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Abstract

Driven by a magnetic field, the rotation of a particle near a wall can be rectified into a net translation.
The particles thus actuated, or surface walkers, are a kind of active colloids that find application in biology
and microfluidics. Here, we investigate the motion of spherical surface walkers confined between two walls
using simulations based on the immersed-boundary lattice Boltzmann method. The degree of confinement
and the nature of the confining walls (slip vs. no-slip) significantly affect a particle’s translation speed and
can even reverse its translation direction. When the rotational Reynolds number Re,, is larger than 1, inertia
effects reduce the critical frequency of the magnetic field, beyond which the sphere can no longer follow
the external rotating field. The reduction of the critical frequency is especially pronounced when the sphere
is confined nearly a no-slip wall. As Re,, increases beyond 1, even when the sphere can still rotate in the
synchronous regime, its translational Reynolds number Rer no longer increases linearly with Re, and even

decrease when Re, exceeds ~10.



Introduction

The manipulation of microscopic particles in a liquid environment is crucial in many applications. -
* Methods leveraging electrical, acoustic, and magnetic forces have been developed, e.g., dielectrophoresis,
acoustophoresis, and magnetophoresis. Methods based on magnetic forces are often desirable because of
their safety and the ability of magnetic fields to penetrate most media without adverse effects.”” Among
the magnetism-based methods, the surface walker mechanism has attracted much attention. By applying a
rotating or alternating magnetic field, one drives the rotation of magnetic particles even if the field is weak
(e.g., ~afew mT). For a particle in unbounded, quiescent liquids, its rotation does not lead to net translation
due to symmetry. However, if a particle is located near a surface, the symmetry is broken, and its rotation
can be rectified into net translation.!®!1? Particles thus actuated are called surface walkers and can be used

1415 and manipulate cells'®. A variety of surface walkers have

to induce flow,'* deliver cargos at microscale,
been demonstrated, e.g., DNA-linked doublets made of paramagnetic colloidal particles and colloidal
chains.!* 7 Many intriguing phenomena have been reported (see Ref. 4 for a recent review). For example,
in a suspension of magnetic particles rotating above a solid wall, particle clusters can emerge from fingering

instability;'> '3; near a wall, a chain of spinning particles moves faster than individual particles;' the

hydrodynamic bound state of a pair of particles is frequency-dependent,*

and a cloud of particles can
exhibit “flocking” behavior when energized by a vertical alternating magnetic field.?!

Fundamentally, the dynamics of surface walkers depends on the nature of the confining boundaries
(slip or no-slip), the degree of confinement (e.g., the distance of a particle to the nearby wall and the
presence of multiple confining boundaries), and the frequency of the magnetic field (e.g., beyond a certain
critical frequency, the surface walker’s translation speed can decrease dramatically).”? Understanding these
dependencies by experiments alone is difficult, and numerical and theoretical modeling can be helpful.

In theoretical modeling, the motion of a particle near an extended no-slip wall can be described as

a linear combination of the fundamental solutions to the Stokes equations: a stokeslet singularity, a source

singularity, a stokeslet singularity, and a rotlet singularity.?>*> Spagnolie and Lauga compared the motion



of a sphere near a single wall predicted based on the far-field approximation and from full solutions of the
Stokes equation in details.?® They showed that the far-field approximation is accurate if a sphere’s distance
to the wall is larger than its diameter, but cannot accurately account for the near-field effects when the
sphere gets even closer to the wall. These studies provided critical insights into the actuation of surface
walkers, but their extension to more complicated situations (e.g., if there are multiple confining boundaries
or the inertia effects are not negligible) is challenging.

In numerical modeling, the dynamics of surface walkers can be studied using Stokesian dynamics,
force-coupling method and direct numerical simulations. In Stokesian dynamics, the particle-wall/particle
hydrodynamic interactions are considered using a resistance/mobility tensor.!* 22 This method can be
readily applied only in semi-infinite' or infinite domains.?® The force-coupling method represents particles
by locally distributed body forces to the Navier-Stokes (NS) equations (or Stokes equations) to account for
fluid-particle hydrodynamic interactions. It has been used to study the collective dynamics of rotating
particles.’*3! In direct numerical simulations, the two-way hydrodynamic coupling between the fluid and
particles is resolved using various methods (e.g., the finite element method*** or the lattice Boltzmann
method (LBM).>*3* To date, the above methods have been used to simulate particle dynamics in the absence
of inertia effects. However, for magnetic surface walkers, their rotational Reynolds number can be larger
than 1. Hence, inertia effects can come into play, and the full NS equations must be solved.**3” Research
in this regime is limited. For example, Zeng et al.’® investigated the effect of a single wall on a translating
sphere' and Liu er al.*® investigated the wall effect on a center-fixed rotating sphere at finite rotational
Reynolds number. These studies focused on calculating the wall-induced lift/drag forces and did not directly
address the translation and rotation of particles actuated by external fields.

