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Abstract 

Driven by a magnetic field, the rotation of a particle near a wall can be rectified into a net translation. 

The particles thus actuated, or surface walkers, are a kind of active colloids that find application in biology 

and microfluidics. Here, we investigate the motion of spherical surface walkers confined between two walls 

using simulations based on the immersed-boundary lattice Boltzmann method. The degree of confinement 

and the nature of the confining walls (slip vs. no-slip) significantly affect a particle’s translation speed and 

can even reverse its translation direction.  When the rotational Reynolds number Re is larger than 1, inertia 

effects reduce the critical frequency of the magnetic field, beyond which the sphere can no longer follow 

the external rotating field. The reduction of the critical frequency is especially pronounced when the sphere 

is confined nearly a no-slip wall. As Re increases beyond 1, even when the sphere can still rotate in the 

synchronous regime, its translational Reynolds number ReT no longer increases linearly with Re and even 

decrease when Re exceeds ~10.  
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Introduction  

The manipulation of microscopic particles in a liquid environment is crucial in many applications.1-

4 Methods leveraging electrical, acoustic, and magnetic forces have been developed, e.g., dielectrophoresis, 

acoustophoresis, and magnetophoresis. Methods based on magnetic forces are often desirable because of 

their safety and the ability of magnetic fields to penetrate most media without adverse effects.5-9 Among 

the magnetism-based methods, the surface walker mechanism has attracted much attention. By applying a 

rotating or alternating magnetic field, one drives the rotation of magnetic particles even if the field is weak 

(e.g., ~ a few mT). For a particle in unbounded, quiescent liquids, its rotation does not lead to net translation 

due to symmetry. However, if a particle is located near a surface, the symmetry is broken, and its rotation 

can be rectified into net translation.10-12 Particles thus actuated are called surface walkers and can be used 

to induce flow,13 deliver cargos at microscale,14-15 and manipulate cells16. A variety of surface walkers have 

been demonstrated, e.g., DNA-linked doublets made of paramagnetic colloidal particles and colloidal 

chains.13, 17 Many intriguing phenomena have been reported (see Ref. 4 for a recent review). For example, 

in a suspension of magnetic particles rotating above a solid wall, particle clusters can emerge from fingering 

instability;12, 18; near a wall, a chain of spinning particles moves faster than individual particles;19 the 

hydrodynamic bound state of a pair of particles is frequency-dependent,20 and a cloud of particles can 

exhibit “flocking” behavior when energized by a vertical alternating magnetic field.21  

Fundamentally, the dynamics of surface walkers depends on the nature of the confining boundaries 

(slip or no-slip), the degree of confinement (e.g., the distance of a particle to the nearby wall and the 

presence of multiple confining boundaries), and the frequency of the magnetic field (e.g., beyond a certain 

critical frequency, the surface walker’s translation speed can decrease dramatically).22 Understanding these 

dependencies by experiments alone is difficult, and numerical and theoretical modeling can be helpful.  

In theoretical modeling, the motion of a particle near an extended no-slip wall can be described as 

a linear combination of the fundamental solutions to the Stokes equations: a stokeslet singularity, a source 

singularity, a stokeslet singularity, and a rotlet singularity.23-25 Spagnolie and Lauga compared the motion 
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of a sphere near a single wall predicted based on the far-field approximation and from full solutions of the 

Stokes equation in details.26 They showed that the far-field approximation is accurate if a sphere’s distance 

to the wall is larger than its diameter, but cannot accurately account for the near-field effects when the 

sphere gets even closer to the wall. These studies provided critical insights into the actuation of surface 

walkers, but their extension to more complicated situations (e.g., if there are multiple confining boundaries 

or the inertia effects are not negligible) is challenging.   

In numerical modeling, the dynamics of surface walkers can be studied using Stokesian dynamics, 

force-coupling method and direct numerical simulations. In Stokesian dynamics, the particle-wall/particle 

hydrodynamic interactions are considered using a resistance/mobility tensor.13, 27-29 This method can be 

readily applied only in semi-infinite13 or infinite domains.29 The force-coupling method represents particles 

by locally distributed body forces to the Navier-Stokes (NS) equations (or Stokes equations) to account for 

fluid-particle hydrodynamic interactions. It has been used to study the collective dynamics of rotating 

particles.30-31 In direct numerical simulations, the two-way hydrodynamic coupling between the fluid and 

particles is resolved using various methods (e.g., the finite element method32-33 or the lattice Boltzmann 

method (LBM).34-35 To date, the above methods have been used to simulate particle dynamics in the absence 

of inertia effects. However, for magnetic surface walkers, their rotational Reynolds number can be larger 

than 1. Hence, inertia effects can come into play, and the full NS equations must be solved.36-37 Research 

in this regime is limited. For example, Zeng et al.38 investigated the effect of a single wall on a translating 

sphere, and Liu et al.39 investigated the wall effect on a center-fixed rotating sphere at finite rotational 

Reynolds number. These studies focused on calculating the wall-induced lift/drag forces and did not directly 

address the translation and rotation of particles actuated by external fields.  

In this work, we study the dynamics of surface walkers (spherical ferromagnetic particles) actuated 

by a rotating magnetic field. We solve the fluid flow in the low but non-zero Reynolds number regime using 

LBM  and handle the fluid-particle interactions using the immersed boundary method (IBM).40-41 We first 

examine how confinement affects the critical frequency of the magnetic field. Next, we systematically 
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examine how the nature of confining boundaries and the degree of confinements affect the translation of 

the surface walker for rotational Reynolds numbers ranging from 0.01 to ~10.  

