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Abstract—The network function virtualization (NFV)
paradigm focuses on increasing manageability and scalability
of modern complex heterogeneous networks and network
services by decoupling the network functions and hosting
devices. However, as new promising solutions become
available, the need for availability and reliability techniques
grow, particularly for large-scale and interdependent
scenarios. Therefore this study proposes a meta-heuristic
genetic algorithm scheme to deploy “risk-aware” virtual
function mapping and traffic routing to improve the reliability
of user services as well as reduce deployment and routing
costs. Furthermore, this solution is compared with two other
“risk-aware” survivable schemes in order to evaluate its
accuracy, i.e., integer linear programming (ILP) and greedy
heuristic solutions .

Index Terms—network function virtualization (NFV), surviv-
ability, genetic algorithm (GA).

1. Introduction

The past three decades have seen rapid technological
advances in the networking and information technology (IT)
space. These developments have occurred not only in com-
putational power, but also in terms of data rate transmission
and storage as well. In turn, these advances have led to much
lower acquisition, deployment and maintenance costs. These
gains have led to the deployment of large interconnected
datacenters, and the broader emergence of cloud-computing
paradigms. However, as these trends have unfolded, a host of
management and orchestration challenges have also arisen.

Now most physical networking-layer setups have yielded
increased management complexity due to specialized con-
figuration requirements and a high degree of vendor depen-
dency. In response, various organizations began to partner
and develop new strategies to simplify network nodes by
decoupling the data and control planes outsourcing the
control plane to a concentrator, i.e., software-defined net-
working (SDN). Overall, this technology can lower network
ossification and reduce operational and capital expenditures
(OpEx and CapEx) for carriers.

However, even though data and control plane decou-
pling presents many advantages, traditional network services
deployment still remains a complex and expensive under-
taking. Namely, there is a high degree of vendor-dependency

as traditional network services are managed and deployed by
embedded vendor-proprietary software. Therefore, in order
to reduce network services management complexity and
improve (re)deployment capabilities, the network function
virtualization (NFV) paradigm has been further evolved to
support deployment of network functions on commercial-
of-the-shelf (COTS) equipment, i.e., running as software
instances. In general, most client networking services in-
clude a range of tasks such as firewalls, deep packet in-
spection (DPI) engines, intrusion detection/prevention sys-
tems, network address translation (NAT) boxes, etc. Now
in terms of NFV, these networking services are typically
composed of multiple individual virtual network functions
(VNF). Specifically a VNF can be deployed/implemented
across multiple datacenter sites, and a datacenter site can
host multiple VNFs.

Overall, as service providers show increasing interest in
NFV paradigms, many further questions and challenges are
starting to arise, i.e., such as management and orchestration,
security and privacy, performance, and function placement,
among others. In particular, the latter placement problem
typically considers a multiple set of client requests, where
each request is comprised of a set of VNFs, a source node, a
destination node and a minimum bandwidth interconnection
rate. Hence service providers must efficiently place these
VNFs across their datacenters to reduce deployment and
routing costs, and also increase service performance and
reliability.

Given the immense interest and focus on network virtu-
alization, the VNF placement problem has been well-studied
in recent years. Specifically, researchers have proposed a
host of schemes to minimize costs and/or increase revenues
[2]- [6].

Furthermore, survivability concerns are also becoming
increasingly important. Here, plural techniques can be im-
plemented in order to improve the resiliency and availabil-
ity of the virtual functions and network services against
failure events. Although some efforts have addressed NFV
survivability topics, these studies have mostly focused on
single isolated system failures. As a result, the further impact
of large-scale disaster events (multiple failures) on NFV-
based services remains a key a concern. These occurrences
can include natural disasters, weapons of mass destruction
(WMD) attacks and cascading power outages. Indeed there
is a growing need to build more systematic, multi-objective



VNF placement schemes to efficiently provision resources
and directly incorporate the randomized nature of disaster
events, i.e., “risk-aware” VNF placement under multi-failure
scenarios. Moreover, to the best of the authors’ knowledge,
[1] is the only known work to perform such analysis and
deployment. Although the results presented in such effort are
promising, the proposed schemes lack in either performance
(greedy heuristic) or scalability (integer linear programming
- ILP). The linear and greedy schemes presented in [1] may
not be the best solutions to overcome the challenges imposed
by stochastic failures over large-scale .

