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Abstract. Gene regulatory networks, which are complex high-dimensional
stochastic dynamical systems, are often subject to evident intrinsic fluctua-

tions. It is deemed reasonable to model the systems by the chemical Langevin
equations. Since the mRNA dynamics are faster than the protein dynamics, we

have a two-time scales system. In general, the process of protein degradation

involves time delays. In this paper, we take the system memory into consider-
ation in which we consider a model with a complete memory represented by an

integral delay from 0 to t. Based on the averaging principle and perturbed test

function method, this work examines the weak convergence of the slow-varying
process. By treating the fast-varying process as a random noise, under appro-

priate conditions, it is shown that the slow-varying process converges weakly

to the solution of a stochastic differential delay equation whose coefficients are
the average of those of the original slow-varying process with respect to the

invariant measure of the fast-varying process.

1. Introduction. Gene expression is a complex process involving many biochem-
ical reactions with proteins as the final products. Most reactions are not instan-
taneous, there exists natural time delays in the evolution of cell states [3, 18]. For
example, the process of degradation of both mRNA and protein [5] often consists of
several steps and can naturally be modeled by using time delays. Delayed degrada-
tion of JAK2 protein in signaling pathways was considered in [5] and delayed protein
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degradation was studied in [4]. [3] also considered the stability of the Hes1 gene ex-
pression consisting of a cascade of reactions with discrete as well as distributed
delays.

In many biochemical reactions occurring in living cells, the number of various
molecules might be low with significant stochastic fluctuations. For the biochem-
ical reaction systems subject to the intrinsic noise that originates from the inner
stochasticity of the systems and is generated by intermolecular collisions affecting
the timing of individual reaction [2], the reaction processes can be modeled as a
discrete Markov process with jumps from one discrete state to another representing
chemical reactions. The stochastic simulation algorithm (SSA), originally proposed
by Gillespie [9], is an exact simulation for the systems subject to intrinsic noise,
but it is often computationally expensive. This is especially true in case of highly
reactive biochemical systems comprising a large number of molecular species. To
reduce the computational load, one of the ways is to use the chemical Langevin
equation (CLE) [10,17].

In a classical model of gene expression [21], molecules of mRNA are produced
from DNA in the process of transcription and then give rise to the production
of protein molecules in the process of translation. Both types of molecules may
degrade. Since the mRNA dynamics are faster than the protein dynamics, we have
a two-time scales system; see [22, 23]. Denote the intensities of the biochemical
reactions by kr/ε, kp, γr/ε and γp, respectively,

DNA
kr/ε−−−→ mRNA, mRNA

γr/ε−−−→ ∅,

mRNA
kp−−−→ Protein, Protein

γp−−−→ ∅,
(1)

where the small parameter ε shows that the mRNA dynamics are faster than protein.
Denote the concentrations of mRNA and protein by rε and qε, respectively. Then
the standard equations of chemical kinetics read{

ṙε(t) =
1

ε
(kr − γrrε(t)),

q̇ε(t) = kpr
ε(t)− γpqε(t).

(2)

Following the work [4], [18] took into account the process of protein degradation with
time delays. In [4] and [18], to simplify the mathematical models, only fixed time
delay is considered, whereas distributed delays treated as memory were considered
in [3]. When the complete memory is considered, integral delay from 0 to t is more
suitable. Then system (1) can be rewritten as

DNA
kr/ε−−−→ mRNA, mRNA

γr/ε−−−→ ∅,

mRNA
kp−−−→ Protein, Protein

γp−−−→ ∅, Protein
γd(s)−−−→ ∅,

(3)

and the second equation in (2) can be rewritten as

q̇ε(t) = kpr
ε(t)− γpqε(t)−

∫ t

0

γd(s)q
ε(s)ds,

where γd(s) can be seen as the degradation intensity of the proteins produced at
time s ∈ [0, t]. When the intrinsic fluctuations are considered, the corresponding
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chemical Langevin equation (see [23]) is given by

drε(t) =
1

ε
(kr − γrrε(t))dt+

1√
ε

√
kr + γrrε(t)dw1(t),

dqε(t) =
(
kpr

ε(t)− γpqε(t)−
∫ t

0

γd(s)q
ε(s)ds

)
dt

+

√
kprε(t) + γpqε(t) +

∫ t

0

γd(s)qε(s)dsdw2(t),

(4)

where w1(t) and w2(t) are two independent Brownian motions.
Since the information of DNA is from protein, the synthesis of mRNA can be

generalized as a function of the concentrations of protein. In general, gene regulatory
networks are complex high-dimensional stochastic dynamical systems. System (4)
can be generalized as

drεi (t) =
1

ε

(
fi(q

ε(t))− γirεi (t)
)
dt+

1√
ε

√
fi(qε(t)) + γirεi (t)dwi1(t),

dqεi (t) =
(
gi(r

ε
i (t))− δiqεi (t)− qεi,t

)
dt+

√
gi(rεi (t)) + δiqεi (t) + qεi,tdwi2(t),

(5)

for i = 1, 2, ..., n with deterministic initial data r(0) ∈ Rn and q(0) ∈ Rn, where

rε(t) = (rε1(t), rε2(t), . . . , rεn(t))
′

and qε(t) = (qε1(t), qε2(t), . . . , qεn(t))
′

represent the
concentrations of mRNA and protein at time t, respectively, fi : Rn → R+ and
gi : R → R+ represent synthesis of mRNA and protein in the gene i, respectively,

qεi,t =
∫ t

0
πi(s)q

ε
i (s)ds represents that the complete memory is considered, πi(s) can

be seen as the degradation intensity of the proteins produced at time s ∈ [0, t],
γi, δi > 0 are degradation rates of mRNA and protein, respectively, wi1(t) and
wi2(t) (i = 1, 2, . . . , n) are independent standard Brownian motions.

[23] considered the asymptotic behavior of gene regulatory networks with two-
time scales by virtue of the averaging principle and the Fokker-Planck equation.
This paper considers not only two-time scales, but also the complete memory rep-
resented by an integral from 0 to t under the special function gi. Since the second
equation in (5) involves the delay, its solution is non-Markov. Thus the techniques
in the literature which only treating Markov processes are not applicable. It is cer-
tainly important to establish a complexity reduction method for the delay system
with two-time scales since no existing results are available to date. By treating the
fast-varying process as a random noise, this paper will overcome the difficulties so
as to achieve the complexity reduction.

The rest of the paper is arranged as follows. Section 2 provides necessary
notation, assumptions and some preliminaries. Section 3 examines the transi-
tion probability density and invariant measure of the fast-varying process rεi (t)
for i = 1, 2, ..., n. By using the perturbed test function, martingale method and
weak convergence techniques, Section 4 shows that the slow-varying process qε(·)
converges weakly to the solution of a stochastic differential delay equation whose
coefficients are the average of those of the original slow-varying process with respect
to the invariant measure of the fast-varying process as ε→ 0. Based on the estab-
lished results, this section also examines the stochastic differential delay equation
(4) and gives its asymptotic properties. The final section gives some concluding
remarks.
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2. Notation, assumptions and preliminaries. Throughout this paper, unless
otherwise specified, we use the following notation. Let Rn denote the n-dimensional
Euclidean space with the Euclidean norm | · |, and B(Rn) be the Borel σ-algebra
of Rn. For each N > 0, let SN = {x : |x| ≤ N} be a ball with radius N centered

at the origin. For a vector or matrix A, denote its transpose by A
′
; for a matrix

A, denote its trace norm by |A| =
√
Tr(A

′A). Denote by D([0, T ];Rn) the family
of functions on [0, T ] with values in Rn that are right continuous with left limits
endowed with the Skorohod topology. Denote by Cm(Rn;R) the family of functions
on Rn with values in R that have continuous partial derivatives up to the mth-
order, Cm0 (Rn;R) the family of Cm(Rn;R) functions with compact support, and
Bb(Rn;R) the family of bounded and measurable functions on Rn with values in R.
Denote by Ck,m([0, T ]×Rn;R) the family of functions V (t, x) on [0, T ]×Rn that are
kth-order continuously differentiable with respect to t and mth-order continuously

differentiable with respect to x, and Ck,m0 ([0, T ]×Rn;R) the family of Ck,m([0, T ]×
Rn;R) functions with compact support. L2([0, T ]×Ω;Rn×l) denotes the family of all

Rn×l-valued measurable Ft-adapted processes Φ(t) such that E
∫ T

0
|Φ(t)|2dt < ∞.

Throughout this paper, K denotes a generic positive constant, whose value may
change for different usage. Thus, K +K = K and KK = K are understood in an
appropriate sense.

In this paper, if q(t) is a stochastic process, denote by Fqt the σ-algebra generated
by {q(s) : s ≤ t} and Eqt the corresponding conditional expectation. For the stochas-
tic process qε(t) and rε(t) depending on ε, we denote by Fεt the σ-algebra generated
by {qε(s), rε(s) : s ≤ t} and Eεt the corresponding conditional expectation.

Let M denote the set of real-valued progressively measurable processes that are
non-zero only on a bounded t-interval and

M̄ ε =
{
f ∈M : sup

t
E|f(t)| <∞ and f(t) is Fεt−measurable

}
. (6)

Following [12, 14], let us recall the definitions of the p-lim and the infinitesimal

operator L̂ε as follows.

Definition 2.1. Let f , fδ ∈ M̄ ε for each δ > 0. We say f = p- lim
δ→0+

fδ if and only

if 
sup
t,δ

E|fδ(t)| <∞,

lim
δ→0+

E|fδ(t)− f(t)| = 0, ∀ 0 ≤ t ≤ T.