Materials and Methods 

Simulation system and mathematical models 

We study the actuation of a single ferromagnetic sphere (radius: r) positioned at a distance h from 

a solid wall (see Fig. 1). An upper boundary is located at Lz above the lower wall, and the space between 

the lower wall and the upper boundary is filled with liquids. The system is periodic in the directions parallel 

to the wall (x- and y-directions).  

 

Figure 1. Simulation system and the immersed boundary method. (a) Actuation of a spherical magnetic particle 

by a rotating magnetic field. (b) A schematic of the velocity interpolation and force spreading between the 

Lagrangian nodes and the Eulerian nodes in the immersed boundary method. (c) Distribution of the Lagrangian 

nodes (empty circles) on a spherical solid particle. 

 

The fluid motion is governed by the NS equations: 

          ( ) 0
t





+  =


u  (1) 

          ( ) ( )( )T
p

t


 

  +  = − +   +  +
 

u
uu u u F  (2) 

where  is the density; u is the fluid velocity; p is the pressure;  is the dynamic viscosity; and F is the sum 

of the fluid body force and the hydrodynamic forces exerted by the particle. The no-slip boundary condition 

is imposed on the lower solid wall and the particle’s surface. On the upper boundary, either the no-slip 

boundary condition or the zero-shear stress boundary condition is imposed, which mimics a solid wall or a 

free fluid surface, respectively.  

The translation of the particle is governed by 
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U

s  
p

p e
s

d
m d F

dt
= −  +  (3) 

where Up is the particle’s translational velocity; mp is the particle mass;  is the fluid stress tensor; s denotes 

the particle surface, and Fe denotes the external body force. The rotation of the particle is governed by 42-43 

        ( ) ( )X X s m B


p s o
s

d
I d

dt
= − −   +   (4) 

where  is the angular velocity of the particle; Ip is the particle’s moment of inertial (Ip = 0.4 mpr2 since the 

particle is spherical here); Xs and Xo denote the position on the particle surface and the center of the particle; 

m is the magnetic moment. Here a rotating magnetic field is applied, and it is given by B = Bcos(2πfBt) i - 

Bsin(2πfBt) j, where B and fB are the strength and rotating frequency of the magnetic field, respectively. 

Numerical methods and implementation 

The above governing equations are solved using LBM (see Eqs. 5-10 below) and IBM (see Eqs. 

12-16 below). LBM is adopted as an efficient numerical tool to solve the NS equations (Eq. 1 and Eq. 2), 

and IBM is used to deal with the hydrodynamic interactions between the fluid and sphere. The basic idea 

of IBM is to use the force density F(x, t) in the NS equations to mimic a boundary (e.g., no-slip) that affects 

the fluid. The immersed boundary-lattice Boltzmann method (IB-LBM) allows for a two-way coupling 

between the dynamics of particles and the fluids. The IB-LBM method uses a set of Lagrangian nodes X(s) 

(physical quantities on Lagrangian nodes are denoted with Capital letters) and a set of Eulerian nodes x 

(physical quantities on Eulerian nodes are denoted with Lowercase letters) simultaneously. The former is 

an ensemble of maker nodes on the surface of particles, which can move in the space; the latter consists of 

fixed lattice nodes for solving the fluid flow. The velocity of the Lagrangian nodes is interpolated from the 

Eulerian nodes to enforce the no-slip condition on the particle surface. Meanwhile, the force density 

calculated on the Lagrangian nodes should be spread to Eulerian nodes such that the fluid acts as if there is 

a boundary. The velocity interpolation and force spreading between the two node systems are illustrated in 

Fig. 1b.  
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Instead of solving the NS equations directly, LBM solves the evolution equation of the density 

distribution function (see Eq. 5 below) which can recover to the NS equations by Chapmen-Enskog 

expansion. In this work, three-dimensional nineteen-velocity (D3Q19) multi-relation-time (MRT) LBM is 

adopted to solve the evolution equation 44-45 

        ( ) ( ) ( )-1 ', , M Mx + e x
eqg t t t g t g g tF    


   + − = −  − +

   (5) 

where g(x, t) is the density distribution function at the lattice site x (Eulerian nodes) and time t and geq is 

the equilibrium distribution function; and e is the discrete velocity along the  direction, defined as  

     

0,  1, -1,  0,  0,  0,  0, 1, -1, 1, -1, 1, -1,1, -1, 0, 0, 0, 0

= 0,  0,  0,  1, -1,  0,  0, 1, 1, -1, -1, 0, 0, 0, 0, 1, -1, 1, -1

0,  0,  0,  0,  0,  1, -1, 0, 0, 0, 0, 1, 1, -1, -1, 1, 1, -1, -1



 
 
 
  

e  (6) 

 Using an orthogonal transformation matrix M, the right side of Eq. 5 can be mapped into the moment space 

and rewritten as44-45 

     ( )* ,=
2

Im m m m S


 eq
t' ' ' ' 
 

− − + − 
 

 (7) 

where m =Mg and m ,eq = Mgeq.  is the diagonal collision matrix given by 

 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0diag( , , , , , , , , , , , , , , , , , , )e q q q v v v v v t t t                    − − − − − − − − − − − − − − − − − − − =  (8) 

By definition, the equilibrium m ,eq has the expression 

     

