exists a unique strong solution ¢=™ (t)
for the truncated stochastic differential equation (19) for any initial value ¢&N (0) =
q(0) € Sy that is deterministic and independent of €. Moreover, this solution is
continuous, ff’N—adapted and tight in D([0,T]; R™).

To prove this theorem, we need the following Lemma 4.3 (see [16, Theorem 7.1,
p.39] for a proof) and Lemma 4.4 (see [14, Theorem 5, p.32]).

Lemma 4.3. Let p > 2 and ® € L2([0,T] x Q;R™*!) such that
T
IE/ |D(t)[Pdt < 0.
0

Then

T 2 T
—1\E
IE:’/ @(t)dW(t)‘p < (%)QT%E/ 1B(1)|Pdt, (23)
0 0
where W (t) is an l-dimensional standard Brownian motion.

Lemma 4.4. Let {Q°(-)} be a sequence of Ff -adapted process with paths in D([0,T];
R™). If this sequence satisfies

lim limsup]P’<{ sup |Q°(¢t)| > NO}) =0 (24)

No—oo  ¢—0 0<t<T
and there are nondecreasing continuous function F(-) and a > 1, v > 0 such that
E|Q°(t) — Q°(t)["|Q7 (t2) — Q° ()" < [F(t2) — F(t1)]", (25)
where 0 <t; <t <ty <T. Then Q°(-) is tight in D([0, T]; R™).
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With these two lemmas in hand, we can give a proof of Theorem 4.2.

Proof of Theorem 4.2. According to assumption (A1), the truncated stochastic dif-
ferential equation (19) has a unique continuous and JF; ’N—adapted strong solution.
To prove the tightness of {¢V(-)}, we need only to verify that the conditions in
Lemma 4.4 are satisfied. In fact, under the truncation technique, (24) holds. Hence,
we need only to show that (25) holds for the truncated process ¢V ().
From (18),

dg= N () = b (5N (1), N, e () dt + N (N (@), ¢S (8) dWa (t), (26)
where bV (., )(— b(z,y,r)hN (z), ¥V (z,y,7) = P(z,y,r)hN (z), Wa(t) = (wia(t),

waa(t), ..., wpa(t))’ is an n-dimensional standard Brownian motion. For any 0 <
ty <t <ty <T, (26) and the elementary inequality (a + b)? < 2(a? + b?) yield

-0 < o [V EN,r%s))dsf
t1
+2‘/wN N (s), ¢, (5))dW2(S)’2
and
Ve - OF < 2 [ 6 ]
22| [0 00N Do)
t
Applying properties of conditional expectation gives
E|q*N () — ¢V (t)[*| ¢V (82) — ¢ N (0) ]

t to 2
4E‘/ bN(qe,N(S aN ra ds‘ ‘/ bN EN EN7’I°5(S))dS‘
t1

IN

k| [ 6o nasf| [N s amate)|
+4E’/th(q5’N(s) &N ,75(8))dWa (s ‘ ’/ bN EN EN,TE(S))dS’Q

+4IE‘ ttwN(qE,N(S),qg,Nme(s))sz(s)‘ ‘/t wN(qE,N(S%qg,N,TE(S))dWQ(S)‘z

‘ 2

@] | [0 ), o

+4E’/ttbN(qE’N(S)aqg’N,TE(S))dS E[/ W’N( sN( ), qg’N7T€(S))|2d3{]:t}

+4E‘/tt'(/)N(qst(S)aqi’N7r€($))dWQ() ‘/ WY (5N (s), g7 ,Ta(s))ds‘2|]-“t}

4] [0V 0. o B 1 0V e o) P 7]

According to Theorem 3.1, the mth-order moment of R;(t¢) is uniformly bounded
for any integer m > 0. Applying the Young inequality, the Holder inequality and
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Lemma 4.3, gives
Elg=N (1) — ¢ (0)[*¢ (12) — ¢V (1)

|2
t 4 to
iz | bN(tf’N(s),qi’N,re(s))ds\ 4| [0 ). ()
t1 t

4

<
t 2
+aE| [ 0% @ ) ()P
4
] [ wN<q€vN<s>,qz’N,r%s))sz(s)(
t1
¢
< At —t)E [ BN ("N (s), a2, v ()| ds
t1
ta
it~ O [ (5,05 (o) s
¢
)
& £ £ 4
H(t2 0 [ |¢N<q N(s), 5N re(s))| ' ds
t
+144(t — t;)E \w (5),05N, 75 (s))| "ds
t2 S e,N e,N 4
< (t2 — tl)ﬂz E|g; (-’ﬂ(g)) —diq; (s) — 45 | ds
2
+148(ty — t1) Z/ gi Rz(z ) +6:5N (s) + | ds
< K(ty—t)> (27)
Thus, (25) holds for the truncated process ¢V (¢). Lemma 4.4, implies that {¢= " (-)}
is tight in D([0,T];R™). The proof is completed. O

