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Abstract—This paper presents a flow-based entropy charac-
terization of a small/medium-sized campus network that uses
network address translation (NAT). Although most networks
follow this configuration, their entropy characterization has
not been previously studied. Measurements from a production
network show that the entropies of flow elements (external
IP address, external port, campus IP address, campus port)
and tuples have particular characteristics. Findings include: i)
entropies may widely vary in the course of a day. For example,
in a typical weekday, the entropies of the campus and external
ports may vary from below 0.2 to above 0.8 (in a normalized
entropy scale 0-1). A similar observation applies to the entropy
of the campus IP address; ii) building a granular entropy
characterization of the individual flow elements can help detect
anomalies. Data shows that certain attacks produce entropies
that deviate from the expected patterns; iii) the entropy of
the 3-tuple {external IP, campus IP, campus port} is high and
consistent over time, resembling the entropy of a uniform distri-
bution’s variable. A deviation from this pattern is an encouraging
anomaly indicator; iv) strong negative and positive correlations
exist between some entropy time-series of flow elements.

Keywords—Network flows; entropy; network address transla-
tion; NetFlow.

I. INTRODUCTION

Today’s operators are facing challenges on how to ef-
ficiently protect networks. The deployment of 100 Gbps
networks is now more frequently observed. At these rates,
the use of inline devices such as traditional firewalls and
intrusion prevention systems are hindered, in particular when
large individual flows -10 Gbps and above- are present [1].
The exponential increase in network traffic adds complexity
to techniques that otherwise may be viable, such as payload-
based intrusion detection system (IDS). For example, Bro, one
of the most reputable payload-based IDSs, has been reported
to be excessively CPU intensive on high speed networks [2].
As a result, even when the number of flows is moderate, many
packets may be dropped [2].

Approaches that rely on aggregated traffic, such as flow-
based techniques, show a better scalability. With flow-based
techniques, packets are aggregated into flows by a network
device, such as a router or a switch. In this work, a flow is
identified by the 5-tuple source and destination IP addresses,
source and destination ports1, and transport protocol. The flow

1In this article, the term port refers to transport-layer port.

information is collected by the device and then exported for
storage and analysis. Thus, the performance impact is minimal
and no additional capturing devices are needed [3]-[5].

Entropy has been used in the past to detect anomalies,
without requiring payload inspection. Its use is appealing
because it provides more information on flow elements (ports,
addresses, tuples) than traffic volume analysis. Entropy has
also been used for anomaly detection in backbones and large
networks. Based on statistical packet distributions, Nychis et
al. [6] presented an entropy-based anomaly approach deployed
on large networks (ten of thousands of active IP addresses [6]).
Other entropy-based approaches have been recently proposed
for forensic analysis of DNS tunnels [7] and for classifying
darkspace traffic patterns [8].

An additional complexity for anomaly detection is the use
network address translation (NAT). Given the scarcity of IPv4
addresses, NAT permits end-users in a network share a single
public IPv4 address. While the presence of NAT in the Internet
is pervasive [9], the flow-based entropy characterization of
NATed networks has not been studied previously.

A. Contribution

This paper presents a flow-based entropy characterization
of a campus network. Although, as described above, similar
approaches have been used for anomaly detection in differ-
ent environments (see [6], [10]), this paper presents several
findings that have not been previously reported. Specifically:

• The paper presents an entropy characterization of a
small/medium-sized campus network. This type of net-
work is located at the edge of the cyber-infrastructure and
provides connectivity to a great portion of Internet users.
Further, the characterization is based on flow counts.

• The entropies that result from locating a network behind
NAT have particular characteristics. E.g., during a typical
weekday, the entropies of the external and campus ports
can vary from below 0.2 to above 0.8 (in a normalized
entropy scale 0-1). A similar observation applies to the
entropy of the campus IP address.

• Data shows that certain attacks produce entropies that
deviate from the expected patterns.

• The entropy of the 3-tuple
{external IP, campus IP, campus port} is high and



consistent over time, resembling the entropy of a
uniform distribution’s variable. A deviation from this
pattern is an encouraging anomaly indicator.

• Strong negative and positive correlations exist between
some pairs of entropy time-series of flow elements. These
relations can help enhance the detection of anomalies.