In this work, we study the dynamics of surface walkers (spherical ferromagnetic particles) actuated
by a rotating magnetic field. We solve the fluid flow in the low but non-zero Reynolds number regime using
LBM and handle the fluid-particle interactions using the immersed boundary method (IBM).***! We first

examine how confinement affects the critical frequency of the magnetic field. Next, we systematically



examine how the nature of confining boundaries and the degree of confinements affect the translation of

the surface walker for rotational Reynolds numbers ranging from 0.01 to ~10.

Materials and Methods

Simulation system and mathematical models

We study the actuation of a single ferromagnetic sphere (radius: ») positioned at a distance / from
a solid wall (see Fig. 1). An upper boundary is located at L, above the lower wall, and the space between
the lower wall and the upper boundary is filled with liquids. The system is periodic in the directions parallel

to the wall (x- and y-directions).
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Figure 1. Simulation system and the immersed boundary method. (a) Actuation of a spherical magnetic particle
by a rotating magnetic field. (b) A schematic of the velocity interpolation and force spreading between the
Lagrangian nodes and the Eulerian nodes in the immersed boundary method. (¢) Distribution of the Lagrangian
nodes (empty circles) on a spherical solid particle.

The fluid motion is governed by the NS equations:

)
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where p s the density; u is the fluid velocity; p is the pressure;  is the dynamic viscosity; and F is the sum
of the fluid body force and the hydrodynamic forces exerted by the particle. The no-slip boundary condition
is imposed on the lower solid wall and the particle’s surface. On the upper boundary, either the no-slip
boundary condition or the zero-shear stress boundary condition is imposed, which mimics a solid wall or a
free fluid surface, respectively.

The translation of the particle is governed by
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du,
Podt

:—jsa-ds+F; 3)

where U, is the particle’s translational velocity; m, is the particle mass; o is the fluid stress tensor; s denotes
the particle surface, and F. denotes the external body force. The rotation of the particle is governed by >

do
Ipzz—js(Xs—Xo)x(a-ds)erxB 4)

where @ is the angular velocity of the particle; 1, is the particle’s moment of inertial (I, = 0.4 m,r* since the
particle is spherical here); X; and X, denote the position on the particle surface and the center of the particle;
m is the magnetic moment. Here a rotating magnetic field is applied, and it is given by B = Bcos(2nfgt) i -
Bsin(2nfst) j, where B and f3 are the strength and rotating frequency of the magnetic field, respectively.
Numerical methods and implementation

The above governing equations are solved using LBM (see Eqgs. 5-10 below) and IBM (see Egs.
12-16 below). LBM is adopted as an efficient numerical tool to solve the NS equations (Eq. 1 and Eq. 2),
and IBM is used to deal with the hydrodynamic interactions between the fluid and sphere. The basic idea
of IBM is to use the force density F(x, ¢) in the NS equations to mimic a boundary (e.g., no-slip) that affects
the fluid. The immersed boundary-lattice Boltzmann method (IB-LBM) allows for a two-way coupling
between the dynamics of particles and the fluids. The IB-LBM method uses a set of Lagrangian nodes X(s)
(physical quantities on Lagrangian nodes are denoted with Capital letters) and a set of Eulerian nodes x
(physical quantities on Eulerian nodes are denoted with Lowercase letters) simultaneously. The former is
an ensemble of maker nodes on the surface of particles, which can move in the space; the latter consists of
fixed lattice nodes for solving the fluid flow. The velocity of the Lagrangian nodes is interpolated from the
Eulerian nodes to enforce the no-slip condition on the particle surface. Meanwhile, the force density
calculated on the Lagrangian nodes should be spread to Eulerian nodes such that the fluid acts as if there is
a boundary. The velocity interpolation and force spreading between the two node systems are illustrated in

Fig. 1b.



Instead of solving the NS equations directly, LBM solves the evolution equation of the density
distribution function (see Eq. 5 below) which can recover to the NS equations by Chapmen-Enskog
expansion. In this work, three-dimensional nineteen-velocity (D3Q19) multi-relation-time (MRT) LBM is

adopted to solve the evolution equation 443

g, (x+e,o1,t+6t)-g, (x,1)= —(M'IAM)aﬂ [gﬁ —g;}q}+§tFo; (5)

where g(x, ) is the density distribution function at the lattice site x (Eulerian nodes) and time ¢ and g* is

the equilibrium distribution function; and e, is the discrete velocity along the « direction, defined as