Since ¢= (+) is tight, by Prohorov’s theorem, it is sequentially compact. Thus, we
can extract a weakly convergent subsequence and we still lable it by €. Moreover,
the limit is defined as ¢™(-). By the Skorohod representation, without changing
notation, we may assume that ¢5V(-) converges to ¢’V (-) in the sense of w.p.1.
We proceed to characterize the limit process ¢ () by using the averaged system.
In what follows, we characterize the weak limit by applying the following lemma
[19,24].

Lemma 4.5. Let Q°(-) be an R™-valued process defined on [0,T], with Q°(0) =
Q(0) being deterministic and independent of €. Let {Q% ()} be tight in D([0, T]; R™).
Suppose (A3) holds and L is the corresponding operator defined by (22). For each
f(-) € C3(R™;R) (or any dense subset of it) and each T < oo, there exists f(-) €
D(LF) such that

p- lim ()~ £(Q°())] =0 (28)
and
p- lim [£°f°(-) = L(Q°(), Q) f(Q°(-)] = 0. (29)

e—0

Then, Q°(-) = q(-), where q(-) is the solution of the stochastic differential equation
(20).
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Remark 3. In the process of the averaging, the fast-varying process r<(t) is treated
as noise and is averaged out. We use the perturbed test function method to ex-
amine the weak convergence. Introducing the perturbed test functions allows us to
eliminate the noise terms r°(¢) through averaging, and obtain the desired results in
the limit.

With these results in hand, we next give a proof of Theorem 4.1.

Proof of Theorem j.1. According to the definition of p-lim, to prove (28) for ¢V (¢)
and for any f(-) € C3(R™;R), we need to find &V (-) € 2(L£5Y) and verify
sup  E|f=N(t) — f(g>N(t))| < oo,

0<t<T,e (30)
lim E|f=N(5) — f(@N (0)] =0, YO < ¢ <T.

E—>0+
Similarly, to prove (29) for the above ¢=~ (t) and f(-), we need to verify

sup  E|L5N foN (1) — LN (=N (), g5 ™) f (4N (1))] < o0,
0<t<T,e R B (31)
lim LN foN (1) — LV (g5N (1), ¢ ™) f(g™N (1) = 0, VO <t < T.

e—04

Step 1. Constructing the function f&~(.) by virtue of the perturbed test function
method.

For any f(:) € C3(R™;R), to use the perturbed test function method, for t < T,
define

T
Vi(t,x) == / Fo(@)E] BN (2, g5, 75(5)) = DN (2, 7 ™)]ds,
t
n T .
VQ(t,.’IJ) = Z/ fxlxl(m>E: [a’iv(x7q?N7r8(S)) _a‘iv(‘rvq?N)]d&
i=171t
SN = Vit @V (@) and f2N(#) = Va(t,¢oN(t)). In the process of build-

ing the perturbed test functions, the slow-varying process qf’N(t) and qf)’tN =

fot m(s)qf’N(s)ds are considered as parameters for any ¢ = 1,2, ..., n. Making change
of variable s/e to s yields that

V0 = [ RV BRI Y 0,67 B) - B 0.6 s

IS Zl /L? fr@ (qE’N(t))Eg[bfv(qg’N(t)’ qts,N7 R(S)) B Biv (qE’N(t), qf,N)}dS

T

52/ Fer @™ O @ ) {E g1 (Ril) [ Re(2)] = pulutri)) s

(32)

and

2 ()

= o3 [ VOB @V 0.0 R) (0 0.0 s
i=1"%
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—ey / e O O (B[R | R(2)] - pilostra) s,

(33)
where 15(gi(r:)) = [g 9i(ri)pi(ri)dr;. Define

PN = Fa N 0) + V) + S 55N ). (34)

