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Abstract

Metabolic engineering seeks to reprogram cells to efficiently produce value-added chemicals.
Traditionally, this is achieved by overexpressing the production pathway and/or knocking out
competing endogenous pathways. However, limitations in some pathways are more effectively
addressed through dynamic metabolic flux control to favor different cellular objectives over the
course of the fermentation. Dynamic control circuits can autonomously actuate changes in
metabolic fluxes in response to changing fermentation conditions, cell density, or metabolite
concentrations. In this review, we discuss recent studies focused on multiplexed autonomous
strategies which (1) combine regulatory circuits to control metabolic fluxes at multiple nodes or
(2) respond to more than one input signal. These strategies have the potential to address
challenging pathway scenarios, actuate more complex response profiles, and improve the

specificity in the criteria that actuate the dynamic response.
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Highlights

e Autonomous dynamic control circuits have been developed to balance trade-offs in

microbial synthesis systems in a cost-effective manner.

e Significant improvements in production have resulted from implementing layered

autonomous control strategies that regulate metabolic fluxes at multiple nodes.

e Synthetic biology tools have enabled the construction of multi-input control circuits which

result in more favorable regulation dynamics in some production contexts.
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Introduction

Metabolic engineering seeks to take advantage of cellular machinery to produce value-added
compounds [1], which can vary widely from biofuels [2,3] to pharmaceuticals [4,5]. Typically,
improvements in the production pathway are realized by increasing pathway enzyme levels and/or
down-regulating competing endogenous pathways [6,7]. However, some pathways are subject to
challenges that are better addressed through dynamically regulating metabolic fluxes [8,9]. For
example, down-regulating essential endogenous pathways may result in poor growth, which can
be restored by delaying pathway down-regulation until there is sufficient biomass accumulation
[10]. This idea of beginning a fermentation with a growth phase before transitioning to a
production phase has been shown to improve production in a number of different pathway contexts

[11-14].

Transitioning from growth to production phase requires a shift in metabolic fluxes, which typically
results from a change in enzyme levels. Enzyme levels can be regulated using engineered gene
circuits that control transcription, translation, or enzyme degradation rates. This review is focused
on transcriptional control circuits that employ repressor or activator proteins that bind or release
from a promoter sequence in the presence of a small molecule. Until recently, regulation of enzyme
levels was most frequently controlled through circuits responding to exogenous chemical inducers
such as isopropyl-f-D-1-thiogalactopyranoside (IPTG), anhydrotetracycline (aTc), or L-arabinose
[15,16]. While feasible in academic settings, these strategies are not practical in many industrial
processes due to the high cost of inducer molecules. With the goal of developing more industrially
feasible methods of dynamic control, recent studies in this field have explored autonomous control
systems. Instead of responding to an exogenous signal, autonomous control circuits respond to a
stimulus that results from cell metabolism such as substrate depletion [3], pathway precursor or
product generation [3,17-20], or increased cell-density [13,14,21-23]. Application of these
circuits to regulating metabolic fluxes has resulted in significant improvements in a number of

products including glucaric acid [13,18], lycopene [24], and amorphadiene [25].

With the rapid development of synthetic biology tools, it is possible to design, construct, and

characterize more complex control circuits. This has led to a recent focus on (1) “layered”
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autonomous strategies capable of controlling more than one metabolic flux node [18,22,26] and
(2) “multi-input” autonomous strategies which sense multiple stimuli to influence one metabolic
flux node [27-29]. For single-input autonomous control systems that regulate flux at one metabolic
node, we suggest the excellent reviews by Xu, Shen, Lalwani, and Tan [30-33]. This review will

be focused on more recent studies on layered and multi-input strategies.

Layered control methods

Some pathways are subject to limitations at two or more metabolic nodes that can be addressed
through implementing dynamic control. Figure 1A illustrates an example regulation scheme that
uses one regulation module to delay production of an intermediate and a second to increase
availability of an endogenous precursor. In this context, controlling both metabolic nodes may
improve production over a system that only addresses one. To implement this regulation scheme,
recent studies have developed autonomous bifunctional control circuits [18,22,26]. These systems
achieve dual regulation, either by employing one control circuit that regulates expression of
multiple genes, or by employing two control circuits each of which is responsible for regulating
one metabolic node. This section presents three illustrative examples of recent work on layered
dynamic control, highlighting the differences in tunability that result from the module choices.
Studies by Dahl [25], Zhang [17], and Xu [3] are excellent studies that controlled multiple

metabolic fluxes or employed two sensor variants, but will not be discussed here (Table 1).