The rest of the paper is organized as follows. Section II
reviews related work. Section III describes the experimental
setup, methodology, and measurements. Section IV discusses
the results, and Section V concludes this paper.

II. RELATED WORK

There is a renew interest in using flow analysis to monitor
and secure networks, driven by its substantial reduction in
storage and CPU requirements. Hofstede et al. [4] indicate
that flow-based analysis leads to data reduction of 1/2000
of the original volume, as packets are not individually pro-
cessed but aggregated. Hofstede et al. [3] present flow-based
detection techniques for SSH and web-application attacks.
They also contrast the behavior of flows in production and
lab environments. In [5], an application is developed to
detect compromised hosts by using a multi-layered security
detection. The first layer of detection consists of a flow-based
intrusion detection, which pre-selects suspicious traffic. The
second layer performs packet-based intrusion detection over
the pre-filtered traffic.

Early work in entropy-based anomaly detection applied
to backbone networks is presented in [11]. The proposed
detection algorithms compute the entropy of IP addresses
and ports. The authors showed that changes in the entropy
content are indicators of massive network events. The traffic
data was collected from a large ISP backbone, namely, the
Swiss national research and education network.

Nychis et al. [6] describe the advantages of entropy-based
analysis of multiple traffic distributions in conjunction with
each other. In particular, their work suggests that for more
accurate anomaly detections, IDSs should complement the
use of port and IP address distributions with other behavioral
features. The different distributions are constructed by count-
ing packets, and the entropy analysis is applied to large data
sets containing thousands of active IP addresses from large
networks (GEANT [12], Internet2 [13], and others).

Berezinski et al. [10] provide a comparative study of
entropy-based approaches for botnet-like malware detection.
Their results indicate that, in addition to Shannon’s entropy,
Renyi’s and Tsallis’s entropies have very good detection
performance. The authors also show that anomaly detection
methods based on volume may perform poorly. Nowadays
many anomalous network activities such as low-rate dis-
tributed denial-of-service (DDoS), stealth scanning, or botnet-
like worm propagation and communication do not result in a
substantial traffic volume change. Thus, they remain hidden
in a traffic volume expressed by the number of packets, bytes,
or flows.

Callegari et al. [14] also propose an anomaly detection
system which measures the variation in the entropy associated

Fig. 1. Topology configuration.

with the network traffic. Similar to [10], different entropy
definitions are used.

Homem et al. [7] propose an entropy-based technique to
detect anomalies perpetrated by encapsulating IP packets car-
rying malware over the DNS protocol. The proposed method
quantifies the information entropy of different network proto-
cols and their DNS tunneled equivalents, and then use such
quantities to discriminate normal behavior against anomalies.

The use of NAT to conveniently hide the source of mali-
cious behavior is discussed in [15]. By using only flow in-
formation, the authors show that machine learning algorithms
may identify devices behind NAT. Tracing such devices is
particularly relevant when payload inspection does not provide
information because encryption is used at the application
layer.

III. METHODOLOGY

A. Topology

Fig. 1 shows the flow monitoring architecture used in
this work. The border router connects the campus network
to the Internet Service Provider (ISP) / Internet. The NAT
device translates private IP addresses to a single public IP
address (campus IP). The campus network corresponds to
the Northern New Mexico College (NNMC). It connects 15
buildings and different departments. There are approximately
250 faculty/staff members, 1,500 students, 20 general-purpose
computer laboratories, and faculty and staff offices. Many
students access the Internet via WiFi using personal devices.

The analysis presented in this paper is general and can use
multiple metering points and flow directions. For simplicity
of implementation in the small/medium-sized network con-
sidered here, the metering point is the single border router
and the traffic direction is inbound (from the Internet to the
campus network). Large campus networks with several border
routers may require each border router to become a metering
point and to monitor inbound and outbound traffic directions.
The border router is a Cisco ASR 1000 series [16]. Flow
information is ready for export when i) it is inactive for a
certain time (i.e., no new packets received for the flow during
the last 15 seconds); ii) the flow is long lived (active) and its
duration is greater than the active timer (1 minute); and when
a TCP flag indicates that the flow is terminated (i.e., FIN, RST
flag are received). For each flow, the router exports the source
and destination IP addresses, source and destination ports,
layer-4 protocol, TCP flags observed during the connection,
and connection statistics including number of packets, number



of bytes, bytes per packet, and flow duration. The information
is collected by the flow collector, which implements NetFlow
protocol version 9 [17]. To avoid confusion, instead of using
source and destination terminology, this paper will use exter-
nal and campus IP addresses, and external and campus ports.
Note that from the point of view of the border router, users’
flows have the same campus IP address (public IP), because
of NAT. The collector organizes flow data in five-minute time
slots. Data analysis is conducted for each individual time slot.