Step 2. Verifying (30).
According to (30) and the form of f&N(£), we need only to estimate £ (£) and
=N(t). Let us first estimate foV(¢). Since f(-) € C(R™;R), f,,(-) is uniformly
bounded. Note that g;(r;) = air? + b;r; + ¢;. According to the definition of the
truncation function AV (-), KV (-) € C§°(R™;R). Thus,

sup E|f; N (1)

0<t<T
- o E Y /;fwi<q€’“’<t>>h’v<q€’”<t>>{ o[ (2))]
—p;(gi(ry) }ds
< 62n;0§1;5TE‘ @ o @ o) {wE R (L)
—l—sz{Rl(s)‘Rl(t” —al/r wi(ry)dr; — b; /Tzlh T drl}ds‘

IN

w3 e ® [ o[l ()] soelnef ()

—ai/r?,ui(ri)dri—bi/rim(ri)dri
R R

According to Theorem 3.1, for any 1 < i < n, by virtue of the transition probability
density p;(x,s;xo,t) and the invariant measure of the solution R;(t) of (7), we
obtain

E{gz i ‘R( )} wigi(ri))
:aiE[RE(S)‘Ri(*)} +biE{Ri(3)‘Ri(£)} _ai/erzﬂi(ri)d""i_bi/RTiﬂfi(Ti)dri
o [ et m(D) e v [ am(esiri(L). as

Pi Pi

/7“ i (r3)dr; —bi/riui(h‘)dri
R
o

ai? 200 2a:a(G+1) +ai((j+ D(G+2) 28 2a:(G+1)5;

ds. (35)

e 7252 e e ie Ve
Vi % yi€ i
2t D (t
_ il ey | aBi(E)

/72 - e —7i(s— )(1*6 vi(s— ’))
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2a; Ri(L)B; (et da; Ri(H)Bi ety da;f? (5122
+7EB i ( 5)_7‘56 274 ( 5)+72(1—€ i ( 5)>

7 v ;
3. 32
+azﬁz (1 _ e—"/i(s—%))Q _ 4041251‘ (1 . e_ryi(s_ﬁ))
Vi i
a5 n biRi(ﬁ)eﬂi(s,é)  2bif3; (1)
Yi Vi Yi
Aj 59 _g~. (s—t 2a; R; Ly . o~ (s_t Aj 5 (gt 20; 59 _ (st
_ Gt 2R g ey Gig it 2 ety
i Vi Yi Vi
2 1Rz x . 1 t X 1
+a7(),6 e~ vils—1 )+alR2( ) —27i(s—¢) +aiRi(g)€_%(s_€)
_aiRi(é)e—zms—a _ 7;"@e—w(s—é) n biRi(f)e—Ws—?)
a; — _t 2(],1 2( ) 9~ (s—1
— : (qs,N t) e~ i (s fz vi(s—1)
) LY 0)e
Cyi(s—1t 2a; Ci(s—t
LN @)e e - RN @)e oD
Vi '71
2a;R; (L . t
S p e et 4 a2 (L) ettt
Vi €
t t t t
ol (2)e T —aR () e - *f< N (1))e (=)
t
erle(g)e (s=1) (36)
where
- 2 ~oaa (N _s—t) 3 ~ 451‘ - Bz
S : Bi= BN @)= T = 2

Assumption (A2) shows that f;(z) is uniformly bounded with respect to = € G,
which implies that f;(x) is bounded for any x € Sy+1. According to Theorem 3.1,
the mth-order moment of R;(t) is uniformly bounded for any integer m > 0. Denote
v :=max{v; : 1 <i < n}. Consequently, for any 1 < i < n,

eoiltlgTE[Z aiE[R2 s)‘Rz(éﬂ +biE{Ri(s)‘Ri(£)} —ai/ﬂxr?ui(ri)dri

—b; /ﬁlh ry)dri|d

< < sup Ef / S e e s

0<t<T
©20:Ri(Y) (et
4 / 2 e ()

4 / % fa e ds

bR e

T

= | 2a4 v (s— L
/ S f N ()e e
N5

xr
e
kA
e

a; R} <E> e~ 27i(s=2)
£
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T T
B t t © t t
t 3 t 3
SZ b» £
[ N ape e as + / () as]
t Yi t
T
£ 2 t e
< eK sup (E‘Ri(f)‘ +E‘Ri(f)‘+1) e =) g
0<t<T 3 g é
ATt AT
< eK sup (1—e 7= )<eK(l—e =) =0(). (37)