Definition 2.2. Let f , g ∈ M̄ ε. If

p- lim
δ→0+

(Eεtf(t+ δ)− f(t)

δ
− g(t)

)
= 0,

we say that f(·) ∈ D(L̂ε) and L̂εf = g, where D(L̂ε) denotes the domain of the

operator L̂ε.

Thus L̂ε is a type of infinitesimal operator. The following lemma was proved in
Kurtz [12].

Lemma 2.3. If f ∈ D(L̂ε), then

Mf (t) = f(t)−
∫ t

0

L̂εf(u)du
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is a martingale, and

Eεtf(t+ s)− f(t) = Eεt
∫ t+s

t

L̂εf(u)du, w.p.1.

3. Invariant measure of the fast-varying process. To obtain the weak conver-
gence of the slow-varying process qε(t) as ε→ 0, the properties of the fast-varying
process rε(t) are crucial. In (5), rε(t) is rapidly varying in contrast to qε(t). To
proceed, we first consider asymptotic properties of rε(t). Let us define the process
Rεi (t) = rεi (εt) for any i = 1, 2, ..., n. Then Rεi (t) satisfies

dRεi (t) =
(
fi(q

ε(εt))− γiRεi (t)
)
dt+

√
fi(qε(εt)) + γiRεi (t)dw̃i1(t),

where w̃i1(t) = wi1(εt)/
√
ε is a standard Brownian motion. When the fast-varying

process is analyzed and ε is small, the slow-varying process qε varies slowly. Let us
define a fixed-Q process Ri(·) = Ri(·|Q) by

dRi(t) =
(
fi(Q)− γiRi(t)

)
dt+

√
fi(Q) + γiRi(t)dw̃i1(t), (7)

whereQ is treated as a parameter. Hence, althoughR(t) = (R1(t), R2(t), . . . , Rn(t))
′

is a n-dimensional process, it can be seen as n scalar processes and satisfies the fol-
lowing theorem.

Theorem 3.1. There exists a unique global solution Ri(t) for (7) for all t ≥ 0 and
this solution holds the following properties:

(i) fi(Q) + γiRi(t) ≥ 0;
(ii) Ri(t) is a homogeneous Markov process and there exists transition probability

density

pi(x, s;x0, t) =

{
γip̂i(βi + γix, s;βi + γix0, t), x ≥ −ϕi,
0, x < −ϕi,

(8)

where p̂i(y, s; y0, t) = ce−u−v(v/u)
q
2 Iq(2(uv)

1
2 ), y ≥ 0, c = 2/[γi(1−e−γi(s−t))],

u = cy0e
−γi(s−t), v = cy, q = 4βi

γi
− 1 and Iq is the modified Bessel function

of the first kind of order q given by

Iq(x) =

∞∑
k=0

1

k!Γ(k + q + 1)

(x
2

)2k+q

,

in which Γ(z) =
∫∞

0
e−ttz−1dt is a gamma function. Moreover, there exists

an invariant measure with the density

µi(x) =


24ϕi

Γ(4ϕi)
(x+ ϕi)

4ϕi−1e−2(x+ϕi), x ≥ −ϕi,

0, x < −ϕi,
(9)

where ϕi = fi(Q)/γi;
(iii) the mth-order moment E[Ri(t)]

m is uniformly bounded for any integer m > 0.

Proof. Define βi = fi(Q) and R̂i(t) = βi + γiRi(t). Then, according to (7), R̂i(t)
satisfies the following stochastic differential equation

dR̂i(t) = γi(2βi − R̂i(t))dt+ γi

√
R̂i(t)dw̃i1(t), (10)

which is a mean-reverting square root process. This implies that (10) has a unique

nonnegative solution R̂i(t) on t ≥ 0, see [6,16], which implies that (7) has a unique
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solution Ri(t) on t≥ 0 with fi(Q) + γiRi(t) ≥ 0, that is, Ri(t) ≥ −ϕi. Hence,
nonnegativity of the solution of (7) cannot be guaranteed. Moreover, the solution

R̂i(t) of (10) is a homogeneous Markov process and its transition probability density

is given by p̂i(y, s; y0, t); see [6,23]. As s→∞, it is easily observed that R̂i(·) tends
to a gamma distribution with the density

µ̂i(y) =


( 2

γi

)4ϕi

Γ(4ϕi)
y4ϕi−1e

− 2y
γi , y ≥ 0,

0, y < 0,

according to p̂i(y, s; y0, t).

Note that R̂i(·) = βi + γiRi(·). For x ≥ −ϕi, the transition probability density
of the solution Ri(·) of (7) is given by

pi(x, s;x0, t) = γip̂i(βi + γix, s;Ri(t) = x0, t)

= γip̂i(βi + γix, s;βi + γix0, t). (11)

For x < −ϕi, the transition probability density pi(x, s;x0, t) = 0. The stationary
density of Ri(·) can be expressed as follows

µi(x) = γiµ̂i(βi + γix) =


24ϕi

Γ(4ϕi)
(x+ ϕi)

4ϕi−1e−2(x+ϕi), x ≥ −ϕi,

0, x < −ϕi.
(12)

Moreover, one can compute the moment generating function with respect to the
invariant measure

Eµi(eαRi) =

∫ +∞

−ϕi
eαx

24ϕi

Γ(4ϕi)
(x+ ϕi)

4ϕi−1e−2(x+ϕi)dx

=
24ϕi

Γ(4ϕi)
e−αϕi

∫ +∞

0

y4ϕi−1e−(2−α)ydy

=
24ϕi

Γ(4ϕi)
e−αϕi

1

(2− α)4ϕi

∫ +∞

0

y4ϕi−1e−ydy

=
(

1− α

2

)−4ϕi
e−αϕi , (13)

where 0 < α < 2. This implies that the mth-order moment with respect to the
invariant measure for any integer m > 0 is given by

Eµi(Ri)m = (−1)mϕmi + 2m(−1)m−1ϕmi + 4m(m− 1)(−1)m−2ϕmi

+m(m− 1)(−1)m−2ϕm−1
i + · · ·+ ϕi(4ϕi + 1) · · · (4ϕi +m− 1)

2m−2
.

(14)

Since initial value Ri(0) = ri(0) is a constant, we can obtain the probability density
function of Ri(t)

FRi(t)(x) =

{
γic̄e

−ū−v̄
( v̄
ū

) q
2

Iq(2(ūv̄)
1
2 ), x ≥ −ϕi,

0, x < −ϕi,
(15)

where c̄ = 2/[γi(1− e−γit)], ū = c̄(βi+γiri(0))e−γit, v̄ = c̄(βi+γix). Consequently,
the moment generating function of Ri(t) is given by
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EeαRi(t) =

∫ +∞

−ϕi
eαxγic̄e

−ū−v̄
( v̄
ū

) q
2

Iq(2(ūv̄)
1
2 )dx

= γie
−ū

∞∑
k=0

ūk c̄k+q+1

k!Γ(k + q + 1)

∫ +∞

−ϕi
(βi + γix)k+qeαxe−c̄(βi+γix)dx

= e−ūe−αϕi
∞∑
k=0

ūk c̄k+q+1

k!Γ(k + q + 1)

∫ +∞

0

yk+qe
−(c̄− α

γi
)y
dy

= e−ūe−αϕi
∞∑
k=0

ūk c̄k+q+1

k!Γ(k + q + 1)

(
c̄− α

γi

)−(k+q+1)
∫ +∞

0

yk+qe−ydy

= e−ūe−αϕi
∞∑
k=0

ūk

k!

(
1− α

c̄γi

)−(k+q+1)

, (16)

in which c̄− α/γi > 0. Note that ū → 0 as t → ∞. According to (13) and (16), it
is easy to verify that

lim
t→∞

EeαRi(t) = Eµi(eαRi).

Hence,

lim
t→∞

E[Ri(t)]
m = Eµi(Ri)m, ∀m > 0.

Thus, the mth-order moment of Ri(t) is uniformly bounded for any integer m > 0.
This completes the proof.

4. Weak convergence and averaged system. In this section, we show that the
sequence qε(t) converges weakly to a stochastic process that is the solution of an
appropriate stochastic differential equation. In order to obtain the desired weak
convergence, we first need to prove tightness.

To address this issue, we need to verify

lim
N0→∞

lim sup
ε→0

P
({

sup
0≤t≤T

|qε(t)| ≥ N0

})
= 0, for each T <∞, (17)

where P(A) denotes the probability of A. The verification of (17) is usually quite
involved, and requires complicated calculations. To circumvent the difficulties, we
use the truncation technique as follows. For any i = 1, 2, ..., n, and any (x, y, r) ∈
Rn × Rn × Rn, define

bi(x, y, r) = gi(ri)− δixi − yi and ψi(x, y, r) =
√
gi(ri) + δixi + yi.