When one control circuit is used to regulate metabolic fluxes at both metabolic nodes, the
switching dynamics of these nodes are fully coupled. That is, both regulation modules switch at
the same time. Figure 1C shows that whether Circuit A, B, or C is used to control both reactions,
there are significant areas of the switching time search space that cannot be explored. While this
can be limiting for cases for which production is highly sensitive to the switching time of both
regulated reactions, Yang et al. [26], Soma and Hanai [14], and Williams et al. [23] showed that
this regulation scheme is well-suited to overcoming challenges in certain pathways (Table 1). For
example, Yang et al. aimed to improve muconic acid production by employing a regulation system

that would allow the cells to adapt to the fermentation environment before gradually turning ON
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the first two steps of the muconic acid pathway and turning OFF carbon flux towards the TCA
cycle. To actuate the switch from the adaptation phase to the production phase, a sensor was
derived from the natural muconic acid response machinery in Pseudomonas putida. This sensor
contains a regulatory protein, CatR, which binds to the Pma muconic acid-responsive promoter.
CatR underdoes a conformational change in the presence of muconic acid to allow transcription
from the Pma promoter [34]. This circuit was used to control expression of the first two pathway
genes [35], along with anti-sense RNA to down-regulate ppc expression to achieve a muconic acid

titer of 1.8 g/L, a substantial improvement compared to static and both single-layer controls.

In some pathway contexts, production is highly dependent on the switching time of both regulation
modules. These situations benefit from regulation schemes that employ orthogonal circuits to
control each module, increasing the accessible area of the switching time search space from a line
to a rectangle (Figure 1E). While implementation of this control scheme adds complexity by
requiring additional regulatory elements, Doong et al. demonstrated the importance of accessing
an expanded search space in achieving efficient production of glucaric acid from glucose [18]. The
first regulation module of this system increased the availability of glucose-6-phosphate for the
production pathway by down-regulating pfk expression using a quorum-sensing (QS) circuit [13].
The second module used a biosensor to express the pathway gene, M/OX, only in the presence of
its substrate to address enzyme instability (E Shiue, PhD thesis, Massachusetts Institute of
Technology, 2014). The switching dynamics of both modules were tuned by varying the
expression level of key circuit components — the AHL synthase for the QS circuit and the regulator
protein for the biosensor. A combinatorial screen through the switching dynamics of both modules
showed that the switching dynamics of both circuits were key parameters that drastically influence
glucaric acid titers. Implementation of only the pfk control layer results a greater than four-fold

titer increase and addition of the MIOX control layer led to an additional two-fold increase.

A third category of bifunctional regulation circuits combines features from the fully coupled and
fully orthogonal strategies (Figure 1D). An example of this strategy was developed in a study that
constructed a bifunctional circuit composed of the /ux and esa QS circuits that respond to the same
N-acyl homoserine lactone (AHL), but contain different transcription factors [22]. Under this

regulation scheme, changing the expression level of the AHL synthase results in a change in the
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switching dynamics of both modules, while independent tuning of the Jux circuit can be achieved
by varying the expression level of the /ux regulator protein that only impacts its cognate promoter.
This regulation system was implemented to improve production in the naringenin and salicylic
acid pathways. In both applications, the ux module controlled expression of CRISPRi components
to dynamically down-regulate endogenous pathways that compete for availability of a production
pathway precursor [36] and the esa module was used to delay expression of heterologous pathway
genes to overcome enzyme inhibition [37,38] and product toxicity in the naringenin and salicylic
acid pathways, respectively. Implementation of one and two layers of dynamic regulation in the
naringenin pathway resulted in an 8-fold and 16-fold titer increase compared to the static system,
respectively, and dual-regulation in the salicylic acid pathway resulted in a 2-fold increase over
the static case. In both pathway contexts, product titers were highly dependent on the switching

time of both modules, confirming the importance of tunability in some contexts.