0,1,-1, 0, 0, 0, 0,1,-1,1,-1,1,-1,1,-1,0,0,0,0
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Using an orthogonal transformation matrix M, the right side of Eq. 5 can be mapped into the moment space

and rewritten as**

m'*=m’—A(m'—m"eq)+5t(I—%jS (7)

where m’=Mg and m /= Mg®. A is the diagonal collision matrix given by
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By definition, the equilibrium m ”*? has the expression
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In Eq. 7, S is the forcing term in the moment space with | I — EJ S =MF', and is given as*
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where the total force density is given by
F=F+f, (11)
where F. is the external force density, such as the gravity; f; is the hydrodynamic force on the Eulerian node

calculated by the IBM*
f.= JrFs [X(s,t):lé'h (x-X(s))ds = ZF; [X(s,t)]5h (x-X(s))é’s (12)

where " represents the immersed boundary of the particle; F; is the hydrodynamic force on the boundary

point X(s) (Lagrangian node); o, is the smooth approximation of the Dirac’s delta function

1 X y z
0, = o, | —10,| — |0 | —
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with
(3—2|d|+1/1+4|d|—4|d|2)/8, d|<1
5,(d)= (5—2|d|+\/—7+12|d|—4|d|2)/8, 1<d|<2 (14)
0, |d|>2

In this work, the direct-forcing method is adopted to calculate the hydrodynamic force between the fluid

and particle

d _ gynoF
<R[X(&0]=2PEL;§L— (15)

where U® and U™F are the desired velocity and unforced velocity at forcing boundary points, respectively.

U™°F can be calculated by



Ut |:X(S,I):| = Lu”"Fé‘h (x-X(s))dx (16)

No,

where #"”" is the unforced velocity on the Eulerian nodes, which is obtained using

1
o :;Zeaga (17)

The fluid density and physical velocity on Eulerian nodes are obtained by the summation of and the moment

of the density distribution function:

p=2.8. (18)

1
uzz(Zeaga+fs) (19)

The above fluid-particle momentum force F, and hydrodynamic torques lead to the motion of particle,
which is governed by Newton’s law (Eq. 3-4).The hydrodynamic force term (first term on the right side of

42-43

Eq. 3) is calculated by

ds=—| FdV 4U, 20
_J.SO'- S——J.V B +mf dt ( )

where my=pV, and V is the volume of the particle. The hydrodynamic torque term (the first term on the

right side of Eq. 4) is calculated by

d
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where Iy is the inertial moment of fluid occupied by the particle. Thus, Eq. 3 and Eq. 4 are discretized as

n+ n 1 n n n=
U =Up+m—p(—ZS:Fs As5x+Fej5t+(mf/mp)(Up—Up ') (22)
" =" +IL(_Z(XS —XC)XP;As5x+Fej5t+(If /1)@ -a"") (23)
D A

The particle’s position is updated by the translational velocity at time # and n+1



n+l _ n n+l n
X=X +05(Ur" +U;) (24)
And the desired velocity at each Lagrangian node is updated by
n+l n+l n+l
U =U"+0"" x(X -X,) (25)

Here, a uniform lattice spacing is used for the Eulerian nodes, with each grid step representing 7/6.
For a typical value of » = 12 um in this work, dx =2 um and the corresponding time step is o =1 us. In most
of cases, the simulation domain is chosen to be 607 x 307 x 30r with a grid number ~12,000,000 (see Table
1 for a grid dependence test). To implement the no-slip and slip upper boundary conditions, the half-way
bounce back scheme and specular reflection scheme are adopted, respectively.*’ The spherical particle’s
surface is discretized into 574 Lagrangian nodes (see Fig. 1c) using the method in Ref. 43. The spacing
between two neighboring Lagrangian nodes is approximately equal to the spacing between the Eulerian
nodes. Grid studies show that these node spacings are sufficient to obtain an accurate prediction of the

particle dynamics.

Numerical tests

We validate our code in three sets of tests relevant to the actuation of surface walkers using rotating
magnetic fields: the rotation of a sphere in a rotating magnetic field, the rotation of a sphere near a planar
wall, and the translation of a sphere near a planar wall.

First, we simulate the rotation of a sphere ( = 48 um; M = 801 A/m) in a periodic box filled with
a fluid (z2= 107 Pa-s). The box measures 40r x40r x40r, which is large enough to mimic an unbound fluid.
The strength of the magnetic field is B =3mT. The rotation of a magnetic sphere in a field rotating at a
frequency of fz exhibits two regimes. When f3 is below the critical frequency fc, we have the synchronous
regime, in which the sphere’s rotational frequency (f) is equal to fs. When fg > fc, we have the asynchronous
regime, in which the sphere rotates with a mean frequency lower than fg. For ferromagnetic magnetic

spheres in an unbounded fluid, in the limit of small Re,, f:is given by 4
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fe = mB/2ny = MB/(12mu) (26)
where m=4rnMr’/3 is the particle’s magnetic moment (M: sphere’s magnetization), B is the strength of the
magnetic field, and y =8 is the rotational drag coefficient of a sphere in an unbound fluid. For f3 > f.,
the rotational frequency of the sphere follows

f :fB[l_\/l_ (fc/fB)z] (27)
With the parameters chosen, Eq. 26 predicts a critical frequency of fc=20 Hz. Figure 2a shows the variation
of the sphere’s mean rotational frequency f'with fs. The computed critical frequency f: and the evolution of
fat fs> f. both agree well with those predicted by Eq. 26 and 27.