The second equation of (5) can therefore be rewritten as

dqεi (t) = bi(q
ε(t), qεt , r

ε(t))dt+ ψi(q
ε(t), qεt , r

ε(t))dwi2(t),

where rε(t) = (rε1(t), rε2(t), . . . , rεn(t))
′

= (R1( tε ), R2( tε ), . . . , Rn( tε ))
′

is the solution
of the equation (7) under fixed qε. For each N > 0 sufficient large such that
|q(0)| ≤ N , define

dqε,Ni (t) = bNi (qε,N (t), qε,Nt , rε(t))dt+ ψNi (qε,N (t), qε,Nt , rε(t))dwi2(t), (18)

where bNi (x, y, r) = bi(x, y, r)h
N (x), ψNi (x, y, r) = ψi(x, y, r)h

N (x) and

hN (x) =

 1, if x ∈ SN ,
0, if x ∈ Rn − SN+1,
smooth, otherwise.
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Hence, according to the definitions of bNi (x, y, r) and ψNi (x, y, r), (18) can be rewrit-
ten as

dqε,Ni (t) =
(
gi(r

ε
i (t))− δiq

ε,N
i (t)− qε,Ni,t

)
hN (qε,N (t))dt

+
√
gi(rεi (t)) + δiq

ε,N
i (t) + qε,Ni,t h

N (qε,N (t))dwi2(t). (19)

From the definition, it can be seen that qε,N (t) = qε(t) up until the first exit from
SN = {x : |x| ≤ N}. Then qε,N (t) is said to be the N -truncation of qε(t). Let

Fε,Nt = σ(qε,N (s), rε(s) : s ≤ t). We can also give the corresponding definitions for

M̄ ε,N and L̂ε,N . It follows that Fε,Nt ⊂ σ(FW2
t ∨Frεt ), where FW2

t and Frεt are gen-

erated by the n-dimensional Brownian motion W2(t) = (w12(t), w22(t), . . . , wn2(t))
′

and the stochastic process rε(t), respectively. To proceed, the following assumptions
are needed.

(A1) The second equation of (5) has a unique strong solution qεi (t) on [0, T ] for
each rεi (t) with each deterministic initial value qi(0), for any i = 1, 2, ..., n.

(A2) fi(x), ∂
∂xj

fi(x) and ∂2

∂x2
j
fi(x) are uniformly bounded with respect to x ∈

G for any i, j = 1, 2, ..., n, where G ⊂ Rn is a compact set. For i = 1, 2, ..., n,
gi(ri) = air

2
i + biri + ci for any ai, bi, ci ∈ R and πi(t) is uniformly bounded with

respect to t ∈ [0, T ]. Denote b(x, y, r) = (b1(x, y, r), b2(x, y, r), . . . , bn(x, y, r))′,
ψ(x, y, r) = diag(ψ1(x, y, r), ψ2(x, y, r), . . . , ψn(x, y, r)), a(x, y, r) = diag(a1(x, y, r),
a2(x, y, r), . . . , an(x, y, r)), where ai(x, y, r) = ψ2

i (x, y, r).

Remark 1. Here we only consider gi(ri) = air
2
i + biri + ci. In the concluding

remarks of Section 5, we show that for any sufficiently smooth function gi, the
results still hold. With respect to the invariant measure in the Theorem 3.1, the
expectation of bi(x, y, r) = gi(ri) − δixi − yi and ai(x, y, r) = gi(ri) + δixi + yi is
given by ∫

R
bi(x, y, r)µi(ri)dri =

∫
R
gi(ri)µi(ri)dri − δixi − yi

=
aiβ

2
i

γ2
i

+
aiβi
γi

+
biβi
γi

+ ci − δixi − yi

=: b̄i(x, y)

and ∫
R
ai(x, y, r)µi(ri)dri =

∫
R
gi(ri)µi(ri)dri + δixi + yi

=
aiβ

2
i

γ2
i

+
aiβi
γi

+
biβi
γi

+ ci + δixi + yi

=: āi(x, y),

for any i = 1, 2, ..., n.

Remark 2. If gi(r
ε
i (t)) + δixi + yi > 0 for any t ∈ [0, T ], ω ∈ Ω, xi ∈ R and yi ∈ R,

then the second equation of (5) has a unique strong solution. Under Assumption
(A1), since the second equation of (5) has a unique strong solution qεi (t) on [0, T ]
for each rεi (t), it can be observed that āi(x, y) ≥ 0 since

∫
R gi(ri)µi(ri)dri is the

mean of gi(·) with respect to the invariant measure.

(A3) The following stochastic differential equation

dq(t) = b̄(q(t), qt)dt+ ψ̄(q(t), qt)dB(t) (20)
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has a unique weak solution (i.e., uniqueness in the sense of the distribution) on
[0, T ] for each deterministic initial value q(0), where b̄(x, y) = (b̄1(x, y), b̄2(x, y), . . . ,

b̄n(x, y))
′
, ψ̄(x, y) = diag(ψ̄1(x, y), ψ̄2(x, y), . . . , ψ̄n(x, y)), where ψ̄2

i (x, y) = āi(x, y),
B(t) is an n-dimensional standard Brownian motion.

Next, we state the main theorem in this paper. Its proof will be divided into
several parts.

Theorem 4.1. If (A1)-(A3) hold, then {qε(·)} is tight in D([0, T ];Rn), and the
limit of any weakly convergent subsequence satisfies equation (20) with the same
initial value as qε(0) = q(0) which is deterministic and independent of ε.

We say that q(t) of (20), is a solution of the martingale problem with operator

L̄, in that for any function f ∈ C1,2
0 ([0, T ]× Rn;R),

Mf (t) = f(t, q(t))− f(0, q(0))−
∫ t

0

L̄(q(s), qs)f(s, q(s))ds (21)

is a martingale, where for any x, y ∈ Rn,

L̄(x, y)· = ∂·
∂t

+

n∑
i=1

b̄i(x, y)
∂·
∂xi

+
1

2

n∑
i=1

āi(x, y)
∂2·
∂x2

i

. (22)

As mentioned, it is difficult to verify (17). We thus begin the proof of Theorem
4.1 by working with the N -truncated process. Corresponding to this truncation,
we have the operators L̂ε,N and L̄N , which are operators L̂ε and L̄ with x, y, b̄
and ψ̄ replaced by xN , yN , b̄N and ψ̄N , respectively. Not only can assumption
(A1) guarantee the existence and uniqueness of the strong solution of the truncated
stochastic differential equation (19), but also the tightness. We proceed with the
following theorem.

Theorem 4.2. Under assumption (A1), there exists a unique strong solution qε,N (t)
for the truncated stochastic differential equation (19) for any initial value qε,N (0) =
q(0) ∈ SN that is deterministic and independent of ε. Moreover, this solution is

continuous, Fε,Nt -adapted and tight in D([0, T ];Rn).

To prove this theorem, we need the following Lemma 4.3 (see [16, Theorem 7.1,
p.39] for a proof) and Lemma 4.4 (see [14, Theorem 5, p.32]).

Lemma 4.3. Let p ≥ 2 and Φ ∈ L2([0, T ]× Ω;Rn×l) such that

E
∫ T

0

|Φ(t)|pdt <∞.

Then

E
∣∣∣ ∫ T

0

Φ(t)dW (t)
∣∣∣p ≤ (p(p− 1)

2

) p
2

T
p−2
2 E

∫ T

0

|Φ(t)|pdt, (23)

where W (t) is an l-dimensional standard Brownian motion.

Lemma 4.4. Let {Qε(·)} be a sequence of Fεt -adapted process with paths in D([0, T ];
Rn). If this sequence satisfies

lim
N0→∞

lim sup
ε→0

P
({

sup
0≤t≤T

|Qε(t)| ≥ N0

})
= 0 (24)

and there are nondecreasing continuous function F (·) and a > 1, γ > 0 such that

E|Qε(t)−Qε(t1)|γ |Qε(t2)−Qε(t)|γ ≤ [F (t2)− F (t1)]a, (25)

where 0 ≤ t1 < t < t2 ≤ T . Then Qε(·) is tight in D([0, T ];Rn).
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With these two lemmas in hand, we can give a proof of Theorem 4.2.

Proof of Theorem 4.2. According to assumption (A1), the truncated stochastic dif-

ferential equation (19) has a unique continuous and Fε,Nt -adapted strong solution.
To prove the tightness of {qε,N (·)}, we need only to verify that the conditions in

Lemma 4.4 are satisfied. In fact, under the truncation technique, (24) holds. Hence,
we need only to show that (25) holds for the truncated process qε,N (t).

From (18),

dqε,N (t) = bN (qε,N (t), qε,Nt , rε(t))dt+ ψN (qε,N (t), qε,Nt , rε(t))dW2(t), (26)

where bN (x, y, r) = b(x, y, r)hN (x), ψN (x, y, r) = ψ(x, y, r)hN (x), W2(t) = (w12(t),
w22(t), . . . , wn2(t))′ is an n-dimensional standard Brownian motion. For any 0 ≤
t1 < t < t2 ≤ T , (26) and the elementary inequality (a+ b)2 ≤ 2(a2 + b2) yield∣∣qε,N (t)− qε,N (t1)

∣∣2 ≤ 2
∣∣∣ ∫ t

t1

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2

+2
∣∣∣ ∫ t

t1

ψN (qε,N (s), qε,Ns , rε(s))dW2(s)
∣∣∣2

and ∣∣qε,N (t2)− qε,N (t)
∣∣2 ≤ 2

∣∣∣ ∫ t2

t

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2

+2
∣∣∣ ∫ t2

t

ψN (qε,N (s), qε,Ns , rε(s))dW2(s)
∣∣∣2.