0<t<T
According to (35) and (37), we obtain

sup E|f5( |<5KZ (1—e" 75 )<eK(l—e %)20(5)7 (38)
0<t<T

which implies sup E[fS™ (£)] — 0 as e — 0.
0<t<T
To proceed, let us estimate foV(¢). Since f(-) € CAR™R) and hN(-) €
C(R™;R), fu,x,(-) and RV (-) are uniformly bounded. Note that g;(r;) = a;r? +
bir; + ¢;. According to (36), applying the technique similar to (37), gives

N
sup E[fy " ()]
0<t<T

~ e osw E\; / Zfmi(qE’N(t))[hN(qE’N(t))]Q{ E [ (Ra(s))| B (2]

0<t<T
—pilgi(r)) fds|

< szogggTE] / e @O @ ) 0 [R260) (L)
+b; ]E{ ‘R ( )} —ai/RT?ui(ri)dri —bi/Rri,ui(ri)dri}dS‘

< ox3 o w [ o] ()] +velror(t)
_ai/]er?,ui(ri)dri —bi/RT“iMi(Ti)dH ds

< o3 (sl (4)[ gl (H)] 1) e D

< 6KZOE?ETﬁTe vils )dsgsK(lfe*%) = O(e), (39)

€

which implies sup E|fs ()] — 0 as e — 0. Note that
0<t<T

BN ()~ FaN ()] < BN 0 + 5B )
(38) and (39) imply

sup E|fSN(t) — f(¢5N(t)| = 0, as e — 0. (40)
0<t<T
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Thus, (30) holds.

Step 3. Verifying (31).
For any (t,z) € [0,T] x R™, let us define

Vt,z) =WVi(t,z) + %Vg(t, x).

According to the definitions of f&V(.), L£5N and LV, gives

ﬁE’NfE’N(t)
e,N re, N _ re,N
— p- lim By ot +6) — 27 (@)
6—0 )
e,N e, N o e N
— p-lim E; 7V f(g2N(t+6) — f(eN (1)
6—0 )
e,N e, N _ e N
+p lim V(t+06,¢5N(t+6)) — V(t, =N (1)) )
6—0 )

= LN N (@)™ r )@ () + LY (@ N (@), a7 (0)V (8, a7V (1),
where ES'Y is the conditional expectation with respect to F£'" and

LY@V (@), r @OV (LN (1) = LN @V @), a Y )Vt N (1)
1
FIN (@Y (1,07 () Valt Y ()
According to the form of £V fN (), we first need to estimate LN (¢=N (¢), ¢&,
re())Vi(t, ¢=N (1) and LN (=N (1), 5™, v (0) Valt, =N (1))
Let us first estimate LY (¢=N (t), ¢¢™, 7= (¢))Va(t, ¢° (t)). Note that

LY¥(g™ (), a5, r" (O)Valt, ¢ (1))

- siLW’N(t),qf’N,f(t)){ /. C @O N O {E[R)

m(2)]

—ps(gs(rs)) pds }. (12)
For any 1 <14 < n, applying the It6 formula gives

eLN (@™ (1), 67N, e ()] / ’ Fer N RN @ ) {E g1 (Rit) | Ro (2]

_Mi(gi(ri))}ds}
= LN O N O) [0s(Bi(2)) = o) +e D5 V(1)
j=1
#e 2 B0 N O) e L e 0)+ 3 2Lt ()
e B0 N O) e TR a N 0)+ 2; I5(t,6" ()

n n
€
+e Y I5(ta N (1) + 3 D15t N (1), (43)
j=1 j=1
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where

i) = [ fo @0 @) ([0 (i)

Bta) = [T @y n Y @{Epme)](2)] - mo) s
Xel)ﬁy(w7qu’N re(t)),
L) = [ f o @) g {E[o R (2] - ot s

i) = [ foe @0 @) {E[0s(Rito) |
I(te) = /iz Jia, (x)a—%hN(x){E{gl(Rl(s))‘Rz(*)} - ,ui(gi(n‘))}ds

Ig;(tx) = fria i(Ri(s)) | Ri( < )| — pi(gi(ri)) s
/ iy Bl o[ ()] j

xa} (z, q; ,rs(t))

Bi(t.x) = / fule o[ Be()] - ot Y
xa; 3 (xgp ars(t))a
N t
I5te) = / o) g @) g (B[R B (2)] = o) s

xa; Nz, ¢ e (1)),
s = [ haton o) e o[ (5)] - o)

N
Y@, g5, e ().