Next, we simulate the rotation of a sphere near a solid wall. The sphere is fixed at a height / above
the wall and rotates in the clockwise direction with angular speed @. The hydrodynamic force Fj
experienced by the sphere can be given as

F, = mur?wf,(h/r,Re,) (28)
where Re,, is the rotational Reynolds number given by

Rew = paw?/u (29)

In the limit of small Re,, and 7/, f, is given by>* >

R =5()(1-57) 30
We set 2= 1.5r and vary the system size (see Fig. 1a) systematically to examine how large the system must
be for f, to converge to the prediction by Eq. 30. Re, is set to 0.07 in the simulation. Table 1 summarizes
the computed f, and the prediction by Eq. 30. We observe that the hydrodynamic force is more sensitive to
the domain size in the x-direction than in the y- and z-directions. With Ly = 60r, Ly = 30r, and L,=30r, there
are ~12,000,000 lattice points in the computational domain and the computed hydrodynamic force is ~5%
higher than the analytical solution. Therefore, as a compromise between accuracy and computational cost,

this domain size is used in the rest of this work.
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Table 1. Effect of domain size on the hydrodynamic force

domain size

L/r Ly/r L./r Jx

30 30 30 0.1276
30 30 40 0.1278
30 40 30 0.1272
40 30 30 0.121

60 30 30 0.117

s s 0 0.1113%30

Finally, we simulate the translation of a sphere near a wall without rotation. The center of the sphere
is fixed at various height 4 above the wall, and a constant force F; is applied to the sphere in the x-direction.
For a sphere moving parallel to a wall at a speed Vs, it experiences a drag force given by

Fy = 6murVyf, (h/r, Rer) 31)
where Rer = 2pV,r/u is the translational Reynolds number. In the limit of small Rer and small »/A, Faxen

obtained f;, using the method of reflections®

9 (r 1/7m\3 45 (r\* 1 (7r\°
) =1-5 () +: () —5%6) %6 32)
We simulate the sphere movement at Re; =5x10* using the system shown in Fig. 1a. We set Ly = 60r, Ly

= 30r, and L, = 30r so that the sphere is effectively in a semi-infinite liquid. Figure 2b compares the f;,

obtained in our simulations with Eq. 32, and a very good agreement with Eq. 32 is obtained.
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Figure 2. (a) The mean rotational frequency of a sphere actuated by a rotating magnetic field. The sphere (» =
48 um; M = 801 A/m) is immersed in bulk. (b) The hydrodynamic force experienced by a sphere translating
parallel to a no-slip wall without rotation.
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Results and Discussion

We study how confinement and inertia affect the motion of spheres actuated by a rotating magnetic
field. A sphere rotating at a distance from a wall experiences a host of forces in the vertical direction, e.g.,
gravity, buoyancy, etc., which may drive it toward a new height, leading to a change of its confinement and
complicating the study of how confinement affects its motion. Therefore, in first two subsections, we
assume that this lift force is balanced by external forces. We thus fix the sphere’s height but allow it to
rotate and translate laterally. In the final subsection, we remove this assumption and study the motion of a
sphere released from an initial height under the actuation of a magnetic field. The data from this study show
that the results in first two subsections are also applicable to situations in which a sphere rises/settles slowly
near a wall.

Confinement effects

Here we study how the degree of confinement and the nature of the confining surface affect the
translation of a magnetically actuated sphere. The sphere has a radius of 12 um and a magnetization of
M=2x10*A/m. The frequency of the rotating field is 20 Hz; the sphere rotates in the clockwise direction
synchronously with the field. Re,, is 0.018, and thus inertia effects are negligible. Without losing generality,
we fix the sphere at # = 1.5r above the lower no-slip wall. The upper boundary, located at L, above the
lower wall, is either a no-slip wall or a slip wall (see Fig. 1a). The degree of confinement, as characterized
by k= r/L,, is varied between 1/30 and 1/3.