Applying properties of conditional expectation gives

E
∣∣qε,N (t)− qε,N (t1)

∣∣2∣∣qε,N (t2)− qε,N (t)
∣∣2

≤ 4E
∣∣∣ ∫ t

t1

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2∣∣∣ ∫ t2

t

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2

+4E
∣∣∣ ∫ t

t1

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2∣∣∣ ∫ t2

t

ψN (qε,N (s), qε,Ns , rε(s))dW2(s)
∣∣∣2

+4E
∣∣∣ ∫ t

t1

ψN (qε,N (s), qε,Ns , rε(s))dW2(s)
∣∣∣2∣∣∣ ∫ t2

t

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2

+4E
∣∣∣ ∫ t

t1

ψN (qε,N (s), qε,Ns , rε(s))dW2(s)
∣∣∣2∣∣∣ ∫ t2

t

ψN (qε,N (s), qε,Ns , rε(s))dW2(s)
∣∣∣2

≤ 4E
∣∣∣ ∫ t

t1

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2∣∣∣ ∫ t2

t

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2

+4E
∣∣∣ ∫ t

t1

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2E[ ∫ t2

t

|ψN (qε,N (s), qε,Ns , rε(s))|2ds
∣∣Ft]

+4E
∣∣∣ ∫ t

t1

ψN (qε,N (s), qε,Ns , rε(s))dW2(s)
∣∣∣2E[∣∣∣ ∫ t2

t

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣2∣∣Ft]

+4E
∣∣∣ ∫ t

t1

ψN (qε,N (s), qε,Ns , rε(s))dW2(s)
∣∣∣2E[ ∫ t2

t

|ψN (qε,N (s), qε,Ns , rε(s))|2ds
∣∣Ft].

According to Theorem 3.1, the mth-order moment of Ri(t) is uniformly bounded
for any integer m > 0. Applying the Young inequality, the Hölder inequality and
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Lemma 4.3, gives

E
∣∣qε,N (t)− qε,N (t1)

∣∣2∣∣qε,N (t2)− qε,N (t)
∣∣2

≤ 4E
∣∣∣ ∫ t

t1

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣4 + 4E

∣∣∣ ∫ t2

t

bN (qε,N (s), qε,Ns , rε(s))ds
∣∣∣4

+4E
∣∣∣ ∫ t2

t

|ψN (qε,N (s), qε,Ns , rε(s))|2ds
∣∣∣2

+4E
∣∣∣ ∫ t

t1

ψN (qε,N (s), qε,Ns , rε(s))dW2(s)
∣∣∣4

≤ 4(t− t1)3E
∫ t

t1

∣∣bN (qε,N (s), qε,Ns , rε(s))
∣∣4ds

+4(t2 − t)3E
∫ t2

t

∣∣bN (qε,N (s), qε,Ns , rε(s))
∣∣4ds

+4(t2 − t)E
∫ t2

t

∣∣ψN (qε,N (s), qε,Ns , rε(s))
∣∣4ds

+144(t− t1)E
∫ t

t1

∣∣ψN (qε,N (s), qε,Ns , rε(s))
∣∣4ds

≤ 8T 2(t2 − t1)n

n∑
i=1

∫ t2

t1

E
∣∣∣gi(Ri(s

ε

))
− δiqε,Ni (s)− qε,Ni,s

∣∣∣4ds
+148(t2 − t1)n

n∑
i=1

∫ t2

t1

E
∣∣∣gi(Ri(s

ε

))
+ δiq

ε,N
i (s) + qε,Ni,s

∣∣∣2ds
≤ K(t2 − t1)2. (27)

Thus, (25) holds for the truncated process qε,N (t). Lemma 4.4, implies that {qε,N (·)}
is tight in D([0, T ];Rn). The proof is completed.

Since qε,N (·) is tight, by Prohorov’s theorem, it is sequentially compact. Thus, we
can extract a weakly convergent subsequence and we still lable it by ε. Moreover,
the limit is defined as qN (·). By the Skorohod representation, without changing
notation, we may assume that qε,N (·) converges to qN (·) in the sense of w.p.1.
We proceed to characterize the limit process qN (·) by using the averaged system.
In what follows, we characterize the weak limit by applying the following lemma
[19,24].

Lemma 4.5. Let Qε(·) be an Rn-valued process defined on [0, T ], with Qε(0) =
Q(0) being deterministic and independent of ε. Let {Qε(·)} be tight in D([0, T ];Rn).
Suppose (A3) holds and L̄ is the corresponding operator defined by (22). For each
f(·) ∈ C4

0 (Rn;R)(or any dense subset of it) and each T < ∞, there exists fε(·) ∈
D(L̂ε) such that

p- lim
ε→0+

[fε(·)− f(Qε(·))] = 0 (28)

and

p- lim
ε→0+

[L̂εfε(·)− L̄(Qε(·), Qε· )f(Qε(·))] = 0. (29)

Then, Qε(·)⇒ q(·), where q(·) is the solution of the stochastic differential equation
(20).
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Remark 3. In the process of the averaging, the fast-varying process rε(t) is treated
as noise and is averaged out. We use the perturbed test function method to ex-
amine the weak convergence. Introducing the perturbed test functions allows us to
eliminate the noise terms rε(t) through averaging, and obtain the desired results in
the limit.

With these results in hand, we next give a proof of Theorem 4.1.

Proof of Theorem 4.1. According to the definition of p-lim, to prove (28) for qε,N (t)

and for any f(·) ∈ C4
0 (Rn;R), we need to find fε,N (·) ∈ D(L̂ε,N ) and verify

sup
0≤t≤T,ε

E|fε,N (t)− f(qε,N (t))| <∞,

lim
ε→0+

E|fε,N (t)− f(qε,N (t))| = 0, ∀0 ≤ t ≤ T. (30)

Similarly, to prove (29) for the above qε,N (t) and f(·), we need to verify
sup

0≤t≤T,ε
E|L̂ε,Nfε,N (t)− L̄N (qε,N (t), qε,Nt )f(qε,N (t))| <∞,

lim
ε→0+

E|L̂ε,Nfε,N (t)− L̄N (qε,N (t), qε,Nt )f(qε,N (t))| = 0, ∀0 ≤ t ≤ T.
(31)

Step 1. Constructing the function fε,N (·) by virtue of the perturbed test function
method.

For any f(·) ∈ C4
0 (Rn;R), to use the perturbed test function method, for t < T ,

define

V1(t, x) :=

∫ T

t

fx(x)Er
ε

t [bN (x, qε,Nt , rε(s))− b̄N (x, qε,Nt )]ds,

V2(t, x) :=

n∑
i=1

∫ T

t

fxixi(x)Er
ε

t [aNi (x, qε,Nt , rε(s))− āNi (x, qε,Nt )]ds,

fε,N1 (t) = V1(t, qε,N (t)) and fε,N2 (t) = V2(t, qε,N (t)). In the process of build-

ing the perturbed test functions, the slow-varying process qε,Ni (t) and qε,Ni,t =∫ t
0
πi(s)q

ε,N
i (s)ds are considered as parameters for any i = 1, 2, ..., n. Making change

of variable s/ε to s yields that

fε,N1 (t) = ε

∫ T
ε

t
ε

fx(qε,N (t))ERt
ε
[bN (qε,N (t), qε,Nt , R(s))− b̄N (qε,N (t), qε,Nt )]ds

= ε

n∑
i=1

∫ T
ε

t
ε

fxi(q
ε,N (t))ERt

ε
[bNi (qε,N (t), qε,Nt , R(s))− b̄Ni (qε,N (t), qε,Nt )]ds

= ε

n∑
i=1

∫ T
ε

t
ε

fxi(q
ε,N (t))hN (qε,N (t))

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

(32)

and

fε,N2 (t)

= ε

n∑
i=1

∫ T
ε

t
ε

fxixi(q
ε,N (t))ERt

ε
[aNi (qε,N (t), qε,Nt , R(s))− āNi (qε,N (t), qε,Nt )]ds
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= ε

n∑
i=1

∫ T
ε

t
ε

fxixi(q
ε,N (t))[hN (qε,N (t))]2

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds,

(33)
where µi(gi(ri)) =

∫
R gi(ri)µi(ri)dri. Define

fε,N (t) = f(qε,N (t)) + fε,N1 (t) +
1

2
fε,N2 (t). (34)

Step 2. Verifying (30).

According to (30) and the form of fε,N (t), we need only to estimate fε,N1 (t) and

fε,N2 (t). Let us first estimate fε,N1 (t). Since f(·) ∈ C4
0 (Rn;R), fxi(·) is uniformly

bounded. Note that gi(ri) = air
2
i + biri + ci. According to the definition of the

truncation function hN (·), hN (·) ∈ C∞0 (Rn;R). Thus,

sup
0≤t≤T

E|fε,N1 (t)|

= ε sup
0≤t≤T

E
∣∣∣ n∑
i=1

∫ T
ε

t
ε

fxi(q
ε,N (t))hN (qε,N (t))

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
−µi(gi(ri))

}
ds
∣∣∣

≤ ε

n∑
i=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

fxi(q
ε,N (t))hN (qε,N (t))

{
aiE
[
R2
i (s)

∣∣∣Ri( t
ε

)]
+biE

[
Ri(s)

∣∣∣Ri( t
ε

)]
− ai

∫
R
r2
i µi(ri)dri − bi

∫
R
riµi(ri)dri

}
ds
∣∣∣

≤ εK

n∑
i=1

sup
0≤t≤T

E
∫ T

ε

t
ε

∣∣∣aiE[R2
i (s)

∣∣∣Ri( t
ε

)]
+ biE

[
Ri(s)

∣∣∣Ri( t
ε

)]
−ai

∫
R
r2
i µi(ri)dri − bi

∫
R
riµi(ri)dri

∣∣∣ds. (35)

According to Theorem 3.1, for any 1 ≤ i ≤ n, by virtue of the transition probability
density pi(x, s;x0, t) and the invariant measure of the solution Ri(t) of (7), we
obtain

E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

= aiE
[
R2
i (s)

∣∣∣Ri( t
ε

)]
+ biE

[
Ri(s)