Since f(-) € C§(R™;R) and h™(-) € C§°(R™;R), fa,z,(-) and h™ () are uniformly
bounded. Consequently,

xXa

€ sup ]E‘ZIM (t,q> (t))‘

0<t<T

BN (N (0,677 (1)
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For any 1 < j < n, note that bév(x,y,r) = hN(z)(g;(r;) — 6;x; —y;) and g;(r;) =
a;r3 + bjrj + ¢;. Assumption (A2) shows that m;(t) is uniformly bounded with
respect to ¢ € [0,T], which implies that qi’tN = fot mi(s)q; N(s)ds is uniformly
bounded. Recall that hV(-) € C5°(R™;R) and the mth-order moment of R;(t) is

uniformly bounded for any integer m > 0. R;(t) and R;(t) are independent for any
i1 # j and t > 0. According to (36), we obtain

E’/ [ (RN[Ra(2)] = ot s 3 a0, 07 0)
f gﬂ‘(RJ‘G)){E[Qz ()| Rs(£)] = ot s
+1[<:[Z ‘(&q;—?vN(t) +Q§,’;V){E[gl . ‘R ( )] _Hi(gi(ri))}’ds

w (el O TR )]+ Elr )l 1m )]+ 2l )l )
LIE )\ !RZT(E)HR( )\+E!Rj(§)\2+E\Ri(§)\

IN

IN

e

+E’R e 1= E)g
< K/E e =2 ds
< K(1—enE-b)y, (44)

which implies

n
T t
€ sup ]E‘ IS (t, N (¢t ‘ < eK sup l—e rile—2)
0<t<T j; i ®) leo<t<T )

< eK(1- e_%) = 0(e).
Since f(-) € C{(R™R) and hN(-) € C°(R™R), fz,(-), KV (:) and 5 hN(-) are

uniformly bounded. Note that b;-v(z,y,r) = hN(z)(g;(rj) — d;z; — ) for any
j=1,2,...,n. Applying the technique similar to (44), gives

IA
>
w0
=

T

=
"
— =
=
—
<

—
oy
=

/N
~

SN—

[

IS

S

=

Nyl
QU
V)

IN
™
=
(]
w0
=
INT
——
&=
N
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AT
< eK g sup / e vils )d5<sK(1fe =) =0().
— 0<t<T

Since f(-) € C3(R™;R) and hV(-) € C§°(R™R), fr,2,2,(-) and hYV(-) are uniformly
bounded. Note that af (z,y,7) = (W™ (2))?(g;(r;)+0;2;+y;) forany j = 1,2,...,n
Applying the technique similar to (44), gives

— sup ]E’ZLU ’

2O<t<T
< fKZOEggTE! / (B[ |R ()] - ot Jas
xal (@ (1), e (1)
< 91 (R (£)) {E[o: B[ Bi (2)] - milgutrin) s

0<t<T

T
eKZ sup { /E
T

< eKZ sup/ e ds < eK(1—e” g):O(e).

1 0<t<T

Note that f() € C4(R™;R), hV(-) € C°(R™; R) and aé-v(x,y,r) = (hN(x))Q(gj(rj)+
0jx; + yj) for any j = 1,2, ...,n. Similarly,

IN
>
[
wn
=
T
=
~ o
—
&
—
e
—
=)
=
=
/N
N—
[E—
1S
—~
e
=
Nt
—
IS
VA

IN

o0
=
—
—_

I

D

|

°|
~—

|
o)
~
B

and

IN

,KZ sup E‘/ {E[gl(Rz(s))‘Rz(éﬂ —ui(gi(ri))}ds

0<t<T

= O(e).