While traffic data has been collected for more than a
year, the paper presents the analysis of a typical week, from
Saturday, March 25, 2017 to Friday, March 31, 2017. The
traffic data observed during this week is representative of the
campus traffic.

B. Entropy Measures
For each time slot, the entropy of flow elements are

computed. Entropy measures the randomness of a data set.
The more random the data is, the more entropy it contains.
The entropy of a random variable X is

H(X) =
N∑
i=1

p(xi)log2

(
1

p(xi)

)
, (1)

where x1, x2, ...xN is the range of values for X , and p(xi)
is the probability that X takes the value xi [18]. Among all
probability distributions, the largest entropy corresponds to
that of the uniform distribution: log2(N0). N0 is the number
of distinct xi values present in a time slot.

This paper computes entropies as described in [6], [10].
However, this work uses flow counts rather than packet counts.
Specifically, the entropy of IP addresses and ports is computed
as follows. For each external (campus) IP address (port) xi ,
the probability p(xi) is calculated as

p(xi) =
Flows with xi as external (campus) IP addr. (port)

Total number of flows
.

(2)
The normalization factor is log2(N0), where N0 is the number
of active external (campus) IP addresses (ports) observed
during the time slot.

In addition, this paper also considers the entropy of the 3-
tuple {external IP, campus IP, campus port}. For a given 3-
tuple xi , the corresponding probability is calculated as

p(xi) =
Flows with xi as 3-tuple
Total number of flows

. (3)

The normalization factor is log2(N0), where N0 is the number
of active flows during the time slot.

C. Time-series Correlation and Data Statistics
For each time slot, the five normalized entropies are com-

puted. Let Yi, j denote the normalized entropy of distribution i
(e.g., campus IP address) observed in time slot j, and Yi denote
the time-series of normalized entropy values for distribution
i. Given the Yis, the pairwise correlation coefficients between
every pair of time-series vectors Yi and Yi′ are computed [6]:

ri,i′ =

∑
j Yi, jYi′, j − nYiYi′

(n − 1)σYiσYi′
, (4)

where Yi and Y ′
i are the sample means of Yi and Yi′ , σYi and

σYi′ are the sample standard deviations of Yi and Yi′ , and n is
the number of time slots.

Additional data statistics are also computed: mean, standard
deviation, maximum and minimum values. As the measured
data sets from weekdays and weekend substantially differ
in volume and entropy, the data statistics are separately
computed for weekend and weekdays. See [19] for more
information on day/night and weekday/weekend patterns in
campus network traffic.

D. Time-series Rate of Change

The rate of change of the entropies is also approximated
as an indicator of anomalies. A simple approximation of
the derivative of Yi with respect to time is computed as the
difference between consecutive time slots j and j + 1:

∆Yi, j = Yi, j+1 − Yi, j . (5)

IV. RESULTS

A. General Description

Fig. 2 shows the total traffic and entropy quantities during
a typical week. The red portion of the curve represents the
weekend (Saturday March 25, 2017 - Sunday March 26, 2017)
and the green portion of the curve represents the weekdays
(Monday March 27, 2017 - Friday March 31, 2017). The
corresponding statistics for the graphs are listed in Table I. The
mean traffic volume on the weekday/weekend is 1, 101/168
Mbytes in a 5-minute time slot. Thus, there is a difference of
an order of magnitude between weekday and weekend. The
day and night patterns are clear on weekdays, when users
(students, faculty, and staff) are on campus. The peak time is
slightly after 12:00 noon.

Consider the campus IP’s entropy. As a small/medium-
sized campus network, the number of public IP addresses
is limited (less than 50 active IP addresses. One public IP
address is used for NAT (users’ flows) and few others are used
for externally available servers). When users are on campus
during weekdays, the entropy can be as low as ∼0.1. The
reason of the low entropy is the use of NAT, which maps users’
private IP addresses to a single public IP address. During the
weekday/weekend, the mean entropy is 0.224/0.345. However,
note the large variation. On weekdays, the range µ ± σ is
0.301 − 0.147.