2 2 2 2 2 2

, 2 2 2

2 2 2 2

11
1, 11 19( ),3 ( ),

2

2 2 2 1
, , , , , , (2 ),

3 3 3 2

1
, ( ), , ,0,0,0
2

m

T

x y z x y z

eq

x x y y z z x y z

y z y z x y x z

u u u u u u

' u u u u u u u u u

u u u u u u u u



 
− + + + − + + 

 
 = − − − − −
 
 
 − − 
 

 (9) 

 In Eq. 7, S is the forcing term in the moment space with 
2

I MS = F'
 

− 
 

, and is given as44 
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S  (10) 

where the total force density is given by 

     e s+F = F f  (11) 

where Fe is the external force density, such as the gravity; fs is the hydrodynamic force on the Eulerian node 

calculated by the IBM46 

     ( ) ( )( ) ( ) ( )( ), ,s s h s h s

s

s t s ds F s t s  


= =      f F X x - X X x - X  (12) 

where  represents the immersed boundary of the particle; Fs is the hydrodynamic force on the boundary 

point X(s) (Lagrangian node); h is the smooth approximation of the Dirac’s delta function 
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1
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In this work, the direct-forcing method is adopted to calculate the hydrodynamic force between the fluid 

and particle 46  

     ( )
d noF

, 2s s t
t




−
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U U
F X =  (15) 

where Ud and UnoF are the desired velocity and unforced velocity at forcing boundary points, respectively. 

𝑼noF can be calculated by 
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     ( ) ( )( ),noF noF

hs t s dx=   x
U X u x - X  (16) 

where 
noF

u is the unforced velocity on the Eulerian nodes, which is obtained using  

     
1

u enoF g 


=   (17) 

The fluid density and physical velocity on Eulerian nodes are obtained by the summation of and the moment 

of the density distribution function: 

     g



 =   (18) 

     
1

( )u e fsg 


= +  (19) 

          The above fluid-particle momentum force Fs and hydrodynamic torques lead to the motion of particle, 

which is governed by Newton’s law (Eq. 3-4).The hydrodynamic force term (first term on the right side of 

Eq. 3) is calculated by42-43  

      
U

s F
p

s f
S V

d
d dV m

dt
−  = − +   (20) 

where mf =V, and V is the volume of the particle. The hydrodynamic torque term (the first term on the 

right side of Eq. 4) is calculated by  

      ( ) ( ) ( )X X s X X F



p

s o s o s f
s V

d
d dV I

dt
− −   = − −  +   (21) 

where If is the inertial moment of fluid occupied by the particle. Thus, Eq. 3 and Eq. 4 are discretized as 

      ( )( )1 11
/U U F s F U U

n n n n n

p p s e f p p p

Sp
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    (22) 

      ( ) ( )( )1 11
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s c s e f p
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x t I I
I

 + − 
= + − −   + + − 

 
  (23) 

The particle’s position is updated by the translational velocity at time n and n+1 
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      ( )1 10.5X X U Un n n n

p o p p

+ += + +    (24) 

And the desired velocity at each Lagrangian node is updated by 

      ( )1 1 1
U U X Xn n n

d p s o

+ + += +  −    (25) 

Here, a uniform lattice spacing is used for the Eulerian nodes, with each grid step representing r/6. 

For a typical value of r = 12 m in this work, x =2 m and the corresponding time step is t =1 s. In most 

of cases, the simulation domain is chosen to be 60r × 30r × 30r with a grid number ~12,000,000 (see Table 

1 for a grid dependence test). To implement the no-slip and slip upper boundary conditions, the half-way 

bounce back scheme and specular reflection scheme are adopted, respectively.47 The spherical particle’s 

surface is discretized into 574 Lagrangian nodes (see Fig. 1c) using the method in Ref. 43. The spacing 

between two neighboring Lagrangian nodes is approximately equal to the spacing between the Eulerian 

nodes. Grid studies show that these node spacings are sufficient to obtain an accurate prediction of the 

particle dynamics.  

Numerical tests  

We validate our code in three sets of tests relevant to the actuation of surface walkers using rotating 

magnetic fields: the rotation of a sphere in a rotating magnetic field, the rotation of a sphere near a planar 

wall, and the translation of a sphere near a planar wall.  

First, we simulate the rotation of a sphere (r = 48 μm; M = 80 A/m) in a periodic box filled with 

a fluid ( = 10-3 Pa·s). The box measures 40r ×40r ×40r, which is large enough to mimic an unbound fluid. 

The strength of the magnetic field is B =3mT. The rotation of a magnetic sphere in a field rotating at a 

frequency of f  exhibits two regimes. When f is below the critical frequency fc, we have the synchronous 

regime, in which the sphere’s rotational frequency (f) is equal to f When f > fc, we have the asynchronous 

regime, in which the sphere rotates with a mean frequency lower than f For ferromagnetic magnetic 

spheres in an unbounded fluid, in the limit of small Re, fc is given by 48-49 
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        𝑓𝑐 = 𝑚𝐵/2𝜋𝛾 = 𝑀𝐵/(12𝜋𝜇) (26) 

where m=4Mr3/3 is the particle’s magnetic moment (M: sphere’s magnetization), B is the strength of the 

magnetic field, and  =8r3 is the rotational drag coefficient of a sphere in an unbound fluid. For f > fc, 

the rotational frequency of the sphere follows 

      𝑓 = 𝑓𝐵[1 − √1 − (𝑓𝑐/𝑓𝐵)2 ] (27) 

With the parameters chosen, Eq. 26 predicts a critical frequency of fc = 20 Hz. Figure 2a shows the variation 

of the sphere’s mean rotational frequency f with f. The computed critical frequency fc and the evolution of 

f at f > fc both agree well with those predicted by Eq. 26 and 27.  