In order to estimate all remaining terms, we first need to calculate the partial
derivatives of the conditional expectation. For any 1 < j < n,

BZj{E{gz i ‘R< )] —/li(gi(ﬁ))}

e (@™ 1), 07 ()]
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_ 2 APy —27i(s—2) _ M —2y;i(s—1)
= 2 i(g™ ())amjfz(q (t)e™™ -, %jfz( N(t))e
_ 4 O _ 1( t 4(11 6 e, e i(Sfﬁ)
- axjfz( N(t))e zfz( ())amjf(q N(t))e
20:Ri(;) 0 o=ty _ B 0 b e N ()l D)
+T@x] filg®N (1))e™ T (N (1) (45)
and
82
2 efun (L)) -minten)
2a,1 0 e 2 oyi(s—t 2a; e > € —2v;(s—1%
= g ] O+ A O g e e
2a;Ry(%) 9? a; 0%

o 2f1( Nt))em2rle=) — = (&N (t))e =)

Vi i 03"
_dait 0 Nty A O Ny (=)
[%f(q 1)) e S ) g N O)e
26% Ri(£) 92 sty i D? e N —yi(s—1t)
S gt 0)e ~ g O . )

Assumption (A2) shows that zl is uniformly bounded with respect to x € G,
J

which implies that ; is bounded for any z € Sy;. Since f(-) € C4(R™;R) and
RN (-) € C°(R™;R), fu,(-) and AV (-) are uniformly bounded. For any 1 < j < n,
note that b¥ (z,y,r) = N (x)(g;(r;) — 6;2; — y;) and g;(r;) = a;r? + byr; + ¢;.
Therefore, according to (45) and applying the same technique as the estimate of
(44), we obtain

IA

™

wn

=

T
E
\

?‘

€N<>>hN<€N<>>aiJ{E[gz ()| Ri(2)]

—m(gi(m))}dsbN (4 (1), 47 re (1)

< ey {5 [ o (m(2)) s {Elnnion | (4)] - tac o
+E / g o g )aij{E[ngi(s))]Ri(z)} — i)} |ds}

< ey g (<l ()] ()] ¢l () (2) el ()
e (4)] 5l (4)] 1) [ et

)

€ —~i(g— 1t
eK sup / e =2 s
0<t<T Jt
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< eK(1- e*%) =0(e).
Since £() € CA(R™ R) and h¥() € C4°(RYR), fu,(), furay (), AV () and 22 ()

are uniformly bounded. Note that o (x,y,r) = (A" (x))?(g;(r;) + 6;x; + y;) for
any 7 = 1,2,...,n. Similarly,

€ sup E‘ZIGJ ‘

0<t<T j=1

52 sup E’/ fac,-xj q’ (t) )hN(qs’N(t))aij{E[gi(Ri(S))’Ri(z”

1 0<t<T

IN

~pi(gi(ri)) fds x a (=N (1), a7 7 (1)

EKZ sup { [T ‘gj (Rj(é )aij{E{gi(Ri(S))‘Ri(i)} _Ni(gi(Tz‘))HdS

O<t<T

IN

T

+E/7

)
(355 ) + 453Y) - B[R )| B ()] - palantri) s

z; -
< 3 g, (O )|
-HE‘R;(g)‘ j(g)‘+1) /tz e~ i(5= %) dg
< EK(I—@‘%) =0(e) ’
and
EOE?ETE‘;;IS]@ 4 (t))‘
: 620§?£TE‘ﬂ fxi(qE’N(t))‘ijhN(qayN(t))aij{E{gi(Ri(S))‘Ri(Z)}

—i(gi(r) psal ("N (1), 7N ¥ (1)

EKZ sup { [T ‘gj (Rj(é )aij{E[gi(Ri(S))‘Ri(zﬂ _Ni(gi(ri))}‘ds

O<t<T

IN

T

+E/7

)
(355 ) + 453) 2 B[R )| B ()] - palantri) s

X c
< ey s (Rl ) im0 n ()] -2l ()
+B|R:(2)] + B[R, ()] +1) /f i) g

IN

eK(1- e_%) = O(e).
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Assumption (A2) shows that 2 o 2 is uniformly bounded with respect to z € G,

which implies that le is bounded for any © € Syi1. Since f(-) € C§(R™;R)
and hN(-) € C(R™;R), f.,(-) and RY(-) are uniformly bounded. Note that
aé-v(x,y,r) = (WN(x))*(g(r;j) + 6;z; + y;) for any j = 1,2,...,n. Therefore, ac-
cording to (46) and applying the same technique as the estimate of (44), we obtain

2 o<i<T f
: Zgogggﬁ\ tT fa(qe’N(t))hN(qe’N(t));;?{E[gz(R,(s))‘Rl(z)]

< usogggT{A <<£>> (e[ ()] - mta}
8 [ (0070 + 52 el ()] - o}
< k> (s \&(9\\%)) +E\Rz-<g>uﬂj<é>\+E\Rj<£>r

!