The entropy of the campus port diverges from that of
the campus IP. During the day, as users connect to the
network, the most popular application is browsing. Browsers
use ephemeral port numbers, behaving more randomly. At
peak hour, the distribution of the campus port approaches a
uniform distribution and the entropy approaches ∼0.9. The
variation is very large during both weekdays and weekend;
e.g., on weekdays, the range µ ± σ is 0.823 − 0.511.

Consider the entropy of the external IP address. The entropy
is much larger than that of the campus IP. This is a reflection
of users connecting to a large number of websites. However,
note that the distribution is far from uniform, as entropy is well



Fig. 2. Entropy time-series for the small/medium-sized network studied in this paper. Anomalies are labeled with letters A through J .

TABLE I. STATISTICAL INFORMATION FOR THE WEEK DATA OF FIG. 2.

Feature Mean (µ) Std (σ) Max Min µ + σ µ − σ

Total traffic weekday / weekend (x106 bytes) 1,101 / 168 1,254 / 224 8,875 / 3,262 5.5 / 4.1 2,355 / 392 -153 / -56
3-tuple entropy weekday/weekend (bits) 0.938 / 0.933 0.061 / 0.049 0.98 / 0.979 0.104 / 0.632 0.999 / 0.982 0.877 / 0.884

Campus IP entropy weekday/weekend (bits) 0.224 / 0.345 0.077 / 0.0769 0.44 / 0.503 0.011 / 0.172 0.301 / 0.429 0.147 / 0.268
Campus port entropy weekday/weekend (bits) 0.667 / 0.548 0.156 / 0.100 0.893 / 0.839 0.015 / 0.319 0.823 / 0.648 0.511 / 0.448
External IP entropy weekday/weekend (bits) 0.739 / 0.791 0.070 / 0.071 0.898 / 0.902 0.085 / 0.016 0.809 / 0.862 0.669 / 0.72

External port entropy weekday/weekend (bits) 0.486 / 0.656 0.204 / 0.098 0.926 / 0.836 0.138 / 0.309 0.69 / 0.754 0.282 / 0.558

below 1. This indicates that there are users connecting to the
same sites/IP addresses (e.g., popular sites include YouTube,
Google, Facebook). However, note that while the entropy
variation is much lower than that of other flow elements
discussed above, the range µ ± σ is 0.809 − 0.669, still
significant.

The external port’s entropy shows the largest variation
among all distributions. During weekdays, at peak times, the
entropy decreases to the lowest value, even below 0.2 some
days (Monday, Tuesday, and Wednesday). The users’ main
application is browsing, thus they connect to few well-known
ports (i.e., port 80, 443) which decreases the entropy. On
the other hand, the distribution changes in opposite direction
around midnight, when the entropy increases to the largest
value, ∼0.8. Note the large variation, in particular for week-
days. The range µ ± σ is 0.69 − 0.282 on weekdays.

The entropy of the 3-tuple
{external IP, campus IP, campus port} is the most consistent
over time with a distribution that resembles a uniform
distribution. Most flows generated by users have a unique

3-tuple. Thus, the entropy is high during both weekdays and
weekend, with mean values 0.938 and 0.933 respectively.
Note also the low variation. In a network without anomalies,
the number of flows having the same 3-tuple would be close
to zero. Thus, a deviation from this situation may indicate
anomalies.

B. Event Use Cases

Entropy values should be interpreted in a day/time context.
For example, a value of 0.25 for the entropy of the external
port is not abnormal for a weekday at noon; however, it does
represent an anomaly if that value is seen at 6 AM. Along
these lines, events A through J represent anomalies. Most of
them deviate from the normal values that should be observed
at a given day/time.

Before describing few event examples, consider Fig.
3(a). External and internal ports are shown in or-
ange and green respectively. Under normal circumstances,
most flows are unicast connections with unique 2-tuple
{external IP, external port}, unique campus port (if necessary,



Fig. 3. (a) Typical flow pattern. External port is shown in orange, and campus port is shown in green. Flows have unique 2-tuple {external IP, external port},
unique campus port (if necessary, the NAT device performs port address translation), and common campus IP (NAT public IP address). (b) Flow pattern
showing a unique external IP address generating multiple flows to multiple campus IP addresses. (c) Flow pattern where each of the multiple external IP
addresses generates multiple flows to a campus IP address, single campus port (SSH).

the NAT device performs port address translation), and com-
mon campus IP (NAT public IP address shared by campus
users).