Next, we simulate the rotation of a sphere near a solid wall. The sphere is fixed at a height h above 

the wall and rotates in the clockwise direction with angular speed . The hydrodynamic force 𝐹ℎ 

experienced by the sphere can be given as  

      𝐹ℎ = 𝜋𝜇𝑟2𝜔𝑓𝑥(ℎ/𝑟, 𝑅𝑒𝜔)    (28) 

where 𝑅𝑒𝜔 is the rotational Reynolds number given by 

      Re = r2/   (29) 

In the limit of small 𝑅𝑒𝜔 and r/h, 𝑓𝑥 is given by39, 50 

      𝑓𝑥(ℎ/𝑟) =
3

4
(

𝑟

ℎ
)

4
(1 −

3

8

𝑟

ℎ
)    (30) 

We set h = 1.5r and vary the system size (see Fig. 1a) systematically to examine how large the system must 

be for 𝑓𝑥 to converge to the prediction by Eq. 30. Re is set to 0.07 in the simulation. Table 1 summarizes 

the computed 𝑓𝑥 and the prediction by Eq. 30. We observe that the hydrodynamic force is more sensitive to 

the domain size in the x-direction than in the y- and z-directions. With Lx = 60r, Ly = 30r, and Lz=30r, there 

are ~12,000,000 lattice points in the computational domain and the computed hydrodynamic force is ~5% 

higher than the analytical solution. Therefore, as a compromise between accuracy and computational cost, 

this domain size is used in the rest of this work.  
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Table 1. Effect of domain size on the hydrodynamic force 

domain size 
fx 

Lx/r Ly/r Lz/r 

30 30 30 0.1276 

30 30 40 0.1278 

30 40 30 0.1272 

40 30 30 0.121 

60 30 30 0.117 

∞ ∞ ∞ 0.11139, 50 

Finally, we simulate the translation of a sphere near a wall without rotation. The center of the sphere 

is fixed at various height h above the wall, and a constant force 𝐹𝑑 is applied to the sphere in the x-direction. 

For a sphere moving parallel to a wall at a speed Vx, it experiences a drag force given by  

          𝐹𝑑 = 6𝜋𝜇𝑟𝑉𝑥𝑓𝑢(ℎ/𝑟, ReT)  (31) 

where ReT = 2𝜌𝑉𝑥𝑟/𝜇 is the translational Reynolds number. In the limit of small ReT and small r/h, Faxen 

obtained 𝑓𝑢 using the method of reflections50 

          𝑓𝑢(ℎ/𝑟) = 1 −
9

16
(

𝑟

ℎ
) +

1

8
(

𝑟

ℎ
)

3
−

45

256
(

𝑟

ℎ
)

4
−

1

16
(

𝑟

ℎ
)

5
 (32) 

We simulate the sphere movement at 𝑅𝑒𝑇 =5×10-4 using the system shown in Fig. 1a. We set Lx = 60r, Ly 

= 30r, and Lz = 30r so that the sphere is effectively in a semi-infinite liquid. Figure 2b compares the 𝑓𝑢 

obtained in our simulations with Eq. 32, and a very good agreement with Eq. 32 is obtained.  

 
Figure 2. (a) The mean rotational frequency of a sphere actuated by a rotating magnetic field. The sphere (r = 

48 m; M = 80 A/m) is immersed in bulk. (b) The hydrodynamic force experienced by a sphere translating 

parallel to a no-slip wall without rotation. 
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Results and Discussion  

We study how confinement and inertia affect the motion of spheres actuated by a rotating magnetic 

field. A sphere rotating at a distance from a wall experiences a host of forces in the vertical direction, e.g., 

gravity, buoyancy, etc., which may drive it toward a new height, leading to a change of its confinement and 

complicating the study of how confinement affects its motion. Therefore, in first two subsections, we 

assume that this lift force is balanced by external forces. We thus fix the sphere’s height but allow it to 

rotate and translate laterally. In the final subsection, we remove this assumption and study the motion of a 

sphere released from an initial height under the actuation of a magnetic field. The data from this study show 

that the results in first two subsections are also applicable to situations in which a sphere rises/settles slowly 

near a wall. 

Confinement effects 

Here we study how the degree of confinement and the nature of the confining surface affect the 

translation of a magnetically actuated sphere. The sphere has a radius of 12 μm and a magnetization of 

M=2×104A/m. The frequency of the rotating field is 20 Hz; the sphere rotates in the clockwise direction 

synchronously with the field. Re is 0.018, and thus inertia effects are negligible. Without losing generality, 

we fix the sphere at h = 1.5r above the lower no-slip wall. The upper boundary, located at Lz above the 

lower wall, is either a no-slip wall or a slip wall (see Fig. 1a). The degree of confinement, as characterized 

by k = r/Lz, is varied between 1/30 and 1/3.  