This work addresses the above challenges and devel-
ops a novel multi-objective resource provisioning solutions
for NFV infrastructures based on genetic algorithm (GA).
Specifically, this technique implements function placement
and routing strategies and also incorporates stochastic failure
models to lower failure risk and improve VNF reliability in
large-scale multi-failure scenarios, which is achieved due to
the GA’s random nature. In addition, many existing VNF
placement and/or routing schemes also assume abundant
datacenter resources to satisfy all client demands. As such,
these methods only focus on minimizing service cost. How-
ever the assumption of unconstrained resources may not hold
in heavy demand or post-failure scenarios where resource
scarcity will be high. As a result, this effort combines
two main goals: a) efficiently place and route VNFs, and
deploy traffic engineering, in order to minimize costs and
maximize overall requests in a constrained environment, b)
reduce/mitigate virtual functions downtime by incorporat-
ing a pre-fault “risk-aware” meta-heuristic algorithm to the
provisioning/placement solution.

This paper is organized as follows. First, a background
review of existing work in survivable VNF placement and
routing is presented in Section II. Subsequently, Section
III presents the overall notation and stochastic multi-failure
disaster model. A detailed meta-heuristic formulation for
risk-aware VNF provisioning based on genetic algorithm is
then presented in Section IV. Moreover, Section V presents
some detailed performance results, which are compared
with the schemes presented in [1]. Finally a conclusion is
presented along with future directions.

2. Related Work

Along these lines, this section overviews some of the
latest developments in the resilient and survivable VNF
placement and routing problem. Open research challenges
are then outlined to motivate this work.

Now a wide range of studies have looked at VNF
placement under regular, i.e., working network conditions
[2]- [6]. Overall most of these VNF placement schemes have
focused on objectives such as performance improvement,
cost reduction, energy efficiency, traffic engineering, etc.
However, VNF survivability (reliability) is now becoming
a major concern given the critical nature of many services,
and these studies consider single failure or multi-failure
scenarios. Most of these efforts have only addressed isolated
single node and link failures. For example, [7] considers the

case of a single VNF failure causing a service chain inter-
ruption. An extended orchestration architecture is proposed
here to dynamically redefine flows and steer (re-route) traffic
to establish new paths and reduce downtime. Nevertheless,
VNF placement is not considered here. Further provisions
for resource limitations and bandwidth constraints are also
lacking. As such, this effort only focuses on reactive disaster
recovery.

Meanwhile [8] proposes another resilient service func-
tion chaining (SFC) allocation scheme. First, a greedy
heuristic is designed to map the virtual network functions
forwarding graphs (VNF-FGs) for service chaining requests,
thereby yielding resource allocation constraints and VNF in-
terdependence. However a complex (time-consuming) back-
tracking scheme is then presented to allocate resources,
which makes it intractable for a large-scale infrastructure.

Moreover, the work in [9] presents a joint topology
design and mapping (JTDM) heuristic, termed as closed-
loop with critical mapping feedback. This solution builds
the network topology and then maps the VNFs in order to
minimize the total bandwidth cost (TBC). In particular, TBC
minimization is achieved by performing function combina-
tion. Furthermore, this solution also incorporates reliability
concerns by computing node and link-disjoint protection
service chains. In particular, two protection schemes are
considered here, i.e., dedicated and shared.

Overall, the work in [10] takes a slightly different ap-
proach and assumes the availability of a-priori probabilistic
resource availability levels. However, broader resources con-
straints, routing costs and traffic engineering concerns are
not included.

As noted earlier, most existing VNF provisioning solu-
tions are only designed to handle isolated single failures.
As such, these methods will be largely ineffective against
large-scale failure events/stressors, such as natural disasters,
power outages, malicious WMD attacks, etc. Except for [1],
the existing body of work on network disaster-recovery has
only focused on point-to-point connections and virtual net-
work (VN) services. The work presented in [1] proposes two
multi-objective VNF placement schemes to address the sur-
vivability problem under multi-failure scenarios considering
a pre-fault awareness. The first one is an ILP optimization
scheme while the second one is a greedy heuristic solution
and its methods and results are further analyzed and used
for comparison.