+E‘Ri (2)‘ + E‘Rj (2)‘ + 1) /j e (5= g

T

<eK sup /E e (=) s < EK(l — e_g) = O(e).

0<t<T Jt

According to (42) and (43), these estimates lead to

supE|LY (g (1), 07V v (0)Va (1Y (1)
0<t<T

3 O @ ) o (L)) - it
- O(Zsz)l. (47)
To proceed, let us estimate LY (=N (t), ¢5, 7)) Va(t, ¢=N (t)). Note that
LN(g™N (1), g7 e (6)Val(t, N (1)

= N0 O] [ N O @ O)F

x{E[gi(Ri( \R( )| = wilgir) pas}. (48)

For any 1 <1 < n, applying the It6 formula, gives

@00 O [ e Y O N @)

el | ()] - wis)or
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= e OB @V [ (Re(2)) — piltri)] + e Z J5y (0N (1)

e I3tV (1) +sZJ§j<t,q gz
j=1 j=1
+5ZJ§j(t,q +5ZJ6th %Z

+e Z JE(t, ¢ Z J5;(t, ), (49)

where

Ty (t.2) / fous 2E[gi(Ri(s))| Bi ()] - ontro) s
< 070,

Ji(ta) = / Joua ()a%< V@) (B[ Ri)|Re(2)] - il s
<b (45714 (1)),

Fta) = . (x)(h%))?aij{E[gARi(s))\Ri(;)} — 1i(gi(r) pds
xbY (7™ 7 (1))

Tta) = Zfm,.,wj<az:><hN<ae>>2{IE[&-(Ri(s))\Ri(i)}mﬁ(m))}ds
xal (@, g™ 14(1))

Fta) = [ e ()5 0 )P {E [ R B (2)] = o) s
al (2, 14 (0)

Tta) = [ o, <x><hN<x>>2£j{E[m(&(s»(m(ﬁ)} — ilgi(r)) pds
al (2,7 r5(0)

Kt = e @) 0 @) (B[R ()| e (2)] = o) i
el g 2 (0),

Fyta) = [ Zfwxx)&fm(hfv(x)ff%{E[m(Ri(s))\Ri(Z)}—m(gz-(m»}ds

J
xaj»v(:v,qf’N, re(t)),
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Tiyla) = / oo () 0z >>§2{E[gz Ri(s)[Ri()] - mloutr) s

N g™ e (2).

Recall that f(-) € C3(R™;R) and AV (-) € C5°(R™; R). Applying the same technique
as the estimates of If;(t,¢*™ (t)), I5;(t,q™ (1)), I5;(t,¢>N (1)), I5;(t,¢=N (t)) and
I£(t, ¢ N (t)), we obtain

xXa

€ su ]E’ Js-t75’Nt‘f €), € su E‘ J5 ’fOe,
oSup Z 5t g (@) LS, Z 55 (1 (€)
— su IE‘ J; ’— g), € su ]E‘ Jg ‘—05
20<t£T Z il O<tET Z 5l (€)
and
- su ]E‘ Js ‘ =0(e).
O<tET Z 7l (©)

According to the partial derlvatlves (45) and (46) of the conditional expectation.
Similarly, applying the same technique as the estimates of I§j(t,q€*N (), Ig;(t,
q=N(t)), Ig;(t,¢=™ (1)) and I§;(t, ¢=™ (1)), we obtain

€ su E‘ JS(t, &N (¢ ‘— ), € su IE‘ JE ’—Os7
21 B[ D 1.0 @) s Z e (©)
€ su E‘ Jo(t, =N (¢t ‘:Os,fsu E‘ Jg ‘—OE.
2 B[ D 0.0 @) 3,5, Z 5t (©)

According to (48) and (49), these estimates lead to

sup B| LY (¢ (), 47 re () Valt ™ (1)
0<t<T

3 Frun N OV (6 )P [0 (R:(2)) -~ milaitrin)] | = 0Ce)- (50)
i=1

The estimates of LN (¢ (1), ;"™ , r=(t))Va (¢, ¢ (¢)) and LN (¢=N (2), g™, r=(¢))
xVa(t,q=N (1)), together with (41), yield

sup E|ﬁE’NfE’N(t) - EN(QE’N(t)y Q?N)f(qE’N(t)”
0<t<T

= OittlETlEMN(qE’N(t),Qf’N,TE(t))f(qe’N(t))