The sphere’s velocity computed in these simulations is shown in Fig. 3a. We first examine the 

sphere’s movement when the upper confining wall has a no-slip surface. At r/Lz = 1/30, the sphere moves 

in the positive x-direction; as r/Lz increases, the sphere’s velocity decreases, and even becomes negative 

(e.g., at r/Lz = 1/4). At r/Lz = 1/3, when the sphere is positioned precisely halfway between the two walls, 

its velocity is zero. To understand these results, we performed additional simulations in which the rotating 

sphere’s center is fixed but other conditions are unchanged. Measuring the horizontal hydrodynamic force 
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Figure 3. (a) The effect of confinement on the translation velocity of a magnetically actuated sphere. (b). The 

hydrodynamic force acting on a rotating sphere whose center is fixed between two walls. In both panels, the 

sphere is positioned at h = 1.5r and rotates clockwise. The lower wall has a no-slip surface.  

 

Fx experienced by these spheres helps understand how free rotating spheres moves, e.g., if Fx on a center-

fixed sphere is positive, then the sphere will have a positive velocity if it is set free. Figure 3b shows that 

the variation of Fx on a center-fixed sphere as a function of r/Lz closely follows the trend of the velocity Vx 

shown in Fig. 3a, e.g., at r/Lz = 1/4, Fx is negative, consistent with the negative Vx seen in Fig. 3a. Therefore, 

below we focus on understanding the evolution of Fx (in particular its sign reversal) as r/Lz changes.  

At r/Lz = 1/30, a center-fixed sphere rotating clockwise above a no-slip wall experiences a positive 

Fx. Fx can be decomposed into four components (see Fig. 4a): the horizontal component of the viscous 

forces on the sphere’s top and bottom half (𝐹𝑥,𝑣
𝑇 , and 𝐹𝑥,𝑣

𝐵 ) and the horizontal component of the pressure 

force on the sphere’s top and bottom half (𝐹𝑥,𝑝
𝑇  and 𝐹𝑥,𝑝

𝐵 ). 𝐹𝑥,𝑣
𝐵  is positive and 𝐹𝑥,𝑣

𝑇  is negative, which are 

consistent with the flow field induced by the sphere (see Fig. 5a). Note that the viscous force 𝑭𝑣
Γ and the 

pressure force 𝑭𝑝
Γ on a piece of surface (Γ) of the sphere are defined as 

         {
𝑭𝑣

Γ = ∫ 𝝉 ⋅
Γ

𝑑𝒔

     𝑭𝑣
Γ = ∫ −𝑝𝑰 ⋅

Γ
𝑑𝒔

     (33) 

where  is the viscous stress tensor and I is the identity tensor. When a sphere rotates clockwise near the 

no-slip, lower wall, the flow field features a strong circulating flow surrounding the sphere and a weak, 

more global flow in the positive x-direction that extends quite far from the sphere. The circulating flow 
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imparts a positive 𝐹𝑥,𝑣
𝐵  and a negative 𝐹𝑥,𝑣

𝑇  on the sphere. These forces cancel each other to a large extent. 

However, because of the proximity of the no-slip wall to the sphere’s bottom surface and hence larger 

velocity gradient on the sphere’s bottom surface than on its top surface, the net viscous force on the sphere 

is positive (see Fig. 4a).  

 

Figure 4. The horizontal hydrodynamic forces experienced by a center-fixed sphere confined between two walls. 

(a) r/Lz = 1/30 and upper boundary is a no-slip wall. (b) r/Lz = 1/4 and upper boundary is a no-slip wall. (c) r/Lz 

= 1/3 and upper boundary is a slip wall. The horizontal force 𝐹𝑥 is divided into 𝐹𝑥,𝑣
𝑇 , 𝐹𝑥,𝑝

𝑇 , 𝐹𝑥,𝑣
𝐵  and 𝐹𝑥,𝑝

𝐵  (subscript p 

(v) denotes the pressure (viscous) components; superscript T (B) corresponds to the top (bottom) surface). The 

arrows denote the direction and magnitude of the forces (the magnitude is not to the scale because of the large 

difference between the viscous and pressure forces). All forces are normalized by r2. 

As shown in Fig. 5a and also reported in previous studies,39 the circulating flow increases the fluid pressure 

near the bottom front side of the sphere (red region in Fig. 5a) but reduces that near its bottom back side 

(blue region in Fig. 5a). This pressure imbalance leads to a negative 𝐹𝑥,𝑝
𝐵  on the sphere’s bottom half. 

Meanwhile, the weak global flow in the positive direction imparts a positive pressure force 𝐹𝑥,𝑝
𝑇  on the 

sphere’s top half. Since the circulating flow is stronger than the weak global flow, the net pressure force is 

negative (see Fig. 4a). The net pressure force is weaker than the viscous force, thus resulting in a positive 

Fx. Inspection of the force shown in Fig. 4a shows that Fx is more than 30 times weaker than 𝐹𝑥,𝑣
𝐵 . The key 

point is that the significant viscous force on a sphere’s top half and the net negative pressure force on the 

sphere cancel horizontal viscous force on its bottom half, leading to a weak driving force sphere translation. 
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Figure 5. The flow and pressure fields near a rotating sphere between two no-slip walls separated by L
z
 = 30r 

(a) and L
z
 = 4r (b). The sphere is fixed at a height of h/r = 1.5 above the lower wall. The pressure is normalized 

by 𝜇𝜔 and is color-coded (𝑝̅ = (𝑝 − 𝑝𝑟𝑒𝑓)/𝜇𝜔).  