3. Notation & Failure Model

To be able to deploy a survivable VNF multi-objective
placement and routing scheme, some steps are necessary.
First, it is imperative to determine the physical network
model, the virtual functions demand models and the multi-
failure model and their notation. Only then it is possible to
determine and test efficient placement solutions.



3.1. Network Model

A graph G=(V ;E) is used to define the network in-
frastructure, where V is the set of nodes and E the set of
links. Additionally, a link (i, j) ∈ E has an associated cost
rcij , used to determine the routing cost, and a bandwidth
capacity bij , used to quantify the link capacity. Also the
set of all possible NFs is denoted by F , and the set of
datacenters where NFs are implemented and can be pro-
visioned are represented by the subset D ⊆ V . Clearly a
given datacenter d ∈ D implements a subset of functions
Fd ⊆ F . The customizable number of resource types is also
denoted by the integer m. For example, m=3 can refer to
processor, storage and memory resources. It is also assumed
that a datacenter d ∈ D has a finite amount of resources
Wd = {wd,1, wd,2, ..., wd,m}. Hence in order to implement a
function i ∈ Fd, datacenter d ∈ D uses wi

d,1, w
i
d,2, ..., w

i
d,m

resources. Also, the setup cost of locating an instance of a
function i ∈ Fd at datacenter d is scid, and an instance of
function i at datacenter d can serve λid requests. In order to
accommodate more requests, multiple instances of function
i can also be deployed at datacenter d.

3.2. Virtual Functions Demand Model

Now for a set of requests R arriving from clients, each
request r ∈ R is characterized by a 4-tuple format denoting
the source and destination nodes of the flow, the set of
requested functions Fr ⊆ F , and the minimum required
bandwidth capacity, i.e., srcr, dstr, Fr, br. Ideally, the
VNF placement solution defines the best (or most efficient)
placement locations according to the fitness function (see
Eq. 4). Additionally, the overall cost of provisioning all
functions Fr associated with request r along a path Pr is
given by:

d(Pr) =
∑
d∈D

∑
i∈Fr

scidy
i
d (1)

Similarly, the total routing cost for this path is also given
by:

c(Pr) =
∑
r∈R

∑
(i,j)∈E

rcij lijr (2)

Here, xir,d indicates whether function i requested by
request r is implemented at datacenter d or not, while yi
represents the number of instances of function i at node d.
Moreover, li,jr is indicates whether link (i, j) is used to route
the traffic flow for request r.

3.3. Multi-Failure Model

A realistic probabilistic model is used to specify large-
scale disaster events with multiple highly-correlated spatial
and temporal link failures. Namely, the set U defines an a-
priori set of outage events, U = {u1, u2, ..., uN}, where
each event un has an associated occurrence probability,

p(un). It is also assumed that all events are sufficiently rare
and therefore can be treated as independent and mutually-
exclusive,

∑
∀un ∈ Up(un) = 1. Without loss of generality,

it is assumed that all outages are non-overlapping in the
geographic domain. Now each event has an associated set
of vulnerable links, termed as the shared risk link group
(SRLG). A non-conditional failure probability ω(i, j) is also
defined for each physical link (i, j) ∈ E in the region of
event un (with respect to the occurrence of event un). Note
that this framework can also be extended for conditional
failure probabilities with overlapping risk regions.

4. The GA Provisioning Strategy

Overall, a pre-fault “risk-aware” meta-heuristic genetic
algorithm is proposed here to reduce failure downtime
and maximize the number of satisfied requests, especially
on large-scale network sizes, termed as “risk-aware” ge-
netic algorithm (RA-GEN). Before detailing the RA-GEN
scheme, it is crucial to briefly overview the genetic algo-
rithm approach. As shown in [11], this scheme mimics the
biological evolution. Here, from within a population of indi-
viduals, a set of pairs are randomly chosen to generate a set
of children, where each pair (father and mother) generates a
single child. This child’s chromosomes sequence is formed
by the crossover of the parents’ chromosomes. Out of that
population of parents, a new population are then created
and new individuals are also formed, resulting in diversified
individuals with random chromosomes sequence. Note that
the chromosomes represent the set of values to be used by
the objective function.