∣∣∣Ri( t
ε

)]
−ai

∫
R
r2
i µi(ri)dri−bi

∫
R
riµi(ri)dri

= ai

∫ +∞

−ϕ̃i
x2pi

(
x, s;Ri

( t
ε

)
,
t

ε

)
dx+ bi

∫ +∞

−ϕ̃i
xpi

(
x, s;Ri

( t
ε

)
,
t

ε

)
dx

−ai
∫
R
r2
i µi(ri)dri − bi

∫
R
riµi(ri)dri

=
aiũ

2

γ2
i c̃

2
+

2aiũ

γ2
i c̃

2
+

2aiũ(q̃ + 1)

γ2
i c̃

2
+
ai(q̃ + 1)(q̃ + 2)

γ2
i c̃

2
− 2aiũβ̃i

γ2
i c̃
− 2ai(q̃ + 1)β̃i

γ2
i c̃

−aiβ̃i
γi

+
biũ

γic̃
+
bi(q̃ + 1)

γic̃
− 2biβ̃i

γi

=
aiR̂

2
i (
t
ε )

γ2
i

e−2γi(s− tε ) +
aiR̂i(

t
ε )

γi
e−γi(s−

t
ε )
(
1− e−γi(s− tε )

)
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+
2aiR̂i(

t
ε )β̃i

γ2
i

e−γi(s−
t
ε ) −

4aiR̂i(
t
ε )β̃i

γ2
i

e−2γi(s− tε ) +
4aiβ̃

2
i

γ2
i

(
1− e−γi(s− tε )

)2
+
aiβ̃i
γi

(
1− e−γi(s− tε )

)2 − 4aiβ̃
2
i

γ2
i

(
1− e−γi(s− tε )

)
−aiβ̃i

γi
+
biR̂i(

t
ε )

γi
e−γi(s−

t
ε ) − 2biβ̃i

γi
e−γi(s−

t
ε )

=
ai
γ2
i

β̃2
i e
−2γi(s− tε ) −

2aiRi(
t
ε )

γi
β̃ie
−2γi(s− tε ) − ai

γi
β̃ie
−γi(s− tε ) − 2ai

γ2
i

β̃2
i e
−γi(s− tε )

+
2aiRi(

t
ε )

γi
β̃ie
−γi(s− tε ) + aiR

2
i (
t

ε
)e−2γi(s− tε ) + aiRi(

t

ε
)e−γi(s−

t
ε )

−aiRi(
t

ε
)e−2γi(s− tε ) − bi

γi
β̃ie
−γi(s− tε ) + biRi(

t

ε
)e−γi(s−

t
ε )

=
ai
γ2
i

f2
i (qε,N (t))e−2γi(s− tε ) −

2aiRi(
t
ε )

γi
fi(q

ε,N (t))e−2γi(s− tε )

−ai
γi
fi(q

ε,N (t))e−γi(s−
t
ε ) − 2ai

γ2
i

f2
i (qε,N (t))e−γi(s−

t
ε )

+
2aiRi(

t
ε )

γi
fi(q

ε,N (t))e−γi(s−
t
ε ) + aiR

2
i

( t
ε

)
e−2γi(s− tε )

+aiRi

( t
ε

)
e−γi(s−

t
ε ) − aiRi

( t
ε

)
e−2γi(s− tε ) − bi

γi
fi(q

ε,N (t))e−γi(s−
t
ε )

+biRi

( t
ε

)
e−γi(s−

t
ε ), (36)

where

c̃ =
2

γi
(
1− e−γi(s− tε )

) , ũ = c̃R̂i

( t
ε

)
e−γi(s−

t
ε ), β̃i = fi(q

ε,N (t)), q̃ =
4β̃i
γi
−1, ϕ̃i =

β̃i
γi
.

Assumption (A2) shows that fi(x) is uniformly bounded with respect to x ∈ G,
which implies that fi(x) is bounded for any x ∈ SN+1. According to Theorem 3.1,
the mth-order moment of Ri(t) is uniformly bounded for any integer m > 0. Denote
γ := max{γi : 1 ≤ i ≤ n}. Consequently, for any 1 ≤ i ≤ n,

ε sup
0≤t≤T

E
∫ T

ε

t
ε

∣∣∣aiE[R2
i (s)

∣∣∣Ri( t
ε

)]
+ biE

[
Ri(s)

∣∣∣Ri( t
ε

)]
− ai

∫
R
r2
i µi(ri)dri

−bi
∫
R
riµi(ri)dri

∣∣∣ds
≤ ε sup

0≤t≤T
E
[ ∫ T

ε

t
ε

∣∣∣ ai
γ2
i

f2
i (qε,N (t))e−2γi(s− tε )

∣∣∣ds
+

∫ T
ε

t
ε

∣∣∣2aiRi( tε )

γi
fi(q

ε,N (t))e−2γi(s− tε )
∣∣∣ds

+

∫ T
ε

t
ε

∣∣∣ai
γi
fi(q

ε,N (t))e−γi(s−
t
ε )
∣∣∣ds+

∫ T
ε

t
ε

∣∣∣2ai
γ2
i

f2
i (qε,N (t))e−γi(s−

t
ε )
∣∣∣ds

+

∫ T
ε

t
ε

∣∣∣2aiRi( tε )

γi
fi(q

ε,N (t))e−γi(s−
t
ε )
∣∣∣ds+

∫ T
ε

t
ε

∣∣∣aiR2
i

( t
ε

)
e−2γi(s− tε )

∣∣∣ds
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+

∫ T
ε

t
ε

∣∣∣aiRi( t
ε

)
e−γi(s−

t
ε )
∣∣∣ds+

∫ T
ε

t
ε

∣∣∣aiRi( t
ε

)
e−2γi(s− tε )

∣∣∣ds
+

∫ T
ε

t
ε

∣∣∣ bi
γi
fi(q

ε,N (t))e−γi(s−
t
ε )
∣∣∣ds+

∫ T
ε

t
ε

∣∣∣biRi( t
ε

)
e−γi(s−

t
ε )
∣∣∣ds]

≤ εK sup
0≤t≤T

(
E
∣∣∣Ri( t

ε

)∣∣∣2 + E
∣∣∣Ri( t

ε

)∣∣∣+ 1
)∫ T

ε

t
ε

e−γi(s−
t
ε )ds

≤ εK sup
0≤t≤T

(
1− e−

γi(T−t)
ε

)
≤ εK

(
1− e−

γT
ε

)
= O(ε). (37)

According to (35) and (37), we obtain

sup
0≤t≤T

E|fε,N1 (t)| ≤ εK
n∑
i=1

(
1− e−

γT
ε

)
≤ εK

(
1− e−

γT
ε

)
= O(ε), (38)

which implies sup
0≤t≤T

E|fε,N1 (t)| → 0 as ε→ 0.

To proceed, let us estimate fε,N2 (t). Since f(·) ∈ C4
0 (Rn;R) and hN (·) ∈

C∞0 (Rn;R), fxixi(·) and hN (·) are uniformly bounded. Note that gi(ri) = air
2
i +

biri + ci. According to (36), applying the technique similar to (37), gives

sup
0≤t≤T

E|fε,N2 (t)|

= ε sup
0≤t≤T

E
∣∣∣ n∑
i=1

∫ T
ε

t
ε

fxixi(q
ε,N (t))[hN (qε,N (t))]2

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
−µi(gi(ri))

}
ds
∣∣∣

≤ ε

n∑
i=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

fxixi(q
ε,N (t))[hN (qε,N (t))]2

{
aiE
[
R2
i (s)

∣∣∣Ri( t
ε

)]
+biE

[
Ri(s)

∣∣∣Ri( t
ε

)]
− ai

∫
R
r2
i µi(ri)dri − bi

∫
R
riµi(ri)dri

}
ds
∣∣∣

≤ εK

n∑
i=1

sup
0≤t≤T

E
∫ T

ε

t
ε

∣∣∣aiE[R2
i (s)

∣∣∣Ri( t
ε

)]
+ biE

[
Ri(s)

∣∣∣Ri( t
ε

)]
−ai

∫
R
r2
i µi(ri)dri − bi

∫
R
riµi(ri)dri

∣∣∣ds
≤ εK

n∑
i=1

sup
0≤t≤T

(
E
∣∣∣Ri( t

ε

)∣∣∣2 + E
∣∣∣Ri( t

ε

)∣∣∣+ 1
)∫ T

ε

t
ε

e−γi(s−
t
ε )ds

≤ εK

n∑
i=1

sup
0≤t≤T

∫ T
ε

t
ε

e−γi(s−
t
ε )ds ≤ εK

(
1− e−

γT
ε

)
= O(ε), (39)

which implies sup
0≤t≤T

E|fε,N2 (t)| → 0 as ε→ 0. Note that

E|fε,N (t)− f(qε,N (t))| ≤ E|fε,N1 (t)|+ 1

2
E|fε,N2 (t)|.

(38) and (39) imply

sup
0≤t≤T

E|fε,N (t)− f(qε,N (t))| → 0, as ε→ 0. (40)
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Thus, (30) holds.