 

As r/Lz increases, the Fx experienced by a center-fixed rotating sphere decreases. At r/Lz = 1/4, Fx 

becomes negative. The reversal of Fx is a result of the modified interplay between the viscous and pressure 

forces at the enhanced confinement. Because the circulating flow near the sphere’s bottom half is little 

affected by the enhanced confinement by the upper wall, the velocity gradient and pressure field near the 

bottom half of the sphere do not differ much from those at r/Lz = 1/30 (cf. Fig. 5a and 5b). Therefore, 𝐹𝑥,𝑣
𝐵  

and 𝐹𝑥,𝑝
𝐵  remains similar to that for r/Lz = 1/30 (see Fig. 4b). However, 𝐹𝑥,𝑣

𝑇  on the sphere’s top half, becomes 

considerably more negative because the velocity gradient on the sphere’s top surface increases with the 

enhanced confinement. As shown in Fig. 4b, the increased 𝐹𝑥,𝑣
𝑇  cancels the positive 𝐹𝑥,𝑣

𝐵  more greatly than 

that at r/Lz = 1/30. Meanwhile, the positive 𝐹𝑥,𝑝
𝑇  on the sphere’s top half is weakened so that the total 

horizontal pressure force now overwhelms the horizontal viscous force, which leads to the reversal of Fx. 

Overall, the key point is that the force (velocity) reversal is due to the inherent cancelation of 𝐹𝑥,𝑣
𝐵  by 𝐹𝑥,𝑣

𝑇  

for rotating surface walkers and the enhancement of this cancellation as confinement is increased.  

As r/Lz increases toward 1/3, at which the sphere is positioned in the middle of the upper and lower 

no slip walls, Fx approaches zero as expected due to symmetry.  

Finally, we examine the sphere’s movement when the upper confining boundary is a slip wall. 

When r/Lz is small, the flow near the sphere is hardly affected by the upper wall, e.g., at r/Lz = 1/30, the 

gradient of the fluid velocity near the sphere’s north pole is nearly unchanged when the upper boundary is 
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switched from a no-slip to slip wall (see Fig. S1 in the Supporting Information). Therefore, the translation 

of the sphere is similar, regardless of the nature of the upper boundary. However, as the slip wall moves 

closer to the sphere, the circulating flow near a rotating sphere’s top surface is impeded much less than 

when the upper boundary is a no-slip wall. Therefore, the negative 𝐹𝑥,𝑣
𝑇  on the sphere’s top surface is weaker 

and the net horizontal viscous force decreases less compared to the situation when the upper boundary has 

a no-slip wall. This explains why the decrease of a sphere’s translation velocity is milder than when the 

upper boundary is a no-slip wall (see Fig. 3a). 

At r/Lz = 1/3, when the sphere is exactly halfway between the two walls, the gradient of the velocity 

near the sphere’s top surface is much smaller than that near the sphere’s bottom surface (see Fig. S1 in the 

Supporting Information). Therefore, the positive 𝐹𝑥,𝑣
𝐵  on the sphere’s bottom half is not much canceled by 

the negative 𝐹𝑥,𝑣
𝑇  (see Fig. 4c). Due to symmetry, the positive pressure force on the sphere’s top and the 

negative pressure force on the sphere’s bottom almost canceled out each other. This leads to a large positive 

net force on the sphere, and thus a large translation velocity (see Fig. 3b and Fig. 3a). 

Inertia effects 

Below we investigate the effect of inertia on the rotation and translation of spheres confined above 

a solid wall. The upper boundary is positioned at Lz = 30r so that the sphere is essentially in a semi-infinite 

fluid. The sphere is fixed at the height of 1.5r above the lower wall in all simulations (see Fig. 1a).  The 

strength of the magnetic field is the same as that used in Fig. 2a.  

We first examine the rotation of wall-confined spheres in a rotating magnetic field for Re ≲ . 

Figure 6a shows that, compared to that in the unbounded fluids, fc is reduced to 18 Hz. The decrease of fc is 

expected. In the Stokes flow regime, the rotational drag coefficient of a sphere at a distance h from a no-

slip wall is higher than that in a bulk fluid. For h/r=1.5, this drag coefficient can be approximated very well 

using 𝛾 = 8𝜋𝜇𝑟3 (1 +
5

16
(

𝑟

ℎ
)

3
),50 which predicts a drag coefficient that is 9.3% higher than that in bulk. 

Using this drag coefficient, Eq. 26 predicts an fc of 18.3 Hz, in excellent agreement with our simulations. If 

the fc determined in our simulations is used in Eq. 27, the variation of the sphere’s mean rotational frequency 
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at f > fc is predicted accurately (see Fig. 6a). The rotational Reynolds number at fc is Re,c=0.29 (the 

maximal Re investigated in Fig. 6a is also around 0.29 since the sphere rotates slower than fc once fB 

exceeds fc). These results suggest that, although Eq. 27 was derived for particles in unbounded fluids and 

with vanishing Re, for Re up to ~1, it can be used to predict the rotation of wall-confined particles if an 

accurate fc is used. This is in line with the findings that the hydrodynamic torque experienced by a rotating 

sphere above a wall at Re =  is predicted well by solving the Stokes flow.39 

 
Figure 6. The mean frequency of a sphere actuated by a rotating magnetic field. (a,c) The sphere is positioned 

at h = 1.5r above the lower wall and L=30r. (b) The sphere is in a bulk fluid. r = 48 m and in all three cases. In 

(a), M = 80 A/m; In (b-c), M = 1600 A/m.  

Next, we examine the effects of inertia on sphere’s rotation at Re   We simulate the rotation of 

a sphere (r = 48 μm; M = 1600 A/m) in magnetic fields with fB = 0 to 500 Hz. A naïve application of Eq. 