4.1. RA-GEN Notation Overview

Figure 1. List of Variables

Moreover, the proposed RA-GEN has a specific algo-
rithm (see sub-section 4.2) and therefore specific variables,



which are introduced and summarized in Figure 1. Foremost,
the overall population is defined by the set P and consists of
pop size individuals. Each individual ind ∈ P has a set of
chromosomes, where indr,i is the (r, i) chromosome iden-
tifying the datacenter that instantiates function i requested
by request r. The fitness function value for an individual is
given by FXind.

Furthermore, the best individual across all populations
is defined as indoverall. Similarly, indbest is defined as the
best individual in a given population. Meanwhile, the set of
children generated by the parents in a population P is given
by C, where c ∈ C is an individual child. The first child
is also denoted by c0. Foremost, T individuals (parents) are
chosen from the main population to generate the children,
and this subset is denoted by Tc ⊆ P , i.e., |Tc| = |τ | ≤ |P |.
The father (mother) of an individual is also denoted by cf
(cm). Finally, SPindr

and SPcr represent the shortest paths
computed by individual indr ∈ P and c ∈ C, respectively,
to satisfy request r.

4.2. RA-GEN Scheme

The overall pseudocode for the RA-GEN scheme is
presented in Figure 2 and consists of two key stages, i.e.,
initialization and selection. Here the first stage starts by
initializing all GA search variables (line 3) and generating
an initial population of randomly-selected individuals, P .
Specifically, each individual randomly assigns datacenters
to instantiate each function i (requested by each request r)
and also computes the shortest path between the source and
destination nodes (lines 4-11). As a result, each individual,
ind, has |R| ˙ |F | chromosomes, where |R| is the number
of requests and |F | is the number of functions per request.
Furthermore, each individual chromosome stores the dat-
acenter being randomly assigned for function i requested
by request r, and it is assumed that this datacenter must
be able to instantiate the specific function (line 7). Finally,
a connection path is also provisioned between the source
and destination nodes by routing through all the datacenters
supporting the (randomly mapped) VNFs. Note that all path
computation here is done using a modified “risk-aware” Di-
jkstra scheme, i.e., risk aware constrained Dijkstra(), where
the routing path cost is computed based upon link failure
probabilities, ω(i, j), as follows:

c′ij =
∑

(i,j)∈E

(cij +
br
bij

) ∗ (1 + ω(i, j)) (3)

The fitness function value, FXind (see Eq. 4.2.1), is also
computed for each randomized individual, and the one with
the highest value is chosen as the best solution (lines 12-13).

After the initial population generation is complete, the
second stage is launched to perform selection. Namely, this
phase iterates to generate and test a given number of child
populations Npop. Now in order to ensure that the best
solution from the parent population P is included in the
child population, the first child c0 is chosen as the best
individual in P , i.e., c0 = indbest (line 17). The remaining

Figure 2. RA-GEN pseudocode

individuals are then created by inheritance, i.e., crossover
and mutation (lines 19-23). In particular, each child, c, is
generated by running a tournament stage, where potential
individuals “compete” to become parents. Namely, a subset
Tc of τ individuals is selected for each child by randomly
selecting τ individuals from population P (line 19). The best
and second-best individuals from T are then chosen as the
parents, i.e., father cf and mother cm (lines 20-21). Next,
the crossover rate, ratec, is used to weight the chromosome
inheritance between the two parents. For example, if the
crossover rate is 20%, then 80% of the chromosomes are
inherited from the father and 20% from the mother (line
22). Finally, the child’s chromosomes are further adjusted
according to the mutation rate ratem. Specifically, a random
value is generated and compared with the mutation rate, and
if it is lower, then the chromosome is replaced by the total
number of datacenters D minus the current chromosome
value cr,i. For example, consider a network with 16 datacen-
ters and a chromosome assigning datacenter 5 to instantiate
a specific function. If this particular chromosome is selected
for mutation, then its value is modified, as 16− 5 = 11. In
order to ensure that the new datacenter has enough resources
after inheritance and mutation are complete, the algorithm
also checks to make sure that this newly-assigned datacenter
(chromosome value) can instantiate function i requested by
request r, otherwise these steps are repeated.