1) Event A: This is a SYN flood event from a single
perpetrator, thus the external IP’s entropy is ∼0. While not
as pronounced, the external port’s entropy also decreases,
because the perpetrator uses a relatively small number of
ports in relation to the number of flows being generated (875
different ports were observed). Most external ports are used
to attempt opening up to ∼1,000 connections each. Campus
IP’s and port’s entropies do not change, because the attack
targeted the entire set of campus IP addresses of the target
institution (note that the campus NAT address is one of the
IP addresses of the target. Other addresses are allocated to
few servers providing specific services, including email and
web services) (∼1,000 attempted connections per campus IP
address and ∼230 attempted connections per campus port).
The 3-tuple’s entropy does not indicate anomalies because the
volume of any aggregate traffic changes proportionally to the
total traffic. On average, there are ∼1,080 flows from the single
external IP to each campus IP. Fig. 3(b) shows a simplified
illustration of the flow pattern observed during event A.

2) Event B: This event does not correspond to an attack but
to DNS activity. Approximately ∼50 Amazon servers generate
flows addressed to the local DNS server on campus. Each
Amazon server generates between ∼100 and ∼300 flows to
the local DNS server. Flows from a single Amazon server
have identical 3-tuple {external IP, campus IP, campus port}.
Thus, the 3-tuple’s entropy is the best event indicator. The
campus port’s entropy decreases because of the increase in
port 53 (DNS) activity. Under normal conditions, the number
of DNS flows in a 5-minute window is typically below 1,000.
During event B, the number of DNS flows increased to more
than 6,000. The total traffic in bytes is not an indicator for
this event, as the increase in DNS traffic is minimal when
compared to the total traffic observed during the time slot.

3) Event G: This event occurred at 9:50 AM on Wednesday
03/29/17 and was a dictionary/brute-force attack to an SSH
server (campus port 22). The total traffic does not reflect
an anomaly, because SSH brute-force login attempts do not

produce much volume (the traffic volume in bytes from the
perpetrator was below 0.3% of the total traffic volume). How-
ever, the anomaly is captured by a drop in the 3-tuple entropy
from ∼0.92 to ∼0.33. While a smaller change is also observed
in the campus port’s entropy from ∼0.75 to ∼0.5, this change
occurs in an opposite direction to the natural entropy change
for that day and time of the week (i.e., the normal behavior
of the campus port’s entropy during a weekday should show a
steady increase until approximately noon). Similarly, although
the natural tendency during this time slot is the decrease in
external port’s entropy, the anomaly sharply reverses this trend
by increasing the entropy from ∼0.35 to ∼0.6. The increase
in the external port’s entropy occurs because the perpetrator’s
device opens several connections using ephemeral ports. A
reader can carefully note that an external port’s entropy value
of ∼0.6 is a valid value for a different time window, but not
for the time slot of event G. The external IP’s entropy also
captures the anomaly with a decrease in entropy from ∼0.75
to ∼0.5.

4) Event H: From few external IP addresses, the perpetra-
tors of event H opened multiple connections (using different
external ports) to attempt to gain access to a single IP / port on
campus. Event H is similar to an SSH dictionary / brute-force
attack, but perpetrated by several devices (e.g., botnet). The
external IP’s entropy decreases as the number of flows from
the perpetrators increases. Fig. 3(c) illustrates this attack.

Other events labeled as C,D, E, F, I, J show similarities to
those described above. Anomalies can be detected by the rapid
change in one or more entropy measures.

C. Entropy Time-series Correlation

Table II shows the correlation between the entropy time-
series.

1) Total traffic: During weekdays, the total traffic is neg-
atively correlated to the entropies of the campus IP (-0.8)
and external port (-0.81). Traffic increases as a result of
users accessing mostly web applications; thus the campus
IP’s entropy decreases because users use the same campus
IP address (NAT public IP). The external port’s entropy also
decreases because most traffic uses http/https. The total traffic



TABLE II. CORRELATION OF ENTROPY TIME-SERIES.