26 predicts an fc of 400 Hz, and the corresponding Re is 5.79. Figures 6b and 6c show the mean rotational 

frequency of the sphere in bulk and at a distance h = 1.5r above the lower wall, respectively. When 

immersed in bulk, the particle is seen to follow the rotating field up to 370 Hz; when positioned near a no-

slip wall, the particle can follow the rotating field only up 350 Hz. Furthermore, in the asynchronous regime, 

the sphere’s rotational frequency f decreases more rapidly with increasing fB than that predicted by Eq. 27, 

even when the fc computed in the simulations is used. When inertia plays an essential role in the fluids 

around the sphere, the hydrodynamic torque exerted by the fluids increases nonlinearly and faster with f 

than that predicted by the Stokes flow-based theories. Therefore, it is harder for the sphere to catch up with 

the rotating magnetic field in this flow regime, and consequently fc and the sphere’s mean rotational 

frequency in the asynchronous regime are smaller than the predictions by Eq. 26 and 27.  
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We now study how the translation of a magnetically actuated sphere is affected by inertia effects. 

To this end, the radius of the sphere is varied systematically while their magnetization M is kept to be the 

same as in Fig. 2. The frequency of the rotating magnetic field is fB = 20 or 200 Hz, with which the sphere 

rotates with the applied field synchronously. Figure 7a shows that, for fB = 20 Hz, the translation speed Vx 

increases linearly with the particle size. For fB = 200 Hz, the increase of Vx becomes sublinear at r = 48 m, 

and even decreases for spheres with radius larger than 72 m.  

Because nonlinearity becomes important at Re ≳ 1 in Fig. 7a, the results in this figure are cast 

into the dimensionless form of ReT = 2Vxr/ as a function of Re (Re = r2/ , see Fig. 7b). At 

Re ≲  the data for fB = 20 or 200 Hz collapse together with ReT = 0.025Re To understand this result, 

we note that the translation speed of a rotating sphere is determined by the balance between the rotation-

induced driving force 𝐹ℎ (see Eq. 28) and the hydrodynamic drag experienced by a moving sphere 𝐹𝑑 (see 

Eq. 31). Balancing 𝐹ℎ and 𝐹𝑑, we have  

          
ReT

Reω
=

2𝑉𝑥

𝑟𝜔
=

2

𝑟𝜔

𝐹ℎ

6𝜋𝜇𝑟𝑓𝑢(ℎ/𝑟,ReT)
=

𝑓𝑥(ℎ/𝑟,Reω)

3𝑓𝑢(ℎ/𝑟,ReT)
 (34) 

When Reω ≪ 1 and ReT ≪ 1, 𝑓𝑥 and 𝑓𝑢 are independent of 𝑅𝑒𝜔 and 𝑅𝑒𝑇, and are function of ℎ/𝑟 only (see 

Eq. 30 and 32). For the ℎ/𝑟=1.5 used in our study, 𝑓𝑢 = 1.616 and 𝑓𝑥 = 0.117, respectively (see Fig. 2b and 

Table. 1). Hence ReT/Reω = 0.024, in agreement with the slope seen in Fig. 7b.  

 
Figure 7. Effects of inertia on the translation of magnetic sphere actuated by a rotating magnetic field. (a) 

Variation of the sphere’s translation velocity as a function of its radius under the action of magnetic fields with 

f B= 20 and 200 Hz. (b) The data in (a) presented in the form of the sphere’s translational Re number vs. rotational 

Re number. (c) Evolution of the difference between the maximal pressure in the bottom front side and the 

minimal pressure in the bottom back side of the sphere with the rotational Reynolds number. 
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As 𝑅𝑒𝜔 increases beyond ~1.0, 𝑅𝑒𝑇 grows in a sublinear manner and eventually decreases. This is 

caused by the inertia-induced reduction of the hydrodynamic force propelling a rotating sphere laterally. 

Specifically, we perform separate simulations to measure the hydrodynamic force experienced by spheres 

rotating near a no-slip wall. At h/r = 1.5, 𝑓𝑥 decreases from 0.117 to 0.096 and 0.032 as Re  increases from 

nearly zero to 6.514 and 11.58, respectively. The decrease 𝑓𝑥 can be understood as follows.  

When a sphere rotates near a semi-infinite wall in the clockwise direction, a net force Fx in the x-

direction is developed on the sphere. The viscous component, Fvis,x, is in the x-direction. The pressure force, 

Fp,x, is in the negative x-direction because of the pressure difference at the bottom back and bottom front 

sides of the sphere (see Fig. 5a). To gauge the evolution of this pressure difference with Re, we define a 

Δ𝑃𝑙𝑟 as the difference between the maximal pressure in the bottom front region and the minimal pressure 

in the bottom back region of the sphere. Figure 7c shows that for Re ≪ 1, Δ𝑃𝑙𝑟/𝜇𝜔 is nearly a constant, 

consistent with the fact that, when inertia is weak, the pressure in the fluids has a characteristic value of 

𝜇𝑉/𝑟 or 𝜇𝜔 (as the characteristic velocity 𝑉 is 𝜔𝑟 here). As Re increases beyond ~1.0, Fig. 7c shows that 

Δ𝑃𝑙𝑟/𝜇𝜔 increases rapidly with Re. This is because, as inertia becomes stronger, the Bernoulli effect 

emerges and Δ𝑃𝑙𝑟 will increase faster than 𝜇𝜔 (eventually, Δ𝑃𝑙𝑟/𝜇𝜔 should scale as 𝜌(𝑟𝜔)2/𝜇𝜔 , although 

this is not observed under the modest Re numbers used here). The deviation of Δ𝑃𝑙𝑟/𝜇𝜔 from a constant 

and its rapid rise with Re causes the pressure force acting on the sphere to become stronger, and thus 𝑓𝑥 

decreases, which in turn leads to the decrease of Re shown in Fig. 7b. 