Finally, each child individual, c, computes the “risk-
aware” shortest path SPcr for each request r (line 25). The
overall fitness value FXc is then evaluated for each child



individual c (line 26), and akin to the parent population
stage, the best individual, indbest, from the child population
C is selected (line 27). Finally, the best overall individual
is selected across all (Npop) iterations as the final VNF
mapping and routing selection. Namely, this selection is
done by comparing the best individual in each child pop-
ulation iteration, indbest, versus the currently known best
overall individual, indoverall. If the former is better (higher
fitness value) than the latter, the best child individual is
appropriately updated.

Overall, the second stage (lines 15-31) generates a total
of Npop children populations which are created by inher-
iting chromosomes from their respective parents. Note that
each child population may not necessarily be derived from
the best individuals in the parent population. However the
child individuals still improve upon each iteration since the
their parents are efficiently selected during the tournament
stage. In summary, the best overall individual, indoverall,
returns the complete VNF demand mapping and its set of
routes, i.e., including each datacenter d instantiating function
i (requested by request r), the number of instances yid of
function i in datacenter d, the links lij routing the paths
and the maximum overall link load, α.

4.2.1. Objective Function. The accuracy of the a solution
is measured by its capability of increasing the number of
satisfied functions and reducing the deployment cost, routing
cost and link usage, and is defined by the fitness function
in Eq. 4:

FXind = w1

∑
r∈R

∑
i∈Fr

∑
d∈D|i∈Fd

xir,d − w2

∑
d∈D

∑
i∈Fr

cidy
i
d

- w3

∑
r∈R

∑
(i,j)∈E c

ij lijr ∗ (1 + ω(i, j))− αw4

(4)

Here, 4 terms are multiplied by respective weight factors,
w1, w2, w3andw4. Namely, the first term above represents
the total number of satisfied NFs, and the main goal is to
maximize this value. Meanwhile the total cost of deploying
NFs instances and accepting requests at the various datacen-
ters is given by the second term. Similarly, the third term is
the total routing cost. However note that the link failure
probabilities ω(i, j) are also incorporated here. Namely,
the routing cost can be increased proportional to the link
failure probability. Meanwhile the fourth term represents
the maximum overall link load, where α is the highest link
usage ratio, i.e., sum of all br using a link (i, j) ∈ E divided
by link capacity bi,j . Note that the second, third and fourth
terms are all negative since maximizing a negative term is
equivalent to minimizing it [6].

5. Performance Evaluation

To evaluate the performance and accuracy of the pro-
posed survivable RA-GEN meta-heuristic scheme, its results

Figure 3. Network topology and stressor regions

are compared with the ILP and heuristic schemes intro-
duced by [1], i.e., “risk-aware” ILP (RA-ILP) and “risk-
aware” greedy heuristic (RA-GR). Therefore, the same
topology, risk regions, faillure regions and parameters setups
are adopted here, as illustrated in Fig. 3. Specifically, this
topology is comprised of 16 nodes and 25 links, and three
potential stressor (risk) regions are superimposed here, i.e.,
u1 is comprised of links 9 links (l4,1, l4,2, l4,11, l5,1, l5,2,
l5,6, l5,7, l7,8, l7,12), u2 is comprised of 4 links (l9,3,
l9, 6, l9,10, l9,15) and u3 is comprised of 4 links (l14,11,
l14,12, l14,15, l12,15). Region u1′ is not a risk-region, but
an actual failure region, and it is comprised of 6 links
(l1,4, l2,4, l4,11, l5,7, l7,8 and l7,12). The associated link
failure probabilities are further modeled based upon multi-
failure stressor attacks with 3 sub-areas, as shown in green,
yellow and red (representing 50, 75 and 100% of outage
probabilities, respectively). Note that Figure 3 also shows
the corresponding failure probabilities next to each link, i.e.,
ω(i, j), for each SRLG region.

Before failure conditions are introduced, the RA-GEN
scheme is executed to satisfy request batch sizes varying
from 1-60 requests, with each request demanding 4 NFs,
i.e., the total number of NFs ranges from 4 to 240. Note
that satisfying a batch of requests means being able to place
VNFs (of each and all requests) and establish connecting
paths among the corresponding datacenters taking the three
pre-defined risk regions (u1, u2 and u3) into consideration.
Once the VNF placement and routing are done, the testcases
are defined and tested. Namely, a multi-failure scenario is
randomly selected and triggered by choosing one of the
stressor (risk) regions in Fig. 3. In particular, the large u1
region is chosen here as it includes the largest number of
links. Now clearly it is very difficult to predict the location
of a-priori failure events in advance, especially large-scale
disasters. Hence in practice the pre-defined/a-priori risk
regions will rarely match the actual failure footprints seen
in the field. As a result, two different disaster testcases
are evaluated here, i.e., idealistic and realistic. The former
assumes perfect/exact knowledge of failure regions and only
(randomly) fails links within the chosen pre-defined stressor
region, i.e., u1. Meanwhile the latter assumes an attack
epicenter that differs from the a-priori risk region u1 and
is shifted slightly to the west, i.e., failure region u1′ , as
shown in Fig. 3.