These early applications of layered dynamic regulation have shown that control of two or more
metabolic fluxes can result in significant production improvements by addressing two pathway
limitations. These studies show three approaches for bifunctional regulation which primarily differ
in the extent to which the two regulation modes are coupled. Fully- or semi-orthogonal control
schemes are necessary for achieving the optimal production in some pathways, but since there is
a trade-off between simplicity and tunability, the combination of modules should be chosen to suit

the application.
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Figure 1. [llustration of layered control methods. (A) Example of a regulation scheme that employs layered dynamic
control. The first regulation module (green box) controls flux through the production pathway to delay intermediate
and product formation. The second regulation module (red box) regulates consumption of a pathway precursor
(triangle) by endogenous pathways. (B) Response curves for three different circuits — A, B, and C. In each circuit, the
response curve shifts based on the expression level of circuit components such as the transcription factor (or synthase
for the signaling molecule in QS circuits). Circuits A and B have different transcription factors, but share a signaling
molecule. Circuit C has a unique transcription factor and signaling molecule. (C) Possible combinations of switching
times (shaded gray) with a fully coupled regulation system in which both modes are under control of the same circuit.
(D) Possible combinations of switching times with a semi-orthogonal bifunctional regulation system in which the
regulation modes respond to the same signaling molecule, but have unique transcription factors. (E) Possible
combinations of switching times with a fully orthogonal bifunctional regulation system in which the two regulation
modes are controlled under circuits with different transcription factors and signaling molecules.
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Target Circuit Target gene(s) and Outcome Reference
product type(s) response
. . 3-fold yield increase over
Fatty acid ethyl | Fatty acid/acyl- - " g it dD ON' | inducible system from 17
ester CoA biosensor .
previous study [39]
. 2-fold titer increase over
Amorphadiene | Stress-response ADS ON  FPP-production inducible or constitutive 25
pathway OFF
promoters
Fatty acids Malonyl-CoA tesA, fabADGI ON + 2.1-fold titer increase over 3
Y biosensor accADBC OFF no-regulator control
Isopropanol QS circuit gltA OFF + thiA, atoAD, 3-fold titer increase over 14
prop adc, adhE ON no-QS control
para- bi fold titer i
hydroxybenzoic QS circuit ARO4, ubiC, TKLI1 ON + 37-fold titer increase over 23
Y e CDC19, ARO7, ZWFI1 OFF | no-ON or -OFF control
QS circuit + 4-fold titer increase with
Glucaric acid myo-inositol pfkA 8§F(§)?OSS)CEE(()11‘;MIOX OFF + additional 2-fold 18
biosensor titer with ON
Muconic acid 3.7-fold titer increase with
Muconic acid bi entC, pchB ON + ppc OFF ON + additional 1.6-fold 26
iosensor o .
titer increase with OFF
lux + esa QS TAL, 4CL ON (esa) + fabF, 8-fold titer increase with
Naringenin cirouits fabB, adhE, sucC, fumC ON + additional 2-fold 22
OFF (lux) titer increase with OFF
. . lux + esa QS entC, pchB ON (esa) + 2-fold titer increase over
Salicylic acid circuits phed, tyrA OFF (lux) static expression 22
175
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Multi-input control methods

While the autonomous methods discussed so far have resulted in meaningful improvements in a
number of production pathways, some situations may benefit from regulation dynamics that cannot
be achieved by one-input control circuits, motivating exploration of multi-input control.
Additionally, multi-input circuits are a promising method of achieving pathway-independent
control with non-monotonic response profiles. This section discusses two studies that improve
response dynamics [27,28] and one study that achieves a specific and non-monotonic response

profile [29] using multi-input circuits (Table 2).

With the goal of developing a control circuit that responds to both cell density and cell
physiological state, He et al. constructed an AND gate composed of a QS circuit and a stationary
phase sensor, both of which turn from OFF to ON during fermentations [28]. The AND gate is
based on a circuit that requires expression of two transcriptional activator genes, ArpR and hrpS to
activate expression from the Pnypr promoter [40]. Regulation of #rpR under the QS promoter (Pqs)
and ArpS under the stationary phase promoter (Psp) results in transcription of the Pppr promoter
only when both cell density and physiological state requirements are met (Figure 2A). Control of
the polyhydroxybutyrate (PHB) production pathway under the Pppr. promoter resulted in improved
growth characteristics over statically-induced and QS-only controls and resulted in a greater-than
two-fold improvement in PHB production over QS-only, stationary-phase-only, and static

controls.