Actuation of free magnetic spheres 

Here, we relax the assumption that the forces on an actuated sphere are balanced a priori in the 

vertical direction and study the actuation of free magnetic spheres. We consider gravity and buoyancy as 

the external forces. The density of ferromagnetic materials is typically 5-9 times that of the water (). 

However, by coating these materials using polymers, the resulting magnetic particles can have a density of 

~2-9𝜌.51 When placed in water, these particles will settle toward the wall beneath the water. However, a 
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sphere rotating above a wall can experience a lift force, making it possible for the particle eventually to 

reach an equilibrium height while translating laterally.  

Figure 8a shows the lift force experienced by a sphere rotating above a no-slip wall fixed at h/r= 

1.5. As in above subsection, the simulations are performed in the system shown in Fig. 1a with the upper 

wall located at z/r = 30, i.e., the sphere is essentially above an isolated wall. The lift force scaled by r42 

is practically independent of Re for Re ~ 1-5 and decreases at even higher Re. The latter is consistent 

with the data reported earlier.39 The fact that the lift force scales linearly with  r42 is consistent with the 

fact that, even in the limit of small Re, inertia associated with particle rotation cannot be neglected as far 

as the lift force is concerned. 38-39, 50, 52 

 
Figure 8. (a) The lift force experienced by a center-fixed sphere rotating above a no-slip wall. (b) Trajectory 

and instantaneous translation velocity of a sphere released from a height of h/r = 1.75 above a no-slip wall.  

 

Next, we simulate the actuation of a free magnetic sphere. The sphere has a radius of 30 m and a 

density of 3. It is fixed at h/r = 1.75 initially. At t = 0, it is released and rotates synchronously with an 

applied magnetic field with a frequency of f = 500 Hz. Figure 8b shows the z-position and the instantaneous 

translation speed of the sphere as a function of time. The sphere first settles toward its equilibrium height, 

overshoots the equilibrium height slightly by t ~ 20/f, and comes to its equilibrium height at h/r  1.59 by t 

~ 150/f. The overshooting is caused by the fact that, when the sphere first approaches h/r = 1.59, its 

translational speed and the flow around it have not reached their steady state yet, which renders the 

instantaneous lift force smaller than that when the sphere is translating and rotating at the steady state. 
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Indeed, although the translational Reynolds number is small (<0.03), the circulating flow near the sphere 

takes time to reach its steady state. For example, for a sphere whose center is constrained at h/r = 1.5 but 

allowed to translate laterally, once it starts to rotate, its translational speed only reaches 90% of the steady 

value after about 42 r2/ (see Fig. S2 in the Supporting Information), which corresponds to 20/f-.  

Overall, the above results indicate that, because of the lift force induced by the rotation of spheres, 

they may overcome gravity to reach an equilibrium height and move laterally. Therefore, results in first two 

subsections are useful for understanding the dynamics of free spheres actuated by external magnetic fields 

at the steady state. If the transient dynamics of a sphere (e.g., how it settles or lifts toward the equilibrium 

height) is of interest, then the unsteady NS equations generally have to be solved.  

Conclusions 

In this work, the immersed-boundary lattice Boltzmann method is adopted to simulate the magnetic 

actuation of spherical surface walkers confined between walls. By solving the full Navier-Stokes equations, 

our simulations are not limited to the Stokes regime, which allows us to examine the particle dynamics in 

presence of inertia and lift forces. We focus on how the surface walkers’ translation motion is affected by 

type of confining boundaries, the degree of confinement, and the finite inertia of the fluids.  

Our simulations show that both the nature of confining boundaries (slip vs. no-slip) and the degree 

of confinement significantly affect the dynamics of surface walkers. For example, for a sphere at a given 

height above a lower no-slip wall, while its translation speed often decreases as the upper wall is shifted 

toward it, its translational speed can increase dramatically if the upper wall features a slip surface (e.g., that 

of the air-water interface). On the other hand, if the upper wall features a no-slip surface, the sphere can 

reverse its translation direction when it becomes highly confined. Finite fluid inertia reduces the critical 

frequency of the rotating magnetic field, especially when the sphere is confined near a no-slip wall. Even 

when the sphere can rotate synchronously with the external magnetic field, its translation is hindered by 

inertia effects when the rotational Reynolds number becomes considerably larger than 1. When the 

rotational Reynolds number exceeds ~5, a sphere’s translational Reynolds can even decrease with 
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increasing rotational Reynolds numbers. Because many applications of surface walkers involve confined 

geometries (e.g., when they are suspended in microchannels) and finite inertia (e.g., when the surface 

walkers are large or the frequency of the applied magnetic fields is high), the rich translation and rotation 

behaviors of surface walkers revealed here should be considered in their design and applications. 

Supporting Information available: A nomenclature of all variables in this work, the distribution of fluid 

velocity near a rotating sphere, and evolution of the translation velocity of a sphere that is set to rotate 

impulsively.  
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