TABLE 1. MULTI-FAILURE TESTCASES PARAMETERS

Parameter Idealistic Scenario Realistic Scenario
Link Resources 10,000 10,000

Node Resources (wd,1,wd,2,wd,3) 5, 000 5, 000
Weight w1 1, 000
Weights w2 1
Weights w3 1
Weights w4 1, 000
Function set f0, f1, f2, f3, f4

Required Resources (wi
d,j ) 30 ≤ wi

d,j ≤ 70

Function Setup Cost 50
Instance Capacity 2
Link Setup Cost 20

Outage Event u1 u1′
Outage Links (1, 5), (2, 4), (2, 5), (5, 7) (4, 11), (5, 7), (7, 12)

TABLE 2. GA-RELATED PARAMETERS (RA-GEN SCHEME)

Variable Description Value
pop size Population size 20
loop Number of iterations 100
τ Tournament Size 4

crossover Crossover rate 20%
mutation Mutation rate 20%

Once the testcases are chosen, the survivability test-
cases parameters are defined and presented in Table 1,
along with the parameter settings for the RA-GEN scheme,
given in Table 2. In particular, the GA selection is done
over 100 populations, with each having 20 individuals and
crossover/mutation rates of 20%.

5.1. Idealistic Scenario

To further gauge the impact of multiple link failures, the
post-fault performance of the “risk-aware” genetic algorithm
is evaluated and compared with the RA-ILP and RA-GR
from [1]. Hence, two different testcases are evaluated here
i.e., idealistic and realistic stressor scenarios. Note that
according to the link failure probabilities determined by the
multi-failure model (see Section 3.3), not all links within a
risk region are to fail. Therefore, as per Table 1, the idealistic
testcase selects the u1 region and fails 4 links (l1,5, l2,4, l2,5,
l5,7). Accordingly, Fig. 4 plots the number of failed requests
for the ideal stressor and indicates the lowest survivability
with the greedy RA-GR scheme (red), i.e., generally within
20-50% more failures than the other two. By contrast, the
RA-GEN method (yellow) is very competitive with the RA-
ILP optimization scheme (blue). In fact the meta-heuristic
solution even gives lower failures for some batch sizes, i.e.,
4, 7, 16, 37, 46 and 55 requests.

5.2. Realistic Scenario

Subsequently, the realistic stressor testcase selects the
modified u1′ region (Fig. 3) and fails 3 links (l4,11, l5,7
and l7,12). The related post-fault failure results are plotted

Figure 4. Post-fault performance: idealistic stressor scenario

in Fig. 5 and indicate that the RA-GEN meta-heuristic
actually gives improved survivability versus both the other
RA-ILP and RA-GR schemes. Most notably, failed requests
are up to 20% lower than the optimization scheme, a very
notable result for large-scale infrastructures. Furthermost,
the meta-heuristic GA scheme presents greater reliability
improvement compared with the ILP optimization for multi-
failure realistic and probabilistic scenarios, most likely due
to the algorithm’s random nature.

Figure 5. Post-fault performance: realistic stressor scenario



6. Conclusion

This paper presents inspects disaster recover support
techniques with the context of NFV-based infrastructures.
Overall, a probabilistic multi-failure model is used for a-
priori characterization of large-scale disaster events. A novel
meta-heuristic algorithm is presented for network function
(NF) placement and routing, with a focus in minimizing
failures and maximizing the number of satisfied service
demands. Detailed reliability analysis results show that the
proposed solution can significantly reduce service disrup-
tion, especially when applied for realistic scenarios with ran-
dom characteristics. Furthermost, the proposed scheme has
shown improvement when compared with greedy heuristic
and linear optimization strategies.
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