The sphere’s velocity computed in these simulations is shown in Fig. 3a. We first examine the
sphere’s movement when the upper confining wall has a no-slip surface. At #/L, = 1/30, the sphere moves
in the positive x-direction; as 7/L, increases, the sphere’s velocity decreases, and even becomes negative
(e.g., at v/L, = 1/4). At /L, = 1/3, when the sphere is positioned precisely halfway between the two walls,
its velocity is zero. To understand these results, we performed additional simulations in which the rotating

sphere’s center is fixed but other conditions are unchanged. Measuring the horizontal hydrodynamic force
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Figure 3. (a) The effect of confinement on the translation velocity of a magnetically actuated sphere. (b). The
hydrodynamic force acting on a rotating sphere whose center is fixed between two walls. In both panels, the
sphere is positioned at 4 = 1.5r and rotates clockwise. The lower wall has a no-slip surface.

F. experienced by these spheres helps understand how free rotating spheres moves, e.g., if Fy on a center-
fixed sphere is positive, then the sphere will have a positive velocity if it is set free. Figure 3b shows that
the variation of F on a center-fixed sphere as a function of /L. closely follows the trend of the velocity Vi
shown in Fig. 3a, e.g., at /L, = 1/4, F is negative, consistent with the negative ¥ seen in Fig. 3a. Therefore,
below we focus on understanding the evolution of F (in particular its sign reversal) as 7/L, changes.

At r/L,=1/30, a center-fixed sphere rotating clockwise above a no-slip wall experiences a positive
F.. Fxcan be decomposed into four components (see Fig. 4a): the horizontal component of the viscous

forces on the sphere’s top and bottom half (F,, and FZ,) and the horizontal component of the pressure
force on the sphere’s top and bottom half (FxT'p and F,fp). EB, is positive and T, is negative, which are

consistent with the flow field induced by the sphere (see Fig. 5a). Note that the viscous force FL and the

pressure force F {, on a piece of surface (I') of the sphere are defined as

r— (.
{ F,= .t ds 33)

r _
F, = [.—pl-ds
where 7 is the viscous stress tensor and 7 is the identity tensor. When a sphere rotates clockwise near the

no-slip, lower wall, the flow field features a strong circulating flow surrounding the sphere and a weak,

more global flow in the positive x-direction that extends quite far from the sphere. The circulating flow

14



imparts a positive Fx’fv and a negative FXT‘v on the sphere. These forces cancel each other to a large extent.
However, because of the proximity of the no-slip wall to the sphere’s bottom surface and hence larger
velocity gradient on the sphere’s bottom surface than on its top surface, the net viscous force on the sphere

is positive (see Fig. 4a).

Figure 4. The horizontal hydrodynamic forces experienced by a center-fixed sphere confined between two walls.
(a) /L. = 1/30 and upper boundary is a no-slip wall. (b) /L. = 1/4 and upper boundary is a no-slip wall. (¢) 7/L:
= 1/3 and upper boundary is a slip wall. The horizontal force F, is divided into E,, £, F&, and Eg, (subscript p

(v) denotes the pressure (viscous) components; superscript 7 (B) corresponds to the top (bottom) surface). The
arrows denote the direction and magnitude of the forces (the magnitude is not to the scale because of the large
difference between the viscous and pressure forces). All forces are normalized by npro.

As shown in Fig. 5a and also reported in previous studies,* the circulating flow increases the fluid pressure
near the bottom front side of the sphere (red region in Fig. 5a) but reduces that near its bottom back side
(blue region in Fig. 5a). This pressure imbalance leads to a negative F,fp on the sphere’s bottom half.
Meanwhile, the weak global flow in the positive direction imparts a positive pressure force FxT,p on the
sphere’s top half. Since the circulating flow is stronger than the weak global flow, the net pressure force is
negative (see Fig. 4a). The net pressure force is weaker than the viscous force, thus resulting in a positive
F\. Inspection of the force shown in Fig. 4a shows that F\ is more than 30 times weaker than FZ,. The key

point is that the significant viscous force on a sphere’s top half and the net negative pressure force on the

sphere cancel horizontal viscous force on its bottom half, leading to a weak driving force sphere translation.
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r/L,=1/30

rIL,=1/4

Figure 5. The flow and pressure fields near a rotating sphere between two no-slip walls separated by L = 30r
(a) and L, = 4r (b). The sphere is fixed at a height of 4/r = 1.5 above the lower wall. The pressure is normalized
by uw and is color-coded (p = (P — Pres)/Hw).