+LN (N (@) e OVt N (1)
+%LN(qE’N(f)7qf’Nf(t))Vz(t,qE’N(t)) = LY@ (@), a7 ™) N (1)

sup E|LY (N (1), 47, ¥ (0)Valt, 0= (1)
0<t<T

- Z Fana N O (@ (0) 00 (i () ) = palantr)]|

IN



DELAY GENE EXPRESSION RUNNING BASED ON CLE 4441

1
+5 s E[LV (¢ @),67 Y rf (0)Valt, N (1)

2 o<t<T
- Z Foaanla™ N )Y @V @) [0 (Ro(2)) = pilostr))]|
~ o) G1)

which implies that (31) holds. This, together with (30) yield ¢*™(-) = ¢~ () as
e — 0 by virtue of Lemma 4.5, where ¢’V(-) satisfies the stochastic differential
equation (20).

Step 4. Removing truncation for the weak convergence.

The argument is similar to that of [14, p.46]. For any deterministic initial value
q(0), let P(-) and P (-) denote the probabilities induced by ¢(-) and ¢” (), respec-
tively, on the Borel sets of D([0,T];R™). By (A3), the martingale problem has a
unique solution for each ¢(0), so P(+) is unique. For each T < oo, the uniqueness im-
plies that P(-) agrees with PV (-) on all Borel sets of the set of paths in D([0,T]; Sn)
for each t < T. However, P{supy<;<r|q(t)] < N} — 1 as N — oo. This together
with the weak convergence of ¢= () imply that ¢*(-) = ¢(-). Moreover, the unique-
ness implies that the limit does not depend on the chosen subsequences. The proof
is thus completed. O

At the end of this section, let us examine equation (4) by using this theorem.
For the first equation of (4), letting R(t) = r*(et) yields

dR(t) = (ky — 3 R())dt + /By + 7 R(E)di, (¢).

Moreover, define R(t) = k, 4+ 7, R(t). Then,

dR(t) = vr(2k, — R(1))dt + 5\ R(t)didn (D),

which has a unique global solution, known as the mean-reverting square root pro-
cess. Moreover, this solution has a unique invariant measure p. According to section
3, it is easy to obtain that

: ke 2 o _ kY ke
lim ER(t) =E,R= —, lim E[R(t)]* =E,R* = — + —

t—o0 Yy t—0 'y? Yr '

To obtain the desired asymptotic results, we assume that (a) 74(t) is uniformly
bounded with respect to ¢t € [0,T] and (b) the second equation of (4) has a unique
strong solution ¢°(¢) on [0, T] for each r¢(¢t) = R(t/e) with each deterministic initial
value ¢(0). Applying Theorem 4.1 yields that there exists a standard Brownian
motion B(t) such that ¢°(t) in (4) converges weakly to ¢(t) satisfying the following
stochastic differential delay equation
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5.

Concluding remarks. The results of Theorem 4.1 also hold when g;(-) : R —

R is an arbitrary order polynomial and satisfies (A1)-(A3). In fact, for any 0 <
a <2,

E {eaRi(s)

w(O] = [T em(ean()

—¥i

= [Tt (8)

o0

amAglg - )
— 670@1‘67& Z cmt+dq fLm / o0 = (cfﬁ)ymerqdy
=mll(m+q4+1) Jo

— efagaiefu

NE

a™ ( o >—(M+Ii+1) (53)

m!
m=0

and

oo 24 4¢i—1 ,—2(ri+:)
pi(e®) = / et = (ri 4+ @) T e T T dr
—3; ['(4¢:)
24‘51: . /+°° dGi—1
_ e T e—(Q—OC)Z!dy
['(4¢;) 0
2471 1

—+o0
e —ap; 40, —1 —yd
T(45:) ¢ (2—a>4@/0 yooew

(1 - %) T gt (54)

Since a sufficiently smooth function can be approximated by polynomial func-

tions, the results of Theorem 4.1 also hold when g¢;(-) : R — Ry is a sufficiently

S11

ooth function and satisfies (A1)-(A3). However, for more general function g;(-) :

R — Ry, it will be our future work how to establish the weak convergence.
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