Lo et al. applied an alternative multi-input circuit architecture that assembles nutrient starvation
and substrate-sensing circuits in a layered manner [27]. The first layer of the circuit controls
expression of the gene encoding the first pathway enzyme under the Pcsip promoter (Pcs), which is
upregulated under carbon starvation conditions [41,42]. The second layer of the circuit employs a
biosensor for the product of the first conversion regulated under the first layer to control expression
of the rest of the pathway. While the enzyme-biosensor pair must suit the production pathway, the
authors of this study showed that one enzyme-biosensor pair could be used to produce five
different compounds by changing the substrate and down-stream production pathway genes. They

showed significant growth and titer improvement under two different enzyme-biosensor pairs

10
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compared to nutrient sensor-only and static controls. Both studies demonstrate the benefit of multi-

input control dynamics in some pathway contexts.

While studies have shown improved production when a key metabolic node is regulated in a
reversible manner [3,43], pathway-independent control circuits discussed so far are only capable
of producing monotonic responses. To develop a pathway-independent method for addressing
these situations, Moser et al. characterized pathway-independent circuits that respond to changing
glucose, oxygen, and acetate levels. These circuits were applied to reducing acetate production
while limiting growth effects by assembling multi-input circuits that express silencing components
for the key acetate-production pathway genes, poxB and pta. The authors aimed to designed the
circuits to activate transcription of the silencing components during periods of poxB and pta
transcription. Based on time-resolved transcript data for poxB and pta, the authors used
computational models of the characterized circuits to generate predictions of multi-input circuits
that would match the transcription profiles of the target genes. Characterization of the predicted
circuits (Figure 2C) resulted in non-monotonic activation profiles consistent with the target

profiles and significantly reduced acetate generation.

11
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Figure 2. [llustrations of two multi-input control circuits which actuate a response in the presence of two input signals.
(A) AND gate in which the target gene is expressed when both cell density and stationary phase thresholds are
satisfied. The QS promoter (Pqs) and the stationary phase promoter (Psp) control expression of the transcription factor
genes encoding HrpR and HrpS, both of which are required to activate expression from a third promoter (Pnpr). (B)
Two-layer regulatory circuit which expresses a target gene when both carbon starvation and precursor requirements
are met. The carbon starvation promoter (Pcs) controls expression of a gene that encodes an enzyme that produces the
metabolite (Intermediate 1) that triggers activation from the metabolite-responsive promoter (Pms). Pwms controls
expression of the rest of the pathway genes. (C) Two multi-input circuits constructed to decrease acetate production.
The genes for poxB silencing are expressed during high glucose and high acetate conditions by regulation under the
PaLu and Pac promoters, respectively. The genes for pta silencing are expressed during high glucose oxygen conditions
by regulation under PcLu and Po2 promoters, respectively.
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Table 2. Summary of multi-input control strategies

Target product

Circuit types

Target genes

Outcome

Reference

Vanillic acid

Ethyl oleate

Polyhydroxybutyrate

Acetate reduction

Acetate reduction

Glucose sensor and
hydroxycinnamic acid
biosensor

Glucose sensor and
oleic acid biosensor

QS and stationary
phase

Glucose, acetate, and
OXygen sensors

Glucose, acetate, and
OXygen sensors

Conclusions and future outlook

fcs, ech, vdh

fadD, pdc, adhB,
aftA

phbCAB

poxB

pta

5-fold productivity increase
over constitutive control

2.4-fold productivity increase
over single-input inducible
control

1-2-fold titer increase over
QS or stationary phase only

2-fold reduction in acetate
accumulation (mM)

4-fold reduction in acetate
accumulation (mM)

27

27

28

29

29

In recent years, layered and multi-input autonomous control schemes have been designed,

constructed and implemented to control metabolic fluxes. These autonomous tools have shown

promise in early studies. As production pathways and control schemes become increasingly

complex, co-culture production becomes a more attractive option for distributing burden between

population members or segregating incompatible pathway or circuit components [44—49].

Autonomous control circuits to coordinate cellular behavior between sub-population members [50]

and regulate co-culture composition [50] are expected to play a significant role in improving

control of co-culture systems.
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