As r/L, increases, the F, experienced by a center-fixed rotating sphere decreases. At #/L, = 1/4, Fy
becomes negative. The reversal of Fk is a result of the modified interplay between the viscous and pressure
forces at the enhanced confinement. Because the circulating flow near the sphere’s bottom half is little
affected by the enhanced confinement by the upper wall, the velocity gradient and pressure field near the
bottom half of the sphere do not differ much from those at /L. = 1/30 (cf. Fig. 5a and 5b). Therefore, 5,
and F,fp remains similar to that for /L, = 1/30 (see Fig. 4b). However, El;, on the sphere’s top half, becomes
considerably more negative because the velocity gradient on the sphere’s top surface increases with the
enhanced confinement. As shown in Fig. 4b, the increased F, cancels the positive 5, more greatly than
that at /L, = 1/30. Meanwhile, the positive FxT'p on the sphere’s top half is weakened so that the total
horizontal pressure force now overwhelms the horizontal viscous force, which leads to the reversal of F\.
Overall, the key point is that the force (velocity) reversal is due to the inherent cancelation of F,f,, by F,Z,,
for rotating surface walkers and the enhancement of this cancellation as confinement is increased.

As r/L, increases toward 1/3, at which the sphere is positioned in the middle of the upper and lower
no slip walls, Fx approaches zero as expected due to symmetry.

Finally, we examine the sphere’s movement when the upper confining boundary is a slip wall.
When 7/L, is small, the flow near the sphere is hardly affected by the upper wall, e.g., at #/L, = 1/30, the
gradient of the fluid velocity near the sphere’s north pole is nearly unchanged when the upper boundary is
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switched from a no-slip to slip wall (see Fig. S1 in the Supporting Information). Therefore, the translation
of the sphere is similar, regardless of the nature of the upper boundary. However, as the slip wall moves
closer to the sphere, the circulating flow near a rotating sphere’s top surface is impeded much less than
when the upper boundary is a no-slip wall. Therefore, the negative FxT,,, on the sphere’s top surface is weaker
and the net horizontal viscous force decreases less compared to the situation when the upper boundary has
a no-slip wall. This explains why the decrease of a sphere’s translation velocity is milder than when the
upper boundary is a no-slip wall (see Fig. 3a).

Atr/L,=1/3, when the sphere is exactly halfway between the two walls, the gradient of the velocity
near the sphere’s top surface is much smaller than that near the sphere’s bottom surface (see Fig. S1 in the
Supporting Information). Therefore, the positive EZ, on the sphere’s bottom half is not much canceled by
the negative F{,, (see Fig. 4c). Due to symmetry, the positive pressure force on the sphere’s top and the
negative pressure force on the sphere’s bottom almost canceled out each other. This leads to a large positive
net force on the sphere, and thus a large translation velocity (see Fig. 3b and Fig. 3a).

Inertia effects

Below we investigate the effect of inertia on the rotation and translation of spheres confined above
a solid wall. The upper boundary is positioned at L, = 30r so that the sphere is essentially in a semi-infinite
fluid. The sphere is fixed at the height of 1.5 above the lower wall in all simulations (see Fig. 1a). The
strength of the magnetic field is the same as that used in Fig. 2a.

We first examine the rotation of wall-confined spheres in a rotating magnetic field for Re, < 1.
Figure 6a shows that, compared to that in the unbounded fluids, £; is reduced to 18 Hz. The decrease of /. is
expected. In the Stokes flow regime, the rotational drag coefficient of a sphere at a distance 4 from a no-
slip wall is higher than that in a bulk fluid. For A/r=1.5, this drag coefficient can be approximated very well

r

3
using y = 8murs (1 + 136 (h) ),50 which predicts a drag coefficient that is 9.3% higher than that in bulk.

Using this drag coefficient, Eq. 26 predicts an f: of 18.3 Hz, in excellent agreement with our simulations. If

the fc determined in our simulations is used in Eq. 27, the variation of the sphere’s mean rotational frequency
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at fg> fc is predicted accurately (see Fig. 6a). The rotational Reynolds number at f. is Re,=0.29 (the
maximal Re, investigated in Fig. 6a is also around 0.29 since the sphere rotates slower than f;. once fz
exceeds fc). These results suggest that, although Eq. 27 was derived for particles in unbounded fluids and
with vanishing Re., for Re,up to ~1, it can be used to predict the rotation of wall-confined particles if an
accurate f; is used. This is in line with the findings that the hydrodynamic torque experienced by a rotating

sphere above a wall at Re,, = 1 is predicted well by solving the Stokes flow.*
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Figure 6. The mean frequency of a sphere actuated by a rotating magnetic field. (a,¢) The sphere is positioned
at 4 = 1.5r above the lower wall and L=30r. (b) The sphere is in a bulk fluid. » = 48 um and in all three cases. In
(a), M = 80% A/m; In (b-¢), M = 16001 A/m.