Step 3. Verifying (31).
For any (t, x) ∈ [0, T ]× Rn, let us define

V (t, x) = V1(t, x) +
1

2
V2(t, x).

According to the definitions of fε,N (·), L̂ε,N and LN , gives

L̂ε,Nfε,N (t)

= p- lim
δ→0

Eε,Nt fε,N (t+ δ)− fε,N (t)

δ

= p- lim
δ→0

Eε,Nt f(qε,N (t+ δ))− f(qε,N (t))

δ

+p- lim
δ→0

Eε,Nt V (t+ δ, qε,N (t+ δ))− V (t, qε,N (t))

δ
(41)

= LN (qε,N (t), qε,Nt , rε(t))f(qε,N (t)) + LN (qε,N (t), qε,Nt , rε(t))V (t, qε,N (t)),

where Eε,Nt is the conditional expectation with respect to Fε,Nt and

LN (qε,N (t), qε,Nt , rε(t))V (t, qε,N (t)) = LN (qε,N (t), qε,Nt , rε(t))V1(t, qε,N (t))

+
1

2
LN (qε,N (t), qε,Nt , rε(t))V2(t, qε,N (t)).

According to the form of L̂ε,Nfε,N (t), we first need to estimate LN (qε,N (t), qε,Nt ,

rε(t))V1(t, qε,N (t)) and LN (qε,N (t), qε,Nt , rε(t))V2(t, qε,N (t)).

Let us first estimate LN (qε,N (t), qε,Nt , rε(t))V1(t, qε,N (t)). Note that

LN (qε,N (t), qε,Nt , rε(t))V1(t, q
ε,N (t))

= ε

n∑
i=1

LN (qε,N (t), qε,Nt , rε(t))
{∫ T

ε

t
ε

fxi(q
ε,N (t))hN (qε,N (t))

{
E
[
gi(Ri(s))

∣∣∣Ri

( t
ε

)]
−µi(gi(ri))

}
ds
}
. (42)

For any 1 ≤ i ≤ n, applying the Itô formula gives

εLN (qε,N (t), qε,Nt , rε(t))
{∫ T

ε

t
ε

fxi(q
ε,N (t))hN (qε,N (t))

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
−µi(gi(ri))

}
ds
}

= −fxi(qε,N (t))hN (qε,N (t))
[
gi

(
Ri

( t
ε

))
− µi(gi(ri))

]
+ ε

n∑
j=1

Iε1j(t, q
ε,N (t))

+ε

n∑
j=1

Iε2j(t, q
ε,N (t)) + ε

n∑
j=1

Iε3j(t, q
ε,N (t)) +

ε

2

n∑
j=1

Iε4j(t, q
ε,N (t))

+ε

n∑
j=1

Iε5j(t, q
ε,N (t)) + ε

n∑
j=1

Iε6j(t, q
ε,N (t)) +

ε

2

n∑
j=1

Iε7j(t, q
ε,N (t))

+ε

n∑
j=1

Iε8j(t, q
ε,N (t)) +

ε

2

n∑
j=1

Iε9j(t, q
ε,N (t)), (43)
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where

Iε1j(t, x) =

∫ T
ε

t
ε

fxixj (x)hN (x)
{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×bNj (x, qε,Nt , rε(t)),

Iε2j(t, x) =

∫ T
ε

t
ε

fxi(x)
∂

∂xj
hN (x)

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×bNj (x, qε,Nt , rε(t)),

Iε3j(t, x) =

∫ T
ε

t
ε

fxi(x)hN (x)
∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×bNj (x, qε,Nt , rε(t)),

Iε4j(t, x) =

∫ T
ε

t
ε

fxixjxj (x)hN (x)
{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)),

Iε5j(t, x) =

∫ T
ε

t
ε

fxixj (x)
∂

∂xj
hN (x)

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)),

Iε6j(t, x) =

∫ T
ε

t
ε

fxixj (x)hN (x)
∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t))

Iε7j(t, x) =

∫ T
ε

t
ε

fxi(x)
∂2

∂x2
j

hN (x)
{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)),

Iε8j(t, x) =

∫ T
ε

t
ε

fxi(x)
∂

∂xj
hN (x)

∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)),

Iε9j(t, x) =

∫ T
ε

t
ε

fxi(x)hN (x)
∂2

∂x2
j

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)).

Since f(·) ∈ C4
0 (Rn;R) and hN (·) ∈ C∞0 (Rn;R), fxixj (·) and hN (·) are uniformly

bounded. Consequently,

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Iε1j(t, q
ε,N (t))

∣∣∣
≤ εK

n∑
j=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×bNj (qε,N (t), qε,Nt , rε(t))
∣∣∣.



4434 YUN LI, FUKE WU AND GEORGE YIN

For any 1 ≤ j ≤ n, note that bNj (x, y, r) = hN (x)
(
gj(rj)− δjxj − yj

)
and gj(rj) =

ajr
2
j + bjrj + cj . Assumption (A2) shows that πi(t) is uniformly bounded with

respect to t ∈ [0, T ], which implies that qε,Ni,t =
∫ t

0
πi(s)q

ε,N
i (s)ds is uniformly

bounded. Recall that hN (·) ∈ C∞0 (Rn;R) and the mth-order moment of Ri(t) is
uniformly bounded for any integer m > 0. Ri(t) and Rj(t) are independent for any
i 6= j and t ≥ 0. According to (36), we obtain

E
∣∣∣ ∫ T

ε

t
ε

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds · bNj (qε,N (t), qε,Nt , rε(t))

∣∣∣
≤ E

∫ T
ε

t
ε

∣∣∣gj(Rj( t
ε

)){
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds
+E

∫ T
ε

t
ε

∣∣∣(δjqε,Nj (t) + qε,Nj,t
){

E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds
≤ K

(
E
∣∣∣Ri( t

ε

)∣∣∣2∣∣∣Rj( t
ε

)∣∣∣2 + E
∣∣∣Ri( t

ε

)∣∣∣2∣∣∣Rj( t
ε

)∣∣∣+ E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣2
+E
∣∣∣Ri( t

ε

)∣∣∣2 + E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣+ E
∣∣∣Rj( t

ε

)∣∣∣2 + E
∣∣∣Ri( t

ε

)∣∣∣
+E
∣∣∣Rj( t

ε

)∣∣∣+ 1
)∫ T

ε

t
ε

e−γi(s−
t
ε )ds

≤ K

∫ T
ε

t
ε

e−γi(s−
t
ε )ds

≤ K
(
1− e−γi(Tε − tε )

)
, (44)

which implies

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Iε1j(t, q
ε,N (t))

∣∣∣ ≤ εK

n∑
j=1

sup
0≤t≤T

(
1− e−γi(Tε − tε )

)
≤ εK

(
1− e−

γT
ε

)
= O(ε).

Since f(·) ∈ C4
0 (Rn;R) and hN (·) ∈ C∞0 (Rn;R), fxi(·), hN (·) and ∂

∂xj
hN (·) are

uniformly bounded. Note that bNj (x, y, r) = hN (x)
(
gj(rj) − δjxj − yj

)
for any

j = 1, 2, ..., n. Applying the technique similar to (44), gives

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Iε2j(t, q
ε,N (t))

∣∣∣
≤ εK

n∑
j=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×bNj (qε,N (t), qε,Nt , rε(t))
∣∣∣

≤ εK

n∑
j=1

sup
0≤t≤T

{
E
∫ T

ε

t
ε

∣∣∣gj(Rj( t
ε

)){
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds
+E

∫ T
ε

t
ε

∣∣∣(δjqε,Nj (t) + qε,Nj,t
){

E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds}
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≤ εK

n∑
j=1

sup
0≤t≤T

∫ T
ε

t
ε

e−γi(s−
t
ε )ds ≤ εK

(
1− e−

γT
ε

)
= O(ε).

Since f(·) ∈ C4
0 (Rn;R) and hN (·) ∈ C∞0 (Rn;R), fxixjxj (·) and hN (·) are uniformly

bounded. Note that aNj (x, y, r) = (hN (x))2
(
gj(rj)+δjxj+yj

)
for any j = 1, 2, ..., n.

Applying the technique similar to (44), gives

ε

2
sup

0≤t≤T
E
∣∣∣ n∑
j=1

Iε4j(t, q
ε,N (t))

∣∣∣
≤ ε

2
K

n∑
j=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (qε,N (t), qε,Nt , rε(t))
∣∣∣

≤ εK

n∑
j=1

sup
0≤t≤T

{
E
∫ T

ε

t
ε

∣∣∣gj(Rj( t
ε

)){
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds
+E

∫ T
ε

t
ε

∣∣∣(δjqε,Nj (t) + qε,Nj,t
){

E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds}
≤ εK

n∑
j=1

sup
0≤t≤T

∫ T
ε

t
ε

e−γi(s−
t
ε )ds ≤ εK

(
1− e−

γT
ε

)
= O(ε).

Note that f(·) ∈ C4
0 (Rn;R), hN (·) ∈ C∞0 (Rn;R) and aNj (x, y, r) = (hN (x))2

(
gj(rj)+

δjxj + yj
)

for any j = 1, 2, ..., n. Similarly,

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Iε5j(t, q
ε,N (t))

∣∣∣
≤ εK

n∑
j=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (qε,N (t), qε,Nt , rε(t))
∣∣∣

≤ εK
(
1− e−

γT
ε

)
= O(ε)

and

ε

2
sup

0≤t≤T
E
∣∣∣ n∑
j=1

Iε7j(t, q
ε,N (t))

∣∣∣
≤ ε

2
K

n∑
j=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (qε,N (t), qε,Nt , rε(t))
∣∣∣

= O(ε).