Campus Campus External External Total
IP port IP port traffic

Weekday
3-tuple 0.23 0.1 0.6 -0.02 -0.05

Campus IP -0.85 0.6 0.89 -0.8
Campus port -0.37 -0.98 0.78
External IP 0.45 -0.36

External port -0.81
Weekend

3-tuple -0.23 -0.12 0.56 0.06 -0.03
Campus IP 0.15 -0.38 0.06 -0.38

Campus port -0.48 -0.93 0.31
External IP 0.48 -0.05

External port -0.39

is directly correlated to the campus port’s entropy (0.78),
because as users on campus access the web, their respective
browsers open ephemeral ports that collectively resemble
a uniform distribution. On weekend, there is a low or no
correlation between the total traffic and other time-series.

2) Campus IP: On weekdays, the entropies of the campus
IP and campus port are negatively correlated (-0.85). As users
use the network, the campus IP’s entropy decreases because
users use the same campus IP address (NAT public IP). On
the other hand, the campus port’s entropy increases because
users’ browsers open ephemeral ports. The entropies of the
campus IP and external port show a direct correlation (0.89):
the more traffic is generated by users, the more NATed flows
exist, and the lower the campus IP’s entropy is. As most traffic
is http/https, the external port’s entropy also decreases. On
weekend, there is a low or no correlation between campus IP
and other time-series.

3) Campus port: On weekdays, the strongest negative
correlation is between the entropies of the campus port and
external port (-0.98). This relation is produced by the use
of a large number of browser’s ephemeral ports (each user’s
browser likely uses a different port number) to connect to few
external ports (i.e., http/https). On weekend, there is a low or
no correlation between campus port and most distributions,
with the exception of external port.

4) External IP: The entropies of the external IP and exter-
nal port are correlated on weekdays (0.45) and on weekend
(0.48). Note that the external IP has high entropy (mean is
0.739) when compared to other flow elements. This reflects
the variety of external IP addresses users connect to.

5) External port: As mentioned above, the entropies of the
external port and campus IP are strongly correlated (0.89). On
the other hand, the entropies of the external port and campus
port are negatively correlated on weekdays (-0.98) and on
weekend (-0.93).

6) 3-tuple {external IP, campus IP, campus port}: The
entropy of the 3-tuple shows correlation with that of the
external IP on weekdays (0.6) and on weekend (0.56). Low
or no correlation is noted between the 3-tuple and other time-
series.

D. Time-series Rate of Change

Fig. 4 shows the rate of change of the total traffic and
entropy time-series, computed according to Eq. (5). Corre-
sponding values are provided in Table III. The first observation
here is the large rate changes in the total traffic, in particular
during weekdays. Thus, traffic rate changes may not always
be accurate indicators of anomalies, as they occur naturally
in this small/medium-sized network. In contrast, changes in
the entropy time-series from one time-slot to another (in bits
/ time unit) are small. The mean values for entropy changes
are approximately zero.

V. CONCLUSION

This paper presents a flow-based entropy characterization
of a small/medium-sized campus network that uses NAT.
Measurements from a production network show that in a
typical weekday, the entropies of the external and campus
ports may widely vary from below 0.2 to above 0.8 (in
a normalized entropy scale 0-1). Similarly, the entropy of
the campus IP address may vary from 0.1 to 0.4. Despite
the wide range of values, findings indicate that building a
granular (small time slots) entropy characterization of flow
elements facilitates anomaly detection. Data shows that certain
attacks produce entropies that deviate from the expected
patterns. Data also shows that the entropy of the 3-tuple
{external IP, campus IP, campus port} is high and consistent
over time, resembling the entropy of a uniform distribution’s
variable. A deviation from this pattern is an encouraging
anomaly indicator.

The total traffic and the flow element entropies in a NATed
network are correlated. Strong negative correlation is observed
between i) campus IP’s entropy and total traffic, ii) external
port’s entropy and campus port’s entropy, iii) external port’s
entropy and total traffic, and iv) campus IP’s entropy and
campus port’s entropy. On the other hand, strong positive
correlation is observed between i) campus IP’s entropy and
external port’s entropy, and ii) campus port’s entropy and
total traffic. Future work includes the development of anomaly
detection algorithms that exploit the entropy characterization
of flow elements and tuples, and their relations.
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