Next, we examine the effects of inertia on sphere’s rotation at Re,, > 1. We simulate the rotation of

a sphere (r = 48 um; M = 1600 A/m) in magnetic fields with fz = 0 to 500 Hz. A naive application of Eq.
26 predicts an f; of 400 Hz, and the corresponding Re,, is 5.79. Figures 6b and 6¢ show the mean rotational
frequency of the sphere in bulk and at a distance # = 1.5r above the lower wall, respectively. When
immersed in bulk, the particle is seen to follow the rotating field up to 370 Hz; when positioned near a no-
slip wall, the particle can follow the rotating field only up 350 Hz. Furthermore, in the asynchronous regime,
the sphere’s rotational frequency f decreases more rapidly with increasing fs than that predicted by Eq. 27,
even when the f. computed in the simulations is used. When inertia plays an essential role in the fluids
around the sphere, the hydrodynamic torque exerted by the fluids increases nonlinearly and faster with f°
than that predicted by the Stokes flow-based theories. Therefore, it is harder for the sphere to catch up with
the rotating magnetic field in this flow regime, and consequently f: and the sphere’s mean rotational

frequency in the asynchronous regime are smaller than the predictions by Eq. 26 and 27.
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We now study how the translation of a magnetically actuated sphere is affected by inertia effects.
To this end, the radius of the sphere is varied systematically while their magnetization M is kept to be the
same as in Fig. 2. The frequency of the rotating magnetic field is fs = 20 or 200 Hz, with which the sphere
rotates with the applied field synchronously. Figure 7a shows that, for fs = 20 Hz, the translation speed Vx
increases linearly with the particle size. For fs = 200 Hz, the increase of Vxbecomes sublinear at » =48 um,
and even decreases for spheres with radius larger than 72 pm.

Because nonlinearity becomes important at Re, = 1 in Fig. 7a, the results in this figure are cast
into the dimensionless form of Rer = 2pVyx/u as a function of Re, (Re, = pan?/u, see Fig. 7b). At
Re, < 1, the data for fz = 20 or 200 Hz collapse together with Rer= 0.025Re,,. To understand this result,
we note that the translation speed of a rotating sphere is determined by the balance between the rotation-
induced driving force F, (see Eq. 28) and the hydrodynamic drag experienced by a moving sphere F; (see

Eq. 31). Balancing F, and F,;, we have

Rer _ 2Vy _ 2 Fp _ fx(h/TRey)

Re,, ro E6nurfu(h/r,ReT) - 3fu(h/rRet)

(34

When Re,, « 1 and Rep < 1, f, and f;, are independent of Re,, and Rey, and are function of h/r only (see
Eq. 30 and 32). For the h/r=1.5 used in our study, f,, = 1.616 and f,, = 0.117, respectively (see Fig. 2b and

Table. 1). Hence Ret/Re,, = 0.024, in agreement with the slope seen in Fig. 7b.
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Figure 7. Effects of inertia on the translation of magnetic sphere actuated by a rotating magnetic field. (a)
Variation of the sphere’s translation velocity as a function of its radius under the action of magnetic fields with
fB=20and 200 Hz. (b) The data in (a) presented in the form of the sphere’s translational Re number vs. rotational
Re number. (¢) Evolution of the difference between the maximal pressure in the bottom front side and the
minimal pressure in the bottom back side of the sphere with the rotational Reynolds number.
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As Re,, increases beyond ~1.0, Rer grows in a sublinear manner and eventually decreases. This is
caused by the inertia-induced reduction of the hydrodynamic force propelling a rotating sphere laterally.
Specifically, we perform separate simulations to measure the hydrodynamic force experienced by spheres
rotating near a no-slip wall. At A/r = 1.5, f, decreases from 0.117 to 0.096 and 0.032 as Re,, increases from
nearly zero to 6.514 and 11.58, respectively. The decrease f, can be understood as follows.

When a sphere rotates near a semi-infinite wall in the clockwise direction, a net force F in the x-
direction is developed on the sphere. The viscous component, Fyis x, is in the x-direction. The pressure force,
F,x, 1s in the negative x-direction because of the pressure difference at the bottom back and bottom front
sides of the sphere (see Fig. 5a). To gauge the evolution of this pressure difference with Re,, we define a
AP, as the difference between the maximal pressure in the bottom front region and the minimal pressure
in the bottom back region of the sphere. Figure 7c shows that for Re, < 1, AP;,./uw is nearly a constant,
consistent with the fact that, when inertia is weak, the pressure in the fluids has a characteristic value of
UV /r or puw (as the characteristic velocity V is wr here). As Re,increases beyond ~1.0, Fig. 7c shows that
APy, /uw increases rapidly with Re,. This is because, as inertia becomes stronger, the Bernoulli effect
emerges and AP, will increase faster than uw (eventually, AP}, /uw should scale as p(rw)? /uw , although
this is not observed under the modest Re, numbers used here). The deviation of AP, /uw from a constant
and its rapid rise with Re,, causes the pressure force acting on the sphere to become stronger, and thus f,.
decreases, which in turn leads to the decrease of Rer shown in Fig. 7b.