In order to estimate all remaining terms, we first need to calculate the partial
derivatives of the conditional expectation. For any 1 ≤ j ≤ n,

∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
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=
2ai
γ2
i

fi(q
ε,N (t))

∂

∂xj
fi(q

ε,N (t))e−2γi(s− tε ) −
2aiRi(

t
ε )

γi

∂

∂xj
fi(q

ε,N (t))e−2γi(s− tε )

−ai
γi

∂

∂xj
fi(q

ε,N (t))e−γi(s−
t
ε ) − 4ai

γ2
i

fi(q
ε,N (t))

∂

∂xj
fi(q

ε,N (t))e−γi(s−
t
ε )

+
2aiRi(

t
ε )

γi

∂

∂xj
fi(q

ε,N (t))e−γi(s−
t
ε ) − bi

γi

∂

∂xj
fi(q

ε,N (t))e−γi(s−
t
ε ) (45)

and

∂2

∂x2
j

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
=

2ai
γ2
i

[ ∂

∂xj
fi(q

ε,N (t))
]2
e−2γi(s− tε ) +

2ai
γ2
i

fi(q
ε,N (t))

∂2

∂x2
j

fi(q
ε,N (t))e−2γi(s− tε )

−
2aiRi(

t
ε )

γi

∂2

∂x2
j

fi(q
ε,N (t))e−2γi(s− tε ) − ai

γi

∂2

∂x2
j

fi(q
ε,N (t))e−γi(s−

t
ε )

−4ai
γ2
i

[ ∂

∂xj
fi(q

ε,N (t))
]2
e−γi(s−

t
ε ) − 4ai

γ2
i

fi(q
ε,N (t))

∂2

∂x2
j

fi(q
ε,N (t))e−γi(s−

t
ε )

+
2aiRi(

t
ε )

γi

∂2

∂x2
j

fi(q
ε,N (t))e−γi(s−

t
ε ) − bi

γi

∂2

∂x2
j

fi(q
ε,N (t))e−γi(s−

t
ε ). (46)

Assumption (A2) shows that ∂fi
∂xj

is uniformly bounded with respect to x ∈ G,

which implies that ∂fi
∂xj

is bounded for any x ∈ SN+1. Since f(·) ∈ C4
0 (Rn;R) and

hN (·) ∈ C∞0 (Rn;R), fxi(·) and hN (·) are uniformly bounded. For any 1 ≤ j ≤ n,
note that bNj (x, y, r) = hN (x)

(
gj(rj) − δjxj − yj

)
and gj(rj) = ajr

2
j + bjrj + cj .

Therefore, according to (45) and applying the same technique as the estimate of
(44), we obtain

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Iε3j(t, q
ε,N (t))

∣∣∣
≤ ε

n∑
j=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

fxi(q
ε,N (t))hN (qε,N (t))

∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
−µi(gi(ri))

}
dsbNj (qε,N (t), qε,Nt , rε(t))

∣∣∣
≤ εK

n∑
j=1

sup
0≤t≤T

{
E
∫ T

ε

t
ε

∣∣∣gj(Rj( t
ε

)) ∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds
+E

∫ T
ε

t
ε

∣∣∣(δjqε,Nj (t) + qε,Nj,t
) ∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))}

∣∣∣ds}
≤ εK

n∑
j=1

sup
0≤t≤T

(
E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣2 + E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣+ E
∣∣∣Rj( t

ε

)∣∣∣2
+E
∣∣∣Ri( t

ε

)∣∣∣+ E
∣∣∣Rj( t

ε

)∣∣∣+ 1
)∫ T

ε

t
ε

e−γi(s−
t
ε )ds

≤ εK sup
0≤t≤T

∫ T
ε

t
ε

e−γi(s−
t
ε )ds
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≤ εK
(
1− e−

γT
ε

)
= O(ε).

Since f(·) ∈ C4
0 (Rn;R) and hN (·) ∈ C∞0 (Rn;R), fxi(·), fxixj (·), hN (·) and ∂

∂xj
hN (·)

are uniformly bounded. Note that aNj (x, y, r) = (hN (x))2
(
gj(rj) + δjxj + yj

)
for

any j = 1, 2, ..., n. Similarly,

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Iε6j(t, q
ε,N (t))

∣∣∣
≤ ε

n∑
j=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

fxixj (q
ε,N (t))hN (qε,N (t))

∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
−µi(gi(ri))

}
ds× aNj (qε,N (t), qε,Nt , rε(t))

∣∣∣
≤ εK

n∑
j=1

sup
0≤t≤T

{
E
∫ T

ε

t
ε

∣∣∣gj(Rj( t
ε

)) ∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds
+E

∫ T
ε

t
ε

∣∣∣(δjqε,Nj (t) + qε,Nj,t
) ∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds}
≤ εK

n∑
j=1

sup
0≤t≤T

(
E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣2 + E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣+ E
∣∣∣Rj( t

ε

)∣∣∣2
+E
∣∣∣Ri( t

ε

)∣∣∣+ E
∣∣∣Rj( t

ε

)∣∣∣+ 1
)∫ T

ε

t
ε

e−γi(s−
t
ε )ds

≤ εK
(
1− e−

γT
ε

)
= O(ε)

and

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Iε8j(t, q
ε,N (t))

∣∣∣
≤ ε

n∑
j=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

fxi(q
ε,N (t))

∂

∂xj
hN (qε,N (t))

∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
−µi(gi(ri))

}
dsaNj (qε,N (t), qε,Nt , rε(t))

∣∣∣
≤ εK

n∑
j=1

sup
0≤t≤T

{
E
∫ T

ε

t
ε

∣∣∣gj(Rj( t
ε

)) ∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds
+E

∫ T
ε

t
ε

∣∣∣(δjqε,Nj (t) + qε,Nj,t
) ∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds}
≤ εK

n∑
j=1

sup
0≤t≤T

(
E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣2 + E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣+ E
∣∣∣Rj( t

ε

)∣∣∣2
+E
∣∣∣Ri( t

ε

)∣∣∣+ E
∣∣∣Rj( t

ε

)∣∣∣+ 1
)∫ T

ε

t
ε

e−γi(s−
t
ε )ds

≤ εK
(
1− e−

γT
ε

)
= O(ε).
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Assumption (A2) shows that ∂2fi
∂x2
j

is uniformly bounded with respect to x ∈ G,

which implies that ∂2fi
∂x2
j

is bounded for any x ∈ SN+1. Since f(·) ∈ C4
0 (Rn;R)

and hN (·) ∈ C∞0 (Rn;R), fxi(·) and hN (·) are uniformly bounded. Note that
aNj (x, y, r) = (hN (x))2

(
gj(rj) + δjxj + yj

)
for any j = 1, 2, ..., n. Therefore, ac-

cording to (46) and applying the same technique as the estimate of (44), we obtain

ε

2
sup

0≤t≤T
E
∣∣∣ n∑
j=1

Iε9j(t, q
ε,N (t))

∣∣∣
≤ ε

2

n∑
j=1

sup
0≤t≤T

E
∣∣∣ ∫ T

ε

t
ε

fxi(q
ε,N (t))hN (qε,N (t))

∂2

∂x2
j

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
−µi(gi(ri))

}
dsaNj (qε,N (t), qε,Nt , rε(t))

∣∣∣
≤ εK

n∑
j=1

sup
0≤t≤T

{
E
∫ T

ε

t
ε

∣∣∣gj(Rj( t
ε

)) ∂2

∂x2
j

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds
+E

∫ T
ε

t
ε

∣∣∣(δjqε,Nj (t) + qε,Nj,t
) ∂2

∂x2
j

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}∣∣∣ds}
≤ εK

n∑
j=1

sup
0≤t≤T

(
E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣2 + E
∣∣∣Ri( t

ε

)∣∣∣∣∣∣Rj( t
ε

)∣∣∣+ E
∣∣∣Rj( t

ε

)∣∣∣2
+E
∣∣∣Ri( t

ε

)∣∣∣+ E
∣∣∣Rj( t

ε

)∣∣∣+ 1
)∫ T

ε

t
ε

e−γi(s−
t
ε )ds

≤ εK sup
0≤t≤T

∫ T
ε

t
ε

e−γi(s−
t
ε )ds ≤ εK

(
1− e−

γT
ε

)
= O(ε).

According to (42) and (43), these estimates lead to

sup
0≤t≤T

E
∣∣∣LN (qε,N (t), qε,Nt , rε(t))V1(t, qε,N (t))

+

n∑
i=1

fxi(q
ε,N (t))hN (qε,N (t))

[
gi

(
Ri

( t
ε

))
− µi(gi(ri))

]∣∣∣
= O(ε). (47)

To proceed, let us estimate LN (qε,N (t), qε,Nt , rε(t))V2(t, qε,N (t)). Note that

LN (qε,N (t), qε,Nt , rε(t))V2(t, qε,N (t))

= ε

n∑
i=1

LN (qε,N (t), qε,Nt , rε(t))
{∫ T

ε

t
ε

fxixi(q
ε,N (t))[hN (qε,N (t))]2

×
{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds
}
. (48)

For any 1 ≤ i ≤ n, applying the Itô formula, gives

εLN (qε,N (t), qε,Nt , rε(t))
{∫ T

ε

t
ε

fxixi(q
ε,N (t))[hN (qε,N (t))]2

×
{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds
}
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= −fxixi(qε,N (t))[hN (qε,N (t))]2
[
gi

(
Ri

( t
ε

))
− µi(gi(ri))

]
+ ε

n∑
j=1

Jε1j(t, q
ε,N (t))

+ε

n∑
j=1

Jε2j(t, q
ε,N (t)) + ε

n∑
j=1

Jε3j(t, q
ε,N (t)) +

ε

2

n∑
j=1

Jε4j(t, q
ε,N (t))

+ε

n∑
j=1

Jε5j(t, q
ε,N (t)) + ε

n∑
j=1

Jε6j(t, q
ε,N (t)) +

ε

2

n∑
j=1

Jε7j(t, q
ε,N (t))

+ε

n∑
j=1

Jε8j(t, q
ε,N (t)) +

ε

2

n∑
j=1

Jε9j(t, q
ε,N (t)), (49)

where

Jε1j(t, x) =

∫ T
ε

t
ε

fxixixj (x)(hN (x))2
{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×bNj (x, qε,Nt , rε(t)),

Jε2j(t, x) =

∫ T
ε

t
ε

fxixi(x)
∂

∂xj
(hN (x))2

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×bNj (x, qε,Nt , rε(t)),

Jε3j(t, x) =

∫ T
ε

t
ε

fxixi(x)(hN (x))2 ∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×bNj (x, qε,Nt , rε(t)),

Jε4j(t, x) =

∫ T
ε

t
ε

fxixixjxj (x)(hN (x))2
{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)),

Jε5j(t, x) =

∫ T
ε

t
ε

fxixixj (x)
∂

∂xj
(hN (x))2

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)),

Jε6j(t, x) =

∫ T
ε

t
ε

fxixixj (x)(hN (x))2 ∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)),

Jε7j(t, x) =

∫ T
ε

t
ε

fxixi(x)
∂2

∂x2
j

(hN (x))2
{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)),

Jε8j(t, x) =

∫ T
ε

t
ε

fxixi(x)
∂

∂xj
(hN (x))2 ∂

∂xj

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)),
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Jε9j(t, x) =

∫ T
ε

t
ε

fxixi(x)(hN (x))2 ∂
2

∂x2
j

{
E
[
gi(Ri(s))

∣∣∣Ri( t
ε

)]
− µi(gi(ri))

}
ds

×aNj (x, qε,Nt , rε(t)).

Recall that f(·) ∈ C4
0 (Rn;R) and hN (·) ∈ C∞0 (Rn;R). Applying the same technique

as the estimates of Iε1j(t, q
ε,N (t)), Iε2j(t, q

ε,N (t)), Iε4j(t, q
ε,N (t)), Iε5j(t, q

ε,N (t)) and

Iε7j(t, q
ε,N (t)), we obtain

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Jε1j(t, q
ε,N (t))

∣∣∣ = O(ε), ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Jε2j(t, q
ε,N (t))

∣∣∣ = O(ε),

ε

2
sup

0≤t≤T
E
∣∣∣ n∑
j=1

Jε4j(t, q
ε,N (t))

∣∣∣ = O(ε), ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Jε5j(t, q
ε,N (t))

∣∣∣ = O(ε)

and

ε

2
sup

0≤t≤T
E
∣∣∣ n∑
j=1

Jε7j(t, q
ε,N (t))

∣∣∣ = O(ε).

According to the partial derivatives (45) and (46) of the conditional expectation.
Similarly, applying the same technique as the estimates of Iε3j(t, q

ε,N (t)), Iε6j(t,

qε,N (t)), Iε8j(t, q
ε,N (t)) and Iε9j(t, q

ε,N (t)), we obtain

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Jε3j(t, q
ε,N (t))

∣∣∣ = O(ε), ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Jε6j(t, q
ε,N (t))

∣∣∣ = O(ε),

ε sup
0≤t≤T

E
∣∣∣ n∑
j=1

Jε8j(t, q
ε,N (t))

∣∣∣ = O(ε),
ε

2
sup

0≤t≤T
E
∣∣∣ n∑
j=1

Jε9j(t, q
ε,N (t))

∣∣∣ = O(ε).

According to (48) and (49), these estimates lead to

sup
0≤t≤T

E
∣∣∣LN (qε,N (t), qε,Nt , rε(t))V2(t, qε,N (t))

+

n∑
i=1

fxixi(q
ε,N (t))[hN (qε,N (t))]2

[
gi

(
Ri

( t
ε

))
− µi(gi(ri))

]∣∣∣ = O(ε). (50)

The estimates of LN (qε,N (t), qε,Nt , rε(t))V1(t, qε,N (t)) and LN (qε,N (t), qε,Nt , rε(t))
×V2(t, qε,N (t)), together with (41), yield

sup
0≤t≤T

E
∣∣L̂ε,Nfε,N (t)− L̄N (qε,N (t), qε,Nt )f(qε,N (t))

∣∣
= sup

0≤t≤T
E
∣∣LN (qε,N (t), qε,Nt , rε(t))f(qε,N (t))

+LN (qε,N (t), qε,Nt , rε(t))V1(t, qε,N (t))

+
1

2
LN (qε,N (t), qε,Nt , rε(t))V2(t, qε,N (t))− L̄N (qε,N (t), qε,Nt )f(qε,N (t))

∣∣
≤ sup

0≤t≤T
E
∣∣∣LN (qε,N (t), qε,Nt , rε(t))V1(t, qε,N (t))

+

n∑
i=1

fxi(q
ε,N (t))hN (qε,N (t))

[
gi

(
Ri

( t
ε

))
− µi(gi(ri))

]∣∣∣
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+
1

2
sup

0≤t≤T
E
∣∣∣LN (qε,N (t), qε,Nt , rε(t))V2(t, qε,N (t))

+

n∑
i=1

fxixi(q
ε,N (t))[hN (qε,N (t))]2

[
gi

(
Ri

( t
ε

))
− µi(gi(ri))

]∣∣∣
= O(ε), (51)

which implies that (31) holds. This, together with (30) yield qε,N (·) ⇒ qN (·) as
ε → 0 by virtue of Lemma 4.5, where qN (·) satisfies the stochastic differential
equation (20).

Step 4. Removing truncation for the weak convergence.
The argument is similar to that of [14, p.46]. For any deterministic initial value

q(0), let P(·) and PN (·) denote the probabilities induced by q(·) and qN (·), respec-
tively, on the Borel sets of D([0, T ];Rn). By (A3), the martingale problem has a
unique solution for each q(0), so P(·) is unique. For each T <∞, the uniqueness im-
plies that P(·) agrees with PN (·) on all Borel sets of the set of paths in D([0, T ];SN )
for each t ≤ T . However, P{sup0≤t≤T |q(t)| ≤ N} → 1 as N → ∞. This together

with the weak convergence of qε,N (t) imply that qε(·)⇒ q(·). Moreover, the unique-
ness implies that the limit does not depend on the chosen subsequences. The proof
is thus completed.

At the end of this section, let us examine equation (4) by using this theorem.
For the first equation of (4), letting R(t) = rε(εt) yields

dR(t) = (kr − γrR(t))dt+
√
kr + γrR(t)dw̃1(t).

Moreover, define R̂(t) = kr + γrR(t). Then,

dR̂(t) = γr(2kr − R̂(t))dt+ γr

√
R̂(t)dw̃1(t),

which has a unique global solution, known as the mean-reverting square root pro-
cess. Moreover, this solution has a unique invariant measure µ. According to section
3, it is easy to obtain that

lim
t→∞

ER(t) = EµR =
kr
γr
, lim
t→∞

E[R(t)]2 = EµR2 =
k2
r

γ2
r

+
kr
γr
.

To obtain the desired asymptotic results, we assume that (a) γd(t) is uniformly
bounded with respect to t ∈ [0, T ] and (b) the second equation of (4) has a unique
strong solution qε(t) on [0, T ] for each rε(t) = R(t/ε) with each deterministic initial
value q(0). Applying Theorem 4.1 yields that there exists a standard Brownian
motion B(t) such that qε(t) in (4) converges weakly to q(t) satisfying the following
stochastic differential delay equation

dq(t) =
(kpkr
γr
− γpq(t)−

∫ t

0

γd(s)q(s)ds
)
dt

+

√
kpkr
γr

+ γpq(t) +

∫ t

0

γd(s)q(s)dsdB(t).

(52)
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5. Concluding remarks. The results of Theorem 4.1 also hold when gi(·) : R→
R+ is an arbitrary order polynomial and satisfies (A1)-(A3). In fact, for any 0 <
α < 2,

E
[
eαRi(s)

∣∣∣Ri( t
ε

)]
=

∫ +∞

−ϕ̃i
eαxpi

(
x, s;Ri

( t
ε

)
,
t

ε

)
dx

=

∫ +∞

0

e
α
(
y−β̃i
γi

)
p̂i

(
y, s; R̂i

( t
ε

)
,
t

ε

)
dy

= e−αϕ̃ie−ũ
∞∑
m=0

c̃m+q̃+1ũm

m!Γ(m+ q̃ + 1)

∫ +∞

0

e
−
(
c̃− α

γi

)
y
ym+q̃dy

= e−αϕ̃ie−ũ
∞∑
m=0

ũm

m!

(
1− α

c̃γi

)−(m+q̃+1)

(53)

and

µi(e
αri) =

∫ +∞

−ϕ̃i
eαri

24ϕ̃i

Γ(4ϕ̃i)
(ri + ϕ̃i)

4ϕ̃i−1e−2(ri+ϕ̃i)dri

=
24ϕ̃i

Γ(4ϕ̃i)
e−αϕ̃i

∫ +∞

0

y4ϕ̃i−1e−(2−α)ydy

=
24ϕ̃i

Γ(4ϕ̃i)
e−αϕ̃i

1

(2− α)4ϕ̃i

∫ +∞

0

y4ϕ̃i−1e−ydy

=
(

1− α

2

)−4ϕ̃i
e−αϕ̃i . (54)

Since a sufficiently smooth function can be approximated by polynomial func-
tions, the results of Theorem 4.1 also hold when gi(·) : R → R+ is a sufficiently
smooth function and satisfies (A1)-(A3). However, for more general function gi(·) :
R→ R+, it will be our future work how to establish the weak convergence.
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