Actuation of free magnetic spheres

Here, we relax the assumption that the forces on an actuated sphere are balanced a priori in the
vertical direction and study the actuation of free magnetic spheres. We consider gravity and buoyancy as
the external forces. The density of ferromagnetic materials is typically 5-9 times that of the water (p).
However, by coating these materials using polymers, the resulting magnetic particles can have a density of

~2-9p.5" When placed in water, these particles will settle toward the wall beneath the water. However, a
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sphere rotating above a wall can experience a lift force, making it possible for the particle eventually to
reach an equilibrium height while translating laterally.

Figure 8a shows the lift force experienced by a sphere rotating above a no-slip wall fixed at 4/r=
1.5. As in above subsection, the simulations are performed in the system shown in Fig. 1a with the upper
wall located at z/r = 30, i.e., the sphere is essentially above an isolated wall. The lift force scaled by npr*m?
is practically independent of Re,, for Re, ~ 1-5 and decreases at even higher Re,. The latter is consistent
with the data reported earlier.>* The fact that the lift force scales linearly with p 7*w? is consistent with the

fact that, even in the limit of small Re,, inertia associated with particle rotation cannot be neglected as far

as the lift force is concerned. 38-3% 3932
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Figure 8. (a) The lift force experienced by a center-fixed sphere rotating above a no-slip wall. (b) Trajectory
and instantaneous translation velocity of a sphere released from a height of 4/ = 1.75 above a no-slip wall.

Next, we simulate the actuation of a free magnetic sphere. The sphere has a radius of 30 pm and a
density of 3p. It is fixed at 4/r = 1.75 initially. At ¢ = 0, it is released and rotates synchronously with an
applied magnetic field with a frequency of /=500 Hz. Figure 8b shows the z-position and the instantaneous
translation speed of the sphere as a function of time. The sphere first settles toward its equilibrium height,
overshoots the equilibrium height slightly by ¢ ~ 20/f, and comes to its equilibrium height at 4/r ~ 1.59 by ¢
~ 150/f. The overshooting is caused by the fact that, when the sphere first approaches A/r = 1.59, its
translational speed and the flow around it have not reached their steady state yet, which renders the

instantaneous lift force smaller than that when the sphere is translating and rotating at the steady state.
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Indeed, although the translational Reynolds number is small (<0.03), the circulating flow near the sphere
takes time to reach its steady state. For example, for a sphere whose center is constrained at 4/r = 1.5 but
allowed to translate laterally, once it starts to rotate, its translational speed only reaches 90% of the steady
value after about 42 7%/ v (see Fig. S2 in the Supporting Information), which corresponds to 20/f.

Overall, the above results indicate that, because of the lift force induced by the rotation of spheres,
they may overcome gravity to reach an equilibrium height and move laterally. Therefore, results in first two
subsections are useful for understanding the dynamics of free spheres actuated by external magnetic fields
at the steady state. If the transient dynamics of a sphere (e.g., how it settles or lifts toward the equilibrium

height) is of interest, then the unsteady NS equations generally have to be solved.

Conclusions

In this work, the immersed-boundary lattice Boltzmann method is adopted to simulate the magnetic
actuation of spherical surface walkers confined between walls. By solving the full Navier-Stokes equations,
our simulations are not limited to the Stokes regime, which allows us to examine the particle dynamics in
presence of inertia and lift forces. We focus on how the surface walkers’ translation motion is affected by
type of confining boundaries, the degree of confinement, and the finite inertia of the fluids.

Our simulations show that both the nature of confining boundaries (slip vs. no-slip) and the degree
of confinement significantly affect the dynamics of surface walkers. For example, for a sphere at a given
height above a lower no-slip wall, while its translation speed often decreases as the upper wall is shifted
toward it, its translational speed can increase dramatically if the upper wall features a slip surface (e.g., that
of the air-water interface). On the other hand, if the upper wall features a no-slip surface, the sphere can
reverse its translation direction when it becomes highly confined. Finite fluid inertia reduces the critical
frequency of the rotating magnetic field, especially when the sphere is confined near a no-slip wall. Even
when the sphere can rotate synchronously with the external magnetic field, its translation is hindered by
inertia effects when the rotational Reynolds number becomes considerably larger than 1. When the

rotational Reynolds number exceeds ~5, a sphere’s translational Reynolds can even decrease with
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increasing rotational Reynolds numbers. Because many applications of surface walkers involve confined
geometries (e.g., when they are suspended in microchannels) and finite inertia (e.g., when the surface
walkers are large or the frequency of the applied magnetic fields is high), the rich translation and rotation
behaviors of surface walkers revealed here should be considered in their design and applications.

Supporting Information available: A nomenclature of all variables in this work, the distribution of fluid
velocity near a rotating sphere, and evolution of the translation velocity of a sphere that is set to rotate

impulsively.
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